
CONSERVATION LAW 
FOR MOMENTUM 

Momentum transfer is introduced by reviewing the units and dimensions of momen- 
tum, time rate of change of momentum, and force. The phenomenological law 
governing the transfer of momentum by molecular diffusion-Newton’s second 
law-was briefly discussed in Chapter 5 .  In addition to molecular diffusion, momen- 
tum (and energy) may also be transferred by bulk motion. Since bulk motion involves 
transfer of mass from one point in a system to another, the equation of continuity 
(conservation law for mass) was also discussed earlier. These serve as an excellent 
warm-up for the equation of motion (equation of momentum transfer or conservation 
law for momentum that receives treatment in Section 9.2 of this chapter). 

9.1 MOMENTUM BALANCES 

A momentum balance (also termed the impulse-momentum principle) is important in 
flow problems where forces need to be determined. This analysis is inherently more 
complicated than those previously presented (i.e., forces possess both magnitude and 
direction), because the force, F, and momentum, M, are vectors. In order to describe 
force and momentum vectors, both direction and magnitude must be specified; for 
mass and energy, only the magnitude is required. 

Newton’s law is applied in order to derive the linear momentum balance equation. 
Newton’s law states that the sum of all forces equals the rate of change of linear 
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momentum 

Here kl is the rate (with respect to time) of linear momentum, and m and u represent 
the mass and velocity, respectively. Newton's law must be applied in a specified 
direction (e.g.. horizontal or vertical). The product (m)(u) is called the linear momen- 
tum. When this is applied to a fluid entering or leaving a control volume, the follow- 
ing terms may be defined: 

bout = momentum rate of the fluid leaving the control volume 

hin = momentum rate of the fluid entering the control volume 

Equation (9.1) may be rewritten in finite form 

This balance essentially means that for steady-state flow, the force on the fluid equals 
the net rate of outflow of momentum across the control surface. Equation (9.2) also 
may be rewritten as 

(9.3) 

or 

This may be compared with the generalized steady-state balance equation for 
momentum: 

{rate of momentum in} = {rate of momentum out} 

+ {generation rate of momentum} (9.5) 

Thus, the generation rate of momentum may be viewed as the negative of the net force 
acting on the fluid mass.(') When a momentum balance is used to calculate the forces 
in different (but perpendicular) directions (e.g., F, and FJ, the net (or resultant) force 
is obtained 

Application of the above principles is provided in the following two Illustrative 
Examples. 
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Illustrative Example 9.1 A horizontal water jet impinges on a vertical plate. The 
jet splits into several jets traveling in the vertical direction. The water flow rate, q, 
is 0.5 ft3/s, the water's horizontal velocity, u, is lOOft/s, and the water density, p, 
is 62.4 lb/ft3. Determine the force required to hold the plate stationary. 

Solution The momentum balance equation in the horizontal direction is 

The momentum rate of the inlet water in the horizontal direction is given by 

The horizontal momentum rate of the exit water is k,,, = 0. The net force in the hori- 
zontal direction, F, is therefore 

pqv (62.4)(0.5)( 100) 
gc 32.2 

F = O - - = -  = -971bf 

The  net horizontal force can be recalculated if the jet had an angle of lo" to the hori- 
zontal. For this case 

P P  

gc 

F = -95.5 lbf 

kin = -cOS(lOo) = 97(0.985) = 95.5 lbr 

The negative answer above indicates that to hold the plate in place, a force must be 
exerted in a direction opposite to that of the water flow. 

Illustrative Example 9.2 A 10 cm diameter horizontal line carries saturated steam 
at a velocity of 420 m/s. Water is entrained (carried along) by the steam at the rate 
0.15 kg/s. The line has a 90" bend. Calculate the force required to hold the bend 
in place due to the entrained water (see Fig. 9.1). 

Solution Select the control volume as the fluid in the bend and apply a mass balance. 

m,  =m* 

In addition, 
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Figure 9.1 90" turn. 

Apply a linear momentum balance in the horizontal (x) direction, neglecting the 
momentum of the steam 

d d 
- dt dt 

F - - ( r n ~ ) ~ ~ ~ , ~  - - (rnu)in,x = 0 - I j t ~ i ~ , ~  = -0.15(420) = -63 N 

The x-direction force acting on the 90" elbow is therefore F, = +63 N. 
Apply a linear momentum balance in the vertical (y) direction 

Fy = Mout,y - hin,,, = ljzUoUty - 0 = 0.15(420) = 63 N 

The y-direction force acting on the 90" elbow is therefore Fy = -63 N. 
The resultant force may now be calculated from Equation (9.6) 

Fres = 4- = JZ = 89.1 N 

The resultant force is the force required to hold the elbow in place. 

Illustrative Example 9.3 Water (density = 62.4 lb/ft3) flows in a 2 inch diameter 
pipe. The pipe has a 90" bend. The bend support can withstand a maximum force in 
the x-direction of 5 lbf. Determine the maximum water flow rate in the pipe bend. 

Solution 
balance. 

Select the control volume to be the fluid in the bend and apply a mass 

Ijt,=Ijt2=Ijtitp&i 

For steady incompressible flow, 

41 = q 2  = q = PO 
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Therefore, 

V ]  = v2 = v 

Apply a linear momentum balance on a rate basis in the horizontal x-direction [see 
Equation (9.4)] 

v 
= Ak,,,, + Fx = riz- = 0 - ( - 5 )  

gc 

psv2 
- = 5  

gc 

The use of g, is necessary to obtain the proper units on both sides of the equation. 
Substitute numerical values to generate the flow velocity. 

= 10.8fi/s 
5(32.174) 

62.4(~)(0. 1672/4) 

Finally, the volumetric and mass flow rates can be calculated 

q = SV = (0.0219)(10.8) = O.238fi3/s 

riz = p4 = 62.4(0.238) = 14.8 lb/s 

This represents the maximum water flow rate that the elbow can handle. However, the 
practicing engineer employs a safety factor so that the possibility of a failure or 
problem arising is decreased. 

Illustrative Example 9.4 Water (density = 1000 kg/m3, viscosity = 0.001 kg/ 
(m.  s)) is discharged through a horizontal fire hose (see Fig. 9.2) at a rate of 

Figure 9.2 Fire hose. 
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1.5 m3/min. The fire hose is 10 cm in diameter. The nozzle’s diameter reduces from 
10 cm to 3 cm. The nozzle discharges the water into the atmosphere. Calculate water 
velocities and the pressures in the fire hose and at the nozzle tip, thex-direction momen- 
tum at both ends of the nozzle, the force required to hold the hose, and the type of flow in 
the fire hose. 

Solution Apply a mass balance on the CV. 

q = q1 = ulSl = 0.025m3/s 

riZ = pq = lOOO(0.025) = 25 kg/s 

Calculate the velocities ul  and u2. 

q 0.025 
5’1 ~ ( 0 . 1 ) ~ / 4  

q 0.025 
S2 ~ ( 0 . 0 3 ) ~ / 4  

U l  =-= = 3.2m/s 

0 2 = - =  = 35.4m/s 

Determine the pressure, P1, by applying Bernoulli’s equation between points 1 and 2 
(see Fig. 9.2). 

ZI = z2 

P2 = 0 Pag (Pascal gauge) 

p(u22 - u12) 1000 
2 gc 2 

p1 =--- = - [(35.4)2 - (3.2)2] = 620,OOOPag 

Calculate the x-direction momentum rates. 

= (riZl~l), = (25)(3.2) = 80N 

M2,, = (lj2202), = (25)(35.4) = 885 N 

Obtain the force from the momentum balance in the x-direction. 

T 
F, = k,, - h ~ , ~  - PlSl = 885 - 80 - (620,000)(-(0.1)2) = -4067N 

4 
= -9151bf 

The magnitude of the force (915 lbf) explains why it often takes several firefighters to 
hold a fire hose steady at full discharge. 

9.2 MICROSCOPIC APPROACH: EQUATION OF 
MOMENTUM TRANSFER 

The equation of momentum transfer-more commonly called the equation of 
motion-describes the velocity distribution and pressure drop in a moving fluid. It 
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is derived from momentum considerations by applying a momentum balance on a rate 
basis in conjunction with Newton’s law to a volume element in a moving field. Once 
again, this microscopic derivation is available in the literat~re.‘~’~’ 

If the fluid is Newtonian, the components of the shear-stress may be replaced 
by the shear-stress components given by Newton’s law (see Table 5.1). In addition, 
the density and the viscosity of the fluid are often constant, and the only significant 
external force concerned is that due to gravity. The resulting equation has been 
referred to as the Navier-Stokes equation. This equation is also expanded into 
rectangular, cylindrical and spherical coordinates; the results are presented in 
Tables 9.1, 9.2, and 9.3. 

Illustrative Example 9.5 Derive Equation (5.16), as presented in Chapter 5. A fluid 
is flowing through a long vertical cylindrical duct of radius R under steady-state 
laminar flow conditions (see Fig. 9.3). Calculate the velocity profile as a function 
of the pressure drop per unit length in the direction of motion. Also, calculate the 
volumetric flow rate, the average velocity, the maximum velocity, and the ratio of 
the average to the maximum velocity. 

Solution This problem is solved using cylindrical coordinates. The describing 
equations are now “extracted” from Table 9.2. Since the flow is one-dimensional 

v, = 0 

v$, = 0 

v, # 0 

Table 9.1 The equation of motion: expansion in 
rectangular coordinates 

x-component: 
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Table 9.2 The equation of motion: expansion in cylindrical 
coordinates 

r-component: 

p a l a  1 a2v 2 av, g +- - - - { r v ]  +-L---+L + p - L  
g, [ ar ( ra r  r ) r28+ Zi] g, 

+component: 

P(2+u,-+--+-+ au, v, av, v,u, a,,) = -~~ 1 aP 
gc ar r a+ r “dZ 

p a l a  1 azv, 2 av, ““1 g, +- - ---(rod] +--+--+- + p -  
g, g, [ ar ( ra r  ) r2 a+’ r20+ az2 

z-component: 

Table 9.3 The equation of motion: expansion in spherical coordinates 
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c --lL/- 
r =  R 

z=  L; PL 

z=  0; Po 

Figure 9.3 Tubular flow. 

The terms v,., u+, and all their derivatives must be zero. From Table 7.1, 

= o  du, 
dZ 

Based on physical grounds 

Based on the problem statement 

dv,/dt = 0 

It is reasonable to conclude that v, might vary with r, i.e., 

This means 

or perhaps 

d2v, 
- # O  dr2 



94 CONSERVATION LAW FOR MOMENTUM 

Examining the equation of motion in cylindrical coordinates in Table 9.2, one 
notes that 

The last equation may be rewritten 

The left-hand side is a constant or a function of z. The right-hand side is either a 
constant or a function of r. One can then conclude that both must equal a constant. 
Since dP/dz is a constant, it is written in the finite form 

The negative sign appears because P decreases as z increases. Equation (9.7) now 
becomes 

It would be wise to multiply both sides of the equation by rdr; otherwise, some 
difficulty would be encountered on integrating the equation. 

Integrating once 
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Multiplying both sides by dr/r  

A 
2 4  r 

dv, = -@r dr+-dr  

and integrating 

v, = - e r 2  + A  In r + B 
4PL 

95 

(9.9) 

What about the BCs? Note that the procedure for the evaluation of integration 
constants A and B is also available in Chapter 5. 

BC( 1) 

v z = O  a t r = R  

based on physical grounds 

v, = finite at r = 0 
or the equivalent 

d”,_o a t r = O  
dr 

Substituting BC(2) into Equation (9.8) or (9.9) yields 

BC( 1) gives A = O  

Substitution of A and B leads to Equation (5.16), as given in Chapter 5 and shown 
again below 

gcAP 2 

4 4  
0, = -(R - r2) 

Illustrative Example 9.6 With reference to Illustrative Example 9.5, comment on 
the nature of the velocity profile. 

Solution An examination of Equation (5.16) indicates that the velocity profile is 
parabolic. Parabolic velocity profiles are the norm for laminar flow in pipes. The 



96 CONSERVATION LAW FOR MOMENTUM 

reader is left the exercise of plotting u, as a function of r in order to verify the 
above statement. 
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NOTE: Additional problems are available for all readers at www.wiley.com. Follow 
links for this title. 
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