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FLOW MECHANISMS 

12.1 INTRODUCTION 

When fluids move through a closed conduit of any cross-section, one of two different 
types of flow may occur. These two flow types are most easily visualized by refemng 
to a classic experiment first performed by Osbome Reynolds in 1883. In Reynolds’ 
experiment, a glass tube was connected to a reservoir of water in such a way that 
the velocity of the water flowing through the tube could be varied. A nozzle was 
inserted in the inlet end of the tube through which a fine stream of colored dye 
could be introduced. 

Reynolds found that when the velocity of the water was low, the “thread” of dye 
color maintained itself throughout the tube. By locating the nozzle at different points 
in the cross-section, it was shown that there was no mixing of the dye with water and 
that the dye flowed in parallel, straight lines. 

At high velocities, it was found that the “line” or “thread” of dye disappeared 
and the entire mass of flowing water was uniformly colored with the dye. In 
other words, the liquid, instead of flowing in an orderly manner parallel to the 
long axis of the tube, was now flowing in an erratic manner and so there was com- 
plete mixing. 

These two forms of fluid motion are known as laminar or viscousjow (low vel- 
ocity), and turbulenrjow (high velocity). The velocity at which the flow changes 
from laminar to turbulent is defined as the critical velocity.“’ 
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12.2 THE REYNOLDS NUMBER 

Reynolds, in a later study of the conditions under which the two types of flow might 
occur, showed that the critical velocity depended on the diameter of the tube, the vel- 
ocity of the fluid, its density, and its viscosity. Further, Reynolds showed that the term 
representing these four quantities could be combined in a manner that later came to be 
defined as the Reynolds number. 

The Reynolds number, Re, is a dimensionless quantity, and can be shown to be the 
ratio of inertia to viscous forces in the fluid: 

(12.1) 

where L is a characteristic length, v is the average velocity, p is the fluid density, p is 
the dynamic (or absolute) viscosity, and Y is the kinematic viscosity. In flow through 
round pipes and tubes, L is the diameter, D. 

The Reynolds number provides information on flow behavior. It is particularly 
useful in scaling up bench-scale or pilot data to full-scale applications. Laminar 
flow is always encountered at a Reynolds number, Re, below 2100 in a circular 
duct, but it can persist up to higher Reynolds numbers in very smooth pipes. 
However, the flow is unstable and small disturbances may cause a transition to turbu- 
lent flow. Very slow flow (in circular ducts) for which Re is less than 1 is termed 
creeping or Stokes flow. Under ordinary conditions of flow (in circular ducts), the 
flow is turbulent at a Reynolds number above 4000. A transition region is observed 
between 2100 and 4000, where the type of flow may be either laminar or turbulent, 
and predictions are unreliable. The Reynolds numbers at which the fluid flow changes 
from laminar to transition or to turbulent are termed critical Reynolds numbers. In 
other geometries, different critical Re criteria exist. 

Illustrative Example 12.1 The inlet flue to a furnace is at 200°F. It is piped through 
a 6.0-ft inside diameter duct at 25 ft/s. The furnace heats the gas to 1900°F. In order 
to maintain a velocity of 40 ft/s, what size duct would be required at the outlet of the 
furnace? 

Solution 
nace is 

Applying the continuity equation, the volumetric flowrate into the fur- 

then A1 = [1T(6.0)*]/4 = 28.3 ft2 

41 = (28.3)(25) = 707.5 ft3/s 
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The volumetric flowrate out of the scrubber, using Charles' law, is 

q 2  = ql(T2/T,) (T in absolute units) 

= (707.5)(2360/660) 

= 2530 ft3/s 

The cross-sectional area of outlet duct is given by 

A2 = 92/02 

= 2530/40 

= 63.25 ft2 

The diameter of the duct is therefore 

D = (4A2/~)"~  

= (4 x 63.25/~) ' .~  

= 8.97 ft = 108 in 

These calculations become important and are necessary for determining the Reynolds 
number. The reader is left the exercise of calculating the Reynolds number. However, 
since the flowing fluid is a gas, one can be virtually certain that the flow will be 
turbulent. 

Illustrative Example 12.2 A liquid with a viscosity of 0.78cP and a density of 
1.50 g/cm3 flows through a 1-inch diameter tube at 20 cm/s. Calculate the Reynolds 
number. Is the flow laminar or turbulent? 

Solution By definition, the Reynolds number (Re) is equal to: 

Re = L p v / p  

where p = fluid density 
0 = fluid velocity 
L = characteristic length, usually the conduit diameter D 
p = fluid viscosity 

Since 
1 CP = g/(cm. s) 

p = 0.78 x lop2 g/(cm. s) 

1 in = 2.54cm 

Re = (1.50)(20)(2.54)/(0.78 x lo-*) 

= 9770 

(12.1) 
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The flow is therefore turbulent. Once again, the value of the Reynolds number indi- 
cates the nature of the fluid flow in a duct or pipe and generally: 

Re < 2100; flow is streamline (laminar or viscous) 
Re > 4000 flow is turbulent 
2100 5 Re 5 4000; transition region 

Illustrative Example 12.3 Given the physical properties and velocity of a gas 
stream flowing through a circular duct, determine the Reynolds number of the gas 
stream. The velocity through the duct is 3.8m/s, the duct diameter is 0.45m, the 
gas viscosity 1.73 x kg/m. s, and the gas density is 1.2 kg/m3. 

Solution Substitution into Equation (12.1) gives 

Dup (0.45)(3.8)(1.2) 
Re=-= = 118,600 

1.73 x 10-5 

The flow is in the turbulent regime and for most engineering applications, one can 
assume turbulent (high Reynolds number) flow for gases. The reader should also 
note that the Reynolds number appears in many semi-empirical and empirical 
equations that involve fluid flow, heat transfer, and mass transfer applications. 
For flow in non-circular conduits, some other appropriate length (termed the 
hydraulic diurneter) replaces the diameter in Re. This is discussed later in the 
next chapter. 

12.3 STRAIN RATE, SHEAR RATE, AND VELOCITY PROFILE 

When a fluid flows past a stationary solid wall, the fluid adheres to the wall at the 
interface between the solid and fluid. This condition is referred to as “no slip.” 
Therefore, the local velocity, u, of the fluid at the interface is zero. At some distance, 
y, normal to and displaced from the wall, the velocity of the fluid is finite. Therefore, 
there is a velocity variation from point to point in the flowing fluid. This causes a 
velocity field, in which the velocity is a function of the normal distance from the 
wall, that is, u =f(y). If y = 0 at the wall, u = 0, and u increases with y. The rate 
of change of velocity with respect to distance is defined the velocity gradient, 

du Au 
dy = 
- (12.2) 

This velocity derivative (or gradient) is also referred to as the shear rate, time rate of 
shear, or rate of deformation. See Chapter 5 for more details. 
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Illustrative Example 12.4 The local velocity u (ft/s or f p s )  near a wall varies with 
the normal distance, y (ft), from a stationary wall according to the equation 

v = 20y - 3 

Generate an equation describing the shear rate. 

Solution Check the consistency of the given profile at the wall where y = 0: 

u = 20y - y* = 20(0) - (O)* = 0 

The profile is consistent with respect to the boundary condition. 

profile: 
Generate the equation of the strain rate (see Eq. (12.2)) using the above velocity 

du 
= 20 - 2y - 

dY 

The units of the strain rate are s- '. Strain rate is important in the classification of real 
fluids. The relationships between shear stress and strain rate are presented in diagrams 
called rheogrums. 

12.4 VELOCITY PROFILE AND AVERAGE VELOCITY 

The velocity profile for either laminar and turbulent flow is provided in Fig. 12.1. In 
laminar flow, the velocity profile approaches a true parabola slightly pointed in the 
middle and tangent to the walls of the pipe. The average velocity over the whole 
cross-section (volumetric flow rate divided by the cross-sectional area) is 0.5 times 
the maximum velocity. This fact will be derived in the next chapter. In turbulent 

,B 
Velocity 

Distance A = Laminar flow 

Figure 12.1 Velocity profile. 
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flow, the profile approaches a flattened parabola and the average velocity is usually 
approximately 0.8 times the maximum. 

Because of its viscosity, a real fluid in contact with a nonmoving wall will have a 
velocity of zero at the wall. Similarly, a fluid in contact with a wall moving at a 
velocity, v ,  will move at the same velocity. This earlier described “no-slip” condition 
of real fluids flowing in a duct results in a fluid velocity at the wall of zero. 

To calculate the volumetric flow rate, q. of the fluid passing through a perpendicu- 
lar surface, S, one must integrate the product of the component of the velocity 
that is normal to the area and the area, over the whole cross-section area of the 
duct, i.e., 

(12.3) 

S 

In accordance with the definition of average values, the average velocity of the fluid 
passing through the surface, S,  is then given by 

(12.4) 

Illustrative Example 12.5 A liquid has a specific gravity (SG) of 0.96 and an 
absolute viscosity of 9 cP. The liquid flows through a long circular tube of radius, 
R = 3 cm. The liquid has the following linear distribution of the axial velocity, v ,  
(the velocity in the direction of the flow): 

v(m/s) = 6 - 200r 

where r is the radial position (in meters) measured from the tube centerline. A total of 
20 m3 of liquid passes through the tube. 

Calculate the average velocity of the fluid and the volumetric flow rate. Also, 
calculate the time for a specified volume (or mass) of fluid to pass through a 
section of the duct. 

Sohtion 
radial coordinate. By definition, 

Write the equation for q in a differential equation form in terms of r, the 

dq = v dS 

and in cylindrical coordinates, 

dS = 2 m d r  
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Therefore, 

dq = 2modr = 2m(6 - 200r)dr = 27r(6r - 2002)dr 

Integrate the above equation between the limits of r = 0 and r = R 

(6r - 2002)dr = 27r 

0 

Calculate the volumetric flow rate. Set R = 3 cm = 0.03 m. 

3(0.03)2 - -(0.03p = 0.00565 m3/s 
2oo 3 1 

Calculate the mass flow rate, i 

i = pq = (SG)(1000kg/m3)q 

riZ = 0.96(1000)(0.00565) = 5.42 kg/s 

Calculate the average velocity. Since 

S = nR2 

and (see Eq. (12.4)) 

9 
S 7rR2 

0, = - = 

= 2[, - (>.I 
By setting R = 3 cm = 0.03 m 

oav = 2.0 m/s 

Illustrative Example 12.6 Refer to Illustrative Example 12.5. Calculate the time to 
pass 20 m3 of the liquid through the cross-section of the pipe. 

Solution The time, t, to pass the liquid is given by 

= 3540s = 59 min 
v 20 
q 0.00565 

t = - = -  

As noted in Chapter 8, applying the conservation law of energy mandates that all 
forms of energy entering the system equal that of those leaving. See Equation (8.14) 
in Chapter 8. Expressing all terms in consistent units, e.g., energy per unit mass of 
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fluid flowing, resulted in the total energy balance equation (rewritten below) 

An important point needs to be made before leaving this subject. By definition, the 
kinetic energy of a small parcel of fluid with local velocity, v ,  is v2/2g, (ft . lbf/lb). If 
the local velocities at all points in the cross-section were uniform, vav would be equal 
to v ,  and the kinetic energy term can be retained as written. Ordinarily there is a vel- 
ocity gradient across the passage; this introduces an error, the magnitude of which 
depends on the nature of the velocity profile and the shape of the cross-section. 
For the usual case where the velocity is approximately uniform (i.e., turbulent 
flow), the error is not serious, and since the error tends to cancel because of the 
appearance of kinetic terms on each side of any energy balance equation, it is custom- 
ary to ignore the effect of velocity gradients. When the error cannot be ignored, the 
introduction of a correction factor that is used to multiply the v2/gc term is needed. 
The term a, called the kinetic energy correction factor, is employed, where 

I v 3  ds 

(1 2.6) 

For most engineering applications, the flow is turbulent and a may be assumed to be 
unity. Where the velocity distribution is parabolic, as in laminar flow, it can be shown 
that the exact value of a is 2. For transition state flow, 1 5 a 5 2.'" 

IUustrative Example 12.7 Given 1000 scfm (28.3 scmm) of gas flowing in a circu- 
lar duct with a 1.2 ft (0.366 m) diameter at 300°F and 1 atm, calculate the average 
velocity, and the Reynolds number. Standard conditions are 60°F and 1.0 atm. The 
viscosity of the gas at 300°F is 2.2 x kg/m. s and its molecular weight is 33. 

Solution Calculate the actual volumetric flow rate, q, using the ideal gas law (see 
Chapter 11) 

= "(:) @) = 'Oo0 (300 (60 + + 460) 460) (9 1 

= 1461.5acfm = 41.36acmm 

The cross-sectional area of the duct, S, is 

s=-=-- ,rrD2 ~ ( 1 . 2 ) ~  
4 4 

- 1.131 ft' = 0.105m2 
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The velocity, u, is 

q 1461.5 
S 1.131 

= 1292.2 ft/min 

= 21.5 ft/s 

= 6.55 m/s 

y=-=- 

Note that the average velocity was simply calculated by dividing the actual volu- 
metric gas flow rate by the cross-sectional area through which the gas flows. The vel- 
ocity calculated here is therefore the bulk, or average, velocity. Note that the same 
calculational procedure may be employed to calculate the average velocity in any 
process unit, including chemical reactors, pipes, stacks, etc. 

Calculate the gas density from the ideal gas law: 

(1)(33) = 0.0595 lb/ ft3 = 0.952 kg/m3 P ( W )  - p = -  - 
RT (0.7302)(760) 

The mass flow rate is calculated as follows: 

ri.I = PUS = (0.0595)(21.5)(0.105) = 0.134 lb/s = 0.656 kg/s 

Calculate the Reynolds number 

D ~ P  (0.366)(6.55)(0.952) = 103,670 Re=---= 
El. 2.2 x 10-5 

As noted above, the velocity calculated is an average value. Plug flow, character- 
ized by a uniform velocity distribution, is often assumed. In actual operation, the 
following velocity profiles might develop (see Fig. 12.1): 

1. Parabolic-laminar flow. 
2. “Flattened” parabola-turbulent flow, wherein velocities are low (often near 

zero at the perimeter/walls) and high (often near 20% above the average vel- 
ocity) at the center. 

3. Random distribution-following a bend, valve, or disturbance. 

These profiles are discussed further in the next two chapters. 
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