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TURBULENT FLOW IN PIPES 

14.1 INTRODUCTION 

The development now proceeds to turbulent flow. In the previous chapter, the 
Fanning friction factor was defined and presented in Equation (1 3.6) 

16 
Re 

f =- (14.1) 

However, this only applies to laminar flow. Unlike laminar flow, the friction factor for 
turbulent flow cannot be derived from basic principles. Fortunately, extensive exper- 
imental data is available and this permits numerical evaluation of the friction factor 
for turbulent flow. Comments on turbulent flow now follow. 

As described earlier, as the Reynolds number is increased above 2100 for flow in 
pipes, eddies and turbulence start to develop in the flowing fluid. From Re equal to 
2100 to about 4000, the flow becomes more unstable. As the Reynolds number is 
increased to values above 4000, the turbulent state of the fluid core becomes well 
developed and the velocity distribution across a diameter of the pipe becomes 
similar to that of a flattened parabola (see profile D in Fig. 14.1 as well as 
Fig. 12.1). The equation of this flattened parabola can be approximately described 
by the following equation 

(14.2) 
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Velocity JA; D L  - 
B = Random 
C = Laminar flow 

Distance 

Figure 14.1 Velocity profiles. 

where urn, is the centerline (maximum) velocity and n is 7 (the one-seventh power 
law applies). 

Illustrative Example 14.1 A liquid with a viscosity of 0.78 CP and a density of 
1.50 g/cm3 flows through a 1-in. diameter tube at 20 cm/s. Calculate the Reynolds 
number. Is the flow laminar or turbulent? 

Solution By definition, the Reynolds number (Re) is equal to: 

Re = Dvp/p 

Since 

1 CP = g/(cm. s) 

p = 0.78 x 

1 in = 2.54cm 

Re = (2.54)(20)( 1.50)/(0.78 x 

g/(cm. s) 

= 9769.23 M 9800 

The flow is turbulent since Re > 2100. 

Illustrative Example 14.2 A fluid is moving in laminar flow through a cylinder 
whose inside radius is 0.5 in. The viscosity and density of the fluid are 1.03 CP and 
62.4 lb/fi3, respectively. The velocity is then increased to higher values until turbu- 
lence appears. Determine the minimum velocity at which turbulence will appear (i.e., 
Re = 2100). 
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Solution Since 

(1 .O in)(62.4 1b/ft3)(V) 1 ft 1 CP 
2100 = X -  

(2100)(1.03)(6.72 x 10-~)(12) 

1.03 CP 12 in 6.72 x lb/ft. s 

V =  
62.4 

= 0.280 ft/s 

14.2 DESCRIBING EQUATIONS 

It is important to note that almost all the key fluid flow equations presented in Chapter 
13 for laminar flow apply as well to turbulent flow, provided the appropriate friction 
factor is employed. These key equations (Eqs. (13.7), (13.10) and (13.11)) are again 
provided below. Note once again that u (the average velocity) is given by q/( 7rd2/4). 

4flu2 
hf = - 

2gcD 

This equation may also be written as 

(14.3) 
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Figure 14.2 Fanning friction factor; pipe flow. 
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AP Av2 g 4fLv2 

P 2gc gc 2gcD 
-+ -+ Az-- hs + 1- = 0 (14.4) 

The effect of the Reynolds number on the Fanning friction factor is provided in 
Fig. 14.2. Note that Equation (14.1) appears on the far left-hand side of Fig. 14.2. 

14.3 RELATIVE ROUGHNESS IN PIPES 

In the turbulent regime, the “roughness” of the pipe becomes a consideration. In 
his original work on the friction factor, Moody“’ defined the term k as the roughness 
and the ratio, k/D, as the relative roughness. Thus, for rough pipes/tubes in turbulent 
flow 

f =f(Re. k/D) (14.6) 

This equation reads that the friction factor is a function of both the Re and k/D. 
However, as noted above, the dependency on the Reynolds number is a weak one. 
Moody‘” provided one of the original friction factor charts. His data and results, 
as applied to the Fanning friction factor, are presented in Fig. 14.2 and covers the 
laminar, transition, and turbulent flow regimes. It should be noted that the laminar 
flow friction factor is independent of the relative roughness. Figure 14.2 also contains 
friction factor data for various relative roughness values. 

The reader should note the following: 

1 .  

2. 

3. 
4. 

5. 

Moody’s original work included a plot of the Darcy (or Moody) friction factor, 
not the Fanning friction factor. His chart has been adjusted to provide the 
Fanning friction factor, i.e., the plot in Fig. 14.2 is for the Fanning friction 
factor. Those choosing to work with the Darcy friction factor need only mul- 
tiply the Fanning friction factor by 4, since 

fD = 4f (14.7) 

The intermediate regime of Re between 2100 and 4000 is indicated by the 
shaded area in Fig. 14.2. 
The average “roughness” of commercial pipes is given in Table 14.1.(2) 
Notice in Fig. 14.2 the relative roughness lines are nearly horizontal in the fully 
turbulent regime to the right of the dashed lines. 
Roughness is a function of a variety of effects-some of which are difficult, if 
not impossible, to quantify. In effect, the roughness of a pipe resembling a 
smooth sine wave exhibits different frictional effects than a sharp sawtooth 
or step function. 
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Table 14.1 Average roughness of commerical pipes 

Roughness, k 

Material (new) ft mm 

Riveted steel 
Concrete 
Wood stove 
Cast iron 
Galvanized iron 
Asphalted cast iron 
Commercial steel (Wrought iron) 
Drawn tubing 
Glass 

0.003-0.03 
0.001 -0.01 
0.0006-0.003 
0.00085 
0.0005 
0.0004 
0.00015 
0.000005 
“smooth” 

0.9-9.0 
0.3-3.0 
0.18-0.9 
0.26 
0.15 
0.12 
0.046 
0.0015 
“smooth” 

In summary, for Reynolds numbers below 2100, the flow will always be laminar 
and the value off should be taken from the line at the left in Fig. 14.2. For Reynolds 
numbers above 4000, the flow will practically always be turbulent and the values off 
should be read from the lines at the right. Between Re = 2100 and Re = 4000, no 
accurate calculations can be made because it is generally impossible to predict 
flow type in this range. If an estimate of friction loss must be made in this range, 
it is recommended that the figures for turbulent flow should be used, as that provides 
an estimate on the high side.‘3) 

14.4 FRICTION FACTOR EQUATIONS 

Approximate equations for smooth pipe, turbulent flow, Fanning friction factors are:(’) 

f=- 0’0786 
for 5000 < Re < 50,000, and ~ ~ 0 . 2 5  

f =- ‘DM for 30,000 < Re < 1,000,000 Re0.20 

(14.8) 

(14.9) 

Farag”’ has also provided two formulas for the Fanning friction factor, valid for 
< k/D < 0.02 and 4000 < Re < lo8. 

1 

( [ (i) 0*87751\2 
f =  

4 1.810g1, 0.135 - +- 
Re 

The other approximate equation of the Fanning friction 
turbulent region is: 

(14.10) 

11 
factor in the completely 

(14.1 1) 
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In a classic review of these equations, Ch~rchill‘~’ provided a host of models for 
estimating the “Churchill” friction factor, fc. The key equation is given below: 

1/12 
1 

(14.12) 

where 
16 1 

Equation (14.12) is valid for all Re and k /D .  A trial-and-error solution is necessary if 
the pressure drop rather than the flow rate is specified. Churchill also notes that the 
equation is a convenient and accurate replacement for all of the friction-factor plots 
in the literature. The equation not only reproduces the friction factor plot but also 
avoids interpolation and provides unique values in the transition region. These 
values are, of course, subject to some uncertainty because of the physical instability 
inherent in this region. One of the drawbacks to Churchill’s work is that all the pre- 
sented equations forfc need to be converted to the Fanning or Darcy friction factors 
by multiplyingfby 2 or 8, respectively. 

Perhaps the most accurate of all the equations appearing in the literature is that 
attributed to Jain.‘5’ This equation is as follows: 

(14.13) 

Illustrative Example 14.3 PAT (Patrick, Abulencia, and Theodore) Consultants 
have proposed the following equation to predict the Fanning friction factor: 

f = 0.0015 + [(8)(Re)o.301-1 

For a Re of 14,080 and k / D  of 0.004, calculate/obtain the friction factor using 

1. The above equation. 
2. Equations (14.8) and (14.9). 
3. Equation (14.1 1). 
4. Equation (14.13). 
5. Figure 14.2. 

Comment on the results. 



14.5 OTHER CONSIDEFWTIONS 153 

Solution 

1. f = 0.0015 + [(8)(14,080)0.30]-’ 

= 0.0015 + 0.0071 

= 0.0086 

2. f = 0.0786/(Re)0.25 

= 0.0786/( 14,080)0.25 

= 0.0072 

and 

f = 0.046/(Re)0.2 

= 0.046/(14,080)0.2 

= 0.0068 

3. f = 1/4[1.14 - 2.0log(k/D)I2 

= (1)/4[1.14 - 2.010g(0.004)]~ 

= 0.0071 

4. fi = 1/ b.28 - 4 log,, (- k + 21 25 

D -)] 
fi= 1/[2.28-410glo 

= 0.00875 

5 .  f = 0.0085 

As can be seen from the above five results, there is some modest but acceptable 
scatter; the average value is 0.00782. 

14.5 OTHER CONSIDERATIONS 

Two “other” considerations are discussed in this subsection: flow in non-circular 
conduits and flow in parallel pipe/conduit systems. 

Flow in non-circular conduits was discussed earlier but is reviewed again because 
of its importance in fluid flow studies. As noted in Chapter 13, the approach 
employed is to represent any conduit by a pipe or cylinder with an “equivalent” 
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diameter, Deq. Key equations include: 

(14.14) 

where S is the cross-sectional area of the conduit, Pp is the wetted perimeter and r h  is 
the hydraulic radius. For flow in the annular space between two concentric pipes of 
diameter D, and D2, 

(14.15) 

Although this approach strictly applies to turbulent flow, it may be employed for 
laminar flow situations if no other approaches are available. 

Illustrative Example 14.4 Calculate the equivalent (or hydraulic) diameter for 
turbulent fluid flow in a cross-section which has: 

1. a 2 in x 10 in rectangle flowing full; 
2. an annulus with outer diameter Do = 10 cm and inner diameter Di = 8 cm; and, 
3. a 10 cm diameter circle (tube) flowing half full. 

Solution First, write Equation (14.14) describing the calculation of the equivalent 
diameter: 

4s 
D --= 4rh 

eq - P" 
1. Consider the 2 in x 10 in rectangle flo&ng full: 

= 3.33 in 4 s  4(2)(10) D --= 
- Pp (2+ 10+ 1 + 10) 

2. Consider the annulus: 

4 s  4(r/4)(DO2 - Di2) 

PP r (Do - Di) 
D --= = Do - Di = 2cm eq - 

3. Consider the half-full circle: 

= D = lOcm 
4 s  ?rD2/8 

e q -  Pp ?rD/2 
D - - 4 -  

Note the importance of using the wetted perimeter and the cross-sectional area of the 
fluid flow for situations where the conduit is not full of fluid. 

14.6 FLOW THROUGH SEVERAL PIPES 

Flow through a number of pipes or conduits often arise in engineering practice. If 
flow originates from the same source and exits at the same location, the pressure 
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drop cross each conduit must be the same. Thus, for flow through conduits 1,2, and 3, 
one may write: 

API = APz = AP, (14.16) 

Solutions to this type of problem usually require a trial-and-error solution since 
several (in this case three) simultaneous, nonlinear equations may be involved. 

14.7 GENERAL PREDICTIVE AND DESIGN APPROACHES 

Almost any problem involving friction losses in long pipe flows can be solved using 
the Fanning friction factor charts or an equivalent equation. Unless otherwise indi- 
cated, the charts are employed in the solution to illustrative examples, applications 
and problems to follow. Some problems can be solved directly; however, others 
are trial-and-error, since a knowledge of the Reynolds number is required. 

There are three important fundamental pipe flow problems. These are detailed 
below (see Fig. 14.3). 

1. Head loss problem: Given D, L, and u or q. p, p ,  and g. Compute the head loss 

2. Flow rate problem: Given D, L, hf(or AP), p, p ,  and g. Compute the velocity, u, 

3. Sizing problem: Given q, L, hf (or AP), p, p ,  and g. Compute the diameter of 

(hf) or pressure drop (AP).  

or flow rate q. 

the pipe, D. 

Only a Type 1 problem involves a direct application of the chart and does not require 
a trial-and-error calculation. The engineer has to iterate to compute the velocity (Type 
2) or diameter (Type 3) because both D and u are contained in the ordinate and 
abscissa of the charts or equations. The iteration proceeds as follows: 

1. Make an initial guess for u or D. 
2. Calculate the corresponding Reynolds number. 
3. If necessary, calculate the relative roughness. 
4. Use the Fanning chart to find the corresponding friction factor. 
5.  From the data given, generate an improved u or D. 
6. Use the improved u or D from step ( 5 )  and repeat steps (2-5). 

The iteration converges when u or D stops changing significantly. 
An approximate explicit formula to obtain the unknown volumetric flow rate is:'*' 
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1 2 

A 
i D  

L 
r 

hf= ? 
(7, v V 

<. ..................................................................................... .> 
L 

Type 1 : Head Loss 

1 2 

A 
i D  

L 
r 

hf 
q, v = ?  V 

<. ..................................................................................... .> 
L 

Type 2: Flow Rate 

1 2 

A 
i D = ?  

L 
r > 

hf 
9, " V 

..................................................................................... 4.. 
L 

Type 3: Sizing 

Figure 14.3 Three flow problems. 

For a horizontal pipe, the flow rate equation simplifies to:") 

(14.18) 
f i- l k l D  1 . 7 8 ~  1 

q = -2.22u VPL log10 (3.7 -+ L P p & 5 3 7 3 )  

The units of hlf are height of flowing fluid (e.g., f tH20),  while AP is in force 
per unit area (e.g., lbf/ft2). The relationship (as noted earlier) is given by 
g h ' f l g c  = APIP. 
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Consistent units must be used in the above two equations. If SI units are used, then 
the volumetric flow rate, q, is in m3/s. If engineering units are used, the pressure drop, 
AP, must be in psf, the density, p ,  must be in slug/ft3, the kinematic viscosity in ft2/s, 
and the volumetric flow rate in ft3/s. Note 1.0 slug = 32.174 lb. 

An approximate explicit correlation has been developed to calculate the pipe 
diameter, D:'2' 

For a horizontal pipe, gh.= AP/p ,  and the equation simplifies to 

D = 0.66 (ST+ 4 u (T) PQ2 5.2 ] 0.4 

(14.19) 

(14.20) 

Consistent units with those provided above need to be used. If engineering units are 
employed, the pressure drop must be expressed in psf. 

Illustrative Example 14.5 Air at a temperature of 40°F and pressure of P I  = 0.1 
psig is to be transported horizontally through a circular conduit of length L = 800 
ft. At the delivery point, the air pressure, P2, is 0.01 psig, and the air rate is 500 
cfm. The circular duct is made of sheet metal and has a roughness of 0.00006in. 
Find the pipe diameter, D, and the average air velocity, u. 

Solution Calculate the air density using the ideal gas law and employing an average 
pressure of 14.75 psia. 

P (MW) - (14.75)(28.9) 
RT (10.73)(500) 

p = - -  

= 0.08 lb/ft3 

Obtain the air viscosity from Fig. B.2 in the Appendix (estimated at 40°F). 

p=O.O173cP= 1 . 1 4 ~  10-51b/ft.s 

Assume first the flow is laminar and calculate D using Equation (14.3) with f = 
16/Re and u = q / (  7rD2/4). 

q = 500ft3/min = 8.33 ft3/s 

= 0.293 ft 
7r(O.O9)( 144) 
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Check the flow type. 

= 3.17 x lo6 
4(8.33)(0.08) - Re = - DVP = % - 

p ?rDp ?r(0.293)(1.14 x 10-5) 

Therefore, the assumption of laminar flow is not valid. 
Assume a pipe diameter of 1 ft (0.3048 m). The relative roughness is then 

k/D = (0.00006/12)/1 = 0.000005 

Calculate the Reynolds number. 

Obtain an estimate of the Fanning friction factor from Fig. 14.2. 

f =0.005 

Write the pressure drop equation; see Equation (14.3). 

Solving for the diameter: 

D =  (32p&q2r= ~ gcdAP 
(32(0.08)(0.005)(800)(8.33)2 (32.174)6( 12.96) r2= 0.70 ft 

Start the second iteration with the newly calculated D. 

k/D = (0.00006/12)/0.70 = 0.0000071 

Calculate the new Reynolds number. 

% 49P - 4(8.33)(0.08) 
p ?rDp 7T(0.7)(1.14 x 

Re=-=- - 

= 106,000 

Obtain the new Fanning friction factor. 

f = 0.0045 

Solving for the diameter: 

= (wr2= ( 8(0.08)(0.0045)(800)(8.33)2 gcd(12.96) r2= 0.69ft 
gcdAP 

The iteration may now be terminated. 
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Calculate the flow velocity using the last calculated diameter. 

= 6.8 m/s 
4 8.33 
S - ~ ( 0 . 6 9 ) ~ / 4  

u = - -  

Illustrative Example 14.6 If ethyl alcohol at 20°C is to be pumped through 60 m of 
horizontal drawn tubing at 10 m3/h with a friction loss of 30 m, what tube diameter in 
cm must be employed? What is the alcohol velocity? Is the flow turbulent? 

Solution 
Appendix. 

Obtain the properties of ethyl alcohol at 20°C from Table A.2 in the 

p = 789 kg/m3 

p = 1.1 x lop3 kg/m-s 

Obtain the roughness of drawn tubing using Table 14.1. 

k = 0.0015 ~IIIII 

Use the approximate explicit Equation (14.20) to calculate the diameter. 

where 

Lq2 60(2.778 x 10-3)2 
ghf (9.807)(30) 

A = - - - =  

= 1.574 x 10-6m 

Substituting gives 

0.04 

1.1 x 10-3 (1.57 10-6)5.2] 
'2.778 x 10-3(789) 

(1.5 x 10-6)1.25(1.57 x 10-6)4.75 

= 0.0303 m 

Take D = 3 cm. Next, calculate the velocity of alcohol in the tube. 

= 3.93m/s 
9 4(2.778 x 

S ~ ( 0 . 0 3 ) ~  
v = - =  

Characterize the flow. 

The flow is turbulent since Re is greater than 4000. 
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Illustrative Example 14.7 Kerosene at 20°C (SG = 0.82, p = 0.0016 kg/m. s) 
flows in a 9 meter long, smooth, horizontal, 2-inch schedule 80 pipe. The flow 
Reynolds number is 60,000. Using SI units, calculate the kerosene density, the pipe 
inside diameter, the average velocity of kerosene, the volumetric and mass flow rate 
and the maximum kerosene velocity in the pipe assuming the one-seventh power- 
law applies. Where will the maximum velocity occur? How good is the assumption 
of fully developed flow? Assume 

Lc/D = 4.4 Re'I6 

Solution Calculate the kerosene density. 

p = SG(1000) = 820kg/m3 

Obtain the pipe inside diameter from Table A.5 in the Appendix. 

D = 1.939 in = 0.0493 m 

Calculate the average velocity from the Reynolds number equation. 

DVP Re = - 
EL 

Solving for the average velocity, v ,  

(Re)p (60,000)(0.0016) 
Dp (0.0493)(820) 

= 2.38m/s - v = -  - 

Calculate the volumetric and mass flow rates. 

2.38 
- = 0.00454 m3/s q = - = - -  V V 

S rD2/4 a(0.0493)*/4 

liz = p4 = (820)(0.00454) = 3.72 kg/s 

Calculate the maximum velocity assuming one-seventh power law applies (see 
Eq. 14.2). 

For n = 7 
V 
- = 0.817 
Vmax 

urnax = 2.92m/s 

As noted earlier, the maximum velocity will occur at the pipe center line. 
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Check on the assumption of fully developed flow. 

- Lc = 4.4Re1/6 = 4.4(60,000'/6) = 27.5 
D 
Lc = 27.5(0.0493) = 1.36 m 

Since Lc is less than L (= 9 m), the assumption is valid. 

Illustrative Example 14.8 Refer to Illustrative Example 14.7. Determine the 
Fanning friction factor, the friction loss, and the pressure drop (in Pa and atm) due 
to friction. 

Solution 
60,000. 

Calculate the Fanning friction factor using Equation (14.9) since Re = 

0.046 - 0.046 
f=-- 

(60,000)0.2 

= 0.0051 

Calculate the friction loss due to friction. 

L u2 9 (2.3Q2 
D 2g 0.0493 2(9.807) 

h)  = 4f -- = 4(0.0051)-- 

= 1.08 m of kerosene 

Calculate the pressure drop using Bernoulli's equation or the hydrostatic equation, 
noting that u I  = u2 = u, z1 = z2, and h, = 0. 

g 
gc 

AP = p-h)  = 820(9.807)(1.08) 

= 8685 Pa = 0.086 atm 

Illustrative Example 14.9 
required to hold the pipe in place. 

Refer to Illustrative Example 14.7. Calculate the force 

Solution The force required to hold the pipe is: 

(8685) = 16.6N 
(0.0493)* 

4 
F = P S = r  

The force direction is opposite the flow. 
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14.8 MICROSCOPIC APPROACH 

As noted in this and the previous two chapters, fluid-flow systems are classified as 
either laminar or turbulent flow. This last section is concerned with a microscopic 
treatment of turbulent flow. However, the reader should note that a complete and 
fundamental understanding of turbulent flow has yet to be developed. 

A fixed point in space during a given finite time interval 8 can be resolved into the 
average velocity over the same time interval and a fluctuation or disturbance velocity 
term that accounts for the turbulent motion 

v = i j + u ’  (14.21) 

where v = instantaneous velocity, 
ij = average velocity over the time interval 8, 

u’ = instantaneous fluctuation velocity. 

This system is represented pictorially in Fig. 14.4. One can conclude from the 
discussion above and the definition of average values that 

e 1 d dt 

-1 0 = o  v =- 

dt 

0 

time average value of the fluctuation velocity during 8. 

(14.22) 

t = O  Time, t t =  e 

Figure 14.4 Velocity variation with time. 
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The intensity of turbulence I for the velocity component uy at a given point in 
space is defined by 

(14.23) 

As its name implies, I is a measure of the intensity of turbulence at a point and is 
given by the ratio of the magnitude of the fluctuation and average velocities. 

Illustrative Example 14.10 A fluid is moving in turbulent flow through a pipe. A 
hot-wire anemometer is inserted to measure the local velocity at a given point P in the 
system. The following readings were recorded at equal time intervals during a very 
short period of time: 

TimeIncrement 1 2 3 4 5 6 7 8 9 10 

Velocity u, at P 43.4 42.1 42.0 40.8 38.5 37.0 37.5 38.0 39.0 41.7 

Determine the intensity of turbulence at point P. 

Solution The terms i7: and (8;)’ are first calculated 

i=n 

i = l  - 400.0 
- = 40 v,=- - 

c vz 
- 

10 n 

where n = number of time increments. 

45.9 
10 

-- - 

= 4.59 

Substituting into Equation (14.23) gives 

d2-3 I = -  
40 

2.15 
40 

= 0.0538 

- - - 

The disturbance or fluctuation velocity components of a fluid in turbulent flow not 
only alters the transport equations for momentum, energy, and mass, but also gives 
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rise to the aforementioned velocity profiles that are quite different from the corre- 
sponding profiles for laminar flow. A semiempirical equation describing the velocity 
profile in pipes for turbulent flow is: 

(14.24) 

where v, = local velocity, 
v,,, = maximum velocity, 

R = radius of the pipe, 
r = radial cylindrical coordinate. 

Illustrative Example 14.11 A fluid is flowing through a pipe whose inside diam- 
eter is 2.0 in. The maximum velocity measured is 30 ft/min. Calculate the volumetric 
flow rate Q if the flow characteristics are (a) laminar, (b) plug, (c) turbulent. 

Solution 

a. Laminarflow: 

- 1 
v --v,, 
, - 2  

1 
2 

= - (30 ft/min) 

= 15ft/min 
By definition, 

where 

q = 3A 

A = ?rD2/4 

Therefore 
ft 

m n  

= 0.327 ft3/min 

q = 15- x .0218ft2 

b. Plug flow: 
v, = v,, 

q = (30ft/min)(.0218ft2) 

= 0.654 ft3/min 
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c. Turbulent flow: For turbulent flow, 

By definition 

u, = UZma [ 1 - (31 lI7 (14.24) 

(The above integral can be evaluated from a standard table of integrals.) 

Therefore, 

(The 0.816 term is in agreement with the value presented earlier.) 
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Substitution 

and 

ijz = 0(.816)(30) 

= 24.5 ft/min 

q = (24.5)(0.0218) 

= 0.535 ft3/min 
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NOTE: Additional problems are available for all readers at www.wiley.com. Follow 
links for this title. 
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