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FLOW MEASUREMENT 

19.1 INTRODUCTION 

Measurement of a flowing fluid can be difficult since it requires that the mass or 
volume of material be quantified as it moves through a pipe or conduit. Problems 
may arise due to the complexity of the dynamics of flow. Further, flow measurements 
draw on a host of physical parameters that are also often difficult to quantify. 

This chapter serves to review standard industrial methods that are employed to 
measure fluid $ow rum. Information provided can include the velocity or the 
amount of fluid that passes through a given cross-section of a pipe or conduit per 
unit time. Local velocity variations across the cross-section or short-time fluctuations 
(e.g., turbulence) are not considered. These concerns can be important, particularly 
the former. For example, in air pollution applications, it is often necessary to traverse 
a stack to obtain local velocity variations with position. 

Hydrodynamic methods are primarily used by industry in the measuring the flow 
of fluids. These methods include the use of the following equipment: 

1. Pitot tube 
2. Venturi meter 
3. Orifice meter 

Other approaches include weighing, direct displacement, and dilution. Weighing 
involves mass or gravitational approaches which, as one might suppose, cannot be 
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used for gases. Direct displacement can be applied to liquids and is based on a dis- 
placement of either a moving part of the unit or the moving fluid. Dilution methods 
involve adding a second fluid of a known rate to the stream of fluid to be measured 
and determining the concentration of this second fluid at some displaced point. In 
addition, there is the vane anemometer that is in effect a windmill consisting of a 
number of light blades mounted on radial arms attached to a common spindle rotating 
in two jeweled bearings; when placed parallel to a moving gas stream, the forces on 
the blades cause the spindle to rotate at a rate depending mainly on the gas velocity. 
An extension of this unit is the hot-wire anemometer that essentially consists of a fine, 
electrically-heated wire exposed to the gas stream in which the velocity is being 
measured; the velocity of the gas determines the cooling effect upon the wire, 
which in turn affects the electrical resistance. Finally, the rotameter is the most 
widely used form of area meter that is essentially a vertical tapered glass tube inserted 
into a pipe line by means of special end connections and containing a float that moves 
up and down as the flow increases or decreases; graduations are etched onto the side 
of the tube to indicate the rate of flow. 

This chapter will primarily key on the five hydrodynamic methods listed 
above, introducing the subject with pressure measurement and the general topic 
of manometry. 

19.2 MANOMETRY AND PRESSURE MEASUREMENTS 

Pressure is usually measured by allowing it to act across some area and opposing it 
with some type of force (e.g., gravity, compressed spring, electrical, and so on). If 
the force is gravity, the device is usually a manometer. 

A very common device to measure pressure is the Bourdon-tube pressure gauge. It 
is a reliable and inexpensive direct displacement device. It is made of a stiff metal 
tube bent in a circular shape. One end is fixed and the other is free to deflect when 
pressurized. This deflection is measured by a linkage attached to a calibrated dial 
(see Fig. 19.1). Bourdon gauges are available with an accuracy of f0.1% of the 
full scale. 

Other pressure gauges measure the pressure by the displacement of the sensing 
element electrically. Among the common methods are capacitance, resistive and 
inductive. However, the interest in this section is primarily with the manometer. 

Consider the open manometer shown in Fig. 19.2. P I  is unknown and Pa is the 
known atmospheric pressure. The heights za, z l ,  and z2 are also known. Applying 
Bernoulli’s hydrostatic equation at points 1 and 2, and again at points a and 2 yields: 

g 
gc 

PI - P2 = -PI -(21 - 22) (19.1) 

(19.2) 
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Pressure 

Figure 19.1 Bourdon-tube pressure gauge. 

Figure 19.2 Open manometer. 
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If the two equations are added, one obtains: 

(19.3) 

The reader should refer to Chapter 10 for more details on manometry. 

Illustrative Example 19.1 Find the air pressure ( P I )  in the oil tank pictured in 
Fig. 19.3, given the heights and densities of the fluids in the manometer. The oil 
has a specific gravity of 0.8, the specific gravity of mercury is 13.6, and the 
density of air is 1.2 kg/m3. Employ SI units. 

Solution Apply the manometer equation between points 1 and 2: 

Since z I  = z2 and p1 = p2 

PI = P2 

4 r 

Figure 19.3 Air pressure in a tank. 
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Also apply the manometer equation between points 2 and 3: 

g g 
gc gc 

P2+p2-z2  = P 3 + p 3 - z 3  

Since p2 = p3 = poil and z3 - z2 = 0.4 m of oil 

= P3 + (0.8)(1000)(9.807)(0.4) 

= P3 + 3138 
Consider points 4 and 5 :  

g 
g c  

P3 = P4 = P5 + p,,-(z5 - z4) 

= P5 - (1.2)(9.807)(1) 

= P5 - 11.77 

Consider points 6 and 7: 

= P7 + (13,600)(9.807)(0.8) 

= P7 + 106,700 

Since P7 = 0 (gauge basis), 

P5 = P6 = 106,700 Pag 

Back substitute to obtain the desired pressures. 

P3 = P4 = P5 - 11.77 = 106,700 - 1 1.77 = 106,688 Pag = 2.05 atm 

P2 = P I  = 106,688 + 3138 = 109,826 Pag = 211,151 Pa = 2.08atm 

Note: 

1. The contribution of the gas section of the manometer to the answer is 
negligible. 

2. Manometers that are open to the atmosphere are gauge-pressure devices. 
3. The cross-sectional area of the manometer tube does not affect the calculation. 

Liquid depths in tanks are commonly measured by the scheme shown in Fig. 19.4. 
Compressed air (or nitrogen) bubbles slowly through a dip tube in the liquid. The 
flow of the air is so slow that it may be considered static. The tank is vented to the 
atmosphere. The gauge pressure reading at the top of the dip tube is then primarily 
due to the liquid depth in the tank. 
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Figure 19.4 Liquid depth measurement. 

19.3 PITOT TUBE 

Bernoulli's equation provides the basis to analyze some devices for fluid flow 
measurement. A common device is the Pitot tube shown in Fig. 19.5. It essentially 
consists of one tube with an opening normal to the direction of flow and a second 
tube in which the opening is parallel to the flow. It measures both the static pressure 
(through the side holes at station 2 )  and the stagnation, or impact, pressure (through 
the hole in the front at station 1). Applying Bernoulli's equation between stations 1 
and 2, one obtains (after neglecting frictional effects): 

PUl g PU2* g 

2gc gc 2gc gc 
P1 +-+p-z1 =P2+-+p-z2  

Since 

u1 = 0 (stagnation) 
z1 = z2 (horizontal) 
u2 = u = fluid velocity 

(1 9.4) 

(19.5) 

This is the Pitot tube formula. 
The pressure difference ( P I  - Pz) is often measured by connecting the ends of the 

Pitot tube to a manometer. The manometer liquid (density pM)  develops a differential 
height, h, due to the flowing fluid. Applying Bernoulli's equation at the manometer 
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Figure 19.5 Pitot tube for velocity measurement. 

(as presented in Fig. 19.5 yields): 

P3 = P4 

and 

In addition 

(19.7) 

This is a modified form of Equation (1 9.3). Substituting Equation (19.7) into the Pitot 
tube formula, Equation (19.5) gives 

v=P-p) P 
(19.8) 
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This equation has also been written as 

u =  (19.9) 

The term C is included to account for the assumption of negligible frictional effects. 
However, for most Pitot tubes, C is approximately unity. 

Illustrative Example 19.2 A Pitot tube is located at the center line of a horizontal 
12-inch ID pipe transporting dry air at 70°F and at atmospheric pressure. The hon- 
zontal deflection on a U-tube (inclined 10 inch horizontal to 1 inch vertical and con- 
nected to the impact and static openings) shows 2 inch of water. Calculate the actual 
velocity of air at the point where the reading is taken and the average velocity through 
this cross-section if the average velocity is 8 1.5% of the maximum velocity. 

Solution The density of the gas at the point of reading is approximately 

p = 0.075 lb/ft3 

Owing to the 10-to-1 inclination, the actual difference in levels is only 0.2 inch of 
water. 

The velocity is calculated directly from Equation (19.8): 

= 29.9 ft/s 

This represents the velocity at the point where the reading was taken; that is, the cen- 
terline of the pipe. Thus, 

u,, = 29.9ft/s 

Since the flowing fluid is air at a high velocity, the flow has a high probability of 
being turbulent. For this condition, assume (see Chapter 14) 



19.3 PITOT TUBE 251 

so that 

V = (0.815)(29.9) 

= 24.4ft/s 

Illustrative Example 19.3 Refer to Illustrative Example 19.3. Calculate the mass 
flow rate of the air. 

Solution Since the area is 0.785 ft2 

q = (24.4)(0.785)(60) 

= 1150ft3min 
And, 

riz = (1 150)(0.075)(60) 

= 5 175 lb/hr 

Illustrative Example 19.4 Water (p  = 1000 kg/m3, E.L = 0.001 kg/m. s) flows in a 
circular pipe. The pipe is a 3 inch schedule 40 steel pipe. A Pitot tube is used to measure 
the water velocity. The liquid in the manometer is mercury (mg = 13,600 kg/m3). The 
manometer height, h ( z g  - in Fig. 19.5), is 7cm. Determine the water velocity 
(in m/s and f p s ) ,  volumetric flow rate (in m3/s and gpm), and flow regime. 

Solution Calculate the water velocity from the Pitot tube equation. Note 

h = 0.07m 

and 

Employing Equation (1 9.8), 

v = d(2)(9.807)(0.07)( 12.6) = 4.2 m/s 

Obtain the pipe inside diameter. Use Table A.5 in the Appendix. For a 3 inch 
schedule 40 pipe: 

OD = 3.5 in 
Wall thickness = 0.216 in 
ID = 3.068 in = 0.0779 m 
Pipe weight = 7.58 Ib/ft 
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Calculate volumetric flow rate 

?r 
S = - (0.0779)2 = 0.00477 m2 

q = US = (4.2)(0.00477) = 0.02 m3/s = 3 17 gpm 

4 

The flow is turbulent since 

= 327,180 
1000(4.2)(0.0779) 

0.001 
Re = 

Note that a Pitot tube measures the local velocity at only one point. To obtain the 
average velocity over the cross-section, it is necessary to read the velocity at a 
number of specific locations in the cross-section of the pipe. Also note that when 
the Pitot tube is used for measuring low-pressure gases, the pressure difference 
reading is usually extremely small, and can lead to large errors. 

19.4 VENTURI METER 

The Venturi meter is also a device for measuring a fluid flow rate. As shown in 
Fig. 19.6, it consists of three sections: a converging section to accelerate the flow, 
a short cylindrical section (called the throat), and a diverging section to increase 
the cross-sectional area to its original (upstream) value. There is a change in pressure 
between the upstream (point 1) and the throat (point 2). This pressure difference is 
measured (often with a manometer). The Venturi meter can determine the volumetric 
flow rate from either the pressure difference (P I  - P2) or the manometer head (h). 
The development of pertinent equations is presented below. 

Figure 19.6 Venturi meter. 
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Refer to Fig. 19.6. From the conservation law of mass rizl = Ijz2 at steady state. 
If the fluid is assumed incompressible, then: 

PI ' P 2 ' P  

q1 = q 2  

so that 

and 

VI  = @ ) v 2  

(19.10) 

(19.11) 

Applying Bernoulli's equation between points 1 and 2, and assuming no frictional 
losses (see Eq. 19.4) 

(19.12) 

For a horizontal Venturi meter, z1 = z2. Therefore, the above equation simplifies to: 

(19.13) 

Rearranging Equation (19.13) and substituting for v I  from Equation (19.1 1) leads to: 

(19.14) 

Substituting the manometer equation for (PI - P2), for example see Equation (19.7), 
into Equation (19.14) yields 

(19.15) 

where once again pM is the manometer fluid density, and p the flowing fluid density. 
The volumetric flow rate, q, is 

q =  (F)v2 (19.16) 
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Equation (19.15) is often referred to as the Venturi formula. It applies to frictionless 
flow. To account for the small friction loss between points (1) and (2), a Venturi dis- 
charge coefficient, c,, is introduced in the above equation, that is, 

For well-designed Venturi meters, C,, is approximately 0.96. 
There is a permanent pressure loss, APL, in the Venturi of about 10% of (P I  - P2). 

This means that 90% of the (P I  - P2) is recovered in the divergent section of the 
Venturi. This pressure loss causes an overall loss of energy. The power requirement 
to operate a Venturi meter (or the power loss) is calculated from the volumetric flow 
rate and the pressure loss, that is, 

(19.18) 

APL = 0.1 (PI - P2) (19.19) 

Illustrative Example 19.5 A Venturi meter has gasoline flowing through it. The 
upstream diameter, D 1 ,  is 0.06 m and the throat diameter, D2, is 0.02 m. The man- 
ometer fluid is mercury, with a height difference, h, of 35 mm Hg. Gasoline proper- 
ties are p = 680kg/m3 and p = 2.9 x lop4 kg/m- s. The density of mercury is 
13,600 kg/m3. Find the flow rate of gasoline in m3/s and gpm. If PI, the upstream 
pressure is 1 atm, what is the pressure, P2, at the throat of the Venturi meter? If the 
pressure loss is 10% of (PI - P2), calculate the power loss. 

Solution Calculate the velocity of gasoline at the throat using the following data 

h = 0.035 m 
0 2 / 0 1  = 1/3 

pM/p = 13,600/680 = 20 

Assume C, = 1.0 and substitute into Equation (19.15) 

2(9.807)(0.035)(20 - 1) 
1 - (1/3)4 

= 3.63 m/s 
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Calculate the volumetric flow rate. 

7r (0.02)2 
4 =  (3.63) 

= 0.001 14 m3/s 

= 18.1 gpm 

Calculate P2 from the manometer equation and the corresponding pressure loss, APL. 

P2 = 101,325 - (9.807)(0.035)(13,600 - 680) 

= 96,900 Pa 

= 101,325 - 96,900 = 4425 Pa 

AP = PI - P2 

For a 10% loss, 

APL = 0.1(4425) 

= 442.5 Pa 

Calculate the power loss: 

WL = (0.001 14)(442.5) 

= 0.5 W = 6.71 x loT4 hp 

Illustrative Example 19.6 Refer to Illustrative Example 19.6. If gasoline has a 
vapor pressure of 50,000 Pa, what flow rate will cause cavitation to occur? 

Solution Set P2 = p' = 50,000 Pa and use Equation (19.14): 

2(101,325 - 50,000) 

= 12.36m/s 

Also note that 

7r0.022 
4'- 12.36 

4 
= 0.0388 m3/s 
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19.5 ORIFICE METER 

Another device used for flow measurement is the orifice meter (see Fig. 19.7). The 
pressure difference is measured (often with a manometer) between the upstream 
(point 1) and the orifice (point 2). Although it operates on the same principles as a 
Venturi meter, orifice plates can be easily changed to accommodate a wide range 
of flow rates. 

The orifice can be employed to determine either the volumetric flow rate from the 
pressure difference, ( P I  - Pz),  or from the manometer head, h. For a horizontal 
orifice meter, the velocity equation is the same as the Venturi meter, that is, 

The volumetric flow rate is once again: 

q =  (F)u2 (19.21) 

The orifice meter is simpler in construction and less expensive than a Venturi meter, 
and occupies less space. However, it has a lower pressure recovery (around 70%). The 
discharge coefficient, C,, for drilled-plate orifices is shown in Fig. 19.8 where C, is a 
function of D2/D1 and the Reynolds number at the throat, Re2. At Re2 values greater 
than 20,000, the discharge coefficient, C,, is approximately constant at 0.61 -0.62. 

. I  Orifice Plate 

Front View of 
Orifice Plate 

Figure 19.7 Orifice meter. 
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Figure 19.8 Discharge coefficients for drilled plate orifices. D2 is the orifice diameter, and 
the pipe diameter. The abscissa is the Reynolds number based on the orifice conditions. 

D, is 

An approximate equation that can be used to estimate the pressure recovery in an 
orifice meter is? 

Percentage Pressure Recovery APE = 14- O2 + 80 c$ - (19.22) 
D1 

Since 

Percentage Pressure Loss = 100 - APE 

the pressure loss in the orifice meter is: 

(19.23) 
Percentage Pressure Recovery 

100 
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The power loss (or power consumption) due to the orifice meter is (in consistent 
units): 

W L  = qAPL (19.24) 

Illustrative Example 19.7 An orifice meter equipped with flange taps is installed to 
measure the flow rate of air in a circular duct of diameter, D 1  = 0.25 m. The orifice 
diameter, Dz = 0.19 m. The air is flowing at a rate of 1.0m3/s at 1 atm. Under 
these conditions, the air density, p, is 1.23 kg/m3 and the absolute viscosity, p, is 
1.8 x lop5 kg/(m. s). Water is used as the manometer fluid. Calculate the pressure 
drop if the orifice discharge coefficient is 1.0, the actual pressure drop and the 
manometer head. 

Solution Calculate the velocity through the orifice. 

4(1) 
~(0.19)' 

= 35.3 m/s 

v2 = 

Assuming C, = 1, calculate AP using Equation (19.20): 

(1.23)(35.3)'[1 - (0.19/0.25)41 
AP = 

= 510Pa = 52mm H20 

The orifice Reynolds number is 

= 458,3 10 
(1.23)(35.3)(0.19) 

Re = 
1.8 x 10-5 

And 

D2 0.19 
D I  0.25 

- 0.76 _ -  

The actual discharge coefficient, Co, from Fig. 19.8 is 

Co = 0.62 

The actual pressure drop is calculated by once again rearranging Equation (19.20): 

510 
(0.62) 

A P = 7 =  1327Pa= 135mmH20 
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The percent pressure recovery and pressure loss may now be calculated. 

Percentage Pressure Recovery = 14(0.76) + 80(0.76)2 = 56.8% 

Percentage Pressure Loss = 43.2% 

The actual pressure loss, APL, in the orifice meter is then 

APL = 0.432( 1326.2) = 573 Pa 

Illustrative Example 19.8 Refer to Illustrative Example 19.8. Calculate the actual 
power consumption of the orifice meter. 

Solution Calculate the power consumption using Equation ( 19.18) 

W L  = q(APL) = (l.O)(APL) = 1.0(573) = 573 W = 0.77 hp 

The reader should note that if the pressure drop or the manometer head is given, the 
calculation of the volumetric flow rate will usually involve trial-and-error. 

Illustrative Example 19.9 Air at ambient condition is flowing at the rate of 
0.50 lb/s in a 4-in ID pipe. What sized orifice would produce an orifice pressure 
drop of 10 in H20? 

Solution 
ambient conditions 

This requires the simultaneous solution of Equations (19.6) and (19.7). At 

p = 0.075 lb/ft3 

The volumetric flowrate is therefore 

(0.5) q=- 
(0.075) 

= 6.67 ft3/s 

From Equation (1 9.16) 

u2 = q/(7&/4) 

From Equation (19.17) 

Equating the above two equations, and solving by trial-and-error (assuming C, = 
0.61) gives D2 2 2.825 in. 
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Figure 19.9 Constriction meter. 

Is the assumption of C, = 0.61 reasonable? This is left as an exercise for the 
reader. [Hint: Check to see if Re > 20,000 at the throat.] 

Another way to measure the fluid flow rate in a pipe is to insert a long constriction 
(of smaller diameter than the pipe) inside the pipe and measure the pressure drop 
(or head loss) across the constriction (as shown in Fig. 19.9). The flow goes 
through a sudden contraction when it enters the constriction and through a sudden 
expansion as it exits the constriction. “Major” loss due to friction may be neglected. 
Only “minor” losses due to sudden expansion and sudden contraction are considered 
in the calculation of the flow rate. The calculation of the head loss follows the method 
outlined earlier for a sudden contraction and expansion. 

The term $owmeter is sometimes used to designate any restricted opening or 
tube through which the rate of flow has been determined by calibration. For 
example, a 6-inch pipe may be tapered down to 2 inches and then enlarged back to 
6 inches. The pressure drop through this “opening” provides a measure of the rate 
of flow, but this relation should be determined by calibration. 

19.6 SELECTION PROCESS 

Several factors should be considered in selecting a flow measurement device. 
Engineering decisions on the selection process should consider the following: 

1. Is the fluid phase a gas or liquid? 
2. The range (or capacity) of the device 
3. Accuracy 
4. Desired readout 
5.  Fluid properties 
6. Internal environment 
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7. External environment 
8. Capital cost 
9. Operating cost 

10. Reliability 

Considering the complexity and diversity of flow meter measuring devices and the 
wide range of flow conditions encountered in industrial applications, one should care- 
fully compare the different options that are available before purchasing a device. It 
should be noted that it is possible that a number of devices may be suitable for a 
given application. 
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