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FLUIDIZATION 

26.1 INTRODUCTION 

Fluidization is the process in which fine solid particles are transformed into a 
fluid-like state through contact with either a gas or liquid, or both. Fluidization is nor- 
mally carried out in a vessel filled with solids. The fluid is introduced through the 
bottom of the vessel and forced up through the bed. At a low flow rate, the fluid 
(liquid or gas) moves through the void spaces between the stationary and solid particles 
and the bed is referred to asfied. (This topic is treated first in the development that 
follows.) As the flow rate increases, the particles begin to vibrate and move about 
slightly, resulting in the onset of an expanded bed. When the flow of fluid reaches a 
certain velocity, the solid particles become suspended because the upward frictional 
force between the particle and the fluid balances the gravity force associated with the 
weight of the particle. This point is termed minimum juidization or incipientjuidiza- 
tion and the velocity at this point is defined as the minimum or incipientjuidization vel- 
ocity. Beyond this stage, the bed enters the fluidization state where bubbles of fluid rise 
through the solid particles, thereby producing a circulatory and/or mixing pattern.") 

From a force balance perspective, as the flow rate upward through a packed bed is 
increased, a point is reached at which the frictional drag and buoyant force is enough 
to overcome the downward force exerted on the bed by gravity. Although the bed is 
supported at the bottom by a screen, it is free to expand upward, as it will if the vel- 
ocity is increased above the aforementioned minimum fluidization velocity. At this 
point, the particles are no longer supported by the screen, but rather are suspended 
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378 FLUIDIZATION 

in the fluid in equilibrium and act and behave as the fluid. The bed is then said to be 
fluidized. From a momentum or force balance perspective, the sum of the drag, buoy- 
ancy, and gravity forces must be equal to zero. 

The terminal settling velocity can be evaluated for the case of flow past one bed 
particle. By superimposition, this case is equivalent to that of the terminal velocity 
that a particle would attain flowing through a fluid. Once again, a force balance 
can be applied and empirical data used to evaluate a friction coefficient (see 
Chapter 23 for more details). 

At intermediate velocities between the minimum fluidization velocity and the 
terminal velocity, the bed is expanded above the volume that it would occupy at 
the minimum value. Note also that above the minimum fluidization velocity, the 
pressure drop stays essentially constant. 

One of the novel characteristics of fluidized beds is the uniformity of temperature 
found throughout the system. Essentially constant conditions are known to exist in 
both the horizontal and vertical directions in both short and long beds. This homogen- 
eity is due to the turbulent motion and rapid circulation rate of the solid particles 
within the fluid stream described above. In effect, excellent fluid-particle contact 
results. Temperature variations can occur in some beds in regions where quantities 
of relatively hot or cold particles are present but these effects can generally be neg- 
lected. Consequently, fluidized beds find wide application in industry, e.g., oil crack- 
ing, zinc coating, coal combustion, gas desulfurization, heat exchangers, plastics 
cooling and fine powder granulation. 

26.2 FIXED BEDS(*) 

The friction factor f for a “fixed” packed bed is defined as: 

AP 
(26.1) 

in which dp is the particle diameter (defined presently) and us is the superficial 
velocity defined in the previous chapter as the average linear velocity that the fluid 
would have in the column if no packing were present. The term L is the length of 
the packed column. The friction factor for laminar flow and that for turbulent flow 
can now be estimated separately. 

For laminar flow in circular tubes of radius R, it was shown that 

(26.2) 

Now imagine that a packed bed is just a tube with a very complicated cross-sectional 
area with hydraulic radius rh. The average flow velocity in the cross section available 
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for flow is then 

(26.3) 

The hydraulic radius may be expressed in terms of the void fraction E and the wetted 
surface “a” per unit volume of bed in the following way: 

cross-section available for flow 
v = -  

2PL ; r h =  wetted perimeter 

cross-section available for flow 

wetted perimeter 
rh 

volume available for flow 
total wetted surface 

- - 

volume of bed 

(26.4) 

The quantity “a” is related to the “specific surface” a, (total particle surface/volume 
of the particles) by 

a = a,(l - E )  (26.5) 

The quantity a, is in turn used to define the mean particle diameter dp: 

dp = &/av (26.6) 

This definition is chosen because, for spheres, Equation (26.6) reduces to just dp as 
the diameter of sphere. Finally, note that the average value of the velocity in the 
interstices, vI, is not of general interest to the engineer but rather the aforementioned 
superficial velocity 0,; these two velocities are related by 

v, = V I E  (26.7) 

If the above definitions are combined with the modified Hagen-Poiseuille 
equation, the superficial velocity can be expressed as 



380 FLUIDIZATION 

or finally 

(26.8) 

In laminar flow, the assumption of mean hydraulic radius frequently gives a 
throughput velocity too large for a given pressure gradient. Because of this assump- 
tion, one would expect that the right side of Equation (26.8) should be somewhat 
smaller. A second assumption implicitly made in the foregoing development is that 
the path of the fluid flowing through the bed is of length L, i.e., it is the same as 
the length of the packed column. Actually, of course, the fluid traverses a very tor- 
tuous path, the length of which may be approximately twice as long as the length 
L. Here, again, one would expect that the right side of Equation (26.8) should be 
somewhat diminished. 

Experimental measurements indicate that the above theoretical formula can be 
improved if the 2 in the denominator on the right-hand side is changed to a value 
somewhere between 4 and 5. Analysis of a great deal of data has led to the value 
25/6, which is accepted here. Insertion of that value into Equation (26.8) then gives 

AP dp2 E~ 

- L 150p(1 - E ) ~  
0 (26.9) 

which some have defined as the Blake-Kozeny equation. This result is generally 
good for void fractions less than 0.5 and is valid only in the laminar region where 
the particle Reynolds number is given by dpGs/p(l - E )  < 10; G, = Note 
that the Blake-Kozeny equation corresponds to a bed friction factor of 

75 f=[?]m (26.10) 

Exactly the same treatment can be repeated for highly turbulent flow in packed 
columns. One begins with the expression for the friction-factor definition for flow 
in a circular tube. This time, however, note that for highly turbulent flow in tubes 
with any appreciable roughness, the friction factor becomes a function of the rough- 
ness only. Assuming that all packed beds have similar roughness characteristics, a 
unique friction factor fo may be used for turbulent flow. This leads to the following 
results if the some procedure as before is applied: 

(26.1 1) 

Experimental data indicate that 6fo = 3.50. Hence Equation (26.1 1 )  becomes 

1 pv,21 - &  
= 3.50--- 

AP 
L dp 2 c3 
- 

(26.12) 
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which some have defined as the Burke-Plummer equation and is valid for 
(dpG,/p)(l - E )  > 1000. This result corresponds to a friction factor given by 

1 - &  fo = 0.875- 
&3 

(26.13) 

Note that this dependence on E is different from that given for laminar flow. 

equation for turbulent flow are simply added together, the result is 
When the Blake-Kozeny equation for laminar flow and the Burke-Plummer 

AP 150pu, (1  - E ) ~  1 .75puS2 (1 - E )  

L dp2 c3 dp e3 
-- +-- (26.14) _ -  - 

This may be rewritten in terms of dimensionless groups (numbers): 

1 - &  + 1.75 (26.15) 

This is the Ergun equation. It has been applied with success to gases by using the 
density of the gas at the arithmetic average of the end pressures. For large pressure 
drops, however, it seems more reasonable to use Equation (26.14) with the pressure 
gradient in differential form. Note that G, is a constant through the bed whereas us 
changes through the bed for a compressible fluid. The dp used in this equation is 
that defined in Equation (26.6). 

Equation (26.14) may be written in the following form 

AP = 150-- + 1.75-- (26.16) 

Equation (26.15) may also be written in a similar form. Other terms have been used to 
represent AP, including 

AP = APf = hf' (26.17) 

where the subscriptfis a reminder that the pressure drop term represents friction due 
to the flowing fluid. Thus, 

h ' - 150-- (26.16) 
f - gp &3 

The reader should note that the pressure drop term in Equation (26.16) has units of 
height of flowing fluid, e.g., in H20.  This may be converted into units of force per 
unit area (e.g., psf), by applying the hydrostatic pressure equation 

Pgh A P = -  
gc 

(26.18) 
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This equation can then be employed to rewrite Equation (26.16) in the following 
form: 

(26.19) 

The units of A P  are then those of pressure (i.e., force per unit area). 

Illustrative Example 26.1 Comment on the relationship between the Ergun 
equation and the Burke-Plummer and Blake-Kozeny equations. 

Solution Note that for high rates of flow, the first term on the right-hand side drops 
out and the equation reduces to the Burke-Plummer equation. At low rates of flow, 
the second term on the right-hand side drops out and the Blake-Kozeny equation is 
obtained. It should be emphasized that the Ergun equation is but one of many that 
have been proposed for describing the pressure drop across packed columns. 

26.3 PERMEABILITY 

In porous medium applications involving laminar flow, the Carmen-Kozeny 
equation is rewritten as 

(26.20) 

where k is the permeability of the medium. The permeability may then be written as 

d 2  
1 &3 

150(1 - E ) ~  
k = - -  (26.21) 

The permeability may be expressed in units of darcies, where 1 d m y  = 0.99 x 
lo-'* m2 = 1.06 x lo-" ft2. 

Illustrative Example 26.2 A water softener unit consists of a large diameter tank of 
height h = 0.25 ft. The bottom of the tank is connected to a vertical ion-exchange 
pipe of length L = 1 ft and a diameter D of 2 inches. The ion exchange resin particle 
diameter is 0.05 in. = 0.00417 ft, and the bed porosity is 0.25. The water has an 
absolute viscosity of 6.76 x 10-41b/ft-s and a density of 62.41b/ft3. Calculate 
the water flow rate and the superficial velocity (see Fig. 26.1). 

Solution First determine the total fluid height, h~ = hf' 

hL=h ;=z ,  -~2=1.25ftofwater 
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1 

3 

Support System 

Figure 26.1 Ion-exchange softener. 

Assume turbulent flow to calculate the superficial velocity, us. Employ a revised 
version of the Burke-Plummer equation [Equation (26.1 l)]. 

(32.174)(1.25) (0.25)3 (0.00417) 
1 .751-cL J (1.75) ( 1  - 0.25) (1.0) 

= O.O446ft/s 

Check the turbulent flow assumption 

dpvsp - (0.00417)(0.0446)(62.4) 
- Re,, = ~ 

( 1  -&)P (1 - 0.25)6.76 x 

= 22.9 < lo00 

Since the Reynolds number is low, the calculation is not valid. Assume laminar flow 
and use a modified form of the Blake-Kozeny equation [see Equation (26.9)]. 

PghL E3 dp ’ - (62.4)(32.174)(1.25) (0.25)3 (0.00417)’ 
lSOp(1 - E)’ L 150(6.76 x (1 - 0.25)* 1 

v, = - 

= 0.01 19 ft/s 



384 FLUIDIZATION 

Once again, check the porous medium Reynolds number 

dpvsp (0.004 17)(0.0 1 19)(62.4) 
Re --= =6.11 < 10 

(1 - 0.25)6.76 x (1 - e)p  
P -  

The flow is therefore laminar. 
Calculate the empty cross-sectional m a ,  S 

r D 2  ~ ( 0 . 1 6 7 ) ~  
S=-= = 0.0218 ft2 

4 4 

The volumetric flow rate of water, q, is then 

4 = v,S = (0.01 19)(0.0218) = 0.000252ft3/~ 

Illustrative Example 26.3 Refer to Illustrative Example 26.2. Calculate the 
pressure drop due to friction and the pressure drop across the resin bed. 

Solution Calculate the packed bed permeability, k, using Equation (26.21). 

(0.0041 7)2 
1 

= 3253 Darcies 

The friction pressure drop across the resin bed, APfn may also be calculated noting 
that hL = h i .  

APfr = - "ghi = 62.4( 1.25) = 78.0psf 
g C  

Finally, calculate the pressure drop across the resin bed by applying Bernoulli's 
equation across the resin bed (between points 2 and 3): 

p3 v; g P2 v; g - + - + -z3 = - + - + -z2 + hf - h, 
P 2gc gc P 2gc gc 

Noting that v3 = v2 and h, = 0, 

AP P3 - P2 g - (z2 - z3) - + h/ = - 1 + 1.25 = 0.25 ft of liquid _ -  
P P gc 

AP = p - = 62.4(0.25) = 15.6psf = 0.108psi (:) 
The total pressure drop represents both the friction drop and the height of the 
fluid (water). 
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26.4 MINIMUM FLUIDIZATION VELOCITY 

Figure 26.2 is a photograph of the fluidization experimental unit at Manhattan 
College. Figure 26.3 shows the kinds of contact between solids and a fluid, starting 
from a packed bed and ending with “pneumatic” transport. At a low fluid velocity, 
one observes a fixed bed configuration of height L,, a term that is referred to as 
the slumped bed height. As the velocity increases, fluidization starts, and this is 
termed the onset of fluidization. The superficial velocity (that velocity which 
would occur if the actual flow rate passed through an empty vessel) of the fluid at 
the onset of fluidization is noted again as the minimum fluidization velocity, v,f, 
and the bed height is L,,,,f. As the fluid velocity increases beyond vd, the bed 
expands and the bed void volume increases. At low fluidization velocities (fluid 
velocity > v d ) ,  the operation is termed dense phase fluidization. 

The onset of fluidization (or minimum fluidization condition) in a packed bed 
occurs when drag forces due to friction by the upward moving gas equal the 

Figure 26.2 Fluidization experiment. 
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Figure 26.3 Types of particle-fluid contact in a bed. 

gravity force of the particles minus the buoyancy force on the particles. This can be 
represented in equation form as 

FD = Wnet = (W - ~ t m y ) ~ ~ i ~ l ~  (26.22) 

where W is the weight of the particle. The drag force, FD, exerted by the upward gas is 
a product of the friction pressure drop in gas flow across the bed and the bed cross- 
section area. From Bernoulli’s equation, the total pressure drop AP is given by 

g 
gc 

AP = APfr + pf -h 
or 

g 
gc 

APfr = AP - pf -&f 

with the latter term representing the fluid head. Therefore, 

(26.23) 

(26.24) 

The net gravity force, Wnet, is due to the gravity of the solid particles and to the fluid 
buoyancy: 

Fo = APfrsb = (.. - p f - h ) S b  g 

( gc 

gc 

(26.25) 

Combining Equations (26.24) and (26.25), one obtains the condition for minimum 
fluidization: 

g 
wnet = S b L f  (1 - &mf)(P, - P f )  -) 
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or 

h f -  - (1 - & d ) ( y ) L f  (26.27) 

The equations for minimum fluidization are similar to those presented for a fixed 
bed, i.e., Equations (26.16)-(26.19). For laminar flow conditions (Re, < lo), the 
Blake-Kozeny equation is used to express hf’ in terms of the superficial gas velocity 
at minimum fluidization, umf, and other fluid and bed properties. This equation is 
obtained from Equations (26.9) and (26.27) 

Rearranging, one obtains the minimum fluidization velocity: 

with (once again) 

(26.29) 

(26.30) 

The Burke-Plummer equation is used to express the head loss, h i .  For turbulent flow 
conditions (Re, > 1000). For this condition, the result is: 

In the absence of emf data, the above equations can be approximated as 

(26.31) 

(26.32) 

(26.33) 

where Re, is the particle Reynolds number at minimum fluidization and is equal to: 

(26.34) 

Illustrative Example 26.4 Air is used to fluidize a bed of spherical particles. The 
particles are 200 mesh uniform spheres; bed diameter, Db, is 0.2 m; ultimate solids 
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density, ps, is 2200 kg/m3; voidage at minimum fluidization, Emf, equals 0.45; bed 
length (height) at minimum fluidization, L,f, is 0.3 m; and air properties are pf= 

1.2 kg/m3 and pf = 1.89 x 
Calculate the minimum fluidization mass flow rate of air and the pressure drop of 

air across the bed at minimum fluidization. 

kg/m-s. 

Solution Obtain the diameter of a 200 mesh particle from Table 23.2. 

d, = 74 pm = 7.4 x m 

Assume turbulent flow to apply and calculate vmf from Equation (26.3 1). 

(0.45B 2200 - 1.2 
umf = {- ( 1.2 ) (9.807)(7.4 x 10-9 = 0.263 m/s 

1.75 

Check the flow regime. Employ Equation (26.30): 

= 1.87 < 1000 
UmfdP - (0.263)(7.4 x 

Re, = 
uf( I - Emf) - (1.89 x 10-5)(1 - 0.45) 

Therefore, turbulent flow conditions do not apply. 
Assume laminar flow, with ps - pf = ps, and employ Equation (26.29). 

1 ( 1  - 0.45)9.807(2200)(7.4 x 
Umf =- = 0.25 m/s 

150 (0.45)3 1.89 x 10-5 

Once again, check the flow regime 

V m f d P  - (0.25)(7.4 x loT5) 
pf(l - emf) - (1.89 x 10-5)(1 - 0.45) 

Re, = 

= 1.79 < 10 

The flow is indeed laminar. 
The mass flow rate of air is 

(0.25)(1.2) = 9.40-3 kg/s 
4 

Calculate the gas pressure drop across the bed. Use Equation (26.28). 

APfr = (1 - 0.45)(2200)(9.807)(0.3) = 3560 Pa = 0.0351 atm 

Both Equations (26.16) and (26.19) may be rewritten in a slightly different form 
and viewed as contributing terms to a more general equation. An equation covering 
the entire range of flow rates but for various shaped particles can be obtained by 
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assuming that the laminar and turbulent effects are additive. This result is also 
referred to as the Ergun eq~ation.'~' Thus, 

(26.35) 
AP 15ouop (1 - E ) ~  1 .75puo2 (1 - E )  +-- - 

gc4sdp E3 

where is the sphericity or shape factor of the fluidized particles. Typical values for 
the sphericity of typical fluidized particles are in the 0.75 - 1 .O range. In lieu of any 
information on I$~, one should employ a value of 1 .O, typical for spheres, cubes and 
cylinders (L = d ) .  

Another approach that may be employed to calculate the minimum fluidization 
velocity is to employ Happel's eq~ation.'~' Happel's equation is given by: 

- (26.36) 

where u,f is the minimum fluidization velocity, u, the terminal velocity, u, and emf the 
bed porosity at minimum fluidization. 

Umf - 3 - 4.5(1 - &mf)'l3 + 4.5(1 - ~ d ) ~ / ~  - 3(1 - ~ d ) ~  

ut 
- 

3 + 2(1 - &mf)5/3 

Illustrative Example 26.5 Determine the pressure drop of 60°F air flowing through 
a 3-inch diameter 1 0 4  packed bed with 0.24-inch protruded packing made of 316 
stainless steel. The superficial velocity is 4.65 fi/s. The protruded packing has a 
fraction void volume, effective particle diameter and surface area per unit packing 
of 0.89, 0.0078.5 ft, and 3305 ft-', respectively. 

Solution Use the Ergun equation 

For air at 60"F, Appendix A.9, indicates 

p = 1.3 x 

p = 0.067 lb/ft3 

lb/ft. s 

Plugging in values from the problem statement, one obtains 

(150)(4.65)( 1 . 3 ~ ~ )  (1 - 0.89)2 
(32.2)(0.007815)2 ) ( (0.89)3 ) A P =  [( 

(1 .75)(0.67)(4.65)2 
32.2(0.0078 15) 

= 10.25 lb/ft2 



390 FLUIDIZATION 

26.5 BED HEIGHT, PRESSURE DROP AND POROSITY 

The above development is now extended above and beyond the state of minimum 
fluidization. As described above, when a fluid moves upward in a packed bed of 
solid particles, it exerts an upward drag force. Minimum fluidization occurs at a 
point when the drag force equals the net gravity force. By increasing the fluid velocity 
above minimum fluidization, the bed expands, the porosity increases, and the pressure 
drop remains the same. 

The fluidized bed height, &, at any voidage, E ,  can be found from the minimum 
fluidization conditions (&,f and Emf), or from the bed height at zero porosity, I.,,, 
that is, 

so that 

(26.37) 

The pressure drop at minimum fluidization remains constant at any fluidization 
height, Lfi [see Equation (26.17)] so that 

The effect of bed pressure drop on the superficial velocity is now briefly discussed. 
Initially, the bed pressure drop increases rapidly with a slight increase in velocity. 
Then, the pressure drop begins to level off. This point, as defined earlier, is called 
incipient fluidization. Beyond this point, the pressure drop remains fairly constant 
as the superficial velocity increases. This is the fluidized region. 

The variation of porosity (and hence bed height) with the superficial velocity is 
calculated from the Blake-Kozeny equation, assuming laminar flow and pf< ps. 

dp2g e3 
vs = -- (p, - pf) for E < 0.8 

150py 1 - E 
(26.39) 

It should be noted that the bed density is a function of superficial velocity. As the 
velocity increases, the bed density decreases. This occurs because the volume of 
the expanding fluidized bed increases while the mass of the bed remains constant. 
Therefore, the bed density decreases. An increase in gas velocity causes a greater 
force on the particles and thus drives them further apart. The increased distance 
between the particles causes an increase in bed volume. After the point of incipient 
fluidization, the decrease in density is more dramatic as the bed volume increases 
rapidly during fluidization. The bed porosity is also a function of superficial velocity. 
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0.35 0.45 0.55 0.65 0.75 
Void fraction, E 

Figure 20.4 Expanded bed porosity. 

The bed porosity also increases with an increase in superficial velocity. (Once again, 
the porosity is a measure of the empty space existing between the particles in the bed.) 
Initially, the porosity increases gradually; however, after incipient fluidization, the 
particles are rapidly forced further apart and the porosity increases at a greater rate. 

E3 

The term, 

1 - E  

appears often in packed bed and fluidized bed equations. To simplify the calculations, 
it is plotted versus the void fraction, E ,  in Fig. 26.4. This plot may be useful to some in 
estimating the expanded bed porosity and height without trial-and-error. 

26.6 FLUIDIZATION MODES 

There are two modes of fluidization. When the fluid and solid densities are not too 
different, or the particles are very small, and therefore, the velocity of the flow is 
low, the bed is fluidized evenly with each particle moving individually through the 
bed. This is called smooth fluidization, and is typical of liquid-solid systems. If 
the fluid and solid densities are significantly different, or the particles are large, the 
velocity of the flow must be relatively high. In this case, fluidization is uneven, 
and the fluid passes through the bed mainly in large bubbles. These bubbles burst 
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at the surface, spraying solid particles above the bed. Here, the bed has many of the 
characteristics of a liquid with the fluid phase acting as a gas bubbling through it. This 
is called bubbling (or aggregative) fluidization; it is typical of gas-solid systems and 
is due to the large density difference between the solid and gas. The approximate cri- 
terion to estimate the transition from bubbling to smooth fluidization is expressed in 
terms of the dimensionless Froude number at minimum fluidization. This is expressed 
in terms of the minimum fluidization velocity, u,f, the particle diameter, d,, and the 
acceleration due to gravity, g, as: 

(26.40) 

If Fr < 0.13, the fluidization mode is smooth; if Fr > 0.13, then the fluidization 
is bubbling. 

Illustrative Example 26.6 A bed of 35 mesh pulverized coal is to be fluidized with 
a liquid oil. The bed diameter is 4 ft. At minimum fluidization, the bed height is 8 ft 
and its void fraction in 0.38. The coal particle density is 84 lb/ft3. The liquid oil prop- 
erties are: density = 55 lb/ft3 and dynamic viscosity = 15 cP. What is the pressure 
drop required for fluidization? 

Solution Obtain the particle diameter from Table 23.2. 

35 mesh; d, = 0.417 mm = 0.0164 in = 0.00137 ft 

Calculate the pressure drop from Equation (26.15): 

Note that since the fluidizing fluid is a liquid, with a specific gravity comparable to 
the specific gravity of the solid particles, the fluid gravity term may not be neglected. 
In this case, the overall pressure drop, AP, is not the same as the friction pressure 
drop. APf, can be obtained from Equation (26.38). Therefore, 

= (1 - 0.38)(84 - 55)(8) - (55)(8) = 583.7psf 

Illustrative Example 26.7 Refer to Illustrative Example 26.6. If the bed is 
fluidized such that the bed height is loft, calculate the volumetric flow rate of oil 
(in gpm). 
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Solution Calculate the bed voidage employing Equation (26.37). 

1 - 0.38 
10 = 8- 

l - &  

E = 0.504 

Calculate the superficial velocity of the oil, assuming laminar flow [see Equation 
(26.29)]. 

1 dp2g E~ 

(Ps - Pf) -- u, = - 
150 /+ l - E  

1 (0.00137)*(32.174) 0.5043 
150 (3.13 x 1-0.504 

(84 - 55) - - 

= 9.6 x 1 0 - ~  ft/s 

Calculate the volumetric flow rate. 

T(4)2 9.6 x = 0.121 ft3/s 
TD2 

4=4us=- 4 

Check on the laminar flow assumption: 

dpuspf (0.00137)(9.6 x 1OP3)(55) 
Rep = - = 0.145 < 10 

Pf(1 - E )  - (0.01)( 1 - 0.504) 

The flow is therefore laminar. 

Illustrative Example 26.8 Refer to Illustrative Example 25.6. Calculate the 
following: 

1. The porous medium friction factor. 
2. The Reynolds number. 
3. The absolute pressure of the inlet gas. 
4. The permeability of the catalyst bed in darcies. 

Solution 
equation. Since the flow is turbulent, Equation (26.6) applies and 

Obtain the porous medium friction factor using the Burke-Plummer 
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The head loss, hfi is [see Equation (26.7)] 

v,2(1 - E )  L 22 0.6 50 
h ’ - 1.75--- = 1.75--- = 1224.3ft of propane 

- g E~ dp 32.174 (0.4)3 0.0833 

Check on the assumption of neglecting the dynamic head (kinetic effects) 

= 9.71 << 1224.3ft 
5 2  

- V12 _ -  
2g 2(32.174) 

The assumption is justified. 

dynamic head. 
Write Bernoulli’s equation between the entrance and gas exit. Neglect the 

g 
gc 

PI - p2 = Pf -“(z2 - 21) + hf] 

= 4320 + 0.0128[(1)(-50) + 1224.31 = 4335 psf 

= 30.10 psi = 2.048 atm 

The permeability of the medium, k, is defined only for laminar flow. Since the flow is 
turbulent, k cannot be calculated. 

Illustrative Example 26.9 What is the minimum pressure drop in an activated 
carbon bed (0.5 m in depth, particle diameters of 0.001 m, bed porosity of 0.25) 
for turbulent flow of water through the bed? 

Solution At turbulent flow, Re is > 1000. For minimum pressure drop, set 

Re = 1000 
Therefore 

dPVSP 
d l  - &) 

1000 = ~ 

Assume for water at room temperature (see Table A.4 in the Appendix): p = 1000 
kg/m3 and p = 1 x kg/m. s. Therefore 

(1000)( 1 x kg/m . s)( 1 - 0.25) 
v, = 

(0.001 m)( 1000 kg/m3) 

= 0.75 m/s 



26.6 FLUIDIZATION MODES 395 

Then for turbulent flow [Equation (26.12)], 

1.75pLus2(1 - E )  
AP = 

gc E3  

- (1.75)( lo00 kg/m3)(0.5 m)(0.75 m/~)~(0.75) 

= 2.36 x 107Pa 

- 
(kg . m/N . s)( 1 .O)(O.OOl m)(0.25)3 

Illustrative Example 26.10 A bed of 200 mesh particles is fluidized with air at 
20°C. The bed has a diameter D = 0.2m. The bed height and porosity at 
minimum fluidization are 0.3 and 0.45, respectively. The bed is operated with a super- 
ficial air velocity of 0.05 m/s. Determine the zero porosity bed height, the air pressure 
drop, the operating bed height and porosity, and the bed mass. 

Solution The particle diameter, dp, is again obtained from Table 23.2. 

d p  = 74km 

Calculate & (the zero porosity bed height) from Equation (26.29). 

LiJ = &(1 - emf) = 0.3(1 - 0.45) = 0.165 m 

Calculate the minimum fluidization velocity, umf, assuming laminar flow. Use 
Equation (26.9): 

1 

9.807(2200 - 1.2)(7.4 x 10-5)2 
1.89 x 10-5 

= 0.0069 m/s 

The terminal falling velocity of the particle was calculated as 0.35 m/s in Illustrative 
Example 26.3. Calculate the porosity of the expanded bed from Equation (26.9). 

9.807(2200 - 1.2)(7.4 x 10-5)2 
1.89 x 10-5 0’35 = (A) (A) ( 

E = 0.91 

Calculate the expanded bed height L and the bed inventory m. 

- 0.165 
- - = 1.833m “l_, 1-0.91 

m = psrrdb2LiJ = (2200)(~)(0.2)~(0.165) = 45.6kg 
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Illustrative Example 26.11 Refer to Illustrative Example 26.9. Specify whether the 
fluidization mode is smooth or bubbling. 

Solution Determine the fluidization mode [see Equation (26.40)]: 

= 0.066 < 0.13 
umf 2 - (0.0069)2 
gd,, 9.807(7.4 x 

Fr,f = - - 

The fluidization is smooth. 

26.7 FLUIDIZATION EXPERIMENT DATA AND CALCULATIONS 

One of the experiments conducted in the Chemical Engineering Laboratory at 
Manhattan College is concerned with fluidization. Students perform the experiment 
and later submit a report. In addition to theory, experimental procedure, discussion 
of results, etc., the report contains sample calculations. The following is an (edited) 
example of those calculations that cover a wide range of fluidization principles and 
applications. 

The fluidization experiment consists of two parts. The first part, which is examined 
here, determines the particle characteristics of sand in the fluidized bed. There are 
four parts to determine the sand characteristics. First, the bulk density of the particles 
is calculated, then the particle density, particle size distribution, and finally the 
“hydraulic” particle diameter. 

In order to calculate the bulk density, the mass and volume of the particles need to 
be measured. A sample of the glass particles was placed in a 1 -L graduated cylinder. 
The weight and volume of the particles in the cylinder were determined as follows: 

mcyl = 623 g 

mcyl+sand = 877 g 

&and = mcyl+sand - mcyl = 877 g - 623 g 
= 2548 

The volume occupied by the particles in the cylinder was 170 ml. The bulk density 
of any substance or particle is given by: 

“glass 
Substituting the above gives 

P B = X -  254 - 1.494 g/mL = 1494 kg/m3 

The area S of the bed has a width of 24 in and a depth of 2 in. Therefore, 

S = (W)(D) = (24)(2) 

= 48 in2 

= 0.0310 m2 
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The bulk density of the particles is used to determine the total mass, m, of the sand 
beads in the bed of static height L: 

m = (s)(L)(P,) 

The static bed height is obtained by taking an average of three height measurements at 
different points in the bed 

L1 = 24.09in 

L2 = 23.62 in 

L3 = 25.98in 

L1 + LQ + L3 24.09 + 23.62 + 25.98 - - 
3 3 

L =  

= 24.56 in = 0.624 m 

The mass is therefore 

m = (0.03 10 m2)(0.624 m)( 1494 kg/m3) 

= 28.9 kg 

The second necessary measurement in the experiment consists of finding the 
particle density. Approximately 75 g of sand particles were placed in a 100-ml volu- 
metric flask. The mass of the glass is determined in the same way as it is found 
previously. 

mflask = 0.068 kg 

mflask+sand = 0.143 kg 
msmd = mflask+s& - mflask = 0.143 kg - 0.068 kg 

= 0.075 kg 

Water is added to the flask-first up to full and later additional volume is added 
to the 100-ml mark. This reduces the void spaces between the particles. The 
volume of water added was 68.8mL. Therefore, the volume of the glass particles 
is given by 

The particle density is now determined 

&and - 0.075 kg 
- 

p p  == 3.12 x 10-5m3 

= 2403.85 kg/m3 
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This particle density is used to calculate the height of the bed with no void spaces, 
Lo. This height is needed to determine the bed porosity. The following equation is 
used for this calculation 

m Lo=- 
4 s  

- (28.9 kg) 

= 0.388 m 

- 
(2403.85 kg/m3)(0.0310m2) 

The bed porosity is determined as follows: 

Lstatic 

0.388 m 
- 1 -~ 

0.624 m 

= 0.378 

- 

The third part of the experiment consists of determining the particle size distri- 
bution. Here, approximately 1000 grams of sand were placed in the Tyler shaker 
(see Chapter 23 for more details) and the screen test was studied. Table 26.1 
shows the screen numbers and sizes. 

Two runs were performed in this part. After each run, the mass of the particles left in 
the trays were measured and an average was calculated as follows: 

Run 1: 
Tray No. 80 

Table 26.1 Sieve trays Screen number and sizes 

No Size, pm 

50 
60 
80 
1 0 0  
120 
140 
170 
200 

297 
250 
177 
149 
125 
1 05 
88 
14 
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The same calculation was made for the sand left on tray 80 on the second run: 

Run 2: 
Tray No. 80 

The average mass for tray 80 is therefore: 
mT = 451.88 

mave = [mT (Run 1) + mT (Run 2)1/2 

= 527.7 g 

From the data, the cumulative mass percent of material smaller than each of the 
screen sizes was calculated. Using tray No. 80 again, the following percentage was 
obtained: 

Tray No. 80 
200 

mass > 177 pm = m,; t = tray number 
r=80 

= (373.02 g + 527.7 g) = 900.72 g 

The 373.02 g represents the mass on trays 100 through 200. The total average mass 
of glass for the two runs was determined as follows: 

Run 1: 

Run 2: 
Sand mass = 986.3 g 

Sand mass = 984.1 g 
Average mass = (986.3 + 984.1)/2 = 985.2 g 

The mass of glass smaller than 177 p m  is calculated: 
Mass < 177 pm = Average weight - Weight > 177 pm 

= 985.2 g - 900.72 g = 84.5 g 
The cumulative percent smaller than 177 pm is therefore 

Weight < 177 pm 84.5 g 
Average weight 985.2 

%W < 177pm = x loo=- x 100 

= 8.85% 

This same procedure was used for each screen size. The final values obtained were 
plotted in a log-probability paper so as to show the curve for the particles size 
distribution. 
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The last part of the characteristics section is to determine the particles’ hydraulic 
diameter. A sample of the glass captured on the screen nearest to the 50% mass 
position on the size distribution curve was taken in order to perform the terminal 
velocity experiment. The sample was taken from the particles left in tray No. 60. 
Six runs were made for the terminal velocity. The time the particles took to travel 
24 in was measured for each run and the velocity was determined from this values. 
For the first run, the particles took 14 s to travel the given distance. The velocity 
was calculated as follows; 

d 

t (14 s) 
(24 in)(0.0254 m/in) - - o.044 m/S o r = - =  

Table 26.2 shows the terminal velocities measured for the six runs. 
The average terminal velocity in water is therefore: 

Ut = 22 
n i= 1 

- (0.044) + (0.043) + (0.044) + (0.038) + (0.038) + (0.039) 

= 0.041 m/s 

- 
6 

The hydraulic diameter and the terminal velocity were also determined. The pro- 
cedure set forth in Chapter 23 was employed. The calculated diameter was 

dp = 3.05 x lop4 m 

Using the calculated particle diameter, the terminal velocity of air can be obtained 
by substituting the properties of air instead of the ones for water in the appropriate 
Chapter 23 equations. The final result was: 

= 1.755 m/s 

Table 26.2 Terminal velocities for six runs 

Run Time (s) 0, (m/s) 

14 
14.06 
13.84 
16.03 
16.1 
15.53 

0.044 
0.043 
0.044 
0.038 
0.038 
0.039 
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