
NUMERICAL METHODS 

31.1 INTRODUCTION 

Chapter 3 1 is concerned with Numerical Methods. This subject was taught in the past 
as a means of providing engineers with ways to solve complicated mathematical 
expressions that they could not solve otherwise. However, with the advent of compu- 
ters, these solutions have become readily obtainable. 

A brief overview of Numerical Methods is given to provide the practicing engineer 
with some insight into what many of the currently used software packages (MathCad, 
Mathematica, MatLab, etc.) are actually doing. The authors have not attempted to 
cover all the topics of Numerical Methods. There are several excellent texts in the 
literature that deal with this subject matter in more detail.''*2' 

Ordinarily, discussion of the following eight numerical methods would be 
included in this chapter: 

1. 

2. 

3. 
4. 

5 .  
6. 
7. 
8. 

Simultaneous linear algebraic equations. 
Nonlinear algebraic equations. 
Numerical integration. 
Numerical differentiation. 
Ordinary differential equations. 
Partial differential equations. 
Regression analysis. 
Optimization. 

Fluid Flow for  the Practicing Chemical Engineer. By J. Patrick Abulencia and Louis Theodore 
Copyright 0 2009 John Wiley & Sons, Inc. 

481 



482 NUMERICAL METHODS 

However, because of the breadth of the subject matter, the reader should note that 
only three numerical methods receive treatment in the chapter. They are the first 
three topics listed above. The remaining five methods are to be found in the litera- 
t ~ r e . ( ~ ’ ~ ’  It should be noted that the problems section contains fluid flow material 
dealing with all eight subject topics with solutions available for those who adopt 
the text for classroom/training purposes. 

31.2 EARLY HISTORY 

Early in one’s career, the engineer/scientist learns how to use equations and mathe- 
matical methods to obtain exact answers to a large range of relatively simple 
problems. Unfortunately, these techniques are often inadequate for solving 
real-world problems. The reader should note that one rarely needs exact answers in 
technical practice. Most real-world applications are usually inexact because they 
have been generated from data or parameters that are measured, and hence represent 
only approximations. What one is likely to require in a realistic situation is not an 
exact answer but rather one having reasonable accuracy from an engineering point 
of view. 

The solution to an engineering or scientific problem usually requires an answer to 
an equation or equations, and the answer(s) may be approximate or exact. Obviously 
an exact answer is preferred but because of the complexity of some equations, often 
representing a system or process, exact solutions may not be attainable. For this con- 
dition, one may resort to another method that has come to be defined as a numerical 
method. Unlike the exact solution, which is continuous and in closed form, numerical 
methods provide an inexact (but reasonably accurate) solution. The numerical method 
leads to discrete answers that are almost always acceptable. 

The numerical methods referred to above provide a step-by-step procedure that 
ultimately leads to an answer and a solution to a particular problem. The method 
usually requires a large number of calculations and is therefore ideally suited for 
digital computation. 

High-speed computing equipment has had a tremendous impact on engineering 
design, scientific computation, and data processing. The ability of computers to 
handle large quantities of data and to perform mathematical operations at tremen- 
dous speeds permits the examination of many more cases and more engineering 
variables than could possibly be handled on the slide rule-the trademark of 
engineers of yesteryear. Scientific calculations previously estimated in lifetimes 
of computation time are currently generated in seconds and, in many instances, 
 microsecond^.'^' 

A procedure-oriented language (POL) is a way of expressing commands to a 
computer in a form somewhat similar to such natural languages as English and math- 
ematics. The instructions that make up a program written in a POL are called the 
source code. Because the computer understands only machine language or object 
code, a translator program must be run to translate the source code into an object 
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code. In terms of input, processing, and output, the source code is the input to the 
translator program, which processes (translates) the code. The output is the object 
code. It is the object code that is actually executed in order to process data and 
information. 

The first POL to be widely used was FORTRAN, an acronym that was coined from 
the words “FORmula TRANslation.” FORTRAN was designed initially for use on 
problems of a mathematical nature and it is still used for solving some problems in 
mathematics, engineering, and science. 

PASCAL is a POL designed by Niklaus Wirth in 1968. The motivation behind its 
design was to provide a language that encouraged the programmer to write programs 
according to the principles of structured programming. An important aspect of the 
PASCAL design philosophy is that it is a “small” language. The purpose of this is 
to provide the programmer with a language that can be easily learned and retained. 
PASCAL provides a variety of data structuring that enable programmers to easily 
define new data types. PASCAL is also most commonly used in mathematics, 
engineering and science. 

BASIC is an acronym for Beginner’s All-Purpose Symbolic Instruction Code. 
J. G. Kemeny and T. E. Kurtz developed BASIC in 1967 to give students a simple 
language for learning programming. BASIC is an interactive language, that is, the 
programmer sees an error or output as soon as it occurs. The simplicity of BASIC 
makes it easy to learn and use. Many versions of BASIC have been written since 
the late 1960s. BASIC can be used effectively for a variety of business and scientific 
applications. 

Two types of translator programs-compilers and interpreters-are used to 
convert program statements to a machine-readable format. A compiler first trans- 
lates the entire program to machine language. If any syntax or translation errors 
are encountered, a complete listing of each error and the incorrect statement is 
given to the programmer. After the programmer corrects the errors, the program 
is compiled again. When no errors are detected, the compiled code (object 
code) can be executed. The machine-language version can then be saved separately 
so that the compiling step need not be repeated each time the program is executed 
unless the original program is changed. Compiled programs run much faster 
than the interpreted ones. An interpreter translates and executes one source code 
instruction of a program at a time. Each time an instruction is executed, the 
interpreter uses the key words in the source code to call pre-written machine- 
language routines that perform the functions specified in the source code. The 
disadvantage of an interpreter is that the program must be translated each time it 
is executed. 

Today, many powerful commercial mathematical applications are available and 
widely used in academia and industry. Some of these programs include MathCad, 
Matlab, Mathematica, etc. These user-friendly programs allow engineers and scien- 
tists to perform mathematical calculations without knowing any programming. 
In addition, new programs, for example, Visual Basic.NET, JAVA, C++,  etc., are 
constantly evolving. 
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31.3 SIMULTANEOUS LINEAR ALGEBRAIC EQUATIONS 

The engineer often encounters problems that not only contain more than two or three 
simultaneous algebraic equations but also those that are sometimes nonlinear as well. 
There is therefore, an obvious need for systematic methods of solving simultaneous 
linear and simultaneous nonlinear equations.“’ This section will address the linear 
sets of equations; information on nonlinear sets is available in the literature.‘6’ 

Consider the following set of n equations: 

where a is the coefficient of the variable x and c is a constant. The above set is con- 
sidered to be linear as long as none of the x-terms are nonlinear, for example, x: or 
In xI. Thus, a linear system requires that all terms in x be linear. 

A system of linear algebraic equations may be set in matrix form: 

However, it is often more convenient to represent Equation (3 1.2) in the augmented 
matrix provided in Equation (3 1.3) 

Methods of solution available for solving these linear sets of equations include: 

1 .  Gauss-Jordan reduction. 
2. Gauss elimination. 
3. Gauss-Seidel. 
4. Cramer’s rule. 
5 .  Cholesky’s methods. 

Only the first three methods are discussed in this section. 
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31.3.1 Gauss-Jordan Reduction 

Carnahan and Wilkes“) solved the following two simultaneous equations using the 
Gauss-Jordan reduction method 

The four step procedure is provided below. 
Step 1 .  Divide Equation (31.4) through by the coefficient of xl: 

4 29 
XI +-x2 = - 

3 3 

(31.4) 

(31.5) 

(31.6) 

Step 2.  Subtract a suitable multiple (6, in this case) of Equation (31.6) from Equation 
(31.3, so that x1 is “eliminated”. Equation (31.6) remains intact so that what 
remains is: 

4 29 
x1 + -x2 = - 

3 3 
(3 1.7) 

2 x 2  = 10 (31.8) 

Step 3. Divide Equation (3 1.8) by the coefficient of x2, that is, solve Equation (3 1.8). 

x2 = 5 (3 1.9) 

Step 4.  Subtract a suitable factor of Equation (31.9) from Equation (31.7) so 
that x2 is eliminated. When (4/3)x2 = 20/3 is subtracted from Equation (31.7), 
one obtains 

XI = 9  (31.10) 

31.3.2 Gauss Elimination 

Gauss elimination is another method used to solve linear sets of equations. This 
method utilizes the augmented matrix described in Equation (31.3). The goal with 
Gauss elimination is to rearrange the augmented matrix into a “triangle form” 
where all the elements below the diagonal are zero. This is accomplished in much 
the same way as in Gauss-Jordan reduction. The procedure employed follows. 
Start with the first equation in the set. This is known as the pivot equation and will 
not change throughout the procedure. Once the matrix is in triangle form, back 
substitution can be used to solve for the variables. The Gauss elimination algorithm 
can be found in Figs. 31.1-31.3. 
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This must be an 
augmented matrix 

This algorithm can be found 
in Figure 31.2 

elements of the 
matrix below the 

The nM row can 
be solved for x, 

r 

This algorithm can be found 
in Figure 31.3 

of the variables 

I 
4 

Figure 31.1 Solving a system of linear equations with Gauss elimination. 

Illustrative Example 31.1 Solve the following set of linear algebraic equations 
using Gauss elimination. 

3x1 - 2x2 + 1x3 = 7 

Xi 4- 4x2 - 2x3 = 21 

- 3x2 - 4x3 = 9 

Solution First, setup the augmented matrix 

[: -: -; "1 
2 -3 -4 9 

In order to convert the first column of elements below the diagonal to be zero, start by 
setting the first row as the pivot row. For the remaining rows, multiply each element 
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This procedure calls for 
creating an (n x n + 1) 
matrix where the n+ 1 

column contains 
only constants. 

multiply each 
element of that 
row by a, ,/a,, 
where n is the 

I 
Note that this will make the 

first element of the each row 
row from the first 

and place the 
result in the 

matrix where the 
subtracted row 

once was. 

Note that this will make the 
first element of the each row 

equal to the first element 
of the first row. 

row? 

No 

/ \  Starting with the I third row. 
multiply each I 

element of that 
row by a,.Jann 
where n is the 
row number. 

-I- 
" 

&p to last column? 

Figure 31.2 Algorithm for Gauss elimination. 
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The last row is of the 
form, aM,,,-l) x x,, = a,,,,,. 

Solving for x,,, 
Xn = ~, , rn /~drn- I ) .  

The last row is of the form, 
awl(*>) x X,,-I+~,,-I(~I) x xn = a(n-im 

Xn-1 = [a("-l)rn-ar+l(rn-i) ~J%-I-l)(rn-2). 

Solving for x,, , 
row can be 

solved for x, ,-~.  
\ b 

Figure 31.3 Algorithm for Gauss elimination back substitution. 

by a l l / a , ,  and subtract each row from the pivot row. Thus: 

Row 2: 

-(3)(1) + 3 = 0 

-(3)(4) - 2 = -14 

-(3)(-2) + 1 = 7 

-(3)(21) + 7 = -56 

Row 3: 
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The resulting matrix is: 

3 - 2  1 7  
0 -14 7 -561  
0 2.5 7 -6.5 

Now starting with the second column and the second row, perform the same 
procedure again, with the second row as the pivot row. Thus: 

Row 3: 

This produces the following matrix: 

3 -2 1 7 
0 -14 7 -56 ] 
0 0 46.2 -92.4 

At this point, back substitution may be employed. The following are the results: 

46.2~3 = -92.4; 

-14x2 + (-2)(7) = -56; 

3x1 + (-2)(3) + (1)(-2) = 7; 

~3 = -2 

~2 = 3 

XI = 5 

Gauss elimination is useful for systems that contain fewer than 30 equations. Systems 
larger than 30 equations become subject to round-off error where numbers are trun- 
cated by computers performing the calculations. 

31.3.3 Gauss-Seidel 

Another approach to solving an equation or series/sets of equations is to make an 
‘‘informed” or “educated” guess. If the first assumed value(s) does not work, the 
value is updated. By carefully noting the influence of these guesses on each variable, 
these answers or correct set of values for a system of equations can be approached. 
The reader should note that when this type of iterative procedure is employed, a 
poor guess does not prevent the correct solution from ultimately being obtained. 
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Ketter and Prawel‘2’ provide the following example. Consider the equations below 

(31.1 1) 

The reader may choose to assume, as a starting point, x1 = x2 = x3 = 0. Solving each 
equation for the underlined terms (found on the diagonal), one obtains 

X I  = 0.50; ~2 = 0.60; ~3 = 1.00 (3 1.1 2) 

Using these computed values, an updated set of xs can be obtained. Thus, 

2 0  2 0 
- 4  4 4 4 

2 4 2 4 
10 10 10 10 

X I  = X I  - - ~ 2  + -x3 = 0.50 - -(0.60) + -(1.00) - 0.50 = 0.30 

(3 1.13) ~2 = ~2 - - X I  + - ~ 3  = 0.60 - - (0.50) + -( 1 .OO) = 0.10 - 

0 4  0 4 
5 5  5 5 

~3 = 3 - - X I  + - X Z  = 1.00 - -(0.50) + -(0.60) = 0.52 

The right-hand side of the equations may be viewed as residuals. The procedure is 
repeated until convergence (the “residuals” approach zero) is obtained. More rapid 
convergence techniques are available in the literature.‘*’ 

31.4 NONLINEAR ALGEBRAIC EQUATIONS 

The subject of the solution to a nonlinear algebraic equation is considered in this 
section. Although several algorithms are available, the presentation will key on the 
Newton-Raphson method of evaluating the root(s) of a nonlinear algebraic equation. 

The solution to the equation 

f (4 = 0 (3 1.14) 

is obtained by guessing a value for x (&,Id) that will satisfy the above equation. 
This value is continuously updated (xneW) using the equation 

(31.15) 

until either little or no change in (xnew - &,Id) is obtained. One can express this 
operation graphically (see Fig. 31.4). Noting that 

(3 1.16) 
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0 

xold 

Exact solution 

dx X =  

Since f(x) = 0 

Figure 31.4 Newton-Raphson method. 

one may rearrange Equation (31.16) to yield Equation (31.17). The x,,, then 
becomes the 

This method is also referred to as Newton’s Method of Tangents and is a widely 
used method for improving a first approximation to a root to the aforementioned 
equation of the form f ( x )  = 0. The above development can be rewritten in subscripted 
form to (perhaps) better accommodate a computer calculation. Thus 

in the next calculation. 

from which 

(31.17) 

(3 1.18) 

where xn+] is again the improved estimate of xn, the solution to the equation f ( x )  = 0. 
The value of the function and the value of the derivative of the function are deter- 
mined at x = x,,, for this procedure, and the new approximation to the root, x,+~, is 
obtained. The same procedure is repeated, with the new approximation, to obtain a 
still better approximation of the root. This continues until successive values for the 
approximate root differ by less than a prescribed small value, E ,  which controls the 
allowable error (or tolerance) in the root. Relative to the previous estimate, E is 
given by 

(3 1.19) 
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’X 

Figure 31.5 Failure of the Newton-Raphson method. 

Despite its popularity, the method suffers for two reasons. First, an analytical 
expression for the derivative, that is,f’(xn) is required. In addition to the problem 
of having to compute an analytical derivative value at each iteration, one would 
expect Newton’s method to converge fairly rapidly to a root in the majority of 
cases. However, as is common with most numerical methods, it may fail occasionally 
in certain instances. A possible initial oscillation followed by a displacement away 
from a root is illustrated in Fig. 31.5. Note, however, that the method would have 
converged (in this case) if the initial guess had been somewhat closer to the exact 
root. Thus, it can be seen that the initial guess may be critical to the success of 
the calculation. 

Illustrative Example 31.2 The vapor pressure, p’, for a new synthetic chemical at a 
given temperature has been determined to take the form: 

p’ = T3 - 2T2 + 2T; T = K, P‘ = atm 

If p’ = 1, one may then write 

f(T) = T3 - 2T2 + 2T - 1 = 0 

where the actual temperature, t (in K), is given by 

t = 1 0 3 ~  

Solve the above equation for the actual temperature in K for p’ = 1. Earlier studies 
indicate that r is in the 1000- 1200K range. 

Solution Assume an initial temperature t l .  Set tl = 1100, so that 

Ti = (1100)(10-3) = 1.1 
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Obtain the analytical derivative, f’(T) 

f ’ ( T )  = 3T2 - 4T + 2 

Calculate f(T,) and f ’ (T1)  

f( l . l)  = T3 - 2T2 + 2T - 1 = ( l . l p  - 2(1.1)2 + 2(1.1) - 1 = 0.111 

f’(l.1) = 3T2 - 4T + 2 = 3(1.1)2 - 4(1.1) + 2 = 1.23 

Use the Newton-Raphson method to estimate T2. Employ Equation (3 1.15): 

Substituting, 

0.111 
T2 = 1.1 -- = 1.0098 

1.23 

Calculate T3. 

f(T2) = 0.0099 
f’(T2) = 1.0198 

T3 = 1.OOO1 

Finally, calculate the best estimate (based on two iterations) of r. 

r = 1000.1K 

Other methods that may be employed include: 

1. Wegstein’s method. 
2. False-position. 
3. Half-interval. 
4. Second-order Newton-Raphson. 

Details are available in the 

Illustrative Example 31.3 The friction factor for smooth tubes can be approxi- 
mated by 

f = 0.079 Re-(1/4) 

if 2100 < Re < 2 x lo5. It can be shown that the average velocity in the system 
shown in Fig. 3 1.6, involving the flow of water at 6WF, is given by 

2180 

213.5 Re-(II4) + 10 
‘ v =  .v‘ 
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For water at 60°F, Re = 12,1680. Calculate the average velocity, v (ft/s), using the 
Newton-Raphson method of solution.") 

Solution 
into the velocity equation 

Substitute the expression of Reynolds number as a function of velocity 

= J--" = J2lno 
213.5 + 10 213.5(12,168~)-(~/~) + 10 

=""" [213.5/(12,168~)('/~)] + 10 

Manipulate the above equation into one that is easier to differentiate. Squaring both 
sides gives 

2 2180 - 2180(12,168~)~'/~) 
- v =  

[213.5/(12,168~)"/~)] + 10 213.5 + 10(12,168~)"/~' 

Cross-multiplying leads to 

213.511' + 10(12,168~)"/~'~~ - 2180(12,168~)"/~' = 0 

or 

f ( v )  = 2 1 3 . 5 ~ ~  + 1 0 5 . 0 3 ~ ~ . ~ ~  - 22,896.08~O.~~ = 0 

The analytical derivative off(v) is 

f'(v) = 4 2 7 ~  + 236.313~l .~~ - 5724.02~~O.~~ 

Make an initial guess of v = 5 ft/s and substitute into the above equations: 

f i ( ~ )  = f i ( 5 )  = -24,973.8 

Applying the initial guess, 

fi'(V) =f1'(5) = 2189.97 

Calculate the next guess using Equation (3 1.18). 

-24,973.8 
= 16.40ft/s fi (0) 02 = v1-- = 5 - 

f"<v> 2189.97 
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Solve for u3 etc., until the result converges 

~3 = 1 1.56 ft/s 

u4 = 10.22ft/s 

~5 = 10.09ft/s 

ufj = 10.09 ft/s 

The average velocity is therefore 10.09 ft/s. 

31.5 NUMERICAL INTEGRATION 

Numerous engineering and science problems require the solution of integral 
equations. In a general sense, the problem is to evaluate the function 

I = f(x)dx 1 (3 1.20) 

where I is the value of the integral. There are two key methods employed in their 
solution: analytical and numerical. If f(x) is a simple function, it may be integrated 
analytically. For example, if f(x) = x2 

1 
I = 2dx = -(b3 - a3) 

1 3  
(31.21) 

a 

If, however, f(x) is a function too complex to integrate analytically (e.g., 
ln[~inh(e$-~)], one may resort to any of the many numerical methods available. 
Two simple numerical integration methods that are commonly employed are the 
trapezoidal rule and the Simpon's rule. These are detailed below. 

31 S.1 Trapezoidal Rule 

In order to use the trapezoidal rule to evaluate the integral with I given by Equation 
(31.20) as 

use the equation 

h 
I = 5 [YO + 2Y 1 + 2y2 + . . . + 2yn-1 + yn] (3 1.22) 
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“r Error 

Figure 31.7 Trapezoidal rule error. 

where h is the incremental change in x, i.e., Ax, and yi  are the values off@) at xi (i.e., 
f(xi)). Thus, 

This method is known as the trapezoidal rule because it approximates the area under 
the function f(x)-which is generally curved-with a 2-point trapezoidal rule calcu- 
lation. The error associated with this rule is illustrated in Fig. 31.7. 

There is an alternative available for improving the accuracy of this calculation. The 
interval (a - b) can be subdivided into smaller intervals. The trapezoidal rule can be 
applied repeatedly in turn over each subdivision. 

31 5.2 Simpson’s Rule 

A higher degree interpolating polynomial scheme can be employed for more accurate 
results. One of the more popular integration approaches is Simpson’s rule. For 
Simpson’s 3-point (or one-third) rule, one may use the equation 

For the general form of Simpson’s rule (n is an even integer), the equation is 

(31.24) 
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I I I 

x, Xl x2 

Figure 31.8 Simpson’s rule error. 

This method also generates an error, although it is usually smaller than that associated 
with the trapezoidal rule. A diagrammatic representation of the error for a 3-point 
calculation is provided in Fig. 3 1.8. 

Illustrative Example 31.4 Evaluate the integral below using Simpson’s 3-point 
rule. The term I in this application represents the volume requirement for a tubular 
flow reactor. 

I& = J [(I -X)(l - 0.44 - 1.199 
(1  - 0 . 4 ~ ) ~  

0 

Solution Write the 3-point rule. See Equation (3 1.23). 

h 
3 = - [f(x = a)  + 4f(x = (b + 4 2 )  + f ( x  = b)] 

Evaluate h. 

= 0.234 
0.468 

2 
h = -  

Calculate yo, Y(b+a)/2 and yb. For x = a = 0, 

(1 - 0.4(0))2 
(1  - (0))(1 - 0.4(0)) - 1.19(0)2 = 

Y(0) = 
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Similarly, 

y(x = 0.234) = 1.548 

y(x = 0.468) = 3.80 

Finally, calculate the integral 1. 

Other numerical integration methods include: 

1. Romberg’s method. 
2. Composite formulas. 

3. Gregory’s formulas. 
4. Taylor’s theorem. 
5 .  Method of undetermined coefficients. 
6. Richardson’s extrapolation. 

Details are available in the literat~re.‘~’~”’ Some useful analytical integrals are also 
provided in mathematical reference handbooks. Note some integrals are indefinite, 
i.e., the upper and lower limits are not specified. 

In closing, the reader should realize that analytical approaches yield closed form 
and/or exact solutions. Numerical methods provide discrete and/or inexact 
answers. Thus, the analytical approach should always be attempted first even 
though numerical methods have become the preferred choice. 
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