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6.1 INTRODUCTION

Tissue engineering (TE) as an interdisciplinary field of research aims at restoring,

maintaining, or improving tissue function through applying the principles of biology,

medicine, and engineering science.1 Since its emergence in the 1980s, the field of TE

in conjunction with regenerative medicine has been continuing to evolve, for

example, through wound healing,2,3 skin tissue engineering,4–6 nerve regenera-

tion,7,8 cardiovascular tissue engineering,9 bone and cartilage tissue engineering,10

and others.11,12

Cells, scaffolds, and growth-stimulating bioactive factors are generally referred to

as the three key components of engineered tissues in TE.1 A common strategy in TE

is combining cells, biodegradable scaffolds, and bioactive factors to replicate natural

processes of tissue regeneration and development.10 The interactions among these

components are imperative to achieve biologically functional engineered tissue. In

human tissue, cells are normally anchorage dependent, residing in an extracellular

matrix (ECM). This ECM generally provides not only structural support and a

physical environment but also bioactive cues and a reservoir of growth factors.13 The
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synthetic scaffolds for an engineered tissue are regarded as a kind of ECM. However,

ECM in native tissues possesses complex compositions and a dynamic nature, which

bring multiple biological functions such as cell adhesion, migration, proliferation,

and differentiation. Ideal scaffolds should therefore mimic the features of the native

ECM of the target tissue. Nevertheless, the complexity of ECM makes it difficult to

mimic exactly the structure and functions of native ECM in synthetic scaffolds.14

Therefore, the focus in tissue engineering is how to manipulate the process to

integrate the key components of TE, trying to replicate the natural structure of tissue

and mimic the functions of native ECM, at least partially. There are many

technologies developed to achieve these aims. Although these techniques have

succeeded in making biomimetic scaffolds, they have their own limitations. This

chapter reviews the bone TE strategies involved in preparation of scaffolds and

briefly discusses the drawbacks and advantages of these strategies.

6.2 CLINIC NEEDS IN BONE REGENERATION FIELDS

Every year, there are roughly 1 million bone grafting procedures in the United States

andEuropeanUnion.15These include indications arising from resectionof primary and

metastatic tumors, bone loss after skeletal trauma, failed fracture healing, spinal

arthrodesis, and trabecular voids. In addition,more than 20million people in theUnited

States are totally edentulous.16 About half a million children worldwide are born

annually with congenital craniofacial deformities, such as cleft palate and hyper-

telorism.17 Current treatments in clinic are based on autologous and allogeneic bone

grafts.18–22Autografts have been the gold standard of bone replacement formany years

because they provide the patient’s own osteogenic cells, ECM, and essential osteoin-

ductive factors needed for bone healing and regeneration.21,23 Because an autograft is

harvested from the patient’s own body, there is a limited supply and morbidity of the

harvest site, and the additional trauma is a concern. Although autograft is highly

efficient for bone repair, the outcome for large bone defects is less predictable.

Allografts could be used as an alternative for treating bone defects. However, allografts

could introduce the possibilities of immune system rejection, pathogen disease

transmission from donor to recipient, and infections after the transplantation.24

Therefore, biomaterials for bone defects, as an alternative to those two bone

grafts, have been extensively studied to meet the increasing clinical demand.

Currently, all kinds of biomaterials, including metals, ceramics, and polymers,

have been studied for bone regeneration. However, none of these biomaterials,

by themselves, can currently be used for full recovery of the patient. Metals exhibit

poor integration with the tissue at the implantation site because of a lack of

degradability, although they provide mechanical support at the site of the defect.

Ceramics, because of their low tensile strength and brittleness, have limited

application in loading-bearing sites. Polymers have been extensively used in drug

delivery systems but have limitations in bone tissue engineering because of their low

compressive strength and acid degradation products. It is clear that an adequate bone

graft is yet to be found.
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6.3 BONE REGENERATION STRATEGIES AND TECHNIQUES

Scaffolds need to mimic the natural structure of regenerated tissue to obtain optimal

regeneration of biological functions. From a perspective of tissue engineering, cells,

ECM, cell–matrix interactions, and bioactive factors should be involved to achieve

the regenerated functions. For the components mentioned, an appropriate three-

dimensional (3D) scaffold is an essential component for a tissue engineering strategy

because scaffolds provide physical and mechanical support, spatial structure, and an

adequate biochemical environment for cell behavior.10 Scaffolds applied in TE need

essential properties, including pore size, porosity, mechanical properties, and signal

presentation.

Bone is a dynamic, highly vascularized tissue with hierarchic structure in a 3D

configuration.15 Therefore, the ideal scaffold should mimic the bone structure and

provide a 3D microenvironment for growing new tissue in the scaffold. However, the

coordination of all of these key components in an optimal spatial and time-dependent

fashion will affect the ultimate results of regenerated tissues. There are many

strategies or techniques for making bone constructs for tissue regeneration. From

a fabrication perspective, these strategies can be generally implemented in two

approaches: top down and bottom up.

6.3.1 Top-Down Tissue Engineering

6.3.1.1 Concept Since its emergence in the 1980s,1,25 TE began to develop

different approaches for tissue regeneration. The top-down approach represents

the most traditional and typical one. Top-down tissue engineering approach gener-

ally uses well-defined porous scaffolds with tailored properties and signals as a

template to induce desired cell response, leading to engineered tissues and organs.

Specifically, to construct engineered bones, bone-forming cells or stem cells are

seeded onto prefabricated porous scaffolds with controlled release of growth factors

to induce bone formation. The essential properties of the scaffold include porosity,

interconnectivity and pore size, mechanical strength, and biodegradability. Scaffolds

as a template should possess similar functions to natural ECM. Scaffolds must

possess a fully interconnected porous structure and open macropores for efficient

nutrient and metabolite transport. The pores also facilitate the neovascularization of

the construct from the surrounding tissue at the same time. However, the porosity

will affect the mechanical properties that are required to balance the degradability of

the scaffold. The mechanical properties of the implanted scaffold should ideally

match those of living bone, so that no stress shielding or compression or deformation

of the scaffold by the surrounding tissues takes place.26–28 Therefore, the extent of

porosity should be balanced with mechanical properties so that they both meet the

demands of a specific regenerating tissue. To further enhance cellular adhesion and

proliferation on the scaffold, the surface could be modified to be osteoconductive.

Many different cell-interacting ligands, such as the RGD cell-adhesive ligand, could

be grafted to the scaffold to provide biological cues for cell growth. The scaffolds

may be used to load growth factors or to serve as a delivery vehicle or reservoir for
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exogenous bioactive molecules to enhance regeneration. Many methods have been

developed to produce scaffolds with adequate properties as mentioned earlier based

on the top-down concept. An adequate processing technique should be performed on

selected biodegradable materials. A description and discussion of these techniques is

given in the following sections.

6.3.1.2 Processing Techniques Many techniques have been developed to prepare

porous ceramic, polymer, or composite scaffolds. Gel casting of foams is an early

developed technique for fabricating ceramic scaffolds with high mechanical

strength.29–31 This technique commonly results in a poorly interconnected pore

structure and nonuniform pore size distribution;32 however, these properties can be

improved by using a sol–gel material and a gel-casting hybrid process.33 The ceramic

foam fabricatedwith this hybridmethod exhibited sponge-like structureswith uniform

large pores and smaller pores distributed on the walls of the larger pores. The sizes of

big and small pores were within 500–800 and 50–300mm, respectively.33

Replication of a polymer sponge is a typical technique for producing ceramic

scaffolds.34,35 The replication method uses a sacrificial template (e.g., polyurethane

foam) coated by a ceramic (or glass) slurry. After drying the ceramic slurry, the

polymer template is slowly removed by thermal degradation, and the remaining

ceramic is further sintered. The process replicates the macrostructure of the starting

sacrificial polymer foam.36–38 However, the low compressive strength of the scaffolds

produced by this method limits their application in the repair of load-bearing bone

defects.39 Ramay andZhang combined the gel-casting and polymer spongemethods to

produce porous hydroxyapatite scaffolds with high mechanical properties.32 A com-

pressive modulus of 8GPa and yield strength of 5MPa for the scaffold with

hydroxyapatite (HA) concentration of 50 wt% were achieved.39 Fu et al. used a

newmethodof direct-ink-write assembly of a hydrogel-based ink to fabricate bioactive

glass scaffolds. Porous glass scaffolds with combined high compressive strength

(136MPa) and porosity (60%)were obtained,40,41 whichwere comparable inmechan-

ical properties to those of cortical bone and a porosity comparable to that of trabecular

bone. The template-castingmethod is another technique that is used to produce porous

ceramic scaffolds41 and polymer scaffolds.42–44 Recently, Yang and coworkers

developed a template-casting technique to produce scaffolds with improved porous

structure and mechanical strength. Scaffold composition and architecture were

spatially regulated by controlling bead size and arrangement.45–47

For producing porous polymer scaffold, solvent casting and particulate leaching is

the best known and most widely used method for the preparation of bone tissue

engineering scaffolds because of its simple operation and adequate control of the

pore size and porosity. After casting a dissolved polymer with a porogen, the

solidified polymer is placed in a water bath to leach out the porogen, thus yielding an

interconnected porous network. In this method, the particle size and amount of the

porogen can be controlled. However, this technique is not applicable to ceramic

scaffolds because the ceramic matrix obstructs complete removal of the porogen in

the leaching step, resulting in a less interconnected network. Ever since Mikos et al.

developed this technique to produce PLLA and PLGA polymer scaffolds,48 many
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researchers have used this technology to produce porous polymeric scaffolds.49–53

There are many variations to the solvent casting and particulate leaching technique.54

For example, any water-soluble porogen, different combinations of polymers and

solvents, and varying compositions can be used in the casting step. The porogen can

be also poured into a mold and partially fused using humidity to increase pore

interconnectivity. PLLA and PLGA porous scaffolds have been produced with this

modified method.55–57 However, this method has some disadvantages; for example,

the use of highly toxic solvents for polymer dissolution and the residual solvent

remaining in the scaffold is a concern, and the residual porogen remaining in the

polymer matrix after the leaching step can lead to enclosed and unconnected cavities.

In the thermally induced phase separation technique, a polymer such as PLLA,

PLGA, or PCL is dissolved in an appropriate solvent (e.g., chloroform, dichloro-

methane) to obtain a homogeneous mixture. Next, the mixture is cooled below the

solvent melting point to induce phase separation.58 Then the mixture is quenched to

form a two-phase solid, and the solvent is sublimated to yield a porous scaffold. The

porosity and architecture of the polymer scaffold in this processing technique are

generally affected by the cooling rate and melting temperature of the solvent.59,60

Freeze drying can also be used to fabricate scaffolds. An emulsified polymer

solution is poured into a metal mold with the desired dimensions and allowed to

freeze. Then the solvent is removed by freeze drying to yield a porous scaffold.

However, the pores generated by this technique are relatively small.

Major concerns with typical solvent-casting strategies are the use of organic

solvents and the toxicity of the residual solvent remaining in the scaffold after drying.

Amodified method is the gas-foaming technique, which does not require the addition

of organic solvents. Compressed polymer disks in a mold are treated with high-

pressure CO2 or supercritical CO2.
61–65 The nucleation in the polymer occurs when

the pressure quickly decreases, thus forming pores. The pore size can be controlled

by the reduction rate of pressure, but the pores produced by this technique are not

interconnected. The combination of particulate leaching and gas foaming can

improve the interconnectivity of the pores.51,66

Fiber bonding and electrospinning are fiber-fabricating technologies that create

porous scaffolds composed of nano- and microscale biodegradable fibers. Many

biocompatible polymers, such as PGA, PLGA, and PCL, are electrospun into porous

nanofiber scaffolds with high porosities.52,67

Rapid prototyping by solid free-form technology (SFF) is used to produce

porous scaffolds with well-defined pore geometry. This technology includes 3D

printing,68–70 laser sintering,71–74 and stereolithography with variants.75,76 Using

computer-assisted design (CAD), this technique can produce fully interconnected

porous scaffolds with well-defined pore geometry and complex pore architectures at

the microscale. This technique has advantage over conventional fabrication tech-

niques because the scaffold pore size and geometry can be designed electronically

and mathematically. In a variant of this technique, a sacrificial wax mold is fabricated

by an SFF technique such as fused deposition modeling (FDM). Then an in situ

cross-linkable macromer is injected in the pore volume of the scaffold and allowed to

cross-link by photo- or redox-initiated polymerization, rendering the polymer
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insoluble in organic solvents. Then the infused mold is ether or wax, good solvent for

ether, to leach out the wax, leaving behind a scaffold with well-defined pore

geometry.77 This technique can be used to fabricate porous uncross-linked or

cross-linked polymer and hydrogel scaffolds with well-defined pore geometry.

SFF technology has also been used to fabricate b-tricalcium phosphate

(b-TCP)78 and HA79–81 scaffolds for bone regeneration. Toughness and strength

in SFF scaffolds can be enhanced by adding a ceramic ink to the polymer phase.82–85

Other techniques for scaffold fabrication exist, such as melt molding and

extrusion, which are not described here. These usually involve semi-industrial

macrofabrication processes and extreme fabrication conditions, which are not

compatible with the microscale environments for cells. However, the end product

can be modified chemically after fabrication for cellular biocompatibility, although

this can be more easily achieved by the previously described methods.

6.3.1.3 Limitations and Challenges The top-down approach using prefabricated

scaffolds has a number of advantages. The materials used are diverse, ranging from

‘ceramics to polymers and hydrogels. These techniques can also produce porous

scaffolds with high mechanical properties by altering the porosity and pore architec-

ture. However, the top-down approach also has certain disadvantages. In this approach,

the scaffold is expected to promote proliferation and differentiation of the cells seeded

in the prefabricated biodegradable scaffold and create ECM. Although ceramic,

polymer, and composite scaffolds fabricated by the top-down approach have been

used as TE scaffolds, these porous biodegradable constructs often lack biological

recognition cues. For example, they often lack osteoinductivity for bone tissue

engineering. Postfabrication cell seeding into porous scaffolds is also inefficient

because the ability of cells to penetrate the central part of the scaffold is limited,

which leads to inhomogeneous distribution of cells in the scaffold and insufficient

vasculature ingrowth. An ideal TE scaffold shouldmimic the native ECMand promote

cell adhesion, growth, and differentiation.86,87 To achieve this purpose and overcome

drawbacks of the top-down approach, bioactive molecules, including growth factors,

short peptides, and ECM proteins, are deposited, attached, or conjugated to the

scaffold. For example, Jabbari and colleagues have shown that attached of a cell-

adhesive RGD peptide and an osteoinductive peptide derived from bone morphoge-

netic protein 2 (BMP-2) synergistically enhances osteogenic differentiation of bone

marrow stromal cells (bMSCs) andmineralizedmatrix formation.88Other effortsmade

to improve cell seeding include flowperfusion of the cell suspension inside the scaffold

and using scaffolds with larger pore size.89–91 However, despite these advances in

surface engineering, biomimetic design, and conjugationmethodologies tomodify the

scaffold microenvironment, top-down approaches still have difficulty recreating the

intricate structure characters of tissues at micro- or nanoscale.

6.3.2 Modular Tissue Engineering (Bottom-Up Approach)

6.3.2.1 Concept The bottom-up approach aims to address the challenges of the top-

down approach in mimicking the microstructural features of the tissue from the
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opposite direction. The bottom-up approach builds a single unit at the micro- or

nanoscale that serves as a building block for further assembly to a larger tissue scale.

These modular units can be created in many different ways, such as cell sheeting,

cell-laden microfabrication, or 3D direct cell printing. Then these units can be

assembled to a larger tissue size by self-assembly or layering of cell sheets92 to

mimic the native microstructural repeating functional unit of the bone tissue.

Bottom-up TE creates a more biomimetic engineered matrix at tissue level than

the top-down approach.

6.3.2.2 Processing Techniques Micromolding and photolithography can be used

to generate 3D cell-laden hydrogels. Micromolding of hydrogels provides a poten-

tially powerful method for fabricating micro- and nanostructures.93–95 Micromold-

ing uses poly(dimethyl siloxane) (PDMS) molds microfabricated into a variety of

shapes and sizes. In the first step, the prepolymer solution with the cell suspension is

molded with PDMS mold. Then the solution is cross-linked by changing pH,

temperature, ionic strength, or photoinitiator to generate a hydrogel with exact

microstructures with the size and shape of the PDMS mold.96 Many types of natural

and synthetic hydrogels can be used for encapsulation of living cells, such as

agarose,97 chitosan,98 and poly(ethylene glycol).99 Collagen is a natural bio-

compatible and biodegradable material and has been extensively used to simulate

the native ECM in tissues.

Photolithography provides another reliable technique to make microstructural

modules with definite shapes, typically using photomasks with diverse patterns for

patterning multiple cells in specific regions. Using this technology, a prepolymer

solution of a cross-linkable hydrogel with photoinitiator is placed under a mask and

is irradiated with ultraviolet light. The hydrogel cross-links only in the transparent

areas of the mask to generate patterns similar to those of the mask. Khademhosseini

and coworkers have intensively investigated the fabrication of cell-laden microgels

for tissue engineering. They used this technique to create cell-laden microtissues and

microfluidic devices.100 Hydrogels can be patterned to create cellular microstruc-

tures for in vitro cell studies or 3D microtissues with biomimetic structures.

Because the complex architecture of most tissues is organized by assembly of

repeating functional units over several scales, the cell-ladenmicrogel units need to be

assembled to larger structures at tissue level. Bottom-up assembly of cell-laden

microgels has received increasing attention. These assembling techniques include

random assembly,101 manual manipulation,102 multilayer photopatterning,102,103 and

microfluidic-directed assembly.104,105

Another approach is lamination of nanofiber layers with a hydrogel precursor

solution followed molding to the final shape and cross-linking. In this approach, thin

layers of nanofibers of PLGA, PLLA, PCL, or other polymers are produced by

electrospinning. Then the fiber layers are laminated by compression molding using a

hydrogel precursor solution containing bMSCs.106 Then the laminated layer is

wrapped around a cylindrical rod to form a microtubular osteon-mimetic structure

and cross-linked by photopolymerization. The central canal in each microtube serves

as a conduit for vascularization. A set of these microtubes can be adhesively bonded
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to form a macroscale 3D cell-laden construct mimicking the microstructure of the

cortical bone. This technique can potentially overcome the challenges associated

with nonuniform cell seeding and vascularization and nutrient exchange within a

bone-mimetic geometry.

However, these assembling techniques have their own drawbacks; they lack control

over the final structure or lack scalability. Du et al. developed a more controllable

assembling technique, which used hydrophobic effects in water–oil interfaces. Hydro-

philic microgel building blocks microfabricated by photolithography were placed in

hydrophobic medium and a secondary cross-linking reaction was performed.105

However, this assembly technique exposed the microgels containing cells to the

hydrophobic oil phase during the assembly procedure, which could influence cell

viability.105,107 Additionally, random or uncontrolled structures may form using this

assembling approach. A recent work from Khademhosseini’s group has modified the

two-phase assembly technique using liquid–air interface of a hydrophobic solution to

partially address the scaling-up issue by creating centimeter-scale cell-laden microgel

assemblies.92 However, this modified assembly was still performed in hydrophobic

medium. To address this issue, directed assembly on hydrophilic templates was

developed in the same group to fabricate 3D microgel constructs with a wide range

of shapes and complexities such as tubes, spheres, and casques in 2D and 3D

structures.108,109 Other assembling techniques, such as physical templating andmicro-

fluidic-directed assembly, are also developed.101,104,110

Another novel technique in bottom-up TE approach is 3D cell, tissue, and organ

printing. This technique is an attractive scaffold-free, rapid-prototyping based

technology111 with great potential for constructing delicate 3D tissue-like struc-

tures.112,113 To engineer a bone tissue, osteogenic cell-laden hydrogels are deposited

on a platform, yielding tissue constructs that consist of bone-forming cells and

matrix at predefined locations within a porous 3D structure.111

Recently, Fedorovich et al. demonstrated the retention of spatially organized,

functional osteogenic and endothelial progenitor cells, osteogenic matrix formation

of hMSCs, and formation of erythrocyte-filled blood vessels in printed grafts after in

vivo implantation.114 SangJun Moon developed a bioprinter that used mechanical

valves to print high-viscosity hydrogel precursor solutions containing cells within

collagen, overcoming the problem of loss of cell viability and clogging in traditional

inkjet printing systems.115

Cell bioprinting provides a potentially powerful technique in mimicking the

native tissue microvasculature and microarchitecture, although the use of these

implants still has limits in non–load-bearing applications. Temporary mechanical

stability could be still required in combination with surgical instrumentation if

applied in clinical environments.

Cell-sheeting techniques represent another bottom-up TE approach in which cells

are grown on a thermo-responsive polymer substrate to secrete ECM and reach

confluency. The confluent cell layer is detached by thermal regulation without

enzymatic treatment, and single cell layers can be laminated into multiple single cell

layers to form a thicker 3D matrix.116 However, it is a challenge to construct thick

tissues by this method because each layer is around 30mm thick.117,118
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Aside from the techniques discussed, cell aggregates are also a suitable building

block for tissue-like constructs. The cell aggregates can be directly assembled into a

tissue by using the adequate biological cues. Direct seeding of cell aggregates need to

be in the presence of growth factors or other bioactive molecules to facilitate the

dispersion of colonies into a larger cell construct.

6.3.2.3 Limitations and Challenges The bottom-up TE approaches hold great

promise for creating functional repeating tissue units using hydrogels; they also

provide a potential for assembling defined 3Dmicrostructured modules for engineer-

ing tissue macroconstructs, which mimic the complexity of living tissues. However,

random or uncontrolled structures still may form, so fabricating tissue constructs

with biologically relevant length scales using the current setups is challenging.119

Because of their high water content, hydrogels usually have poor mechanical

stability. As a result, their use in constructing 3D tissues by bottom-up approaches

is limited in load-bearing bone tissue. In addition, the control of the assembly process

to fabricate 3D constructs with uniform shapes is still a challenge.

6.3.3 Novel Strategy (Integrating Approach)

6.3.3.1 Concept Top-down and bottom-up fabrication strategies have both advan-

tages and disadvantages. The “challenges” of the bottom-up TE highlight the

importance of scaffolds produced by traditional polymer processing techniques,

such as porogen leaching and gas foaming. The lack of functionality of the top–down

constructs underscores the importance of microenvironment for optimal cell growth.

A combination of traditional top-down processes with more recent bottom-up

microfabrication techniques may overcome this drawback and provide distinct

advantages, bringing the field closer to the ultimate goal of complete control

over microarchitecture and porosity in engineered tissues. The key question is

how these two directions can be integrated. New strategies are still required to

overcome the limitations of each of the current TE approaches.

6.3.3.2 Integrating Processes Mata et al. integrated top-down microfabrication

with self-assembling peptide-amphiphile (PA) systems to offer a unique platform in

which both physical and biomolecular elements were combined in a single material

with cell behavior controlled by cell processing. In this integrated approach,

bioactive scaffolds combine biologically instructive nanoscale fibers with topo-

graphical features to establish highly complex tissue structures.120

Ouyang et al. assembled a bMSC sheet on a knitted PLLA scaffold for engineer-

ing ligament analogs by a wrapping technique. Their results show that the approach

of assembling bMSC sheets onto a knitted PLLA scaffold is promising for producing

tissue-like and functional ligament analogs.121

Sargeant et al. developed a hybrid bone implant material consisting of porous

Ti–6Al–4V foam and self-assembled PA nanofibers. Cells were encapsulated into the

PA solution, and prewet Ti–6Al–4V foams with 52% porosity were placed in the PA

and cell solution. PA solutions with cells were gelled with CaCl2 to form nanofiber
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matrices in Ti–6Al–4V foams. This hybrid bone graft, which integrated self-

assembly of PA nanofibers within pores of metallic foams, has the potential to

induce mineralization and direct a cellular response from the host tissue.122

Although the integration of bottom-up and top-down micro- and nanotechnol-

ogies brings new potentials to create tissue regeneration scaffolds with physical and

biochemical hierarchical order from the micro- to macroscale, sophisticated tech-

nologies need to be developed. The major challenge of integration of bottom-up

techniques with more traditional top-down approaches is to create more complex

tissues than are currently achievable using either approach alone by optimizing the

advantages of each technique.123 Currently, there is no integrating technique that can

be used to assemble complex hierarchical structures to meet the requirements of

tissues and constructs, and research is now focused on targeting this problem.

6.4 FUTURE DIRECTION AND CONCLUDING REMARKS

Integration of a top-down TE approach with a bottom-up biological assembly concept

is promising to engineer fully functional tissues and organs with micro- and nano

biomimetic hierarchical complexity. Each approach has its own strengths and weak-

nesses and is suitable for different TE applications. The continuous development of

top-down TE techniques will improve the scaffold’s microstructure, presentation of

cell signaling factors, and the interaction between multiple types of cells. The

improvements in bottom-up approaches will generate novel self-assembling building

blocks and complex larger scale tissue structures. With continued research in these

advanced techniques, bone tissue engineering will advance toward clinical restoration

of tissue function. Advances in top-down and bottom-up approaches will improve

scaffold mechanical properties, cell–cell and cell–matrix interactions, and cell shape

and morphology, leading to the formation of a vascular mineralized matrix in the

damaged tissue and greater integration of the construct with the host vasculature.
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