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3.1 INTRODUCTION

Traditional biological studies generally target the structure and function of a
specific gene or protein. Generally, a specific hypothesis is generated for a specific
biological problem and then tested by an experimental design (Fig. 3-1). In the
1990s, the first high-throughput technologies were invented for biological studies
and included genome sequencing, proteomics, DNA chips, and protein chips.
These technological advancements have created a new field of bioinformatics and
computational biology. The combination of bioinformatics and high-throughput
technologies has re-shaped traditional biological studies; through these technolo-
gies, biologists will be able to generate better biological hypotheses, and also
streamline the traditional methods, which has proven to be much more efficient
than traditional biological study (Fig. 3-1). As these technologies become increas-
ingly more mature and economically feasible, more and more laboratories are
using these methods. In this chapter, we briefly introduce four high-throughput
technologies and then focus on the details of three technologies: genomic
sequencing, proteomics, and DNA and protein chip technologies. We also illustrate
chip technologies using two applications.
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Figure 3-1 New scientific technologies for high-throughput measurements and functional
genomics.

3.2 HIGH-THROUGHPUT TECHNOLOGIES

3.2.1 Genomic Sequencing

Genomic sequencing, which ultimately revolutionized the field of biology, was
invented by Nobel Laureate Frederick Sanger in 1981 [1]. This technique involves
the separation of fluorescently labeled DNA fragments according to length on
polyacrylamide gels via electrophoresis (PAGE). Through automation, each sequenc-
ing run can yield 500 bp to 1 kb of sequence data with a modern sequence machine.
DNA-sequencing technology is another milestone in understanding the evolution,
structure, and function of biological systems since the discovery of the DNA structure
by Watson and Crick in 1953. However, additional complementary technologies are
required for sequencing complete genomes since genomic sequences may be as long as
billions of bases (Table 3-1). For instance, the human genome is about 3.3 billion bases.
A typical bacterial genome ranges from several hundred kilobases to more than 10
million bases. The model bacterium Escherichia coli K12, for example, has a genome
comprising about 4.67 million bases.

In 1983, Frederick Sanger invented the shotgun-sequencing strategy and sequenced
the first complete genome, bacteriophage A, which has 48,502 bases [2]. Without
parallel advances in super computational techniques, the applications of shotgun

Table 3-1 Wide ranges in genome size

Species Genome Size (Mb) Species Genome Size (Mb)
HIV 0.0097 S. cerevisiae 11.72
SARS-CoV 0.030 C. elegans ~100
Mycoplasma genitalium 0.59 A. thaliana ~125

Escherichia coli 4.67 Homo sapien ~3,300
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genome sequencing were not fully realized until 12 years later. In 1995, through the use
of super computational facilities, the Haemophilus influenzae genomic sequence was
published by J. Craig Venter from the Institute for Genomic Research (TIGR) and
Nobel Laureate Hamilton Smith of Johns Hopkins University [3]. The human genome
sequence project was launched in 1990 and was eventually completed in the year 2003
with a large collaboration of international effort by the International Sequencing
Consortium (http://www.intlgenome.org/). It should be noted that the contribution of
computational biology was crucial to the successful completion of the human genome
sequence project.

Figure 3-2 shows a simplified procedure for the shotgun genome-sequencing
strategy. To sequence a large sequence, shotgun genomic sequencing first breaks the
sequence randomly several times into small fragments of about 1,500 bases by
enzymes or physical shearing and then sequences these individual fragments. The
computer is able to connect the sequences based on the overlapping ends between
these sequences. The size of this large sequence will be less than 150kb. This is
because, for alarge genome, the sequence needs to be separated into smaller fragments
of about 150 kb, each of which will be cloned into bacterial artificial chromosome
(BAC) vectors. Each of these large fragments is called a contig and can be sequenced
using the shotgun-sequencing method. By using BACs, these contigs can be mapped,
as BAC records the positions where the contigs come from the genomic sequence.

3.2.2 DNA Microarray

The DNA microarray, also known as a DNA chip, contains thousands of arrayed
probes, each composed of a short oligonucleotide or cDNA fragment. The invention of
DNA chip technology has made it possible to study the functions of thousands of genes
at the same time, allowing for biological study in a more systematic way. The
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Figure 3-2 Simplified shotgun genome sequencing strategy.
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fundamental mechanism underlying the DNA chip methodology is nucleotide hy-
bridization, which had been previously deduced. However, the most important concept
for DNA chips (as well as protein chips) is that these technologies facilitate the
automation of evenly spotted DNA molecules onto a surface, which will allow for
quantification of the hybridization signal. Thus, the first DNA arrays originated from
the development in the late 1980s of robotic devices (gridding robots) that make it
possible to array bacterial colonies in compact and regular patterns [4]. The original
DNA chip had approximately 10,000 spots on a 22 x 22 cm? surface. This array
allowed for rapid genomic library scanning. The functional genomics for expression
analysis with quantitative acquisition of hybridization signals was first reported in
1992 [5]. This technology was based in part on integrated mapping and sequencing
analysis of genomes.

The massive DNA sequences generated by shotgun sequencing have given us an
opportunity as well as a challenge to study the evolution, structure, and function of
these genes. Most notably, the complete genomic sequences allow us to evaluate
expression patterns on a genomic scale. DNA chip technologies and functional
genomics have been applied widely in many different fields, such as pathogenesis,
drug discovery, cancer research, cell development, cell structure, agricultural seed
selection, and even in the environmental community study [6—18]. For instance, in
drug discovery, functional genomics can be applied in basic research and target
discovery, biomarker determination, pharmacology, toxicogenomics, target selectivi-
ty, development of prognostic tests, and disease subclass determination [6]. Further
details regarding DNA chips and functional genomics are discussed in Section 3.3.

3.2.3 Protein Microarrays

DNA microarrays are used to monitor global gene expression levels based on
intracellular RNA concentration. However, the corresponding protein expression
may be different from RNA abundance due to gene regulation at the translational level
and alternative gene splicing. Protein chip technology was invented for this purpose.
Different from DNA chips, protein chips have been used to detect the quantity of
specific proteins by measuring signals from the interactions between protein versus
protein and protein versus antibody. The target molecules can not only be traditional
protein molecules but also be other types of molecules, such as artificial proteins [19],
RNA or DNA aptamers [20], allosteric ribozymes [21], peptides, and other small
molecules [22,23]. With these extensions, protein chips can be applied to monitor the
interactions between protein versus ligand, protein versus drug, enzyme versus
substrate, and so on.

Haab et al. [24] printed a set of 115 antibody—antigen pairs to evaluate the use of
protein microarrays for specific detection and quantification of multiple proteins in
complex mixtures. About 50 percent of the arrayed antigens and 20 percent of the
arrayed antibodies provided specific and accurate measurements of their cognate
ligands at or below concentrations of 0.34 and 1.6 pug/mL, respectively. Their studies
suggest that protein microarrays can provide a practical means to characterize patterns
of variation in hundreds of thousands of different proteins in clinical or research
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applications. Some companies have developed antibody arrays for both investiga-
tional usage as well as clinical use for monitoring allergies and small therapeutic drug
monitoring. Similar to DNA chips, protein chips are able to perform thousands of
reactions in parallel. Thus, by using a specific antibody, we will be able to screen for
the presence of a specific protein from a specific reaction. Protein chips have become
an important proteomics technology in addition to mass spectrometry and two-
dimensional gel electrophoresis, both of which are however less sensitive than protein
chip technology.

The original idea for protein chips followed from miniaturized immunoassay
technology. In the 1980s, the development of ELISA introduced the concept of
ambient analysis, which is able to quantify the antigen—antibody reaction through a
specific enzyme-labeling assay. Similar to the DNA chip, development of this
technology was accelerated by the genome project and improved technologies in
recombinant proteins. Since most proteins used for protein arrays are made by
recombination, the protein array would be able to be connected with DNA sequence
and protein structural analysis. The functional analysis of the DNA-coding genes can
reflect their functions.

Similar to the DNA chip, the protein chip uses covalent interactions to immobilize
protein molecules onto solid surfaces by randomly conjugating the lysine residues on
proteins to amine-reactive surfaces. In many cases, the recombination proteins are
preferred since amino- or carboxy-terminal tags can be introduced so that the protein’s
functional sites can be away from the immobilization surface, which can increase the
sensitivity of protein chips via the reduction of steric hindrance. The printing
technologies for protein chips are similar to those for DNA chips, described in
Section 3.3. However, the challenge for printing processes is how to prevent
dehydration of the protein spots. Improvement in this area seems to be needed for
further development [22].

Protein chips have become an important tool for biological study. Protein chips are
mainly applied in micro-immunoassay, in which arrays of different capture antibodies
are immobilized and subsequently exposed to a biological sample. These types of
protein chips can be used for diagnostics as well as protein-profiling analysis. Specific
antibodies can be immobilized on the chip to monitor the protein expression levelsin a
tissue or a cell. The parallel analyses would be able to monitor the protein-profiling
changes for a patient and to determine the disease status or monitor the treatment or
therapy through a minimum of biopsy material. In reverse immunoassays, the purified
small antigens can be immobilized on the chip so that the specific antibody responses
in the blood or local tissues can be evaluated. The reverse immunoassay can be used for
diagnosis of various autoimmune diseases [25] or allergies [26]. These types of
analyses can be used for examining binding receptor properties as well as antibody
cross-reactivity and specificity.

The protein array has a very promising application for drug scanning since it
directly monitors the interaction between drug and a target protein. Protein chips may
be used in binding/screening assays for other small molecules, such as ligands,
RNA-DNA molecules, and some artificial proteins. They can also be used for isolation
ofindividual candidate molecules from a large pool. For instance, protein chips may be
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used for studying protein—-DNA interactions, especially for promoter analysis, for
investigating enzyme activity with different substrates, and for epitope mapping.

3.3 DNA CHIPS AND FUNCTIONAL GENOMICS

In this section, we first discuss the details about DNA chip manufacturing technolo-
gies, focusing primarily on how the probe is printed on the slides. Then we discuss the
probe design, sample labeling and hybridization, scanning and image analysis, data
analysis, experimental design and data interpretation, challenges of DNA chips, and
applications of DNA chips.

3.3.1 Microarray Manufacturing Technologies

Current fabrication technologies for DNA microarrays can be grouped into photoli-
thography, mechanical microspotting, or ink-jet ejection [27]. For a photolithography
array, the oligonucleotide probe is synthesized directly onto a solid surface (e.g., the
Affymetrix and NimbleGene arrays) based on a combination of chemistry and
photolithographic methods [28]. To produce the array, the reactive amine groups
from a silane reagent are attached to a glass or fused silica surface, and then the amine
groups are modified via methylnitropoperonyloxycarbonyl (MeNPOC) photoprotec-
tion. A single base can then be added to the hydroxyl groups of these MeNPOC using
a standard phosphoramidite DNA synthesis method after exposure to light. The
photoprotection and nucleotide insertion are repeated to obtain a desired probe [27,29].
The lengths of these probes are generally 20-25 bases. The photolithographic array
can have a much higher probe density than other types of arrays. Affymetrix chips can
contain about 250,000 oligonucleotides in an area of 1 cm? while the spotted cDNA
array generally only has about 1,000 oligonucleotides in the same area. This feature
offers an important advantage for the Affymetrix array over spotted arrays, which have
much lower probe densities. In addition, the Affymetrix system is more stable and
reproducible, since it lacks the problems associated with printing spotted arrays.
However, the current price of Affymetrix arrays is still too high to be widely accepted
as a biological tool.

A mechanically microspotted array is called a spotted array. This type of array
utilizes pins, tweezers, or capillaries to print the molecules onto glass or other solid
surfaces. The molecules can be oligonucleotides, genomic DNA, or polymerase chain
reaction (PCR) fragments (DNA or cDNA). For protein chips, we can even print
antibodies, small drug molecules, and other small molecules. The printing process is
generally achieved by a robot monitored by a computer. Compared with the array
constructed on the basis of photolithography, a spotted array is more economical as
well as easily implemented. In addition, the spotted array can have many more
applications than the photolithography array since the array for the latter is limited to
short oligonucleotides. However, preparation of the printing material and the printing
process require considerable control, as the printing quality will directly affect the
analysis.
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Similar to a spotted array, the ink-jet ejection array prints the molecules to the solid
surface by ejecting the sample from the print head. Different from the spotted array, the
print head during printing does not contact the slides, which can reduce the probability
of contamination. Currently, two types of noncontact ink-jet print technologies,
piezoelectric pumps and syringe-solenoid, are used for printing microarrays.
Similar to the spotted array, the ink-jet ejection array can print various molecules
on a slide. On the other hand, the ink-jet ejection array prints at even lower densities
than the spotted array.

3.3.2 Probe Designh and DNA/cDNA Synthesis

Based on the DNA molecules on the slides, DNA chips can be categorized as either
DNA/cDNA microarrays or oligonucleotide microarrays. Generally, the DNA frag-
ment on DNA/cDNA microarrays is synthesized by the polymerase chain reaction
while oligonucleotides are synthesized directly by machine. To synthesize the DNA
fragment or cDNA primers, we need to design unique primers, which are generally
20-28 bases long. For genes shorter than 1,000 bases, the PCR-amplified fragments
should be as long as possible. For genes longer than 1,000-bases, the optimal amplified
fragments should be within the range of 500-1,200 bases. Xu et al. [30] developed
PRIMEGENS for primer design for cDNA amplification. PRIMEGENS finds the
unique fragments from a group of gene fragments or genes in a complete genome, and
then applies the Primer3 algorithm [31] to design the left and right primers for each
unique fragment. The user can change the primer specification based on their PCR
requirement. The biggest challenge for production of the DNA or cDNA array is that
occasionally PCR amplification may not be able to generate an expected yield for a
given gene. Since we generally perform the reaction in 96- or 384-well plates, one may
have to amplify individual genes separately. In addition, for complete genomic
analysis, it is difficult to ensure complete coverage, due to the cross-hybridization
between PCR fragments on the DNA/cDNA array. Furthermore, sample contamina-
tion or mishandling during amplification may generate other problems.

Due to the laborious processes for producing DNA/cDNA arrays, many labora-
tories are utilizing the oligo array. It should be emphasized that oligonucleotide
design is not a trivial process. A program for designing optimal probes will need:
(1) to minimize hybridization free energy for the target gene and maximize hybrid-
ization energy for all other genes, yet the hybridization energy depends on the
concentration of the genes, which is unknown; (2) to avoid secondary structure;
(3) to consider both strands of the genome as well as the cross-hybridization of the
coding region and noncoding region. Many oligo design algorithms and software
packages have been developed during the last several years: ProbeSelect [32],
PROBEmer [33], CommonOligo [34], Oligo Design [35], Picky [36],
OligoPicker [37], OligoArray [38], ROSO [39], and GoArrays [40]. Most of these
methods are for a complete genome array. ProbeSelect [32] is one of the most popular
methods used for oligo design for complete genome arrays. ProbeSelect first makes a
suffix array of the coding sequences from a whole genome and then builds a sequence
landscape for every gene based on the sequence suffix array. Based on sequence
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features and the sequence word rank values, ProbeSelect chooses probe candidates
and then searches for matching sequences in the whole genome, allowing for a certain
number of mismatches. After locating match sequence positions in all genes,
ProbeSelect calculates the free energy and melting temperature for each valid target
sequence. Finally, ProbeSelect matches sequences that have stable hybridization
structures with a probe based on free-energy data and maintains high discrimination
against other targets in the genome.

For environmental functional genomics, it will be even more challenging to design
specific probes due to the high similarity between genes. Some algorithms have been
designed for environmental community study [41,42]. The hierarchical probe design
(HPD) program is an oligo design program especially suited for long oligo design,
allowing for analyses of functional gene diversity in environmental samples [41]. HPD
designs both sequence-specific probes and hierarchical cluster-specific probes from
sequences of a conserved functional gene based on the clustering tree of the genes.

In general, DNA arrays have two advantages over oligo arrays: (1) DNA arrays
have a higher sensitivity; and (2) DNA arrays do not need detailed sequence
information; thus, DNA arrays are especially useful for environmental community
study for which we generally do not know the exact sequence information. However,
oligo arrays have two distinct advantages over DNA arrays: (1) oligo arrays have
reduced cross-hybridization, thus providing higher specificity; and (2) unlike DNA
arrays, oligo arrays do not require the intensive labor involved in PCR amplification
and DNA purification. Oligo arrays are especially popular as the cost of custom array
fabrication is steadily declining.

3.3.3 Sample Labeling and Hybridization

Sample labeling can be categorized as either direct or indirect labeling. The direct-
labeling approach directly incorporates the fluorescent tags into the nucleic acid when
preparing the hybridization samples. The fluorescent tags may be present in labeled
nucleotides (e.g., Cy3- or Cy5-dCTP) or PCR primers. PCR and reverse transcription
(RT)-PCR are common approaches to synthesize the labeled samples for hybridiza-
tion. To detect the mRNA concentration, we can use RT-PCR to incorporate fluores-
cently labeled nucleotides into the transcribed cDNA during first-strand cDNA
synthesis. Alternatively, mRNA can be amplified by 1,000—10,000-fold using T7
polymerase to obtain antisense mRNA (aRNA). The aRNA is then reverse-transcribed
to obtain labeled cDNA [43]. One of the advantages of the T7 polymerase-based
amplification method over other methods is that because amplification is a linear
process, all nMRNAs are amplified almost equally. Another advantage is that mRNA
can be easily labeled with reverse transcriptase, which incorporates fluorescent tags
much more readily than DNA polymerase [27].

The indirect labeling approach labels the sample with fluorescence after hybrid-
ization. To label the samples, indirect labeling requires epitope insertion into the target
samples during cDNA synthesis. After hybridization, the epitopes can be bound by
specific proteins to produce the signal. Biotin is one of the commonly used epitopes,
which can be stained by a fluorescent streptavidin—phycoerythrin conjugate and
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detected via laser [44]. Some other types of indirect hybridizations are discussed by
Zhou and Thompson [27].

After labeling, the sample will be hybridized with the probes on the slide. Before
hybridization, the slide requires postprocessing, which will use ultraviolet (UV)
radiation or heat to cross-link probes to the slide. For example, postprocessing can be
done by exposing the slides to 120 mJ/cm? using a UV cross-linker or by baking the
printed slides for 80 min at 80°C in a drying oven. Similar to traditional membrane-
based hybridization, the microarray will also need prehybridization to reduce non-
specific binding. The unbound DNA on the slides can be washed away during
prehybridization to reduce the competition of unbound DNA for the labeled samples.

After postprocessing and prehybridization, the microarray is hybridized with
labeled samples at a certain temperature, generally 42°C to 50°C, for a period of
time (overnight to several days). A key to successful hybridization is that the
hybridization solution needs to evenly cover the slide. After hybridization, the slides
need to be washed to eliminate unbound samples.

3.3.4 Scanning and Image Analysis

The next step after hybridization is quantification of the hybridization signal from the
slides. The scanning devices are generally categorized into two types: the confocal
scanning microscope and CCD camera. In general, a confocal scanner uses laser
excitation of a small region of the glass slide (~100 um?), and the entire array image is
acquired by moving the glass slide, the confocal lens, or both across the slide in two
directions [45]. The fluorescence emitted from the hybridized target molecule is
gathered with an objective lens and converted to an electrical signal with a photo-
multiplier tube (PMT) or an equivalent detector. The confocal scanning microscope is
the most common one used to scan microarray slides. The main drawback of this type
of technique is that this type of device may be very expensive since each excitation
wavelength must have its own laser. In addition, the confocal scanning microscope is
also very sensitive to any nonuniformity of the glass slide surface [27]. The CCD
camera typically utilizes broadband xenon bulb technology and spectral filtration. The
CCD system allows simultaneous acquisition of relatively large images of a slide
(1 cm?), thus, it does not require moving stages and optics. On the other hand, several
images need to be captured from different areas and then combined to be representative
of the complete information on the slide. Since most commonly used dyes have similar
excitation and emission maxima, spectral filtration processes may have difficulty
separating excitation and emission wavelengths, resulting in a possible source of error.

During the scanning process, the power of the excitation light is critical since the
emitted fluorescence is generally correlated with the power of the excitation light. If
the power of the excitation light is too low, the scanning sensitivity will be too long and
many empty spots may be generated. However, if the power of the excitation light is too
high, the incoming photons can damage the dyes and reduce the fluorescent signals
during successive scans. More powerful light sources and/or longer laser exposure
time can lead to significant photobleaching. Generally, photobleaching should be less
than 1 percent per scan.
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Since different dyes have different quantum yields and photostabilities, the PMT
needs to be justified for each different channel prior to scanning. The order of channel
scanning may be an additional variable to gain a better image. For example, CyS5 is
more sensitive to photobleaching than Cy3. To minimize photobleaching, the Cy5
channel is always scanned first, followed by the Cy3 channel [27].

After the scanning process, we need to transform the image into quantitative signals.
Many software packages, such as Imagene, GPC VisualGrid, TIGR SpotFinder,
GenePix, have been developed to automatically quantify the images. Most of these
software packages are effective. The common challenges for image quantification
include (1) irregular or non-uniform spot geometries (e.g., not round, donut shape);
(2) uneven hybridization (e.g., only a portion of the scanned image is quantifiable);
(3) hybridization with high background; and/or (4) weak or saturated hybridization
signals. Thus, for better quantification, one generally needs to use the following
parameters: (1) signal/noise ratio should be more than ¢ 4+ 1.96 u; (2) background
area selection should be local instead of global; and (3) bad spots should be removed.

3.3.5 Data Analysis

After obtaining the quantification hybridization signals from different biological
replicates, we need to perform data normalization and statistical analysis.

3.3.5.1 Data Normalization The data normalization before statistical analysis
is important to obtain reliable results. Data normalization can control many of the
experimental sources of variability (systematic, not random or gene specific) and bring
each image to the same average intensity. Data normalization is necessary to correct
for the following variabilities: (1) the use of unequal quantities of starting RNA;
(2) differences in dye incorporation; (3) differences in detection efficiencies of the
fluorescent dyes; (4) variations in the image saturation extent for different channels;
and (5) systematic biases in the measured expression levels.

Generally, there are several assumptions underlying data normalization. (1) The
average mass of each molecule is approximately the same, thus the molecule number
in each sample will be the same. (2) The arrayed elements represent a random
sampling of the genes in the organism; and (3) the number of molecules from each
sample available for hybridization is similar, thus, the total intensity for each sample
will be the same.

Data normalization includes two steps: normalization within slides and normal-
ization between slides. Normalization within slides is generally achieved by
different options [46]. First, the signals can be scaled (scale normalization) by
total intensity, mean, median, or the intensity of a group of genes. Second,
normalization can be achieved by linear regression normalization. The most popular
method for normalization with slides is the locally weighted linear regression
(Lowess) normalization. Most normalization methods correct for differences in
intensities between channels and do not take into account systematic bias that may
appear within the data. For instance, the log,(ratio) values can have a systematic
dependence on intensity. Lowess may remove the intensity-dependent effects in the
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log,(ratio) values since Lowess normalizes the value point by point and generally
requires a defined percent for the local area (e.g., 20 percent). Lowess normalization
requires the ratio (two dyes). While normalization adjusts the mean of the log,(ratio)
measurements, stochastic processes can cause the variance of the measured log,
(ratio) values to differ from one region of an array to another or between arrays. One
approach to dealing with this problem is to adjust the log,(ratio) measures so that the
variance is the same. This method is called variance regularization. Interested
readers are encouraged to read an excellent review on data normalization by
Quackenbush [46] for more details.

Since the hybridization may vary between slides (replicates) as well as channels,
normalization is extremely important. Generally, normalization between slides uses
scale normalization (e.g., medium).

3.3.5.2 Statistical Analysis After normalization, we will be able to perform
statistical analysis to rank results by confidence with significance metrics (e.g.,
p-value). The statistical analysis will estimate the false positive (Type I errors) and
false negatives (Type Il errors), achieve the desired balance of sensitivity and specificity,
and result in a certain amount of flexibility (and arbitrariness) for interpreting signifi-
cance metrics generated by a test.

The methods for statistical analysis depend on the experimental design. For
example, for two sample statistical tests, we can utilize parametric statistical methods
(z-test for paired and unpaired 7-test) or nonparametric methods (Mann—Whitney test
for independent samples or Wilcoxon signed-rank test for paired data). We generally
assume the variations between biological replicates and technical replicates are the
same to apply the two-sample statistical test. Otherwise, we can use multivariate
statistics, such as one-way versus two-way analysis of variance (ANOVA) or the
Kruskal-Wallis method. For multiple comparison corrections, we can use Bonferroni
Correction or False Discovery Rate [47]. More details about these methods can be
obtained from the book Statistical Analysis of Gene Expression Microarray Data by
Terry Speed [48].

Many software packages, such as GeneSpring (Silicon Genetics), SAM (Stanford),
and ArrayStat (Imaging Research), have been developed for microarray data analysis.
GeneSpring is one of the most widely used microarray data analysis software tools
since it has an easy-to-use interface as well as powerful normalization and statistical
analysis capabilities (#-test, two-way ANOVA tests, one-way posthoc tests for reliably
identifying differentially expressed genes, and so on). Different computational analysis
tools for clustering, visual filtering, and pathway viewing have also been included.
Also, the user can incorporate their own scripts/programming into GeneSpring to
complete their analysis.

3.3.6 Experimental Design and Data Interpretation

Correct experimental design is the key to generation of meaningful biological results.
A good experimental design will be more economic since it may save resources as well
as slides. However, a corresponding statistical analysis should be proposed as well to
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Figure 3-3 Experimental design for microarray. (a) Direct comparison. (b) Reference design. (c)
Loop design.

analyze and interpret the data scientifically. Speed [48] provides a very good
illustration for experimental design.

The simplest experimental design is pairwise direct comparison between treat-
ment/experiment and control (Fig. 3-3a). For instance, we can compare the gene
expression profiles for a wild type and a mutant under a certain condition to study the
function of the mutated gene [49]; we can test the treatment effectiveness of a drug by
comparing the gene expression profiles of the treatment group to the control group.

However, in most cases, we have to compare multiple experimental conditions. In
this case, pairwise direct comparison will not meet the requirement. For example, we
need to compare the gene expression profiles at different time points during bacterial
growth [50]. In the drug experiments, we need to compare the effectiveness between
different drugs. Obviously, it will not be wise to design all pairwise comparisons since
it will be too expensive. For instance, to compare 10 conditions, one would have to
design 45 pairwise experiments. In this case, we can apply common reference design
(Fig. 3-3b).

More complicated designs include loop design (Fig. 3-3c) and pool design. The
pool design should be very carefully used since it involves the mixture of all of the
treatments and control samples as a reference sample to compare. The statistics with
different experimental designs are described in the review by Yang and Terry [51].

After the statistical analysis, reconciliation between statistical results and biologi-
cal functions is not a trivial matter since thousands of genes are involved in the data
analysis. Generally, one overlays functional information and allows biological context
to help decide what is of interest and what is not. We can use computational methods
(classification, clustering, promoter prediction, and so on) to assist this analysis
(Section 3.3.7). Microarray data are required to link to various public identifiers, such
as Genbank, Swiss-Prot, and Gene Ontology (GO) database. GO is the most com-
monly used public domain sources of gene classification, and it provides controlled
vocabulary hierarchies for molecular functions, biological processes, and cellular
components. Other common databases include LocusLink, HomologGene, RefSeq,
and UniGene.
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3.3.7 Bioinformatics and Functional Genomics

The massive information that microarray profiling generates provides a great chal-
lenge for how to extract biologically meaningful information from the raw data. Thus,
the discipline of bioinformatics plays an important role in microarray data analysis.

The most common approach is to deduce the coregulated genes (regulons) that have
similar expression patterns. Further, the regulatory motifs are expected to be a
predictor for each regulon. Many different algorithms have been used for the clustering
process as well as for regulatory motif prediction. Within a single experimental
condition, MotifRegressor [52] can be used to find a sequence motif. MotifRegressor
first predicts all of the possible motifs and then performs regression analysis between
microarray data and motif strength. MotifRegressor has an advantage in that it does not
require the selection of a group of genes to predict the motif, which may generate a bias
for motif prediction since some highly expressed genes are also indirectly regulated
genes. For multiple experimental conditions, we can apply clustering methods, such as
k-means, hierarchical clustering, self-organizing maps, and minimum spanning tree
(EXCAVATOR) [53], to identify a group of potential genes with the same trend in
expression pattern. EXCAVATOR [53] is based on a new framework for representing
gene expression data, that is, the minimum spanning tree in graph theory. Through this
data representation, an expression data-clustering problem is reduced to a tree-
partitioning problem without losing information essential for the purpose of cluster-
ing. EXCAVATOR then applies an algorithm that mathematically guarantees to find
globally optimal clustering efficiently, for a general objective function. After identi-
fying the coexpressed genes in a cluster, we can apply motif prediction programs to
predict the DNA binding motifs. The most commonly used cis regulatory motif and
transcription factor DNA binding site prediction algorithms include such programs as
Gibbs sampler [54], AlignACE [55,56], and BioProspector [57].

During the past several years, transcriptional regulatory networks have attracted
substantial interest from both the computational and biological science communities.
A number of statistical and computational methods have been applied in the modeling
of gene regulation networks [58-64]. A few regulatory networks have been de-
fined [60,65-68]. Despite this, regulatory network construction remains a great
challenge due to the requirement of large experimental data sets.

The storage and management of microarray data is critical for efficient analysis.
This, however, is a very challenging undertaking, since the many details of microarray
analysis will affect the final results. The information about the samples hybridized, the
hybridization images and their extracted data matrices, information about the physical
array, and the features and reporter molecules all need to be included in the database.
BioArray software environment (BASE) is a Web-based customizable bioinformatics
solution for the management and analysis of all areas of microarray experimenta-
tion [69]. BASE manages biomaterial information, raw data and images, and provides
integrated and “plug-in”-able normalization, data viewing and analysis tools. The orga-
nizationand interface of BASE was designed to closely follow the natural workflow of the
microarray biologist, and is compatible with most types of array platforms and data types
(e.g., cDNA/oligos spotted on any substrate, Affymetrix, CGH on arrays, and so on).
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3.3.8 Challenges of DNA Chips

Although DNA chips have advantages of high-throughput features, these technologies
have several other disadvantages and challenges:

(1) Costofdiagnostic microarrays. Currently, the cheapest chips still cost the users
at least $100 per experiment even for a noncustomed array. An Affymetrix
array costs more than $400 per experiment. Currently, it is cost-prohibitive to
apply microarrays as a routine diagnostic tool.

(2) The robustness of the microarray technologies must be improved. For SNP
screening in particular, the sensitivity and specificity will need to be improved.

(3) The chip technologies need to be performed in a simplified and sturdy format
without errors. A standard package includes the experimental protocol. These
packages should tell the user how to justify the array quality in addition to
giving the intensity of chip array data. A highly efficient quality control needs
to be set up for microarray data analysis as well.

3.3.9 Development and Applications of DNA Chips

DNA chips have been widely used in many different fields. Most DNA chips focus on
the protein-coding region to study the gene expression values. In addition, other types
of arrays are designed to study the function of other elements in the genomes, such as
small gene prediction, antisense gene study, gene alternative splicing, and so on.

The first significant application of DNA chips were serial analysis of gene
expression (SAGE) for expression profiles [70]. SAGE was designed based on two
principles: (1) ashort nucleotide sequence tag can uniquely identify the transcript from
an individual gene provided it is from a defined position within the transcript. For
example, although the total number of human genes is expected to be of the order of
30,000, a sequence tag of only 9 nucleotides can, in principle, distinguish 4° = 262,144
different transcripts. (2) Concatenation of short sequence tags allows the efficient
analysis of transcripts in a serial manner. The tags from different transcripts can be
covalently linked together within a single clone, and the clone can then be sequenced to
identify the different tags in that clone. SAGE has been applied successfully in
malarial parasite, yeast, plant, and animal systems [71].

ChIP-on-chip is a DNA array technique for isolation and identification of
specific protein binding sites in genomic DNA [72]. ChIP-on-chip is useful for
regulatory binding site identification, and thus, for regulatory network construc-
tion [73,74]. These regulatory binding sites can help identify the functions of the
transcriptional regulatory protein during cell development and disease progression.
The identified binding sites may also be used as a basis for annotating functional
elements in genomes. The types of functional elements that one can identify using
ChIP-on-chip include promoters, enhancers, repressor and silencing elements,
insulators, boundary elements, and sequences that control DNA replication
(http://www.chiponchip.org/).

Tiling array is a DNA array covering whole genome sequences using overlapped
fragments, and it can be applied to examine not only upstream sequences of genes but
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Figure 3-4 Probe design for tiling array. The oligonucleotide probes are tiled across the whole
genomic sequence.

also intragenic and intergenic regions [75]. Tiling arrays use millions of DNA probes
evenly spaced, or “tiled” across the genome, including coding and noncoding regions
(Fig. 3-4). Tiling array has been a very useful tool for genome-wide analysis of many
important biological functions, including transcription [76], antisense gene expres-
sion [77], protein binding sites [ 78], sites of chromatin modification [79], sites of DNA
methylation [80,81], experimental genome annotation, and regulatory pathway
discovery [82].

3.4 TRANSCRIPTOME PROFILING OF AN ArcA Mutant
of Shewanella oneidensis

In this section, discussion will focus on cDNA microarray technology applied for the
purpose of characterizing the ArcA regulon in the bacterium S. oneidensis MR-1. This
section first introduces the background of this study (Section 3.4.1) and then describes
the experimental design for this study (Section 3.4.2). The cDNA microarray and
microarray hybridization procedure are followed next in Section 3.4.3. Section 3.4.4
describes the roles of bioinformatics in this study. Section 3.4.5 describes the
transcriptome profiling of an arcA mutant. Finally, the conclusions are presented
in Section 3.4.6.

3.4.1 Background

In E. coli and other bacteria, the Arc (anoxic redox control) two-component signal
transduction system, which consists of the ArcB transmembrane sensor kinase and the
cytosolic ArcA response regulator, modulates gene expression in response to changing
redox conditions [83]. Under anaerobic or microaerobic respiratory conditions, ArcB
autophosphorylates and then transphosphorylates the global transcriptional regulator
ArcA, thereby enhancing the affinity of the latter protein for its target promoters [84—
87]. ArcA is a transcriptional regulator that can act as an activator or repressor in
regulating different genes in redox metabolism such as several dehydrogenases of the
flavoprotein class, terminal oxidases, tricarboxylic acid cycle enzymes, enzymes of
the glyoxylate shunt and enzymes in fatty acid degradation pathways [83,88].
Recently, ArcA was predicted to directly regulate 55 new genes involved in many
different functional categories in E. coli [89].
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S. hewanella oneidensis MR-1, a facultative gram-negative bacterium, is remark-
able for its ability to utilize a diverse array of terminal electron acceptors during
anaerobic respiration (e.g., fumarate, nitrate, nitrite, thiosulfate, elemental sulfur,
trimethylamine N-oxide (TMAOQO), dimethyl sulfoxide (DMSO), Fe(III), Mn(IIl) and
(IV), Cr(VI), and U(VI)). Because of this exceptional metabolic versatility and the
potential use of this organism for bioremediation of metal/radionuclide contami-
nants in the environment, the approximately 5 Mb chromosome and the 0.16 Mb
megaplasmid sequences comprising the S. oneidensis MR-1 genome were deci-
phered by TIGR [60]. Sequence annotation of the MR-1 genome revealed the
presence of an arcA homologue (SO3988) but not an arcB homologue. In this study,
whole-genome DNA microarrays for S. oneidensis MR-1 were used to define the
arcA regulon under both aerobic and anaerobic batch growth conditions.
Transcriptome analysis of an arcA null mutant and the occurrence of a predicted
sequence motif for promoter recognition by ArcA suggested that ArcA functions as
a global regulator in S. oneidensis.

3.4.2 Microarray Construction and Hybridization

3.4.2.1 Microarray Construction The S. oneidensis microarray contained a
total of 4,761 distinct elements, representing about 99 percent of the total protein-
coding capacity of the MR-1 genome [49,90] (Fig. 3-5). Of the array elements that
were spotted, 4,310 constituted PCR-amplified DNA fragments corresponding to
unique segments of individual MR-1 ORFs, whereas gene-specific oligonucleotide
probes (50-mers) were designed and synthesized for 451 predicted genes (9 percent of
the total DNA probes arrayed) that did not yield either single products or any products
in PCR amplifications. PCR primers and oligonucleotide probes were designed using
the program PRIMEGENS [30]. PCR products and oligonucleotides were printed in
duplicate onto SuperAmine glass slides (TeleChem International, Inc.). The micro-
array also consisted of 32 elements corresponding to S. oneidensis genomic DNA
(positive controls) and 42 spots representing nine genes (amplicons) from Arabidopsis
thaliana (negative controls).

3.4.2.2 RNA Isolation, cDNA Labeling, Microarray Hybridization, and
Scanning Cultures of S. oneidensis wild-type and arcA mutant strains were
harvested at the mid-exponential point under both aerobic and anaerobic conditions,
and total cellular RNA was isolated using the TRIzol reagent (Invitrogen, Carlsbad,
CA) according to the manufacturer’s instructions. RNA samples were treated with
RNase-free DNase I (Ambion, Inc., Austin, TX) to digest residual chromosomal DNA
and then purified with the QTAGEN RNeasy Mini kit prior to spectrophotometric
quantitation at 260 and 280 nm.

Fluorescein-labeled cDNA copies of total cellular RNA extracted from wild-
type and mutant cells were prepared, with the exception that Cy3/Cy5-dUTP
(Perkin—Elmer/NEN Life Science Products, Boston, MA) was used in the first-strand
reverse transcription (RT) reaction. Two sets of duplicate reactions were carried out in
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Figure 3-5 Whole genome cDNA microarray for S. oneidensis MR-1.

which the fluorescent dyes were reversed during cDNA synthesis to minimize gene-
specific dye effects. The labeled cDNA probe was purified and concentrated by
following the manufacturer’s protocols.

The two labeled cDNA pools (wild type and mutant) to be compared were mixed
and hybridized simultaneously to the array in a solution containing 3 x SSC (1 x SSC
is 0.15 M NaCl plus 0.015M sodium citrate), 0.3 percent sodium dodecyl sulfate,
1 uM dithiothreitol (DTT), 40 percent (v/v) formamide, 0.8 ug of unlabeled herring
sperm DNA (Gibco BRL)/uUL, and 8.6 percent distilled H,O. Hybridization was
carried out in a 50°C water bath for 12-15 h.

To determine the fluorescence intensity (pixel density) and background intensity,
16-bit TIFF scanned images were analyzed using the software ImaGene version 5.5
(Biodiscovery, Inc., Los Angeles, CA). Microarray outputs were first filtered to
remove spots with poor signal quality by excluding those data points with a mean
intensity of <2 standard deviations above the overall background for both channels.
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Empty spots and spots flagged as poor were removed from subsequent analyses by
using ImaGene. Data transformation and normalization were carried out using
GeneSite Light (Biodiscovery, Inc.). Normalized expression ratios were imported
into ArrayStat (Imaging Research, Inc., Ontario, Canada) to determine the common
error and to remove outliers. Only those genes with an expression ratio of >2 were
included in further analyses.

3.4.3 Experimental Design and Data Analysis

3.4.3.1 Experimental Design Figure 3-6 illustrates the experimental design
for this study. To study the arcA gene in S. oneidensis, we first constructed an in-frame
deletion arcA mutant (designated ARCA) based on the method described earlier [49]
using the primers 3988-51 (5'-TGTTTAAACTTAGTGGATGGGCCTCAGTTACCA
CATACCC-3"), 3988-31 (5'-CCCATCCACTAAGTTTAAACACCAGATACGCCAG
AAATCATCG-3'), 3988-50 (5'-GCTTCTGTCGATAAACACGGC-3'), and 3988-
30 (5-TTACCCAATACTTAGTTCAGCAAGG-3'). To monitor global changes in
gene expression in response to the arcA deletion, we compared the ARCA strain with
the DSP10 parental strain grown under aerobic and anaerobic conditions using batch
cultures. S. oneidensis parental and mutant strains were grown in Luria-Bertani (LB)
medium at 30°C under aerobic or anaerobic (with 20 mM fumarate as the electron
acceptor) respiratory conditions. For the aerobic condition, cells were grown (60 mL in
250-mL flasks) with agitation (200 rpm). For the anaerobic condition, the media
(80mL in 100-mL bottle) was purged with nitrogen gas while boiling for at least
30 min prior to inoculation. To minimize differences in gene expression caused by
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Figure 3-6 Experimental design for arcA regulon characterization.
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growth-related effects, samples for transcriptome measurements were taken from
exponentially growing cultures at mid-log phase.

Foreach growth condition tested, gene expression analysis was performed using six
independent microarray experiments, including dye swapping, which yielded a total
of 12 expression measurements per gene (three biological replicates, with each
different mRNA preparation having four technical replicates).

3.4.3.2 Phenotype Characterization of the ARCA Mutant Strain To
determine whether inactivation of the S. oneidensis arcA affects anaerobic metabo-
lism, the ability of the ARCA mutant strain to grow on and/or reduce a variety of
electron acceptors under anaerobic respiratory conditions was compared to that of the
parental DSP10 strain [49]. The ARCA and DSP10 strains were cultured anaerobically
in Luria-Bertani media with various electron acceptors, including fumarate (20 mM),
colloidal Mn (5 mM), MnO, (2mM), nitrite (20 mM), MgCl, (10mM), CrO,
(150 uM), cobalt (50 uM), FeO, (5 mM), ferric citrate (5 mM), FeCl; (5 mM), or
Fe-NTA (10 mM). The culture turbidity was monitored spectrophotometrically at
600 nm. A growth curve was measured for the culture containing fumarate. For other
electron acceptors, the growth of the culture was evaluated using end-point culture
turbidity measurements.

The results indicated that the growth of ARCA in LB is slightly slower than the
parent DSP10 strain (Fig. 3-7) under anaerobic conditions with fumarate (20 mM) as
the electron acceptor. Based on the end-point culture turbidity, the arcA deletion
mutant exhibits slower growth than the DSP10 parental strain under anaerobic
respiratory conditions with the following electron acceptors: colloidal Mn (5 mM),
MnO, (2 mM), nitrite (20 mM), MgCl, (10 mM), CrO,4 (150 uM), cobalt (50 uM),

OD600 nm

0 5 10 15 20 25 30
h

Figure 3-7 Comparison between the growth curves of ARCA (arcA null mutant) and the wild-type
S. oneidensis DSP10 strain grown in Luria-Bertani medium at 30°C under anaerobic (with 20 mM
fumarate as the electron acceptor) respiratory conditions.
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FeO, (5 mM), ferric citrate (5 mM), FeCl; (5 mM). The growth of the ARCA and
DSP10 strains was also evaluated in M4 minimum medium with ferric citrate (10 mM,
20 mM, and 50 mM, respectively) based on the culture turbidity at 24, 48, and 72 h,
and the results demonstrated that ARCA grew slower than the parent DSP10 strain
(data not shown).

The effect of hydrogen peroxide (H,O,) treatment at concentrations of 500 and
2500 uM on mid-exponential growth of the parental and mutant strains under aerobic
conditions was also assessed. As shown in Figure 3-8, ARCA was shown to be more
sensitive to H,O,-induced oxidative stress at different concentrations compared to the
parental DSP10 strain, suggesting that ArcA might play a regulatory role in oxidative
stress resistance in S. oneidensis. This observation agrees with the finding that arcA
increases resistance of Salmonella enterica serovar Enteritidis to H,O, [91].

3.4.4 Data Interpretation

3.4.4.1 Overview of Transcriptome Profiling of the ARCA Mutant under
Different Respiratory Conditions A total of 654 (294 downregulated; 360
upregulated) and 504 (135; 369) genes were identified as being differentially
expressed in response to the arcA deletion mutation under aerobic and anaerobic
respiratory conditions, respectively. Comparison of the two microarray data sets
indicated that the expression levels for 248 of these genes were affected under both
aerobic and anaerobic growth conditions. The differentially expressed genes encode a
broad variety of functions, with the majority (44-52 percent) encoding hypothetical or
conserved hypothetical proteins (Fig. 3-9a and b). Genes showing changes in
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Figure 3-8 ARCA is more sensitive to oxidative stress than the wild-type S. oneidensis DSP10
strain. Growth was measured kinetically with a Microbiology Reader Bioscreen C (Growth Curves
USA, Piscataway, NJ) [34]. WT and ArcA mutant were grown aerobically up to the mid-log phase
and then treated immediately with 500 and 2500 uM H,O,, respectively. The cells were grown at
30°C with continuously extensive shaking. The ODggo Nm units were read with an interval of 30 min.
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Figure 3-9 Functional distribution of differentially expressed genes in the ARCA strain under
anaerobic (a) and aerobic conditions (b). Genes are grouped in their corresponding functional/
homology classes (number of genes/percentage of genes) according to TIGR’s annotation (http:/
www.tigr.org/tigr-scripts/CMR2/gene_attribute_results_org_or_role.dbi): (A) amino acid biosyn-
thesis; (B) biosynthesis of cofactors, prosthetic groups, and carriers; (C) cell envelope; (D) cellular
processes; (E) central intermediary metabolism; (F) DNA metabolism; (G) energy metabolism;
(H) fatty acid and phospholipid metabolism; (I) hypothetical proteins; (J) other categories;
(K) protein fate; (L) protein synthesis; (M) purines, pyrimidines, nucleosides, and nucleotides;
(N) regulatory functions; (O) signal transduction; (P) transcription; (Q) transport and binding
proteins; and (R) unknown function.
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transcript abundance in the arcA deletion mutant under both growth conditions that
have annotated functions are involved in a number of cellular processes including cell
envelope, energy metabolism, protein fate, regulatory functions, and transport/bind-
ing proteins. Under anaerobic growth conditions, a number of genes belonging to the
functional categories of protein synthesis and purines/pyrimidines/nucleosides/nu-
cleotides were also upregulated in the arcA mutant (Fig. 3-9a). There were 27 and 19
predicted regulatory genes that showed significant differences in expression in a
AarcA genetic background under aerobic and anaerobic conditions, respectively, and
13 genes with annotated functions in regulation were differentially expressed under
both respiratory conditions. These results suggest that ArcA functions as a global
regulator in S. oneidensis, exerting a pleiotropic effect on a number of cellular
functions, and that the transcriptional effect of an arcA deletion was most profound
under anaerobic growth conditions.

3.4.4.2 Genes with Functions in Energy Metabolism A total of 66 of 87
(~76 percent) genes with annotated functions in energy metabolism showed altered
expression profiles in the arcA deletion mutant (49 under anaerobic conditions and 54
under aerobic conditions). More than half of these genes (34 genes) are involved in
electron transport function. Except for the napAGHB operon, which was upregulated
under anaerobic conditions but downregulated under aerobic conditions, all other
genes showed similar expression trends under anaerobic and aerobic conditions. For
19 cytochrome b or ¢ genes, 13 were upregulated under either or both anaerobic and
aerobic conditions including SO4483 (cytochrome b, putative), cytochrome ¢ family
proteins (SO1782, SO1659, SO4079-S04078 operon, SO4142, SO4144, SO4484),
cytochrome ¢ oxidase ccoPONQ, and diheme cytochrome ¢ (SO4485). However, the
other six genes, cytochrome ¢ (scyA, SO3300, SO4572, SO2727, SO0845) and
decaheme cytochrome c¢ (SO1427) were downregulated at either or both of these
two experimental conditions. Among iron—sulfur clustering binding proteins,
SO1364, napG, and napH were downregulated 2.98-, 4.44-, and 7.50-fold under
aerobic conditions, respectively. The other three iron—sulfur cluster proteins (SO1519,
S01521,S04404) were instead upregulated under aerobic conditions. Genes involved
in anaerobic metabolism such as torC (tetraheme cytochrome c), car2 (4-hydroxy-
butyrate coenzyme A transferase), and fdhB (formate dehydrogenase) were upregu-
lated under anaerobic conditions, but dmaAB (anaerobic dimethyl sulfoxide
reductase), ifcA (fumarate reductase flavoprotein), and SO4513 (formarate dehydro-
genase) were downregulated under anaerobic conditions.

Among operons/genes-encoding enzymes involved in the TCA cycle, malate
synthase (aceBA), and aconitate hydratase 1 (acnA) were upregulated in ARCA
under anaerobic fumarate-reducing conditions, which is similar to the situation in
E. coli[89,92]. Up- or downregulation of the genes associated with the TCA cycle will
affect redox generation, which reflects the role of ArcA in redox metabolism.
However, seven other operons, including citrate synthase (gltA) [93], succinate
dehydrogenase operon (sdhCAB) [94], 2-oxoglutarate dehydrogenase—succinyl—-
CoA synthase operon (sucABDC) [95,96], malate dehydrogenase (mdh) [94], aco-
nitate hydratase 2 (acnB) [97], isocitrate dehydrogenase (icd) [98], and SO2222
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(fumarate hydratase) were not affected in the S. oneidensis ARCA mutant under
anaerobic fumarate-reducing conditions. Another fermentation gene, b-lactate dehy-
drogenase (IdhA), was not affected significantly under anaerobic conditions in
S. oneidensis, but was upregulated 1.85-fold in an E. coli arcA mutant in MOPS-
buffered LB with 20 mM p-xylose [89,99].

3.4.4.3 Expression of Genes from Other Functional Categories Here
we discuss genes known to be regulated directly or indirectly by arcA in other
microbes. About 30 operons (including the reported gene/operons discussed above),
most of which are involved in respiratory metabolism, are presently known to be
regulated by phosphorylated arcA in other organisms [99].

The glutamate synthase operon (gltDB) was upregulated under anaerobic condi-
tions, which is similar to their up-regulation in E. coli arcA mutants under anaerobic
conditions [83,89,99]. In contrast, nine other operons related to redox metabolism,
including formate acetyltransferase (pfIB), cytochrome d ubiquinol oxidase operon
(cydAB) [100-102], aldehyde dehydrogenase (aldA), fatty acid oxidation complex
(fadBA), NADH dehydrogenase (nuo) operon, the ATP binding protein operon
(cydDC) [100,101], glycerol kinase (glpK), anaerobic C4-dicarboxylate membrane
transporter (dcuB), and lipoamide dehydrogenase (IpdA) [83,92,99,103,104], were
not affected under the growth conditions tested in this study. These nine genes were
shown to be regulated by ArcA in other organisms in previous studies [83,92,99—
102,104]. The transport and binding protein, C4-dicarboxylate binding periplasmic
protein (dctP) [92], was upregulated about 2.3-fold under aerobic conditions, which is
similar to the reported trend (dctA, up-regulated 1.58) from E. coli arcA mutant
microarray data [89].

3.4.4.4 Resistance of S. oneidensis arcA Null Mutant to H,O, Oxidative
Stress As described earlier, the ARCA mutant strain is hypersensitive to H,O,
relative to the DSP10 parental strain under aerobic conditions. The oxyR gene encodes
atranscriptional binding protein that regulates oxidative stress resistance in S. enterica
serovar Typhimurium and E. coli [105]. In this study, the expression of the
S. oneidensis oxyR homologue, gene SO1328, was not affected by the arcA deletion.
Also of interest was the observation that the MR-1 counterparts for such known
OxyR-controlled genes as katG (hydroperoxidase I), ahpF (alkyl hydroperoxide
reductase), gor (glutathione reductase), grx (glutaredoxin, SO2745), fur (Fur repres-
sor of ferric ion uptake), dps family protein (SO1158), and hemH (SO2018 and
S03348) [105,106], were not affected in the ARCA strain, even though the deletion
mutant exhibited H,O, hypersensitivity.

Nystrom et al. [107] also showed that an E. coli arcA deletion mutant was not able to
decrease the synthesis of the TCA enzymes malate dehydrogenase (mdh), isocitrate
dehydrogenase (aceB), lipoamide dehydrogenase E3 (IpdA), and succinate dehydro-
genase (sdh). Similarly, our transcriptome profiling of ARCA under aerobic condi-
tions demonstrated that the transcription of enzymes within the TCA cycle was not
affected significantly (Table 3-2). These enzymes are encoded by glfA, IpdA, sdhCAB,
sucABCD, mdh, acnB, aceB, icd, acnA, and acnB. The microarray data for the arcA
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92 HIGH-THROUGHPUT TECHNOLOGIES AND FUNCTIONAL GENOMICS

deletion mutant under H,O, stress also indicated that the expression of these genes was
not changed significantly (T. Li and J. Zhou, unpublished data, personal communica-
tion). Therefore, these TCA cycle enzymes may still produce the reactive oxygen
species (ROS) after exposure to H>O,. Nystrom et al. [107] demonstrated that E. coli
was able to overproduce superoxide dismutase to scavenge superoxide radicals
generated from aerobic respiration to defend against oxidative stress. The deletion
of sodB in Helicobacter pylori results in hypersensitivity of the mutant to oxidative
stress and a defectin host colonization [ 108]. Here we found that superoxide dismutase
(sodB) was downregulated about 1.7-fold under aerobic respiratory conditions. Our
experiments also demonstrated that the gene encoding periplasmic nitrate reductase
(napA), which has been reported to be associated with oxidative stress resistance in H.
pylori [108,109], was downregulated 11.3-fold under aerobic respiratory conditions.
This might explain the hypersensitivity of the ARCA mutant to H,O, oxidative stress.
In addition, we found that two heavy metal efflux pump operons (SO4597-S04598
and SOA0154-SOA0153) were downregulated 6.7- and 25-fold, respectively. It is
unknown whether the low levels of expression of these two operons will affect the
ARCA strain’s H,O, stress resistance capability.

3.4.5 Bioinformatics Analysis

3.4.5.1 Sequence Analysis and Structural Modeling of S. oneidensis
arcA The putative arcA gene of S. oneidensis MR-1 encodes a 238-amino acid
protein with a predicted molecular mass of 27,220 Da and a pI of 5.43. Comparison of
the deduced amino acid sequence showed that S. oneidensis MR-1 ArcA shares a high
degree of identity to its homologues in E. coli (81 percent), S. enterica (81 percent),
Yersinia pestis (81 percent), V. cholerae (81 percent), and a lower degree of sequence
identity to ArcA in Pasteurella. multocida (75 percent) and H. influenzae (72 percent)
(Fig. 3-10). This high level of homology at the primary sequence level strongly
suggests that these proteins share similar biological functions. Moreover, analysis of
the deduced amino acid sequence of S. oneidensis MR-1 ArcA also revealed the
conservation of the Asp>* residue in the N-terminal receiver domain and the
helix—turn—helix (HTH) DNA binding motif in the carboxy-terminal effector domain
(Fig. 3-10) [85,88]. Based on structure predictions using PROSPECT-PSPP [110],
ArcA shows high homology to the response regulator Drrb present in Thermotoga
maritima (PDB id 1p2f, 30). Drrb is a multidomain response regulator of the OmpR/
PhoB subfamily that may regulate gene transcription by binding as a dimer to 6’°
promoter elements [111]. In contrast to E. coli, S. oneidensis arcA is predicted to be
monocistronic, and there is no obvious cognate arcB encoded in the MR-1 genome
based on the sequence annotation [112]. This suggests that a less conserved sensor
histidine kinase might be employed by the Arc two-component signal transduction
system.

3.4.5.2 Scanning the S. oneidensis MR-1 Genome with the ArcA-P
Positional Weight Matrix Structure modeling of the deduced protein encoded
by the MR-1 arcA gene indicated a strong degree of conservation between the DNA
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binding domains of the E. coli and S. oneidensis ArcA proteins (Fig. 3-10). Thus, we
utilized the experimentally verified ArcA-P binding sites from 10 arcA-regulated
proteins to construct the ArcA-P positional weight matrix [89]. The score function of
positional weight matrices was adapted from the log transformation method described
by Berg and Von Hippel [113]. Both strands of the S. oneidensis MR-1 genome
sequence were scanned using a sliding window size of 15 nucleotides. The motif with
the highest matrix score was selected among all of the overlapping motifs from both
plus and minus strands. Scores of all potential ArcA-P recognition sites were
statistically analyzed using the Z test, and only those sites with 95 percent or greater
significance are presented as potential ArcA-P binding sites in S. oneidensis. For each
gene, only the promoters located within the upstream sequence from the gene start
codons are counted in this paper.

By scanning the S. oneidensis genome with the ArcA-P recognition weight matrix,
13 tRNA and 668 protein-encoding genes were predicted to contain potential ArcA
binding sites in their upstream regions. The predicted ArcA regulon in S. oneidensis
includes 12 ORFs shown to be controlled by ArcA in E. coli: fadB, acnB, nuoA, gltB,
aceB, icd, dctP, cydA, cydD, arcA, glpK, and lldP [83,89,92] (Table 3-2). The surA
gene, which is predicted to contain an ArcA-P binding site in E. coli [89], also has a
strong arcA motif in S. oneidensis. However, the other six operons, IpdA, gltA-
sdhCAB, sucABDC, pflBA, and aldA, which are regulated by arcA in E. coli, do not
possess strong ArcA binding motifs based on this search. Among the 668 protein-
coding genes in the S. oneidensis ArcA regulon, 148 genes (about 3 percent of all the
predicted genes in S. oneidensis) exhibited significant differences in transcript levels
in ARCA relative to DSP10 under aerobic and/or anaerobic conditions. Table 3-2
shows a subset of genes in S. oneidensis with ArcA-P binding sites, which are similar
to ArcA-P binding sites in E. coli [83,89,92]. A sequence logo representation of
the predicted conserved ArcA-P binding motif for these 148 genes is shown in
Figure 3-11a. Compared with the ArcA motif in E. coli, the predicted motif has a
weaker consensus. For example, the first, third, and fifth positions in the motif have
smaller bit scores, which reflect the conservation status for each consensus position.
Another genomic scanning in S. oneidensis using the positional weight matrix
constructed from the predicted 190 binding sites for 148 genes resulted in a similar
consensus (data not shown). Most (81 percent) of the motifs are located within 300
nucleotides upstream of the translation start codon (Fig. 3-11b).

Similar to the ArcA regulon in E. coli (20), the ArcA regulon in S. oneidensis is
associated with 17 functional categories. Among the 148 genes with differences in
expression in the arcA deletion mutant (Table 3-3), 46 genes were predicted to be
positively regulated and 102 negatively regulated. Our results also showed that the
genes controlled by ArcA are involved in functions beyond redox metabolism. These
genes belong to broad functional categories and most of these genes have not been
reported previously to be members of ArcA regulons from other bacterial species, such
as E. coli. Eight of these genes with expression changes with more than 3-fold (up or
down)have strong predicted ArcA binding motifs (Z > 3.0)andencode HoxK (S02099),
Pal/histidase family protein (SO3299), decaheme cytochrome ¢ (SO1427), putative
long-chain fatty acid transport protein (SO3099), TonB-dependent receptor domain
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Figure 3-11 Identification of a predicted consensus ArcA binding motif in S. oneidensis MR-1
using computational methods. (a) Sequence logo representation of the predicted ArcA binding
motif in S. oneidensis MR-1. (b). Position distribution of the predicted ArcA motifs.

protein (SO2907), MaoC domain protein (SO0599), PspF (SO1806), and a hypothetical
protein(SO2930). Amongtheseeight genes, hoxKisthefirstgeneinthe quinone-reactive
Ni/Fe hydrogenase operon (hoxK—hydB—hydC), which catalyzes the reversible oxida-
tion of H, [114]. Deletion of hoxK was shown to inactivate the membrane-bound
hydrogenase in Alcaligenes eutrophus[115]. These three genes (hoxK—hydB—hydC) are
upregulated more than 3.9-fold under aerobic conditions. Under anaerobic conditions,
hoxK is also upregulated more than 3.5-fold. In addition, a putative undecaprenol kinase
(S04274) was also predicted to have a strong ArcA-P binding site with a Z-score larger
than 3. The undecaprenol kinase (s0o4274) is a cell wall synthesis gene and has been
associated with biofilm formation in Mycobacterium smegmatis [116]. Recently, arcA
was found to be related to biofilm formation in S. oneidensis MR-1 [112] in which the
undecaprenol kinase might be the functional gene target. These wide-ranging functions
of ArcA are also supported by its requirement for virulence in Haemophilus influen-
zae [117] and Vibrio cholerae [118] as well as a recent genome-wide study of the ArcA
regulon in E. coli [89].
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106 HIGH-THROUGHPUT TECHNOLOGIES AND FUNCTIONAL GENOMICS

Further DNA binding experiments have confirmed the ArcA-P binding motifs
predicted here, which include a transcriptional regulator (SO1661), decaheme cyto-
chrome ¢ (SO1427),and hoxK [120]. Furtherinvestigation will be required to verify the
functionality of the other predicted ArcA binding motifs in S. oneidensis MR-1. We
believe these 148 genes with altered expression in the arcA deletion strain are still a
subset of the ArcA regulon in S. oneidensis since some ArcA-regulated genes may not
show expression differences under the culture conditions tested. For example, a malate
oxidoreductase (sfcA) was predicted with a strong binding motif, but the gene
expressionvalues were lower than 2-fold and higher than 0.5-fold under both anaerobic
and aerobic conditions. The binding motif predicted in sfcAwas also confirmed by DNA
binding experiments [120]. It is also worth mentioning that pfIBA has the ArcA-P
binding site in E. coli but no predicted ArcA-P binding sites in S. oneidensis MR-1[92].
The DNA binding experiment also demonstrated that pfIBA does not have a strong
ArcA-P binding site [120].

3.4.6 Conclusions

In summary, we used microarray-based gene expression profiling to examine the
transcriptome for an arcA null mutant compared to the parental S. oneidensis DSP10
strain under both aerobic and anaerobic growth conditions. Transcriptome profiling
revealed a total of 654 (294 down regulated; 360 upregulated) and 504 (135; 369) open
reading frames (ORFs) that were differentially expressed in an arcA deletion mutant
relative to the parental strain under aerobic and anaerobic respiratory conditions,
respectively. By integrating computational motif prediction tools and microarray
analyses, we predicted an S. oneidensis ArcA regulon consisting of as many as 148
S. oneidensis genes (46 as a positive regulator and 102 as a negative regulator), which
included a number of genes shown to be under the direct control of ArcA in other
bacteria. Our results also demonstrated that ArcA in S. oneidensis acts as both a
positive and negative regulator for genes associated with various other functional
categories. Both transcriptome data analysis and motif predictions suggest the Arc
two-component signal transduction system in S. oneidensis regulates a large number
of genes that are different from those regulated by ArcA in E. coli, although they do
have overlapping regulatory functions for a small subset of genes. S. oneidensis is
typically found at oxic—anoxic interfaces in nature such as sediments and bodies of
water where oxygen is limited or absent [60] whereas E. coli primarily lives in the
mammalian gut [83]. Different living environments for S. oneidensis and E. coli might
result in the observed differences in ArcA regulon compositions during evolution for
environmental adaptation. Finally, phenotype characterization indicated that ArcA
enables S. oneidensis to resist oxidative stress.

3.5 FUTURE PROSPECTS OF CHIP TECHNOLOGY

The applications of high-throughput technologies and functional genomics have
proven to be great successes in biological studies. Array technology can be considered



REFERENCES 107

a milestone since it has revolutionized biological research (Fig. 3-1). Future develop-
ment of economically feasible custom chips will permit functional genomics tech-
niques to become routine lab tools. A standardized protocol for data analysis and
information mining needs to be completed in the future as well.
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