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7.1 INTRODUCTION

Living organisms have to adapt and respond to an ever-changing environment. The
genes of the organism are the basis of both immediate responses to these changes and
long-term evolutionary adaptation. In fact, the functional capabilities of an organism
are the result of complex interactions between the gene products encoded by its
genome, and cellular functions are therefore tightly linked to the regulation of gene
expression.

Wecall genetic regulatorynetwork thesetofgenesofanorganismand the molecular
components controlling gene expression. This control is generally exerted by proteins
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regulating thedifferent stagesof geneexpression, that is, transcription,mRNAstability,
translation, and protein degradation. The regulators not only include proteins but also
signaling molecules allosterically modulating the activity of proteins and small RNAs
regulatinggeneexpression [1].Theultimateeffectofa regulatorofgeneexpression is to
modulate theconcentrationor activity ofageneproduct.Thecharacteristic timescale of
interactionswithin the genetic regulatory network is therefore generally determined by
the speed of transcription and translation, ranging fromseveralminutes for prokaryotes
to several hours for higher eukaryotes.

The genetic regulatory network is connected to other cellular networks, such as
signal-transduction cascades and metabolic pathways. The interactions within these
networks are typically much faster than gene regulation: The average metabolic
enzyme carries out a reaction cycle within milliseconds to microseconds, and most
signal-transduction events also involve rapid covalent modifications, such as phos-
phorylation. Even though a complete description of the functioning of an organism
will have to include all these networks and their interactions, the genetic regulatory
network occupies a central position. Modifications of gene expression are at the very
basis of developmental decisions and the response to a particular environment in the
short term (adaptation) and long term (evolution). Moreover, due to differences in
characteristic timescales, metabolic and signal-transduction pathways can often be
seen as mediating indirect interactions on the genetic level. For instance, if a
metabolite produced by a particular enzyme affects the activity of a transcriptional
regulator, we can hide the molecular details of the (fast) enzymatic reactions and
simply say that the gene coding for the enzyme indirectly regulates the activity of the
regulator [2].

Genetic regulatory networks are the product of evolutionary processes that are
better described as tinkering than engineering, in the words of François Jacob [3]. In
fact, evolution does not work according to a preconceived plan, but achieves efficient
performance by exploiting contingent events. It does not build an organism from
scratch for a well-defined purpose, but modifies and reorganizes what is already
available in order to meet arising environmental challenges. Notwithstanding these
differences, many aspects of the structure and dynamics of biological systems can be
compared with the principles governing man-made, engineered systems [4]. For
instance, biological systems can be seen as being put together from reusable parts,
assembled into modules, in much the sameway as are man-made systems. Moreover,
the questionwhich aspects of the structure of a systemallow it to reliably function over
a range of environmental conditions, in the presence of noise, can be asked of
biological and man-made systems alike. Not surprisingly therefore, living organisms
have been fruitfully compared to airplanes [5] and genetic regulatory networks to
electronic circuits [6]. In addition, the analogies between a signal-transduction
pathway and a transistor radio have inspired some insightful comments on current
biological research [7].

From the observation that the functioning of biological systems might be under-
stood in much the same way as man-made systems, it is only a small step to applying
traditional engineering methods to the study of cellular networks. This is one of the
main inspirations of the emerging field of systems biology [8], and it also underlies our
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contribution. More specifically, the aim of this chapter is to review different
approaches toward the mathematical modeling of genetic regulatory networks,
from both a theoretical and a practical point of view. Much emphasis will be put
on a point that is familiar to engineers, but is often forgotten when it comes to
biological modeling: A model is not a faithful copy of reality, but a simplified
representation adapted to a particular type of biological questions. Instead of a single
modeling approach, we therefore need a multiplicity of approaches, each capturing a
different aspect of the biological system under study.

In addition to the observation that adopting an engineering approach might lead to
fresh insights into the functioning of biological processes, the parallels between
biological and man-made systems can be pushed further by applying engineering
methods to the design of genetic regulatory networks and their actual implementation
in living cells. Such networks could be useful in a variety of ways as a test bed for the
study of naturally occurring networks or as a vector for biotechnological and medical
applications. The rise of synthetic biology [9,10] is the second major theme of this
book and is addressed in a number of other contributions, such as the chapter by
Fussenegger. In this chapter, we will describe modeling approaches that can be used
not only for the analysis of genetic regulatory networks but also for their design.
Although, in our examples, we focus on applications in the field of systems biology,
many of the theoretical and practical considerations carry over to network design in
synthetic biology.

In order to illustrate the different kinds ofmodeling approaches, aswell as the kinds
of questions that can be addressed by each of these, we focus in this chapter on one
particular model system:Escherichia coli. Although its ecological niche is the human
colon, this enterobacterium has turned out to be an excellent model system for
biological research as it is capable of persisting in diverse environments, easy to
manipulate in the laboratory, and evolutionarily close tomany pathogenic bacteria. In
this chapter,wewill showwhat thedifferentmodeling approacheshave taught us about
the stress responses of E. coli, that is, the adaptation of the bacterium to a variety of
stresses, such as a lack of essential nutrients, overcrowding, and temperature
shocks [11,12]. The capability to respond to challenges arising from its environment
is essential to the survival of the bacterium in the short and long term.

The stress responses of E. coli are controlled at the molecular level by a genetic
regulatory network integrating various environmental signals. The network involves
the interplayofnumerous signal-transduction cascades,metabolic pathways, andgene
expression interactions, which together control the reorganization of the bacterial
physiology andmetabolism in response to agiven stress [11,12].Althoughmanyof the
molecular components of the networks have been identified, currently not much is
known about how the interactions between these components give rise to the cellular
response toexternal stresses. It is clear that,whendealingwithnetworksof this size and
complexity, intuitive reasoning about the dynamical behavior of the system quickly
becomes infeasible or fraught with error. This motivates the use of modeling and
simulation approaches to better understand the survival strategies of the bacterium.

More generally, due to the enormous amount of information that has been
accumulated about cellular interaction networks [13], E. coli has become a system
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of choice formodeling and simulation studies. The first models on themolecular level
of its response to particular nutrient shifts have appeared already in the early seventies
(e.g., see Ref. [14]), while pioneering attempts to developwhole-cell models ofE. coli
adaptation appeared more than 20 years ago [15]. Recently, an International E. coli
Alliance has been founded aiming at the coordination of modeling efforts so as to
create an in silico cell corresponding to the bacterium [16,17].

In the remainder of this chapter, three different kinds of modeling formalisms are
discussed: graphs, ordinary differential equations, and stochastic master equations.
We summarize themathematical basis of the formalisms aswell as their application to
the analysis of various E. coli stress–response networks. In particular, we investigate
how these formalisms have helped address questions on (i) the structural decomposi-
tion of the stress–response network into modules and motifs, (ii) the existence of
steady states and the dynamic response of the stress–response network to external
perturbations, and (iii) the emergence of robust network behavior in the presence of
intracellular and extracellular noise. In the concluding discussion we consider which
questions are suitably addressed by each of the modeling formalisms and emphasize
the point of model pluralism. For further information, the reader may wish to consult
other reviews on the modeling of genetic regulatory networks [18–22].

7.2 GRAPH MODELS

7.2.1 Model Formalism and Analysis Techniques

Probably the most straightforward way to model a genetic regulatory network is to
view it as agraph.Formally, agraph is defined asa tuple (V,E),withVindicatinga set of
vertices, and E�V�V indicating a set of edges [23] as follows:

G ¼ ðV ;EÞ ð7-1Þ

The edges represent the relation between vertices and may be directed or undi-
rected. A directed edge is a pair (i, j)2E of vertices, where i denotes the head, and j
denotes the tail of the edge. (i, j) is an undirected edge if the order of thevertices is of no
importance. Thevertices of a graph correspond to genes or other elements of interest in
the cell, while the edges denote interactions among the genes. In the case of directed
graphs, edges point from regulating to regulated genes, for example, from genes
encoding transcription factors to the targets of the transcription factors. The graph
representation of a genetic regulatory network can be generalized in several ways. For
instance, the vertices and edges could be labeled, by adding information about genes
and their interactions.Definingadirected edge as (i, j, s),with sequal to þ or�, allows
one to indicate whether i is activated or inhibited by j, respectively.

An example of a simple directed graph model is shown in Figure 7-1. It consists of
three genes, connected by labeled interactions that indicate whether a gene positively
or negatively regulates the expression of its target. Many of the pictures of biological
networks found in the literature can be mapped to some sort of graph representation.
Two particularly impressive examples are the mammalian cell-cycle control
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network [24] and the network regulating endomesoderm specification in the sea
urchin [25].

The representation of a genetic regulatory network as a graph allows the analysis of
its topological properties by means of graph–theoretical techniques [26,27]. The
global connectivity properties of the network can, for instance, be described by the
average degree and the degree distribution of the vertices. The degree k of a vertex
indicates the number of edges to which it is connected (if necessary, incoming and
outgoing edges can be distinguished). hki denotes the average degree andP(k) denotes
the degree distribution of the graph. These properties give an indication of the
complexity of the graph and allow different types of graphs, and therefore networks,
to be distinguished (Fig. 7-2). In classical random graphs (Fig. 7-2a), also called
Erdo��s-R�enyi graphs, the probability that a given vertex has k edges follows a Poisson
distributionP(k). That is, the vertices typically have hki edges, and the vertices having
significantly more or less edges than hki are extremely rare, as shown in part (c) of the
figure. By contrast, in scale-free graphs (Fig. 7-2b), the vertex degrees obey a power-
law distribution P(k)� k�g, shown in part (d) of the figure. Scale-free graphs are
inhomogeneous, in the sense that most of the vertices have few edges, whereas some
vertices, called hubs, have many edges and hold the graph together.

For values of the degree exponent g between 2 and 3, scale-free graphs have a
number of surprising properties. First, the average length of the path between two
vertices of the graph is proportional to log log |V|, where |V| denotes the number of
vertices of the graph [26,27]. This is even shorter than the average path length in
random graphs, which scales as log |V| and confers them the small-world property
[28]. The small-world property implies that local perturbations can quickly spread out
through the entire network. Second, the presence of hubs makes scale-free graphs
robust against accidental failures [29–31]. Whereas randomly removing a certain
number of vertices disintegrates a random graph, in a scale-free graph this mainly
affects the numerous low-degree vertices, the absence of which does not decompose
the graph. Finally, a scale-free topology may also confer robustness to the dynamical
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V = {a, b, c}
E = {(b, a, −), (c, a, −), (a, b, +), (b, c, −), (c, c, −), }
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Figure 7-1 (a) Directed, labeled graph representing a genetic regulatory network composed of

three genes (a, b, and c) and their mutual regulatory interactions. The symbols þ and � indicate

whether the regulator gene activates or inhibits its target. (b) Formal definition of the graph in (a).
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properties of the network [32], suggesting that the latter are relatively insensitive to the
precise values of the parameters (Section 3.1).

The relation between the scale-freeness of a graph and such fundamental properties
of living systems as reactivity and robustness makes this type of graph interesting as a
model of genetic regulatory networks. In recent years quite some evidence has
accumulated, showing that genetic regulatory networks, and many other biological
and nonbiological networks, are indeed scale-free [30,31,33–39]. The results should
be interpreted with some care though. Because current data on regulatory interactions
are incomplete, only subnetworks of the actual networks can be analyzed, which may
have a different degree distribution [40,41]. Moreover, the particular graph represen-
tation chosen to model the network may bias the results, as shown by Arita for the
E. coli metabolic network [42]. Further, in the case of genetic regulatory networks,
graph models are usually restricted to direct transcriptional regulatory interactions,

(a)        (b) 

(c)        (d ) 

p(k)

k〈 k 〉

p(k) 

k〈 k 〉

Figure 7-2 Schematic illustration of the architecture of (a) random and (b) scale-free undirected

graphs [170]. The degree distribution follows (c) a Poisson distribution in random graphs and (d) a

power-law distribution in scale-free graphs. k denotes the degree of a vertex and P(k) denotes the

degree distribution. The filled vertices in (b) are hubs.
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thus ignoring indirect interactions that are mediated by metabolites binding to
transcription regulators [43].

Another example of the use of graph analysis is to study the structural decomposi-
tion of a graph into subgraphs. Here, we focus on twokinds of subgraphs:modules and
motifs. Informally speaking, amodule is a (possibly hierarchically structured) cluster
of vertices, such that the vertices within a module are strongly connected, while the
connections betweenmodules aremuch looser. The formalization of this intuition can
be achieved by means of different graph–theoretical concepts, for instance clustering
coefficients [44], shortest path distances [45], and edge betweenness, denoting the
number of shortest paths between pairs of vertices that run through an edge [46]. On a
different level of granularity, motifs are small subgraphs, consisting of a few vertices
only, which frequently recur in the graph [47–49]. More precisely, motifs are defined
with respect to a statistical background consisting of a randomized version of the
graph: a small subgraph is called a motif if it occurs significantly more often in the
original graph than in the randomized graphs.

The interest of the structural decomposition of a graph into modules andmotifs is
that the latter may correspond to a particular function of the genetic regulatory
networks. Some results validating this intuition will be presented below, in the case
of the E. coli transcriptional regulatory network [50,51]. One should be careful in
interpreting the results of such graph analyses though. As mentioned above,
currently available data are incomplete and specific modeling choices may intro-
duce a bias. Moreover, this point needs to be emphasized, the relation between
topological concepts like modules and motifs on the one hand, and the functioning
of biological systems on the other, is far from straightforward. Consider the example
of a module.

Even if some of the genes in the module are known to play a role in a particular
biological function, this may not be sufficient for concluding that the module is
responsible for the function. For instance, some of the interactions between the genes
in the networkmaynot be operative at all under the physiological conditionswhere the
function is called upon.One could counter this objection to some extent by integrating
other kinds of data in the process ofmodule identification, such as transcriptome data,
phylogenetic profiles, and biological sequences (e.g., see Refs. [52–59]). This
certainly allows formore refined answers to the questionwhich genes and interactions
are relevant for a particular biological function. However, by itself it does not explain
how the function emerges from the genes and interactions in the module. In order to
deal with the latter questions, we need dynamical models of the kind discussed in later
sections of this chapter.

In summary, graph models of genetic regulatory networks allow one to address
questions concerning the network topology, giving insights into global structural
properties like the edge distribution. In addition, they enable the identification of local
substructures like modules and motifs that may be related to the functioning of the
biological system. Graph models are applicable to genome-scale models, and the
computer tools to support the analysis exist, such as mfinder [60] and TopNet [41].
However, in order to clarify the relation between the topological properties of graph
models and the functioning of genetic regulatory networks, more powerful dynamical
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models are necessary. The capabilities and limitations of graph models will be
illustrated in the next section.

7.2.2 Modules and Motifs in the Transcriptional Regulatory
Network of E. coli

Transcription factors are key components in the control of theE. coli stress responses,
in that they link the sensing of environmental changes to the reorganization of the
pattern of gene expression, and thus to the control of metabolic pathways. Depending
on the environmental conditions, different sets of transcription factors are used by the
bacterium. We would therefore like to ask such questions as: Can we relate the stress
adaptation capabilities of E. coli to the topological organization of its transcriptional
regulatory network? More precisely, are the different sets of genes organized in
modules, for example, can we define a carbon utilization module and a nitrogen
assimilationmodule?Andmoregenerally, howcanwedefine suchmodules anddetect
themfromagraphmodel of the regulatorydependencies of thegenes of thebacterium?

The topological analysis of theE. coli networkhas beenmuch facilitated by the rich
store of information about the components of the network and their interactions,which
are published in the literature or stored in databases, like RegulonDB [61] or
EcoCyc [62]. Hence, several studies aiming at the analysis of structural properties
of genetic regulatory networks bymeans of the approaches mentioned in the previous
section have exploited the information on the E. coli network stored in
RegulonDB [33,49,63–65].

An example of the search for modules is the study by Resendis-Antonio and
collaborators [65]. Considering only genes for which experimental evidence on their
involvement in regulatory interactions is available, the authors analyzed a network
composed of 55 transcription factors controlling the expression of 747 genes. The
relations between the genes in the network of transcription factorswere determined by
computing the shortest pathdistance for everypair of genes.Basedon this information,
eight topological modules were identified using a clustering approach. Further
analysis revealed that the modules are composed of functionally related genes,
for example, involved in (i) respiration, (ii) stress response, and (iii) chemotaxis,
motility, and biofilm formation. The largest module (iv) gathers genes involved in
the assimilation of the various carbon sources. The remaining modules are com-
posed of genes involved in various cellular responses, like (v) sulphur assimilation,
(vi) nitrogen metabolism, (vii) fermentative conditions, and (viii) chromosome
replication.

The topological analysis ofResendis-Antonio et al. suggests that theE. colinetwork
possesses amodular structure,where eachmodule consists of genes that performoneor
more tasks in response to particular environmental conditions. For instance, the nac
and asnC genes, coding for transcription factors known to be involved in the control of
nitrogen assimilation, are found inside the same module [65]. Further, the carbon
assimilation module includes transcription factor genes like crp, araC, malF, fruR,
which regulate the utilization of carbon sources. Interestingly, the latter module can be
further decomposed into submodules, each submodule being specialized in the use of a
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different carbon source. One can guess that this supplementary internal organization
makes E. coli cells able to easily grow on various carbon sources and switch from the
use of one carbon source to another. Other analyses have found a similar modular
structure of the E. coli transcriptional regulatory network, though using different
approaches and arriving at a different number of modules [59,63].

Several questions regarding theE.colinetwork structure remainopen.For instance,
how is the global coordination of cellular responses to be explained? Most often, a
stress response does not involve a single module but rather a combination of modules.
For instance, E. coli uses its motility, controlled by module (iii), to seek optimal
oxygen concentrations, required for the respiration task performed by module (i). It
seems obvious that accomplishing this function requires a connection between the two
modules, which agrees with the fact that, generally, the modules are not clearly
separated from the rest of the network but tend to overlap [65]. Can these inter-
connections be characterized by means of certain topological properties?

To address this question, we need to take into account the local topology of
networks, defined in terms of motifs. Using information from RegulonDB and the
literature, Shen-Orr et al. [49] have analyzed the transcriptional regulatory network of
E. coli. They found that in this network, consisting of 855 genes and 1330 regulatory
interactions, three different motifs occur more frequently than expected: the feedfor-
ward loop, in which a transcription factor regulates a second transcription factor and
both regulate together a target gene; the single-inputmotif, inwhich a groupof genes is
controlled by a single transcription factor; and the dense overlapping regulons, in
which genes and the transcription factors controlling their expression form a highly
overlapping structure. The feedforward loop is the motif occurring most frequently
(40 times) in the E. coli network. This has been subsequently confirmed by means of
an extended version of the same network, in which an even higher number of
feedforward loop motifs were found [63]. The different motifs are not equally
distributed in the network of E. coli. In the above-mentioned study, Resendis-
Antonio and collaborators found that the feedforward loop motifs are mainly located
inside modules (71 percent of the cases), whereas the bifan motif (which forms the
basic building block of the above-mentioned dense overlapping regulons) is the main
motif connecting modules (65 percent of the cases).

What is the advantage for the cell of conserving certain network motifs? Do they
have a functional role, in addition to their structural role? The group of Alon
demonstrated both theoretically and experimentally the information-processing
task carried out by the coherent feedforward loop. Using a differential equation
model of the feedforward loop motif, they showed that its role might be to filter out
fluctuations in input stimuli and allow a rapid response when the stimuli disap-
pear [66,67]. Consider the coherent feedforward loop motif in Figure 7-3, where the
transcription factorsXandY together activate thegene z.WhenX is active and above a
threshold concentration, the input signal activating X is transmitted to the output Z
through a direct path fromX and an indirect path fromX throughY. Hence, a transient
signal is not transmitted to Z, since it does not allow the concentration of Y to reach a
threshold level high enough to stimulate the expression of gene z (Fig. 7-3). On the
contrary, a persistent input signal enables the concentration of Y to rise and eventually
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allows Z to pass its threshold level. The functioning of the feedforward loop motif is
asymmetric, since the inactivation of X leads to the rapid downregulation of z. The
above predictions have been experimentally verified for the L-arabinose utilization
system in E. coli using reporter genes [67]. In this feedforward loop motif, CRP
corresponds to the general transcription factorX andAraC to the specific transcription
factor Y, while z is the operon araBAD.

The study by the group of Alon assigns a function to a pattern of interactions, the
coherent feedforward loop, which is overrepresented in the transcriptional regulatory
network of E. coli. However, the relation between structure and function is not
straightforward, given that motifs do not usually occur in isolation, but rather overlap
to generate motif clusters [33]. Does the function of a motif change when it is
embedded within a network and interacting with many other components? The group
of Alon partially answered this question in a subsequent study on the incoherent
feedforward loop, that is, a feedforward loop in which the transcription factor X
activates genes y and z, while Y represses z [68]. Themotif was experimentally shown
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Figure 7-3 (a) Coherent feedforward loop motif in a graph representation. (b) Feedforward loop

in a genetic regulatory network, where it is assumed that bothXandYare necessary for expression

of z. (c) Dynamic properties of the feedforward loop [49] ; x, y, and z denote the concentrations of X,

Y, and Z, respectively, while ux, uy, and uz denote their threshold levels. The input signal activates X.
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to perform response acceleration, as predicted by a differential equation model [66],
despite the fact that it participates in additional interactions that were not included in
the model. However, it is not sure that this will turn out to be true in general.

7.3 ORDINARY DIFFERENTIAL EQUATION MODELS

7.3.1 Model Formalism and Analysis Techniques

As concluded in the previous section, a better comprehension of the relation between
the structure and functioning of a regulatory system requires the use of dynamical
models. Ordinary differential equations [69] are probably the most-widespread for-
malism for modeling the dynamical behavior of cellular interaction networks. In this
formalism, the concentrations of gene products (mRNAs or proteins) are represented
by continuous, time-dependent variables, x(t), t2T and T being a closed time interval
(T�R�0). The variables take their values from the set of nonnegative real numbers
(x: T ! R�0), reflecting the constraint that a concentration cannot be negative.

The regulatory interactions between genes are modeled by a system of ordinary
differential equations having the following general form:

dxi=dt ¼ fiðxÞ; i 2 f1; . . . ; ng; ð7-2Þ

where x¼ (x1,. . .,xn)
0 is the vector of concentration variables of the system, and the

usually highly nonlinear function fi: R�0
n ! R�0 represents the regulatory interac-

tions. The above system of equations describes how the temporal derivative of the
concentration variables depends on the values of the concentration variables them-
selves. Several variants of Equation 7-2 can be imagined [22]. For instance, by taking
into account input variables u, it becomes possible to express the dependence of the
temporal derivative on external factors, such as the presence of nutriments. In order to
account for the delays resulting from the time it takes to complete transcription,
translation, and the other stages of the synthesis and the transport of proteins,
Equation 7-2 could be changed into a system of delay differential equations.

In Figure 7-4, an example of a simple genetic regulatory network and its associated
differential equation model is shown, based on early work by Goodwin [70,71]. The
end product of a metabolic pathway coinhibits the expression of a gene coding for an
enzyme that catalyzes a reaction step in the pathway. This gives rise to a negative
feedback loop involving the mRNA concentration x1, the enzyme concentration x2,
and the metabolite concentration x3. The equations each express a balance between the
increase anddecrease of themolecular concentrationper unit time due to the occurrence
of the various reactions. More precisely, the equations describe the rate of synthesis of
the enzyme (k2x1) and the metabolite (k3x2), as well as the rate of synthesis of mRNA
(k1r(x3)). The nonlinear, sigmoidal Hill function r expresses that the rate of synthesis of
mRNA depends in a cooperative way on the concentration of the metabolite, which
binds and thereby activates a repressor of the gene (Fig. 7-4b). The terms�g1x1,�g2x2,
and�g3x3 indicate that the concentrations x1, x2, and x3 decrease through degradation
and growth dilution, at a rate proportional to the concentrations themselves.
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Figure 7-4 (a) Simple example of gene regulation involving end-product inhibition and (b) the
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A first dynamical property that can be studied by means of ordinary differential
equation models is the asymptotic behavior of the system, notably the occurrence of
equilibrium points and limit cycles, as well as their stability and basin of attraction.
The equilibrium points and limit cycles may correspond to functional modes of the
systems, for instance a particular growth stage or a particular response of the cell to an
external stress. The equilibrium points are simply determined by setting every dxi/dt
given in Equation 7-2 to 0 and solving for xi. In the example of the end-product
inhibition network, we thus obtain a single equilibrium point [72]. This follows from
Equation 7-2 by noting that at equilibrium x1¼ (k1/g1) r(k2k3x1/g2g3), and bearing in
mind that r is a monotonically decreasing function (Fig. 7-5a).

The stability of the equilibrium point x� can be determined by linearizing the
system of differential equations given in Equation 7-2 around x�, computing the
characteristic equation, and solving for the eigenvalues. The sign of the (real part of
the) eigenvalues then determines the stability of the system [69,73]. The characteristic
equation for the end-product inhibition network is given by (l þ g1) (l þ g2)
(l þ g3) � k1k2k3 @r(x3

�)/@x3¼ 0, where x� ¼ (x1
�, x2�, x3�)0. The equation can be

rewritten as a third-order polynomialwhose roots l are the eigenvalues. Depending on
the exact numerical values of the parameters, different configurations of eigenvalues
are found, notably (i) three negative real eigenvalues, (ii) a negative real eigenvalue
and two conjugate complex eigenvalues with negative real part, or (iii) a negative real
eigenvalue and two conjugate complex eigenvalues with positive real part. In the
former two cases, the equilibrium point is asymptotically stable, meaning that after a
(small and temporary) perturbation the systemwill eventually return to the equilibrium
point. In contrast, in the third case the equilibrium point is unstable: a perturbation
will cause the system to diverge from the equilibrium point and approach a stable
limit cycle, corresponding to sustained oscillations in the protein concentrations.
Figure 7-5b illustrates case (ii) for arbitrary but not unrealistic parameter values.

A seconddynamical propertyof interest is the transient behaviorof the system.The
transient behavior provides information on themanner inwhich the genetic regulatory
network controls the response of the system to an external perturbation, for example,
by switching from one functional mode to another. In order to predict the transient
behavior, we need to compute the solutions of the system of ordinary differential
equations 7-2. Since the models of most genetic regulatory networks of practical
interest are nonlinear, it is usually not possible to find an analytical solution. This
means that in all but the simplest caseswe have to resort to numerical simulations [74],
which yield approximations of the exact solutions. The solutions obtained by
simulation can be visualized by plotting their trajectories in the phase space, for
two or three-dimensional systems, or by simply plotting the solutions as a function of
time. This is illustrated inFigure 7-5b and c for themodel of the end-product inhibition
network. The plots show how the system adapts to a perturbation from its steady state,
by returning to this state through damped oscillations.

The analysis of the feedback inhibition network shows that it is a homeostatic
system, with a tendency to maintain a stable steady state or stable oscillations. The
negative feedback loop, arising from the (indirect) inhibition of the expression of the
gene by its own product, tends to compensate for a transient perturbation. Examples of
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negative feedback loops abound in biological systems and play an important role in
gene expression, metabolism, and signal transduction (e.g., see Refs. [75–77]). More
generally, Thomas conjectured that negative feedback loops are a prerequisite for
homeostasis [78,79]. In a similar vein, he proposed that positive feedback loops are a
necessary condition for the occurrence of multiple steady states, corresponding to
different functional modes of the system. Several proofs of the latter conjecture have
been given under increasingly general conditions [80–84]. These results illustrate the
potential of mathematical models to highlight fundamental relations between the
topology and the dynamics of regulatory networks.

The qualitative dynamics of the end-product inhibition network, the stability of the
equilibriumpointandtheoccurrenceofa stable limit cycle, aredeterminedbythevalues
for parameters in the differential equation model in Figure 7-4. For large ranges of
parameter values, the qualitative dynamics of the system remains invariant, that is, the
qualitative dynamics is robust to fluctuations in the parameter values. This robustness is
an essential propertyof living systems,whichhave tocopewith continuous fluctuations
in physiological and environmental conditions as well as with genetic variability.
Following pioneering work by Savageau (1971), the study of the robustness of
dynamical properties of regulatory networks to changes in the parameter values has
beenanactive researcharea,demonstrating robustbehaviorof thechemotaxis systemof
E. coli [85,86], the development of the Drosophila embryo [87,88], the Xenopus cell
cycle [89], and the circadian clock of Drosophila [90,91]. In the case of synthetic
networks, the ability of the system to reliably function in the presence of noise is an
important design objective. Control theory provides a range of methods that could be
used to assess the robustness of naturally occurring networks and improve the robust-
ness of synthetic networks (e.g., see Refs. [91–94]).

Although differential equation models allow making precise, quantitative predic-
tions on the dynamics of large and complex genetic regulatory networks, theymay be
difficult to apply in practice. Most regulatory networks of interest are large and
complex, possibly involving hundreds of genes, proteins, and othermolecules. If these
networks were to be modeled in the sameway as the simple autoinhibition network in
Figure 7-4, we would obtain huge models that cannot be analyzed other than by
massive numerical simulations. Apart from the fact that such simulations may be
difficult to carry out, given that numerical values for the parameters are often not
available (see below), it is not sure that the generation of time-course predictions of
hundreds of molecular components will be of much help in gaining a better under-
standing of the functioning of the system. This has stimulated an interest in strategies
for model simplification, often based on indications that the networks have amodular
structure (Section 7.2). In order to study large and complex networks, it may be more

Figure 7-5 (a) The differential equation model of the end-product inhibition network in Fig. 7-4

hasasingleequilibriumpoint. Thestabilityof this equilibriumpoint varieswith theparameter values.

(b) Asymptotically stable equilibrium point with a trajectory spiraling toward this point. (c) Time-

series representation of the solution. The parameter values are as follows: k1¼4.6mM/min,

k2¼1.8/min, k3¼ 10/min, g1¼2.5/min, g2¼ 1.2/min, g3¼ 2.1/min, u¼ 4mM, and n¼ 2. The

simulations have been carried out with Matlab.

3
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judicious to first analyze the modules individually, and only afterward the question of
how they are woven together, preferably using simpler and more abstract models for
this second step. The definition of network modules may be based on topological
criteria, not unlike those used forgraphmodels but usuallymoredirectly relevant to the
dynamics of the system, such as the feedback structure of the network [95–97].
Another way to define modules is based on the distinction between rapid and slow
processes in the system, for example, allowing the separation of metabolism and gene
expression in separate modules [98,99].

Even after model simplification, for most networks we will be left with large and
complex models. Their analysis requires quantitative information on the values of
kinetic constants and molecular concentrations, but unfortunately this information is
only rarely available, especially when modeling systems on the forefront of experi-
mental research. Several ways to deal with this problem have been proposed in the
literature. First of all, pushing the robustness argument further, one could argue that
important dynamical properties of actual regulatory networks do not so much depend
on particularmolecularmechanisms or precise values for the parameters, but rather on
the network topology.A second strategy is to try to estimate the parameter values from
experimental data [100]. The use of these techniques has been shown towork well on
small to medium-sized systems, in cases where the interactions are well described by
linear or quasilinear functions (e.g., see Refs. [101–104]). A third way out would be
turn to simplified models, having a particular mathematical form that simplifies their
analysis [105,106]. Examples of such models are the piecewise-linear differential
equation models proposed by Glass and Kaufmann [107] or the logical models
proposed by Kauffman [108] and Thomas [109,110].

In conclusion, differential equation models allow questions related to the transient
or asymptotic dynamics of genetic regulatory networks to be answered. Many
examples of their application exist, some of which will be discussed later in the
context of the E. coli stress response. Techniques for the mathematical analysis and
numerical solution of differential equationmodels are standard engineering tools, and
a large variety of computer programs are available, ranging from general-purpose
mathematical problem solvers likeMatlab to tools specifically adapted to the analysis
of cellular interaction networks such as Copasi [111], ProMoT/DIVA [112], Virtual
Cell [113], and XPPAUT [114].1 Due to the size and complexity of networks of
practical interest as well as the lack of precise, quantitative information on the
molecular mechanisms and kinetic constants, standard techniques for numerical
analysis may be difficult to apply in practice. Several strategies to cope with this
problem have been proposed, some of which will be illustrated in the next section.

7.3.2 Response of E. coli to Carbon-Source Availability

As seen in Section 2.2, the transcriptional regulatory network of E. coli contains a
carbon assimilation module, allowing the bacterium to use a large range of carbon

1The SBML format [115] allows models to be exchanged between different computer tools. A list of
computer tools compatible with the SBML format is available at http://www.sbml.org.
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sources under a variety of conditions. For instance, when several carbon sources are
available, the bacteria choose the ‘‘best” nutrient, meaning the nutrient sustaining
fastest growth. Hence, if E. coli is presented with two carbon sources, for example
glucose and lactose, it starts using glucose until this preferred nutrient is depleted from
the medium. Growth then temporarily arrests while the bacteriummodifies its pattern
of gene expression so as to produce the enzymes necessary for the uptake and
metabolism of lactose. This physiological response is referred to as diauxic growth.
When all carbon sources in the growthmediumhave become depleted,E. coli bacteria
are no longer able to sustain fast growth rates and enter into a stationary phase of
growth, characterized by no net change of the size of the bacterial population. In
response to carbon starvation, the bacteria completelymodify their physiology to cope
with the absence of nutrients. This implies that they conserve energy by shutting off
most biosynthetic functions andprotect theirDNAfrompotential damage,while at the
same timemaintaining aminimal metabolism in order to explore potential alternative
nutrient sources and ‘‘be ready” as soon as nutrients become available again.

Given the numerous tasks ensured by the carbon assimilation module, several
questions arise regarding its functioning: How does the module coordinate the
different responses of E. coli cells to carbon-source availability? How does the
reorganization of gene expression and metabolism emerge from the interactions
between the many components making up the regulatory network of E. coli? Can we
develop comprehensive dynamic models of these interactions that account for the
bacterial responses to carbon-source availability?

In the remainder of this section, we give two examples of differential equation
models,describing, respectively, thediauxicgrowthofE.coliandits response tocarbon
starvation.Even thoughE.coli is awell-studied system, thedevelopmentof themodels
has been limited by the lack of quantitative information on most of the molecular
concentrations and the kinetic parameters characterizing the interactions inside the
carbon assimilation module. To overcome these constraints, different strategies were
chosen, one based on the estimation of parameter values from experimental data [116]
and the other on a more abstract description of the network [117].

The group of Gilles has developed a dynamical model describing the successive
assimilation of different carbon sources in E. coli (glucose, lactose, etc.), leading to
diauxic growth [116]. The central part of the regulatory network controlling this
process is a large, membrane-bound enzyme complex called Phospho-Transferase
System (PTS). The PTS transfers a phosphate onto the carbohydrates (e.g., glucose),
which makes the transport irreversible and prepares the carbohydrate for metabolic
breakdown and conversion into cellular energy. In the absence of glucose, the same
complex activates another membrane-bound enzyme, adenylate cyclase (Cya). Cya
produces a signaling molecule, cyclic adenosine mono-phosphate (cAMP), which in
turn binds a transcription factor, CRP (cAMP receptor protein) and enables the latter to
activate or inhibit transcription.Thepromoter of the lactose operon is oneof the targets
activated by cAMP–CRP. The same promoter is also under the negative control of the
lac repressor. This transcription factor is inactivated by a metabolite, allolactose,
which is produced in the presence of lactose. This allows derepression of the
transcription of the operon and the subsequent use of lactose as a carbon source.
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Themodel byBettenbrock and colleagues is the last in a series of detailedmodels of
thecarbonassimilationmoduledevelopedbythegroupofGilles[118–121].Whileother
models of the same system are available in the literature (e.g., see Refs. 122–124), the
Bettenbrockmodelprovidesthemostcomprehensivepicturetodate.ItdescribesthePTS
and its interactionswith several uptake systemsandmetabolicpathways, accounting for
the growth of E. coli on different carbohydrates. The network is composed of different
typesofinteractions, involvinggenetic regulatory interactions,metabolic reactions,and
reactions involved in the signal-transductionpathway.Theseweremodeledbyordinary
differential equations of the form described in Section 3.1, using kinetic rate laws
appropriateforeachtypeofinteraction,andalgebraicequationsexpressingconservation
relations among thedifferentmolecular components of the system. In total, themodel is
composed of 50 differential equations and 14 algebraic equations.

Even though the network controlling diauxic growth is a well-characterized
system, it was not always possible to include parameter values reported in the
literature in the model, as they are often obtained under different experimental
conditions and with different strains. To circumvent this problem, Bettenbrock and
colleagues have carried out their own experiments,measuring the concentration of the
various metabolites over time and have used the resulting data to estimate the value of
the model parameters by means of the ProMoT/Diva environment [112]. In this way,
some fifty uncertain or unknown parameter values could be obtained.

By means of the resulting numerical model, E. coli growth on various carbohy-
drates was simulated (see Fig. 7-6a, for example). The confrontation of these
predictions with time-series measurements performed under the experimental con-
ditions corresponding to the simulations revealed a number of contradictions that
requiredmodel revision. For instance, themodel could not account for the behavior of
the system during disturbed batch experiments, consisting of the exponential growth
of the cell on a carbon source (glycerol or lactose), followed by the application of a
pulse of glucose. Although the simulations showed glucose uptake, as observed
experimentally, theprocesswaspredicted toproceed too fast (Fig. 7-6b).The inclusion
into the model of the regulation of the pts operon allowed a much better fit of the
experimental data with the model predictions. In this instance, the model not only
confirmed what is currently known about the accumulation of carbon sources by
E. coli but also provided novel explanations of the role of certain network components
in the process.Hence, the cAMPmetabolite appears to play a key role in the short-term
adaptation to a new carbon source during diauxic growth, whereas the complex
cAMP–CRP seems to be more important for long-term adaptation.

The model of Bettenbrock and colleagues provides a detailed and rigorous
description of the molecular events underlying diauxic growth. However, the model
does not address the functioning of the carbon assimilation module in the broader
context of the genetic regulatory network of E. coli. For instance, it is known that the
PTS is closely connected to some major transcription regulators of the bacterium
called global regulators. These transcription factors control the expression of large
sets of genes in response to environmental stimuli [125,126]. More precisely, the PTS
transfers information on the lack of carbon source to the global regulators, which
reorganizegene expression and allow the bacteria to stop exponential growth and enter
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stationary phase upon carbon starvation. How does the growth adaptation of E. coli
emerge from the interactions between the global regulators in response to a carbon
starvation signal transmitted by the PTS?

In order to address these questions, we have developed an initial, simple model of
the network of global regulators, including six genes believed to play a key role in the
carbon starvation response (Fig. 7-7) [117]. The network includes genes that are targets
of the PTS (the global regulator crp and the adenylate cyclase cya), genes involved in
the control of metabolism (the global regulator fis), cellular growth (the rrn genes
coding for stable RNAs), and DNA supercoiling, an important modulator of gene
expression (the topoisomerase topA and the gyrasegyrAB). Although these genes have
been the focus of intensive study over the last few decades, the development of amodel

Figure 7-6 Differential equationmodel of the carbon assimilationmodule: confrontation ofmodel

predictions and experimental measurements [116]. The circles denote measurements, and the

lines denote simulation results. The biomass and the extracellular concentrations of carbohydrates

are mentioned on the curves. (a) Diauxic growth on glucose and lactose. Galactose is a product of

lactose metabolism. (b) Disturbed batch experiment with application of a pulse of glucose on

bacteria growing on glycerol. Dashed lines denote simulation results from different versions of the

model that do not take into account regulation of theptsoperonexpression.Simulation of themodel

including this additional regulatory interaction results in the continuous line.
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of the network is limited by the lack of quantitative information about the concentra-
tions of the network components and the parameters characterizing their interactions.

To overcome the lack of quantitative information, we have used a qualitative
modeling and simulation method to analyze the network [127,128]. This method is
based on piecewise-linear differential equations of the regulatory interactions and
employs inequality constraints on theparameters tomakepredictionsof thequalitative
dynamics of the system. The piecewise-linear models of genetic regulatory networks
are based on the use of step-function approximations of the sigmoidal functions
describing the regulatory interactions (Fig. 7-4b). This approximation simplifies the
analysis of the dynamics in that it allows the phase space to be subdivided into
hyperrectangular regions where the system behaves in a qualitatively homogeneous
way. The continuous dynamics of the system in the phase space can be discretized into
a state transition graph, that is, a graph composed of states corresponding to the phase-
space regions and transitions between these states. The state transition graph describes
the possible qualitative behaviors of the system and allows the attractors of the system
and their reachability to be determined.

Based on the qualitative simulations, two regulatory feedback loops were hypothe-
sized to play a key role in the response of E. coli cells to carbon starvation. A positive
feedback loop, involving fis and crp, seems to function as a switch controlling the
transition of E. coli cells between the exponential and the stationary growth phase in
response to a carbon starvation signal transmitted by the PTS. The other loop is a
negative feedback loop, a homeostaticmechanism involving fis andDNAsupercoiling,
which regulates the resumption of cellular growth when a carbon source is available
again, causing damped oscillations in certain protein concentrations. The qualitative
simulations provide a description of the ordering of qualitative events (such as the
upregulation and downregulation of key genes), which can be tested by monitoring
gene expression over time, for instance through the use of gene reporter systems.
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Figure7-7 Keygenes, proteins, and regulatory interactionsmakingup thenetwork involved in the

response of E. coli bacteria to carbon-source availability [117].
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The assimilation of carbon sources by E. coli, in particular lactose, has been the
subject of a large number of modeling studies (e.g., see Refs. 14,129–133). However,
differential equation models have also been used to model the response of E. coli to
other stresses, such as the response to a heat shock [96], bacteriophage infec-
tion [6,134,135], phosphate starvation [136], or the SOS response [103,136].

A common assumption underlying these models is that individual bacteria, under
identical conditions, respond to a stress in exactly the sameway. However, it is known
that, whereas most bacteria enter a nongrowth state in response to carbon starvation,
someof themcontinue togrowanddivide.Thesedifferent behaviors of individual cells
arise from the stochasticity of the underlying processes that is not accounted for by the
differential equationmodels. The next sectionwill elaborate this point and introduce a
modeling approach capable of dealing with the stochastic aspects of gene expression.

7.4 STOCHASTIC MASTER EQUATION MODELS

7.4.1 Model Formalism and Analysis Techniques

Ordinary differential equations provide a deterministic view on genetic regulatory
networks, in the sense that, for given parameter values and initial conditions,
Equation 7-2 has a unique solution and consequently predicts a single behavior of
the system. Real biological systems, however, are not deterministic since noise arises
inside and outside the system, due to fluctuations in the synthesis and degradation of
proteins—strengthened by the low number of molecules of each species—and
fluctuations in the environmental conditions [138–140]. As a consequence, geneti-
cally identical cells evolving under the same conditions may display different
phenotypic characteristics [141,142]. In order to capture the stochastic aspects of
cellular processes on the molecular level, different types of models can be
used [140,143,144]. Here we focus on stochastic master equations, which give a
detailed description of the biochemical reactions occurring in a cell.

Instead of continuous concentrations xi, the variables in a stochastic master
equation denote discrete numbers of molecules Xi2N. For each different species
in the system—proteins, RNA, DNA, or metabolites—a separate variable Xi is
introduced. The continuous rates of change fi(x) in ordinary differential equations
are replaced by discrete reaction events occurring with a certain probability per time
interval. We can write the following equation for the time evolution of the system:

p½XðtþDtÞ ¼ V; tþDt� ¼ p½XðtÞ ¼ V; t�ð1�
X

j¼1;...;m
aj DtÞ

þ
X

j¼1;...;m
p½XðtÞ ¼ V�nj; t�bjDt; ð7-3Þ

whereX¼ (X1,. . .,Xn)
0,m is the number of reactions that can occur in the system,ajDt

is the probability that reaction jwill occur in the time interval [t, t þ Dt] given that X
(t)¼V, and bj Dt is the probability that reaction jwill bring the system from a state X
(t)¼V� nj to a stateX(t þ Dt)¼V in [t, t þ Dt], where nj represents the stoichiome-
tryof the reaction. Inotherwords,Equation7-3expresses that theprobability of having
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V molecules at time t þ Dt equals the sum of the probability of having already V
molecules at twith no reaction occurring on [t, t þ Dt], and the probability of having
V–njmolecules at t and reaction j occurring on [t, t þ Dt]. Rearranging Equation 7-3
and taking the limit Dt ! 0 yield the stochastic master equation (see [145] and [146]
for details):

@p½XðtÞ ¼ V; t�=@t ¼
X

j¼1;...;m
p½XðtÞ ¼ V�nj; t�bj�p½XðtÞ ¼ V; t�aj: ð7-4Þ

Compare this equationwith theordinary differential equationgiven inEquation7-2.
Whereas the latter specifies how the state of the system evolves over time, Equation 7-4
describes how the probability that the system is in a certain state evolves over time.
Notice that the variables in Equation 7-4 can be reformulated as concentrations by
dividing the number of molecules X by the cell volume.

Figure 7-8 gives an example of a negative feedback loop that is even simpler than
the one shown in Figure 7-4. It consists of a single gene a coding for a protein A that
forms a dimer capable of binding to the promoter region of a, thus inhibiting the
expression of the gene. The reactions involving the different molecular species of the
system are shown in the figure. For instance, the dimerization of the repressor is
represented by the reaction A þ A ! A2. Even for this simple system, the stochastic
master Equation 7-3 cannot be solved analytically.Under certain conditions, however,
it can be approximated by stochastic differential equations, so-called Langevin
equations, which consist of a differential equation Equation 7-2 extended with a
noise term [140,146,147]. The conditions underwhich the approximation is validmay
not always be possible to satisfy in the case of genetic regulatory networks.

An alternativeway to proceedwould be to disregard the stochasticmaster equation
altogether and directly simulate the time evolution of the regulatory system. This idea
underlies the stochastic simulation approach developed by Gillespie [145]. Basically,
the stochastic simulation algorithm (i) determines when the next reaction occurs and
of which type it will be, given that the system is in a state X(t)¼Vat t, (ii) revises the
state of the system in accordancewith this reaction, and (iii) continues at the resulting
next state. The stochastic variables t and r are introduced, which represent the time
that has passed until the next reaction occurs and the type of reaction, respectively. At
each state a value for t and r is randomly chosen from a set of values whose joint
probability density function p[t, r] has been derived from the same principles as those
underlying the master equation 7-4. This guarantees that when a large number of
stochastic simulations are carried out, the computed distribution for X at t will
approach the distribution implied by the master equation.

It is obvious that stochastic simulation is a computationally intensive process,
especially when dealing with species involving a large number of molecules and/or
with reactions occurring at high frequency. Examples are metabolic reactions, which
mayoccurmillions of times on the timescale of onegenerationof a bacterial cell [148].
Another reason is that a large number of different molecular species may need to be
taken into account, for instancewhen a protein has a large number of phosphorylation
or methylation states, each of which participates in different reactions and therefore
needs to be treated as a separate species [149,150]. Various improvements of the
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original Gillespie algorithm have been proposed, directed at reducing the computa-
tional complexity of the procedure. For instance, Gibson and Bruck [151] have
proposed amodification that reduces the number of random numbers to be generated.
Whereas this improved algorithm remains exact, in the sense that it yields results
consistent with the stochastic master equation, other algorithms address the perfor-
manceproblemsby exploitingapproximations that lower the accuracybut improve the
computational complexity. A popular approximation is the t-leap method, which
chooses the time t between two states such that the algorithm ‘‘leaps over” a large
number of frequently occurring reactions [152,153]. This speeds up the simulation in
that only a single random number needs to be generated for the latter reactions.
Another approximation is to explicitly distinguish fast and slow reactions and to use
composite reaction mechanisms based on quasi-steady-state approximations for the
fast reactions [154] or simulate the latter bymeans ofordinaryor stochastic differential
equations [155].
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Figure 7-8 List of biochemical reactions in a simple autoinhibition network. The gene a encodes a

repressor protein A that forms a dimer A2. Gene expression consists of a transcription step

(involving an RNA polymerase that binds to the promoter Pa on the DNA) and a translation step

(involving a ribosome that binds to the ribosome binding site RBSa on the mRNA). The promoter

regionPa contains a binding site for A2, which allows the protein to inhibit geneexpression.Both the

protein A and mRNA a are degraded.

STOCHASTIC MASTER EQUATION MODELS 257



In Figure 7-9we show the results of applying the original Gillespie algorithm to the
autoregulatory feedback networkof Figure 7-8, for amaximumof 8000 reaction steps.
In comparison with the simulations of the deterministic ordinary differential equation
models in Figure 7-5, the number of A2 molecules fluctuates due to the stochastic
nature of the underlying reaction events. The figure illustrates that expression of the
gene occurs in bursts [138,142], associatedwith the binding ofRNApolymerase to the
promoter, which initiates the transcription ofmRNAmolecules, in turn translated into
proteins. It can be seen in the figure that, as the number of A2 molecules increases,
transcription initiation becomes less frequent due to the occupation of the promoter
region by the repressor protein. As a consequence, A2 reaches a stationary level of
about 65molecules. Not surprisingly, amuch higher level is reached in a variant of the
abovemodel inwhich autoregulation has been disabled, for instance due to amutation
in the promoter region that prevents the repressor from binding to the DNA (figure not
shown).

Anetworkwith the same autoregulatory feedback structure as in Figure 7-5, aswell
as its mutant variant, has been designed and constructed on a plasmid by Becskei and
Serrano [156]. Measurements of the repressor protein concentration in the two
networks, by means of a fluorescent reporter, show that the negative feedback loop

Figure 7-9 Example of a stochastic simulation of the autoinhibition network shown in Fig. 7-8,

using a Matlab implementation of the Gillespie algorithm. The figure shows the temporal evolution

of the number of molecules of threemolecular species (A2, mRNA a, and promoter Pa occupied by

RNA polymerase) over 8000 steps. The values of the kinetic constants used in the simulation have

been adapted from [141] and [148].
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has the effect of decreasing fluctuations in the concentration. This illustrates how
topological properties of the regulatory networkmay reduce the effect of noise arising
from the stochasticity of the reaction events [138,140]. Besidesmechanisms to reduce
the effect of noise, the network may also include mechanisms to amplify fluctuations
so as to increase differences between individual cells in a population. For instance,
Isaacs et al. [157] have constructed an autoregulatory feedback network with an
activator rather than a repressor protein. The positive feedback loop leads to bistability
with states of high and low expression of the gene. Due to stochasticity in gene
expression, cells may switch from a high to low expression state, giving rise to a
bimodal distribution of protein concentrations in the cell population (see also
Refs. [158,159]). The resulting population heterogeneity may have important pheno-
typic consequences, as discussed in the next section for E. coli cells. Pedraza and van
Oudenaarden [160] have shown that noise attenuation and amplification can also arise
from other mechanisms, for instance gene cascades propagating noise through the
network.

In summary, stochastic models of genetic regulatory networks focus on aspects of
gene expression that are not taken into account by the deterministic models discussed
in Section 7.3. In particular, stochastic models allow the effects of noise on the
dynamical behavior of the cell to be studied, by analyzing the way in which
fluctuations are filtered out or exploited bymeans of differentmolecularmechanisms.
A number of computer tools for the stochastic simulation of molecular reaction
systems are available, for instanceCopasi [111], STOCKS [148], and StochSim [161].
Although stochastic simulation results in closer approximations of the molecular
reality than can possibly be obtained by means of the other model types reviewed in
this chapter, it is alsomoredifficult to put inpractice.Apart from the fact that it requires
detailed knowledge of the reactions occurring in the system, notably the value of the
kinetic parameters that specify the probability density function p[t, r] [145], stochas-
tic simulation is a computationally intensive process. In many cases, conventional
deterministic models may provide an adequate description of the dynamics of genetic
regulatory networks [90].

7.4.2 Effects of Noise in the Carbon Assimilation of E. coli

We know experimentally that, even when genetically completely identical, not all
individuals of a bacterial population behave in the sameway. For example, a long time
ago already, it has been observed that in a population of E. coli cells the activity of the
lacoperon is not homogeneous [162,163]. That is, under conditions favoring the use of
lactose, the lacoperon is expressed inmost but not all cells. An intuitive explanation of
this phenomenon relies on the observation that certain kinds of molecules are present
at very low numbers in the cell. For example, only about ten copies of the lac repressor
protein are present in an E. coli cell. If these proteins are distributed randomly during
cell division, about one cell in a thousand will not contain any lac repressor just after
cell division. This would lead to derepression of the lac operon even in the absence of
lactose in the growth medium. What are the consequences of such stochastic
phenomena on the behavior of cells and their progeny? Has the cell developed
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compensatory mechanisms to cope with the fluctuations, or are they propagated
throughout the entire network?

To address these questions, several studies have analyzed the role of stochasticity in
the control of carbon assimilation in E. coli [148,164,165]. We will focus here on the
stochasticmodel of the growth of bacteria onvarious carbon sources (glucose, lactose,
andglycerol) developedbyPuchałka andKierzek [165].Using the approachpresented
inSection 4.1, theyhavedescribed the PTSand themetabolic pathways involved in the
assimilation of these three carbohydrates. In particular, a list of more than 80
molecular species and 120 reactions has been compiled, as well as kinetic parameter
values characterizing these reactions.

Stochastic simulation of such a large biochemical reaction system is extremely
computationally intensive, given that the interactions in the carbon assimilation
module take place on quite different timescales. For instance, the breakdown of
carbohydrates and signal transduction by the PTS are fast reactions (less than 1 sec)
involving large numbers of molecules, whereas the regulation of gene expression is
a slow process (several minutes) involving a very small number of molecules. As
discussed in Section 4.1, this prevents the simulation of individual reaction events
by means of the basic Gillespie algorithm. Puchałka and Kierzek have therefore
used a variant, the maximal time-step method, which dynamically partitions the
reactions into fast and slow reactions. Whereas the slow reactions are simulated
using the Gillespie algorithm, the fast reactions are treated by the t-leap method
(Section 4.1; [165]).

Stochastic simulation of the assimilation of various carbon sources by E. coli
reproduced expected andwell-knownphenomena, like the use of glucose as a preferred
nutrient. In addition, the simulations showed that stochastic fluctuations in reactions
involving a small number of molecules may propagate through the network and
influence the time course of other processes in the system, even metabolic pathways
processing largenumbers ofmolecules. For instance, during the transition fromglucose
to a mixture of lactose and glycerol, random delays in the expression of the lac operon
may favor the useofglycerol (even though lactose is thepreferrednutrient). This results
in an almost complete shutdown of the glycolytic pathway, fuelled by glucose and
lactose but not by glycerol. A striking effect of these time delays is the heterogeneity in
the induction of the lac operon within the cell population switching from glucose to a
mixture of lactose and glycerol (Fig. 7-10). Moreover, this heterogeneity in the use of
carbon sources is conserved throughout consecutive cell divisions.

The model of Puchałka and Kierzek is probably the most extensive stochastic
model to date, describing an integrated network of gene expression regulation, signal
transduction, and metabolism. There exist a few other examples of stochastic models
in E. coli, notably the model of the lysis-lysogeney decision following l phage
infection [141] and themodel of the regulation of the pap operon in a pathogenic strain
of E. coli [166]. However, as noted in Section 4.1, the development of such models
requires precise knowledge about the molecular mechanisms underlying the biologi-
cal processes, and their analysis involves high computational costs. As a consequence,
the development of stochastic models has been limited to rather small, well-charac-
terized systems.
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7.5 DISCUSSION

In this chapter, we have reviewed three different approaches toward the modeling of
genetic regulatory networks, based on graphs, ordinary differential equations, and
stochastic master equations, respectively. The approaches make different modeling
assumptions. Whereas graph models provide a static description of the network,
formalizing the structure of interactions between genes, proteins, and other network
components, ordinary differential equation and stochastic master equation models
describe the dynamic behavior of the system. However, they do so in quite different
ways. Differential equations are deterministic models, whereas master equations take
into account the stochastic nature of the underlying biochemical reaction processes.

Figure 7-10 Stochastic simulation ofE. coli growth on amixture of glucose, lactose, and glycerol,

using amodel of the carbonassimilationmodule [164].Glucose is depletedduring the first 5000 s of

the simulation. Plots A, B, C, and D show the time-course predictions for LacZ (expressed from the

lactose operon), GlpF (expressed from the glycerol operon), cAMP, and external glycerol, respec-

tively. The sawtooth patterns arise from the occurrence of a cell division every 2100 s, during which

the molecules present in the cell are distributed over two daughter cells. Plots B and D reveal that

there exists a small subpopulation of cells expressing proteins allowing the consumption of

glycerol, instead of lactose, after the depletion of glucose.
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When going from graphs to stochastic master equations, the models take into
account increasingly more aspects of physical reality. The counterpart is that this
makes them increasingly more difficult to treat in practice. In many cases, even for a
well-studied model system like E. coli, the information required for building a model
on the level of individual reactions is not available. Moreover, the computational
burden of simulating such detailed systems is high and does not currently allow its
application to large reaction systems, although technical improvements are expected
to push the limit further up [167].

In this context, it is crucial to stress that more detailed models are not necessarily
better models. A model is by its very nature a simplified representation, based on
assumptions that ignore certain aspects of reality so as to better bring out others.
This is even true for the most detailed models discussed in this chapter, stochastic
master equations, which implicitly assume that the reaction volumes are spatially
homogeneous, an assumption that is not generally true [168]. In the end, what
counts is whether a certain type of model, and thus certain types of simplifying
assumptions, are adequate for answering the biological questions at hand. As some
authors put it, the art of modeling consists in choosing the ‘‘right model for the
job” [169].

The discussion ofE. coli stress responsemodels in this chapter has confirmed that
different kinds of models are appropriate for different kinds of biological questions.
The graph models are able to answer questions about the structure of the transcrip-
tional regulatory network of the bacterium, such as the manner in which the network
is composed of building blocks like modules and motifs. However, in order to study
the dynamics of the building blocks, for instance the carbon assimilation module,
one has to resort to ordinary differential equations and stochastic master equations.
The former are well adapted for studying the steady states of a regulatory module
and the way in which the system may evolve from one steady state to another in
response to a perturbation. The latter are especially appropriate for questions about
the way the network deals with noise arising from intracellular and extracellular
processes, which in the case of noise amplification may give rise to heterogeneous
phenotypes in a genetically identical population. This was illustrated by the
differential induction of the lac operon in E. coli cells when glucose in the medium
is depleted.2

The most effective strategy for studying a complex biological system therefore
relies onmodel plurality, using different kinds of models that look at the system from
different angles. Instead of building one large supermodel, describing the entire
system on the most detailed level possible, it is more fruitful to build a hierarchy of
models, accounting for different aspects of the system on different levels of
abstraction.

2Of course, there is no one-to-one correspondence between biological questions andmodel formalisms. For
instance, the robustness of a dynamic property of the system to fluctuations in the environment can be
studied by means of a stochastic model of the biochemical reaction system, but also by varying parameter
values in a differential equation model.
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