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10.1 INTRODUCTION TO SYSTEMS BIOTECHNOLOGY

Since the first genome sequence of amicroorganismwas finished in 1995, a number of
projects for sequencing microbial genomes have been completed [1]. Currently, the
complete sequences of more than 300 genomes are available in various databases [2].
Theprocessesof sequencingandannotatingmicrobialgenomeshavenowbecomemore
routine,which resulted in the continued introduction of complete genome sequences of
new microorganisms to the life science and biotechnology community. In addition,
breakthroughs in studying biological systems at transcriptomic, proteomic, and other
omic levels have enabled the researchers to generate and analyze high-throughput data
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for the better characterization of the organisms of interest [3]. Furthermore, computa-
tional (in silico) tools for modeling and simulation of biological systems on large or
genome scale have been developed and used for deciphering the characteristics of
metabolic, regulatory, and signaling networks [4].With such advances in experimental
and computational techniques,microorganisms can be systematically engineered to be
suitable for various industrial applications that fall into a new paradigm of research
called ‘‘systems biotechnology” [3].

Systems biotechnology aims at improving the biotechnological processes by sys-
tems-level optimization of cellular metabolism, regulations and signaling circuits, and
mid- to down-stream processes altogether [3]. Understanding basic genotype–pheno-
type relationship in an organism is important, but it is not sufficient to understand and
control the entire behavior of the organism. For this reason, high-throughput technolo-
gieshavebeen indispensable tools as theyallow theexpressionofgenes tobemonitored
on global scale at transcriptional and translational level. One of the high-throughput
techniques that has helped make this progress is transcriptomics, which allows the
analysis of mRNA expression levels of the entire genes using DNA microarray.
Proteomics allows analysis of the protein contents in an organism or a given sample.
Metabolomics and fluxomics, which quantitatively profile the metabolites and fluxes,
respectively, in the cell, also occupy an important portion of the omics research to carry
out systems biotechnology research. By combining all the information generated from
these omics disciplines, it will be possible to model an organism at the systems level
(although not complete yet) and perform a systematic analysis of large-scale data using
bioinformaticsforabetterunderstandingofhowthatsystemworksandhowitcanbebest
adjusted for our applications [5,6].

Analysisof the in silicometabolicnetworkcanbeusedasapowerfulapproachfor the
identificationof drug targets and targets for the improvement ofmicrobial performance
suitable for industrial applications suchasproductionofusefulmaterials [7–9]. In silico
model is a mathematical representation of the biological system in interest and allows
researchers to perform experiments on a computer to predict physiological behaviors
muchfasterandeconomicallythantheactualexperiments.Recently,variousapproaches
for the construction of reliable metabolic network model have been suggested [1,10].

In this chapter, we describe the recent developments and trends in systems biotech-
nology research based on the in silico genome-scale metabolic models. Various
strategies are described for the reconstruction of genome-scale metabolic network.
Thereafter,wewill review their applicationswith specific examples from themetabolic
engineeringperspectives.ReadersarerecommendedtoreadChapter7inparallel,which
presents the state-of-the-art reviewon building the constraints-basedmetabolicmodels
and their use in flux balance analysis (FBA).

10.2 DATABASES AND TOOLS FOR THE RECONSTRUCTION
OF METABOLIC NETWORKS

From the last decade, unprecedentedly large amounts of information have been
accumulated from experiments in genomics and other omics research projects.
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As a result, many different databases and related applications have been developed for
researchers to use to extract suitable information for the analysis of pathways and the
reconstruction of genome-scale metabolic networks. The databases and applications
commonly used for the systems biotechnology research are listed in Table 10-1. These
databases aremainly used for the retrieval and analysis of sequences, protein analysis,
functional annotation of genes and sequences, metabolic pathways, and other infor-
mation needed for the reconstruction of metabolic networks. Here we shall focus on
the effective construction and analysis of the in silico genome-scale metabolic
networks using the information present in the databases.

Databases such as DDBJ, EMBL, and NCBI Entrez contain information regarding
the DNA, RNA, and protein sequences and other related information [11–13]. Along
with these databases, the controlled vocabularies, such as Gene Ontology (GO), are
used for standardizing the results of genome annotations. Other databases contain
information on metabolic networks such as reactions and network maps, tools for
comparative analysis, and various information on enzymes, metabolites, and other
biomolecules. For example, the automatic annotation tools import raw genome
sequences and find proper open reading frames (ORFs) and gene candidates by
applying gene finding algorithms. The databases for protein profiles and motifs are
very helpful in enhancing the quality of genome annotation and in predicting the
detailed functions of proteins by taking advantage of the conserved domains found in
the proteins [14–16].

Reconstruction of metabolic pathways is mostly based on the information from
metabolic databases [17–21].Most of these databases provide graphical references or
metabolic maps for users to find the metabolic information such as gene names,
enzyme commission (EC) numbers, and reactions that are highly interlinked within
the frame of metabolic network. KEGG is one of the most widely used metabolic
resources and provides various data on the genomes, pathways, compounds, and
controlled vocabularies. The pathway maps supplied by KEGG can be used as a
backbone for the reconstruction of the networks. The BioSilico database integrates
components of heterogeneous metabolic databases such as LIGAND, ENZYME, and
BioCyc for easy querying and comparison of metabolic information present in
multiple databases [18].

10.3 IN SILICO MODELING AND SIMULATION OF GENOME-SCALE
METABOLIC NETWORK

The first step for the reconstruction of genome-scalemetabolicmodel is the analysis of
genome information in the databases. The availability of the annotation results from
the completely sequenced genomes for many organisms makes it possible to recon-
struct the in silicomodels on a genome scale. Thus, the automatic annotation process,
which uses the reference databases and relevant information to identify potential
ORFs, is the first step for the reconstruction of in silicometabolic model. However, as
many shortcomings become obvious in the reconstruction process [22], the automatic
annotation process appears to be insufficient and various complementary processes
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Table 10-1 Databases and tools useful for the reconstruction of genome-scale

metabolic network

Database Availability Brief Description

Resources of sequences and genomic information

DDBJ [11] http://www.ddbj.nig.ac.jp/ DNA Database of Japan
EMBL [12] http://www.ebi.ac.uk/embl/ Europe’s primary nucleotide

sequence resource
Entrez [13] http://www.ncbi.nlm.nih.gov/

sites/gquery
The integrated, text-based search
and retrieval system used at
NCBI

COG [30] http://www.ncbi.nlm.nih.gov/
COG/

Clusters of Orthologous Groups

Controlled vocabularies and ontology

GO [86] http://www.geneontology.org/ A controlled vocabulary to describe
gene and gene product attributes
in any organism

KO [20] http://www.genome.jp/kegg/ko.
html

KEGG Orthology

Protein sequences, motifs, and profiles

InterPro [14] http://www.ebi.ac.uk/interpro/ A database of protein families,
domains, and functional sites

PROSITE [16] http://www.expasy.org/prosite/ A database of protein families and
domains

Metabolic databases and tools

BioCyc [17] http://biocyc.org/ A collection of pathway/genome
databases

BioSilico [18] http://biosilico.kaist.ac.kr/ Integrated metabolic databases
BRENDA [19] http://www.brenda-enjymes.info/ The comprehensive enzyme infor-

mation system
KEGG [20] http://www.genome.ad.jp/kegg/ Kyoto Encyclopedia of Genes and

Genomes
Pathway tools [25] http://bioinformatics.ai.sri.com/

ptools/
A software system for pathway
analysis of genomes and for
creating Pathway/Genome
Databases (PGDBs)

PATIKA [21] http://www.patika.org/ Pathway Analysis Tools for
Integration and Knowledge
Acquisition

Gene annotation and comparative genomics tools

Glimmer [88] http://www.cbcb.umd.edu/soft-
ware/glimmer/

A system for finding genes in
microbial DNA, especially the
genomes of bacteria and
archaea.

358 CONSTRUCTION AND APPLICATIONS OF GENOME-SCALE



are required for the validation of the constructed metabolic models. Recently devel-
oped genome-scale in silico metabolic models are listed in Table 10-2.

10.3.1 Reconstruction Using the Known Pathways and Enzymes

The common method for the reconstruction of genome-scale metabolic network has
been the utilization of information obtained from the previously constructed bio-
chemical pathways, related sequences, and proteins [1,10,23]. Such information is
mostly derived from the sequence-based search. The major advantage of metabolic
reconstruction using the sequence-based comparison is that proper function of the
genes can be quickly assigned. However, the presence of multiple relationships
between genes and metabolic reactions can cause an erroneous assignment of genes
on the metabolic map [9]. For example, imprecise annotations may occur for the
homologues within the metabolic network, which hampers the accurate assignment
of specific metabolic functions to the ORFs. Therefore, advanced curating methods
have been introduced to eliminate the limitation of sequence-based annotation
method [10].

Currently, a number of databases and tools have been developed for systems
biotechnology research. Among them, several resources have been developed to
represent the biochemical reactions and pathways on a two-dimensional space.
Representative resources are KEGG [20] and BioCyc [17,24]. These are the most
easily accessible and widely used databases on genes, enzymes, metabolites, and
biochemical reactions. In addition to these tools, numerous databases and tools for the
analysis of metabolic pathways have been released (Table 10-1). The utilization of
these resources helps to gather the information on biochemical reactions and their
location on themetabolicmap. For example, the PathoLogic software, part of Pathway
Tools that also contains MetaCyc database, automatically reconstructs the metabolic
pathways of any organism only if the annotation file is available as an input [25]. The
core algorithm in this process is that the softwarematches the enzyme in the annotation
file (input file) to the ones defined in theMetaCyc database by EC number or enzyme
name. Then, the software graphically displays the metabolic pathways and the
associated components including reactions, enzymes, substrates, and products.
The initial version of the automatically reconstructed metabolic network can be
used as a basic framework and can be upgraded by manual curation.

Table 10-1 (Continued)

Database Availability Brief Description

ERGO [90] http://ergo.integratedgenomics.
com/

Accommodation of data integra-
tion, providing the tools to sup-
port comparative analysis of
genomes

STRING [35] http://string.embl.de/ Search tool for the retrieval of in-
teracting genes/proteins
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10.3.2 Reconstruction Using Controlled Vocabulary

The interactions among the molecules in the metabolic and regulatory networks are
known to be highly complex and incompletely understood [21]. To understand this,
abstractions on different levels are used to analyze the cellular processes more
effectively and to deal with the complex network structure more easily. The abstrac-
tions can be utilized to construct and analyze the graphical representation ofmetabolic
pathways [26].

Ontologies for the standardization of the vocabularies were used for the automatic
annotation analyses in many projects. The sequence similarity can be directly related
to the potential protein functions by utilizing the ontology [27]. However, the
limitation of gene ontology is that it cannot be directly connected to cellular
metabolism. This is compensated by the application of metabolism-based orthology
concept such as KEGG orthology to the annotation process [28]. When the proper
KEGG orthology term can be assigned to a gene, the associated metabolic pathways
can be found by tracing back the hierarchical structure of KEGG orthology [28].

10.3.3 Completion of Reconstruction Using Phylogenetic
Profiles and Contexts

Astheamountofsequencedataincreasesexplosively, thenoiseinthedataalsoincreases;
accumulation of incomplete and/or wrong sequences causes obvious problems during
bioinformatic analyses [29].Annotation and analysis based only on these resources can
generate wrong results and result in incorrect interpretations. This limitation can be
overcome by employing controlled vocabulary and large-scale phylogenetic trees.
Bacteria share many functional components with a high degree of conservation in the
components. Asmentioned in Section 10.3.1, Clusters of OrthologousGroups (COGs)
use the grouping of previously annotated genes based on the sequence homology [30].
There are many ways to construct phylogenetic trees [29,31]. Different from the
sequence-based analysis, the genome-scale phylogenetic profiles use various compo-
nents of the genome such as the metabolic profiles and the distribution of gene
contents [32]. Especially, the highly conserved components such as transporters and
proteins involvedinsignalingandcarbonsourceutilizationcanbeusedtofindtheproper
orthologousgenes [33,34].Themolecular interactions andnetwork canbe identifiedby
using databases for protein–protein interaction and metabolic context such as
STRING [35]. Similar to STRING, the SEED genome annotation system is based
on the fundamental principle that the value of genome analysis increases with the
number of genomes available as a context for comparative analysis [36].

Various bioinformatic methods, such as genome context analysis that includes
chromosomal gene clustering, protein fusions, occurrence profiles, and shared regula-
torysites,canbeemployedtoobtainfurtherinformation[37].Forexample,adraftinsilico
metabolicmodelofLactobacillusplantarum showed that succinyl-CoA is involved in a
reactionrelated tomethioninebiosynthesis.However,after thephylogeneticstudiesand
pathwayanalysisof theL.plantarummetabolicnetwork, itwasconcluded thatsuccinyl-
CoAisnotproducedduetotheoperationofabranchedtricarboxylicacid(TCA)cycleand
that the actual substrate is most likely acetyl-CoA [38].
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In addition to thesemethods, several integratedprogramshavebeendeveloped.The
recent version of PathoLogic provides the function called ‘‘Pathway Hole Filler,”
which employs genome context analysis to fill in missing genes using the candidate
sequences from the database, and subsequently a Bayes classifier to evaluate the
probability of how likely the candidatehas thedesired function for themissinggenes in
the newly reconstructed metabolic network [39].

10.3.4 Completion of Reconstruction Using the Information
from Various Sources

When the metabolic network reconstruction is complete, it should be able to describe
and predict various phenotypic characteristics of the organism reasonably well under
different genotypic and environmental conditions. However, somemetabolic data are
missing, inconsistent and insufficient to fully represent the physiology of a particular
organism. In particular, reaction reversibility, substrate specificity, isoenzyme func-
tions, cofactor specificity, and absence of certain pathways can make reconstruction
process difficult.

Updated and new knowledge on themetabolic pathways and their components can
be obtained by a thorough examination of literature. For example, the initial
reconstruction of metabolic model of Streptomyces coelicolor A3(2) suggested
that valine dehydrogenase (E.C. 1.4.1.8) is an NADP-dependent enzyme.
However, after thorough examination of literature, it was found to use NAD as the
preferred cofactor [22,40]. In the case of Staphylococcus aureus N315, literature
indicates that acetate can be transported by acetate permease [41]. This transport
reaction was then added to the reconstruction model to allow proper representation of
observed physiological behavior in vivo [42].

When all the possible inconsistencies are considered, the reconstructed model
should be validated and tested to see whether mathematical methods, such as convex
analysis and linear programming, can effectively represent the physiology of the
organism under the various genetic and environmental conditions. If the results
reasonably represent what are observed in actual experiments, the reconstruction
of genome-scalemetabolicmodel is said to bedone.However, it shouldbe emphasized
that metabolic reconstruction is not truly complete but has to be upgraded
continuously as new information and knowledge on metabolic pathways and their
participating components are discovered.

10.3.5 Simulation of Genome-Scale In Silico Metabolic Network

Once the genome-scale metabolic network is constructed from the genomic and other
related information, computer-based experiments such as quantitative flux analysis,
network topology analysis, and simulation can be performed to characterize the
metabolic network under various conditions. There are twomain strategies of quantita-
tive in silico simulation of metabolic systems: static analysis and dynamic analysis.

Metabolic flux analysis (MFA), which utilizes stoichiometric matrices, has been
employed for the large-scale analyses of metabolism (see Box 10-1). MFA calculates
the intracellular fluxdistributionwithanassumptionofsteady-stateconditionanddoes
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BOX 10-1 VARIOUS MODELING APPROACHES

Metabolic Flux Analysis

MFA is a mathematical analysis of metabolic pathways in which metabolic fluxes
are calculated by constructing a stoichiometricmodel of the biochemical reactions
along with mass balances on intracellular metabolites [85]. Given a metabolic
system, the mass conservation around metabolites can be expressed as

dc

dt
¼ S � v�b

where c is the concentration vector of metabolites, S is the m� n stoichiometric
matrix inwhichm is thenumberofmetabolites andn is thenumberof reactions, and
v is the n-dimensional vector of intracellular fluxes. b is the concentrationvector of
metabolites that are diluted owing to biomass growth.Assuming the pseudo-steady
or stationary state based on rapid turnover of most metabolites and dilution effects
that are relatively small compared with the fluxes, we can simplify the kinetic
model into a static representation. Unlike the dynamic approach, static model only
considers the network’s connectivity and capacity as time-invariant properties of
the metabolic system.

S � v ¼ 0

The metabolic network can be classified as determined, overdetermined, and
underdetermined systems if the degrees of freedomare zero, negative, and positive,
respectively.

Different approaches are undertaken depending on the degree of freedom of the
system. In general, two general methodologies of MFA have been practiced most
widely: isotopomer balance analysis and flux balance analysis. The notable
difference between these two methods is that the former is usually employed for
overdetermined systemwhereas the latter is applicable to underdetermined system.
For isotopomer balance analysis, 13C carbon labeling measurements produce the
flux data that can help solve the overdetermined system; it has been shown that the
combination of information gathered from such isotopomer measurements using
NMR and GC/MS and metabolite balancing enabled refined analysis of the
metabolic fluxes. However, it should be mentioned that isotopomer analysis has
so far been used for the analysis of small-scale metabolic networks because of the
complicatedmathematical formulation and limited availability of parameters. FBA
allows determination of intracellular fluxes even for a large underdetermined
system through linear optimization. Even though the accuracy of FBA can be
thought as not as good as that achievablewith isotopomer analysis, it generallygives
satisfactory flux distribution under various genotypic and environmental condi-
tions.Many successful examples are available in the literature, which report the use
of FBA in various applications (see the text and Chapter 7).
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Minimization of Metabolic Adjustment

MOMA [69] is based on the same constraints as the FBA. However, quadratic
programming (QP) is used insteadof linear programming to formalize theMOMA.
The goal is tominimize the Euclidian distance from awild-type flux distribution as
follows:

Minimize ðv�wÞTðv�wÞ
Subject to S � v ¼ 0; vmin � v � vmax

vj ¼ 0; j 2 R

where w is the wild-type flux distribution and R is a set of reactions related to the
deleted genes.

Regulatory On/Off Minimization

ROOM [70] is based on the same constraints as FBA. The goal is to minimize the
number of significant flux changes. A range ½wl ;wu� around the vectorw is defined
for nonsignificant flux change. Themixed integer linear programming (MILP) can
be formulated as

Minimize
Xm

i¼1

yi

Subject to S � v ¼ 0

v�yðvmax�wuÞ � wu

v�yðvmin�wlÞ � wl

vj ¼ 0; j 2 R; yi 2 f0; 1g
wu ¼ wþ djwj þ e;wl ¼ w�djwj�e

where, for each flux i, 1� i�m, yi¼ 1 for a significant flux change invi, and yi¼ 0
otherwise.

Optknock

The bilevel optimization framework, OptKnock, was introduced to propose
reactions to be eliminated from the E. coli network for maximizing the
production of simple compounds such as succinate, lactate, and 1,3-propane-
diol [71]. This is accomplished by calculating solutions that simultaneously
optimize two objective functions, biomass formation and secretion of a target
biochemical. This bilevel optimization algorithm is based on the fact that the
overproduction of target biochemical can be achieved by altering the structure of
the metabolic network through gene deletion such that the stoichiometry of the
perturbed network forces production of the target metabolite while normal
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biomass precursors are generated.

Maximize vbiochemicalðover yjÞ
Maximize vbiomassðover vjÞ

subject to
XM

j¼1

Sijvj ¼ 0; 8i 2 N

vpts þ vglk ¼ vglucose uptake

vATP � vATP maintenance

vbiomass � v
target
biomass

vmin
j yj � vj � vmax

j yj; 8j 2 M
X

j¼M

ð1�yjÞ � K

yj 2 f0; 1g; 8j 2 M

u

where Sij is the coefficient of metabolite i in reaction j, biomass formation is
quantified as an aggregate reaction flux, vbiomass, draining biomass components in
their appropriate biological ratios, and vATPmaintenance is the non-growth-associated
minimum ATP requirement. The uptake rate of glucose vglucose_uptake is fixed and
encompasses both the phosphotransferase system, vpts, and glucokinase reaction,
vglk.K is the number of allowable reactions to be eliminated. Binary variable, yj, is
one if a particular reaction is active, and zero otherwise. An active reaction has an
upper bound, vmax

j , and a lower bound, vmin
j , obtained by maximizing and

minimizing each flux subject to the constraints.

not require rate equations and kinetic parameters. The result is a fluxmap showing the
distribution of anabolic and catabolic fluxeswithin themetabolic network.Among the
various applicationsofMFA, twogeneralonesareas follows.The first application field
is to characterize the cell’s physiology undergenetic and environmental perturbations.
MFA has been used to characterize the effects of acute metabolic perturbation,
especially, gene deletion in the organism. Itwas also performed under the combination
of rich and minimal media and aerobic and anaerobic conditions to predict which
reactions are essential for thegrowthof theorganismunder these conditions [4,42–46].
The secondapplication field is to improve theproductionofvariousproducts including
commodity chemicals by overexpression/deletion of key metabolic pathways that
already exist in the host organism or by introducing new routes of metabolism.
Of course, MFA is used to identify the candidate target genes to be manipulated.

TheMFA solution provides a snapshot of a certain pathway in a defined state, but is
insufficient to predict the dynamic behavior of metabolism. Recently, this approach
was extended to allow the prediction of dynamic behavior. Dynamic simulation of
genome-scale network model can be performed using the differential equations
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Figure 10-1 Concepts of dynamic flux balance analysis (a) and hybrid dynamic/static simulation

(b). Fluxes represented by dashed arrows are given by kinetic equations.

representing thedynamicmassbalances incorporating the reaction rate equations [47].
Oneof themajordifficulties in thedynamic simulationofmetabolicnetwork is the lack
ofaccuratekinetic equationsandparameters for the reactions in themetabolicnetwork.
The parameters also tend to vary as the environmental conditions change. Therefore,
the dynamic simulation of large-scale network requires many assumptions and is
generally restricted to the small-scale networkmodel. However, much effort has been
devoted tosolvethisproblem;astaticsimulationmethodwascombinedwithadynamic
method,which is called dynamic flux balance analysis (DFBA) [48]. Thismethodwas
developed to incorporate extracellular metabolite dynamics and substrate uptake
kinetics within the flux balance analysis for extracellular glucose, acetate, and liquid-
and gas-phase oxygen. Simple Michaelis–Menten kinetics and mass transfer kinetics
are used tomodel theglucose uptake rate, oxygen uptake rate, and the acetate secretion
rate (Fig. 10-1).When applied to the analysis of diauxic growth ofEscherichia coli on
glucose [48], the results from DFBAwere qualitatively similar to the experimental
observations. Yugi et al. [47] improved theDFBAmethod by introducing the dynamic
methods (kinetics) to the rate-limiting steps of the metabolic reactions and the static
methods (FBA) to the remaining reactions. In this method, the reactions expressed in
the form of the static model require no prior information about kinetic equations and
parameters or about the initial concentrations of metabolites (Fig. 10-1). This method
was successfully used for the simulation of the erythrocyte model [47].

The hybrid method reduced the cost for the development of large-scale in silico
models aswell as the number of experiments for the identification of kinetic properties
for dynamic simulation.

There are several software programs available for performing analyses and
simulations of genome-scale in silico metabolic network. MetaFluxNet is a software
package for the modeling and simulation of metabolic reaction networks focusing on
MFA [49,50] (Table 10-3). It also provides the management of metabolic information
and supports the systems biology markup language (SBML) and the metabolic flux
analysis markup language (MFAML) [50] for the exchange of metabolic models.
Simpheny (Genomatica, San Diego, CA) is a commercial software program for the
construction and simulation of in silico genome-scale metabolic models [51].
Simpheny allows construction of in silico cells from their molecular components
and simulation of the complete biochemical reaction network of a cell. Simpheny can
be used for the prediction of various phenotypic characteristics based on FBA.General
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Pathway Simulator (GEPASI) has been widely used for the dynamic simulation and
metabolic control analysis (MCA) of the metabolic network [52]. GEPASI contains
several predefined kinetic models for the easy construction of dynamic simulation
model. TheComplex PathwaySimulator (COPASI) is an application for the simulation
and analysis of biological networks [53]. It was developed based on the dynamic
simulation tool, GEPASI. COPASI provides various tools including model generator,
stochastic simulation tool, metabolic control analysis, and elementary mode analysis.
It also supports the SBML format for the effective description of parameters of the
kinetic equations. BioSPICE is an integrated system of the systems biologyworkbench
(SBW) that allows the sharing of computational codes invarious tools. It can be used to
developmetabolic and geneticmodels using the common software framework [54,55].

10.4 ITERATIVE IN SILICO MODEL DEVELOPMENT

Since the in silicometabolic network cannot truly represent the real cell, it needs to be
improved by iterative process. This process involves creating the metabolic network
model, obtaining experimental data, comparing the predicted outcomes with experi-
mental data, and resolving inconsistencies in the results to update the model.
Hypotheses based on the results of in silico analysis can be tested by experiments,
fromwhich themodel can be updated and improved based on the experimental results.

Table 10-3 Useful softwares for the analyses of genome-scale

in silico metabolic network

Application Web Site Address Reference Note (Usability)

MetaFluxNet http://mbel.kaist.ac.kr/lab/mfn/ [49,50] MetaFluxNet is a powerful
software package for the in
silicomodeling and simulation
of metabolic network using
metabolic flux analysis. It
supports for the generation and
management of metabolic
model using MFAML

GEPASI http://www.gepasi.org/ [52] GEPASI is a dynamic modeling
software to construct and
optimize network models with
kinetic parameters

COPASI http://www.copasi.org [53] COPASI provides tools for met-
abolic model generation, time
course simulation, and meta-
bolic control analysis. COPASI
improved the GEPASI

BioSPICE http://biospice.sourceforge.net/ [54,55] BioSPICE provides an integra-
tion framework/workbench to
integrate various tools
according to their purpose
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Both biochemical and genetic engineering experiments as well as computational tests
are parts of the iterative process. As additional data for an organism become available,
such as gene expression data and metabolic profiles, new biological information will
be discovered to further refine and improve the in silico model.

In silico microbial models have been found to correctly predict experimentally
observedbehaviorsofmicrobes invitro70–80percentof the time[43,56,57].Despite the
relatively good agreement between the model predictions and actual experimental
results, it is the 20 percent ‘‘failure” rate that is of most interest to us. These in silico
‘‘failures” point to areas of the model in which current knowledge on the organism is
lacking (such as unknown pathways in the reconstruction, unaccounted-for regulatory
interactions, etc.). These gaps in information must be filled in through new biological
discovery.Itisthroughtheiterativeprocessofmodelconstruction,testing,validation,and
revision that new information on the organismcan bediscovered for filling in thosegaps
thatwill refine and improve the in silicomodel of theorganism.By this iterative process,
the most comprehensive and predictive in silico model of the organism can be built.

The current strategy for this process is to involve both experiments and the
mathematical modeling/simulation in a feedback and iterative fashion (Fig. 10-2).
The feedback approach is based on the prediction of genetic and metabolic modifica-
tions that can be compared with the experimental results, leading to a more rational
strategy for the reconstruction of in silicomodel. Palsson et al. [58] showed that FBA
could be used to predictwhat the eventual effects of geneticmodificationswould be on
the global host cell physiology. The ability of a constraints-based model of E. coli
describing genetic modifications was examined by subjecting them to adaptive
evolution under different growth conditions.

Lee et al. [59] used this iterative approach by integrating genome and fluxome
information in the characterization of a relatively less studied bacteriumMannheimia
succiniciproducens. The genome was used to construct the genome-scale in silico
metabolic map ofM. succiniciproducens, and flux analysis was used to calculate the
succinic acid yields and flux distributions under various conditions. It was found from
the genome-scale flux analysis that carboxylation of phosphoenolpyruvate to oxalo-
acetate byPEPcarboxykinase is themost important anaplerotic pathway leading to the
efficient production of succinic acid by the reductive tricarboxylic acid cycle and
menaquinone system [59]. In this iterative process, the proteome reference map of
M. succiniciproducenswas established by 2-DEcoupledwithmass spectrometry [60],
and the results obtained were used to fine-tune the in silicometabolic network. The in
silicometabolic network thus improvedcanbeused todesignnewexperiments for flux
profiling and consequently for characterizing the metabolic characteristics under
various environmental conditions.

10.5 METABOLIC ENGINEERING BASED ON THE IN SILICO MODEL
FOR THE ENHANCED PRODUCTION OF VARIOUS BIOPRODUCTS

After the valid model is constructed, many in silico experiments can be carried out to
quantify flux distributions under the numerous conditions of interest. These in silico
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experiments make it possible to decipher the metabolic and physiological changes of
the cells under various genetic and/or environmental conditions, and consequently
establish a more rational metabolic engineering strategy to achieve desired goals.
Furthermore, plausible targets for genetic modifications can be identified to improve
the strain’s performance through the comparative study of responses observed under
various genetic and environmental perturbations (Fig. 10-3).

Currently, there are a large number ofmicroorganisms that are used industrially for
the production of bioproducts.Although thesemicroorganisms do produce the desired

Figure 10-2 Flow chart for identifying gene targets by combining computational modeling/

simulation and high-throughput experimental analyses. The outcomes of these analyses evolve

during the iterations to allow identification of new gene targets.
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bioproducts, theydonot naturally produce them to the concentrations andproductivity
high enough for commercialization. Additionally, the biological networks of micro-
organisms are robust enough to resist many changes introduced to them. Therefore,
many combinatorial experiments including genetic manipulations (gene amplifica-
tion and knockout), regulatory modification, and cultivation experiments need to be
carried out to understand themetabolic characteristics and improve the phenotype to a
desired level good enough for industrial applications. Here, in silico metabolic
modeling and simulation can be used to overcome the impossibility of carrying
out these many combinatorial experiments.

In silico organisms have been constructed to generate more knowledge about the
cell and tackle the aforementioned problems.E. coli, themost well known andwidely
used bacterium, has been used for the production of a wide variety of bioproducts
ranging fromprimaryand secondarymetabolites tobiopolymers [61–64].The in silico
E. colimetabolic networkhas been expanded to contain up to2077 reactionswith 1039
metabolites [65].However, baker’s yeast,Saccharomyces cerevisiae, has beenamodel
organism for understanding cellular physiology and compartmentalized intracellular
biochemical behavior of a eukaryotic cell. Genome-based yeast model has the
biochemical network of 1446 biochemical reactions and 1013 metabolites covering
cytosolic and mitochondrial and transport reactions [44].

Obviously, genemanipulation is avery essential tool for strain improvement for the
production of industrially valuable bioproducts.However, it is not possible to try every
possible combination of gene targets as it is very time consumingand laborious. This is
where FBA comes into play. FBA has most widely been exploited to quantitatively
analyze the metabolic system thanks to its capability to predict the phenotypic
behavior under various genetic and/or environmental conditions, and its applicability
to genome-scale metabolic models [66,67]. Herein, strategies for the identification of
gene knockout and addition targets as well as the combinatorial deletion, amplifica-
tion, and regulation are described.

10.5.1 Identifying Gene Knockout and Addition Targets

Identifying the target genes for metabolic engineering to enhance the production of
certain products is not always easy because of the large number of genes to be
considered in theorganism.Also, there is noguarantee that the identified singleor even
multiple target genes will enhance the production of the desired product due to the
robustness of the biological network against changes to be made. At the initial stage,
the potential target genes can be found through comparative analysis. The main
obstacle to obtaining a rational solution to the problem of introducing genetic
modifications is the lack of a reliable, global, metabolic model that captures stoichio-
metric, kinetic, and regulatory effects of the modifications on metabolite interconver-
sions and metabolic flux distributions through the cellular reaction network. As a
result, strain improvement has conventionally been achieved by random approaches
whereby the target genes to be knocked out or amplified were intuitively selected
rather than systematically. Consequently, the unexpected outcomes were often
obtained. However, the genome-scale in silico metabolic model has changed a
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paradigm by enabling systemic approaches for strain improvement. Such genome-
scale model has been simulated by means of linear optimization with a particular
objective function such as maximization of cellular growth rate or production rate of
certain metabolite of industrial value. Although the optimal value obtained by linear
programming does not exactly describe the actual state of the cellular physiology, this
methodology is still worthy to consider as it provides an overall picture of the cell
metabolism, particularly carbon and energy distribution.

Ramanetal.[68]employedFBAtosearchdrugtargetsfromthemycolicacidpathway
ofMycobacteriumtuberculosis,animportanthumanpathogen.Mycolicacidconstitutes
the protective layer of this pathogen, and the inhibition of its biosynthesis has been the
drugtargetduetoitsessentiality incellgrowth,survival,andpathogenicity.Basedonthis
biochemical background, a comprehensivemodel ofmycolic acid biosynthetic system
wasbuilt,andFBAwasperformedtoidentifyessentialgenesbysystematicallyknocking
out the genes. Those genes that, when knocked out, resulted in a zero value for the
objective function, the maximization of mycolic acid production in this case, were
considered as drug targets as the pathogens cannot survive without mycolic acids.
Candidatedrug targetswere further screenedbyhomologysearchof thesegenesagainst
the human genome to ensure that the host system does not possess the similar genes,
whichmaybeunexpectedly targetedbythedrug, leadingtoadverseeffects.This studyis
aniceexampleofhow in silicoanalysescanbeapplied to thedrugdevelopmentprocess.

Since FBA does not account for the physiological changes caused by genotypic
mutation, the simulation results may deviate from the experimental data. This has led
to the development of a new algorithm called minimization of metabolic adjustment
(MOMA) (see Box 10-1). This method attempts to determine more realistic flux
distributions in knockoutmutants byminimizing the changes in the flux distribution of
the mutant with respect to thewild type instead of maximizing the biomass formation
in the mutant [69]. This method takes into account that the mutant strain is not
optimized for theproductionofmetabolites because it has not had achance to fine-tune
its newmetabolic network through evolution. This framework can be used to identify
target genes to be knocked out to present a phenotype that is closest to the wild type
(Fig. 10-4). It was found that this suboptimal profile actually lies between the wild-
type and the mutant optimals. In one study using MOMA, in silico single- and
multiple-gene knockout experiments were performed to systematically identify the
gene targets and, ultimately, increase the lycopeneyield [61].This strategycan beused
to guide the choice of gene knockout targets. This method yielded a triple knockout
mutant that produced less than 40 percent more lycopene compared with an en-
gineered overproducing E. coli strain. This study demonstrates the value of system
optimization using MOMA for the strain improvement.

Another method that is similar to MOMA is the regulatory on/off minimization
(ROOM)method (see Box 10-1).MOMA is based on theminimization of the changes
in themetabolic fluxes in themutant strain from thewild type.Theremaybeoneor two
fluxes that require huge changes to compensate for the effects themutation puts on the
system. ROOM, however, minimizes all the fluxes with respect to the wild type
regardless of anyother factors. Thismethod is based on the assumption that the system
chooses tominimize its adaptation cost through regulationof the fluxes tomaintain the
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wild-type stoichiometric and thermodynamic constraints. While both methods do not
maximize biomass for the mutant strain, ROOM, by constraining the fluxes to ‘‘run in
parallel” to the wild type, implicitly gives results under the maximum growth rates.
ROOMwas found to give similar or better prediction compared with FBA orMOMA
in knockout experiments eight out of nine times [70].

The OptKnock method is another approach of identifying the knockout targets.
This method identifies genes to be knocked out for bioproduct overproduction while
considering the cell’s needs as well (Fig. 10-4) (see Box 10-1). This approach was
applied to lactate production in E. coli under anaerobic conditions where lactate
production was maximized as an objective function in addition to the biomass
objective function. This resulted in a coupling of lactate productionwith the formation
ofbiomass [71].TheOptKnockmethodwasalso employedby the same researchgroup

Figure 10-4 Graphical representation of the principles of MOMA and OptKnock. MOMA utilizes

quadratic programming to find a metabolic state, in which artificially generated mutants try to

minimize the redistribution of intracellular fluxescompared to the optimal flux distribution ofwild type.

Consequently, MOMA identifies a suboptimal metabolic state of the mutant that lies somewhere

between the optimal state of themutant and wild type in the altered solution space. This approach is

based on the assumption that artificially generatedmutant cannot immediately redistribute its fluxes

toward theoptimal growth rate since it hasnot undergoneevolutionarypressure for anenoughperiod

of time as wild type had. OptKnock is a framework that suggests gene(s) to be knocked out for the

enhanced production of bioproducts by considering both cell growth rate and objective metabolite

production rate.Thisapproachonlyconsiders theoptimalproductionrateof thestrainwhosebiomass

formation rate is greater than the predetermined cutoff line. As a result, it will suggest a mutant

genotype that allows faster growth only when it simultaneously produces ametabolite at faster rate.

374 CONSTRUCTION AND APPLICATIONS OF GENOME-SCALE



to optimize the production of amino acids. Additional constraints, such as ammonia
and oxygen transport by the cell, were introduced to eliminate alternative solutions.
TheOptKnockmethod is especially well suited for the study of amino acid production
system because the metabolic reactions for amino acid production are highly
regulated. Although OptKnock does not consider regulatory networks, it is satisfac-
torily acceptable because it considers the global effects of any changes made. It is
because of this global consideration on the cell that less intuitive strategies need to be
formulated by using this method [72]. In the production of amino acids, OptKnock
suggested a number of knockout strategies that could enhance the production of
various amino acids. The results of the study showed an increase in the amino acid
production compared to the current strains used in industry. For example, an alanine
yield of 91.5 percent from glucose could be achieved, which is much higher than that
(45–55 percent) currently achieved in industry [73].

Lee et al. [74] compared the metabolism ofM. succiniciproducens, a succinic acid
overproducer, with that of E. coli to engineer an E. coli strain to overproduce succinic
acid (Fig. 10-5). Several candidate genes for deletion were identified in E. coli. From

Figure 10-5 Comparison of the central metabolic pathways related to succinic acid formation

in M. succiniciproducens and E. coli. Underlined genes represent those present only in

M. succiniciproducens while those in boldface represent genes only present in E. coli.
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this comparative genome analysis and using flux analysis to reverse engineer the
metabolic network, succinic acid overproduction by E. coli could be achieved. During
this process, our understanding on the general fermentative metabolic pathways in
E. coli could be broadened. The fluxes to pyruvate and other acids were found to be the
knockout targets for redirecting metabolic pathways toward enhanced succinic acid
production.This exampleshows theeffectivenessofcombiningcomparativegenomics,
metabolic fluxprediction, geneknockout, and fermentation toward straindevelopment.

In contrast to gene knockout, FBA has also been used to identify genes to be
amplified for enhanced metabolite production. FBA on poly(3-hydroxybutyrate)
(PHB) producing E. coli predicted that the Entner–Doudoroff (ED) pathway, which
was known to be inactive under normal culture conditions, was active during the
production of PHB from glucose [64] (Fig. 10-6). This prediction was validated by
actual experiments with a mutant E. coli strain defective in the activity of 2-keto-
3-deoxy-6-phosphogluconate aldolase (Eda), a key enzyme in the ED pathway. Low
PHB accumulation in the eda mutant strain compared to its parent strain could be
restored when the eda gene was overexpressed in the eda mutant E. coli strain [64].
Also, the overexpression of the target genes (fba and tpiA) identified by FBA allowed
enhancedproductionofPHB[75].Therefore,MFAallowsnotonly theknockout targets
but also amplification targets to achieve enhanced metabolite production.

10.5.2 Combining the Deletion, Amplification, and Regulation
of the Target Genes

The in silico genome-scale metabolic model can be used to further enhance the
production of useful materials by combining the strategies of gene deletion, amplifi-
cation, and regulation. Bro et al. [76] employed the genome-scale in silicomodel for
the metabolic engineering of S. cerevisiae to improve the ethanol production. To
increase the ethanol yield and reduce the yield of glycerol, an unnecessary by-product,
a number of strategies were simulated using the previously reconstructed genome-
scalemodel ofS. cerevisiae [77].Before they actuallyperform the simulationswith the
model, a few modifications were made to the model including incorporation of the
necessary reactions. For example, those reactions catalyzed by xylose reductase and
xylitol dehydrogenase for xylosemetabolismwere added to reflect actual experimen-
tal conditions asmicroorganismswere cultivatedon themixture of glucose andxylose.
They then performed a gene insertion analysis by adding reactions one at a time from a
pool of 3800 biochemical reactions that are derived from the LIGAND database [23].
The results of simulation by linear programming were scored based on the improve-
ment of growth and ethanol yield and decreased glycerol yield. Consequently, the
best-scored strategy, which predicted to improve the ethanol yield by 10 percent, but
completely block the glycerol formation, was chosen for the actual experiment.
According to the suggested strategy, they constructed a S. cerevisiae mutant, in
which NADP-dependent glyceraldehydes-3-phosphate dehydrogenase (GAPN) was
overexpressed, and achieved a 40 percent reduced glycerol yield with 3 percent
increase in ethanol yieldwithout affecting the specific growth rate. In a later study, the
increased ethanol yield was also achieved with a GAPN expressing strain containing
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xylose reductase and xylitol dehydrogenase, cultured on the mixture of glucose and
xylose. This study is another good example of genome-scale in silico model for the
hypothesis-drivenmetabolic engineering capable of predicting various strategieswith
acceptable accuracies. Moreover, it provides deeper insight into the metabolic
characteristics because it shows how cofactors are linkedwith one another in different
parts of the metabolic network. All benefits would lead to the more efficient way of a
desired strain development.

Figure 10-6 Metabolic network of E. coli for the production of PHB. The ED and PHB producing

pathwaysare indicatedwith thick arrows. TheEDpathwayhadbeenknown to be inactive under the

normal growth of E. coli using glucose as a carbon source. However, the simulation results of

the E. colimodel by FBA showed that the ED pathway is active. Consequently, overexpression of

the corresponding enzyme, 2-keto-3-deoxy-6-phosphogluconate aldolase, in E. coli led to the

improved production yield of PHB, and thus validated the simulation results of FBA.
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Random mutagenesis, such as transposon mutagenesis and overexpression librar-
ies, takes opposite approach to the systematical in silico analysis by randomlymutating
the host organism and, thereby, producing a wide range of mutants. Since a large
number of mutants must be screened for their improved phenotypes, smart screening
system is essential. This approach is particularly beneficial and complementary to the
in silico analysis because it can createmutants that cannot be predictedwith the current
techniques [78]. When coupled with global in silico metabolic analysis, this method
becomes powerful for identifying targets for strain improvement [61]. Furthermore, it
allows the dissection of critical subnetworkswithin the cell and a deeper understanding
of that network, such as regulatory networks. By investigating how product formation
correlates with these regulatory networks, putative molecular interactions may be
inferred and examined in subsequent perturbations.

The metabolism of a living organism is controlled by not only mass balances but
also various regulatory mechanisms such as transcriptional, translational, and allo-
steric regulations. By the incorporation of regulatory mechanisms, conditional
activation and inactivation of metabolic networks can be mimicked, and optimal
metabolic distributions can be obtained for different environmental conditions. So far,
this has been achieved by incorporating transcriptional regulation into anE. coliMFA
model based on Boolean logic [79–81]. With the inclusion of the transcriptional
regulatory mechanisms, the accuracy of the MFA results increased to match experi-
mental data better. Although this Boolean rule has been successfully combined with
stoichiometric analysis, there is an inherent limitation in this method as the gene
expression is somewhat stochastic and is not distinctive on-and-off type phenomenon
in the real biological system [82,83]. In this context, probabilistic graphical models
have been employed to model such regulatory networks, but its integration with a
genome-scale metabolic model remains to be an open problem [83,84].

10.6 CONCLUSIONS AND FUTURE PROSPECTS

In this chapter,wehavedescribed theprocesses for the reconstructionof genome-scale
in silico metabolic network using the genomic information and the applications of
these models. These genome-scale metabolic networks are being applied to various
fields.When combinedwithmetabolic engineering, the genome-scale network can be
utilizedas a fundamental platform to identifykey steps of bioproduct productionunder
different conditions.

However, the construction of the metabolic network is by no means complete.
Limitations on the network from the insufficient knowledge on the genetic character-
istics of the genome create missing information such as gaps in the network. To
complement the incompleteness of the model, experimental data should be suffi-
ciently supported. In the post genomic era, the high-throughput omics technologies
including transcriptomics, proteomics, fluxomics using 13C-labeling flux analysis,
and metabolomics can be efficiently used to validate the genome-scale model at least
in a qualitative manner. For instance, simulation results (fluxes of biochemical
reactions) of a genome-scale model can be compared with the transcriptome data
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to confirmwhether the correspondinggenes are expressed in the transcriptomeprofile.
Likewise, proteome and metabolome profiles can be compared with the simulation
results and used to generate further constraints. At present, these constraints are rather
on-and-off type (e.g., the flux is set to be zero if there is no transcription of the gene
encoding the enzyme carrying out that reaction). It is expected that an efficient
algorithm will be developed for integrating the changing levels of various omics data
in a quantitativemanner duringMFA. Such upgrade ofmodeling and simulation based
on the integrationofomicsdatawill reveal themetabolic and regulatory characteristics
more realistically and help designing strategies for the future experiments aiming at
strain improvement.Eventually, all these effortswill lead to the development of virtual
cell factory that can be used to tailor-design strains that are capable of producing
various useful materials for human life.
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