
39

This chapter is concerned with applied mathematics. As with all the chap-
ters in Part II, there are several sections: overview several specific techni-
cal topics, illustrative open-ended problems, and, open-ended problems. 
The purpose of the first section is to introduce the reader to the subject of 
applied mathematics. As one might suppose, a comprehensive treatment is 
not provided, although several sections addressing additional specific tech-
nical topics are included. The section contains three open-ended problems; 
the authors’ solutions (there may be other solutions) are also provided. The 
last section contains 45 problems; no solutions are provided here.

2.1  Overview

This overview section is concerned—as can be noted from its title—with 
applied mathematics. As one might suppose, it was not possible to address 
all topics directly or indirectly related to applied mathematics. However, 
additional details may be obtained from either the references provided at 
the end of this Overview section and/or at the end of the chapter.
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Note: Those readers already familiar with the details associated with this 
subject may choose to bypass this overview.

The chemical engineer learns early in one’s career how to use equa-
tions and mathematical methods to obtain exact answers to a large range 
of relatively simple problems. However, these techniques are often not 
adequate for solving real-world problems, although the reader should 
note that one rarely needs exact answers in technical practice. Most real-
world engineering and, to a lesser degree, science applications are inex-
act because they have been generated from data or parameters that are 
measured, and thus represent only approximations. What one is likely 
to require and/or desire in a realistic situation is either an approximate 
answer or one having reasonable accuracy from an engineering point of 
view.

As noted above, the solution to a chemical engineering (or scientific) 
problem usually requires an answer to an equation or equations, and the 
answer(s) may be approximate or exact. Obviously an exact answer is pre-
ferred, but because of the complexity of some equations, exact solutions 
may not be attainable. Furthermore, an answer that is precise may not be 
necessary; for this condition, one may resort to another approach – a solu-
tion that has come to be defined as a numerical method. Unlike the exact 
solution, which is continuous and in closed form, numerical methods pro-
vide an inexact (but often reasonably accurate) solution.

Today’s computers have had a tremendous impact on the chemical engi-
neering profession, including engineering design, computation, and data 
processing. The ability of computers to handle large quantities of data and 
to perform mathematical operations described above at tremendous speeds 
permits the analysis of many more applications and more engineering vari-
ables than could possibly be handled on the slide rule – the trademark of 
chemical engineers (including one of the authors) of yesteryear. Scientific 
calculations previously estimated in lifetimes of computation time are cur-
rently generated in seconds and, in many occasions, microseconds, and in 
some rare instances, nanoseconds [1].

Although the chapter is titled “Applied Mathematics” the material pre-
sented is primarily concerned with numerical methods. This subject was 
taught in the past as a means of providing chemical engineers with ways to 
solve complicated mathematical expressions that they could not otherwise 
solve. A brief overview of the numerical methods below is given to provide 
the chemical engineer (as well as other engineers) with some insight into 
what many of the currently used software packages are actually doing. The 
authors have not attempted to cover all the topics of numerical methods. 
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Topics that traditionally fall in the domain of this subject and receive brief 
treatment include:

1.	 Differentiation and integration;
2.	 Simultaneous linear algebraic equations;
3.	 Nonlinear algebraic equations;
4.	 Ordinary and partial differential equations; and
5.	 Optimization.

Since a detailed treatment of each of the above topics is beyond the scope 
of this presentation, the reader is referred to the literature [2–4] for a more 
extensive analysis and additional information. The remainder of this sec-
tion examines the five topics listed above.

2.2  Differentiation and Integration

Several differentiation methods are available to generate expressions for 
a derivative. One of the authors has provided information in an earlier 
work. Some useful analytical derivatives in engineering calculations are 
also provided [4].

Numerous chemical engineering and science problems require the solu-
tion of integral equations. In a general sense, the problem is to evaluate the 
function on the right hand side (RHS) of Equation 2.1:

	
I f x dx

a

b

= ( )∫ 	 (2.1)

where I is the value of the integral. There are two key methods employed in 
their solution: analytical and numerical. If f(x) is a simple function, it may 
be integrated analytically. For example if f(x)= x2

	
I x dx b a

a

b

= = −∫ 2 3 31
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If, however, f(x) is a function too complex to integrate analytically; (e.g.,  
log[tanh ]ex3 2−( ) ,one may resort to any of the numerical methods available. 
Two simple numerical integrations methods that are commonly employed 
in engineering practice are the trapezoidal rule and Simpson’s rule [4]. 
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2.3 � Simultaneous Linear Algebraic Equations

The chemical engineer often encounters problems that not only con-
tain more than two or three simultaneous algebraic equations but also 
those that can be nonlinear as well. There is, therefore, an obvious need 
for systematic methods of solving simultaneous linear and simultane-
ous nonlinear equations [2,5]. This section will address the linear sets of 
equations; information on nonlinear sets is available in the literature [6].

Consider the following set of n equations:
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where a is the coefficient of the variable x and y is a constant. The above set 
is considered to be linear as long as none of the x-terms are nonlinear, e.g., 
x2

2  or ln x1 . Thus, a linear system requires that all terms in x be linear. The 
system of linear algebraic equations may be set in matrix form:
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Methods of solution available for solving these linear sets of equations 
include:

1.	 Gauss-Jordan reduction;
2.	 Gauss elimination;
3.	 Gauss-Seidel;
4.	 Cramer’s rule; and
5.	 Cholesky’s methods.

Ketter and Prawler [3] provide several excellent illustrative examples.
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2.4  Nonlinear Algebraic Equations

The subject of the solution to a nonlinear algebraic equation is considered 
in this section. Although several algorithms are available in the literature, 
the presentation will key on the Newton-Raphson (NR) method of evalu-
ating the root(s) of a nonlinear algebraic equation.

The solution to the equation

	 f x( ) = 0 	 (2.5)

is obtained by guessing a value for x, i.e., xold, that will satisfy the above 
equation. This value is continuously updated to xnew using the equation (the 
prime represents a derivative) 
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until either little or no change in (xnew – xold) or (xnew – xold)/xold is obtained. 
One can also express this operation graphically (see Figure 2.1). Noting 
that 

f(x)

f(xold)

xoldxnew

Exact solution
Since f(x) = 0

O

Slope = = f’(xold)
df(x)
dx x = xold

Figure 2.1  Newton-Raphson method for nonlinear equations.
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one may rearrange Equation 2.7 to yield Equation 2.8 below. The xnew then 
becomes the xold in the next calculation.
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This method is also referred to as Newton’s Method of Tangents (NMT), 
and is a widely used method for improving a first approximation of a root 
via the aforementioned equation of the form f(x)= 0. 

2.5  Ordinary and Partial Differential Equation

The Runge-Kutta (RK) method is one of the most widely used tech-
niques in chemical engineering practice for solving first-order differential 
equations. For the equation

	
dy
dx

f x y= ( , ) 	 (2.9)

the solution takes the form
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The term h represents the increment in x. The term yn is the solution to the 
equation xn, and yn+1 is the solution to the equation at xn+1 where xn+1 = xn + h.  
Thus, the RK method provides a straightforward means for developing 
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expressions for Δy; i.e., yn+1 – yn, in terms of the function f(x,y) at various 
“locations” along the interval in question.

The RK method can also be applied if the function in question also con-
tains the independent variable or more than one differential equation or to 
treat higher-order differential equations.

Many practical problems in chemical engineering applications involve 
at least two independent variables; i.e., the dependent variable is defined 
in terms of (or is a function of) more than one independent variable. The 
derivatives describing these independent variables are defined at par-
tial derivatives. Differential equations containing partial derivatives are 
referred to as partial differential equations (PDEs).

The three main PDEs encountered in chemical engineering practice are 
briefly introduced below employing T (e.g., the temperature as the depen-
dent variable), t (time) and x,y,z (position) as the independent variables. 
Note that any dependent variable; e.g., pressure, concentration, etc., could 
also have been selected in Equations 2.12 to 2.14 below.

The parabolic equation:
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The elliptical equation:
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The hyperbolic equation:
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The preferred numerical method of solutions of PDEs involve finite differ-
ences [3].

2.6  Optimization

Optimization has come to mean different things to different people. 
However one might offer the following generic definition for many chemical 
engineers: “Optimization is concerned with determining the ‘best’ solution 
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to a given problem”. Alternatively, a dictionary would offer something to 
the effect: “to make the most of… develop or realize to the utmost extent…
often the most efficient or optimum use of…”. This process or operation in 
chemical engineering practice is required in the solution of problems that 
involve the maximization or minimization of a given function.

A significant number of optimization problems challenge the practic-
ing chemical engineer. The optimal design of process equipment as well as 
industrial processes has been an ongoing concern to the practicing chemi-
cal engineer, and for some, might define the function and goal of applied 
engineering. The practical attainment of an optimum design is generally a 
result of factors that include mathematical analysis, empirical information, 
and both the subjective and objective experiences of the chemical engineer.

In a general sense, optimization applications can be divided into four 
categories:

1.	 The number of independent variables involved;
2.	 Whether the optimization is “constrained”;
3.	 Time-independent systems; and
4.	 Time-dependent systems.

In addition, if no unknown factors are present, the system is defined as 
deterministic, while a system containing experimental errors and/or other 
random factors is defined as stochastic. 

Formal optimization techniques have as their goal the development of 
procedures for the attainment of an optimum in a system that can be char-
acterized mathematically. The mathematical characterization may be:

1.	 partial or complete;
2.	 approximate or exact, and/or;
3.	 empirical or theoretical.

The resulting optimum may be a final implementable design or a guide to a 
practical design and a criterion by which practical designs are to be judged. 
In either case, the optimization techniques should serve as an important 
part of the total effort in the design of the units, structure, and control of 
not only equipment but also industrial process systems.

Optimization is qualitatively viewed by many as a tool in decision-mak-
ing. It often aids in the selection of values that allow the chemical engineer 
to better solve a problem. In its most elementary and basic form, one may 
say—as noted above—that optimization is concerned with the determina-
tion of the “best” solution to a given problem. As noted, optimization is 
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required in the solution of many general problems in chemical engineering 
and applied science—in the maximization (or minimization) of a given 
function(s); in the selection of a control variable to facilitate the realization 
of a desired condition; in the scheduling of a series of operations or events 
to control completion dates of a given project; and, in the development of 
optimal layouts of organizational units within a given design space, etc. [4]

The optimization problem has been described succinctly by Aris [7] 
as “getting the best you can out of a given situation.” Problems amenable 
to solution by mathematical optimization techniques have these general 
characteristics:

1.	 One or more independent variables whose values must be 
chosen to yield a viable solution; and

2.	 Some measure of “success” is available to distinguish 
between the viable solutions generated by different choices 
of these variables.

Mathematical optimization techniques are used for guiding the problem 
solver to that choice of variables that maximizes the goodness measure 
(profit, for example) or that minimizes some badness measure (cost, for 
example). 

One of the most important areas for the application of mathematical 
optimization techniques is in engineering design. Applications include [8]:

1.	 The generation of the “best” functional representations (e.g. 
curve fitting);

2.	 The design of optimal control systems;
3.	 Determining the optimal height (or length) of a mass trans-

fer unit;
4.	 Determining the optimal diameter of a unit;
5.	 Finding the best equipment materials of construction;
6.	 Generating operating schedules; and
7.	 Selecting operating conditions. 

A detailed and expanded treatment of applied mathematics is available in 
the following two references:

1.	 R. Ketter and S. Prawler, Modern Methods of Engineering 
Computations, McGraw-Hill, New York City, NY, 1969 [3].

2.	 L. Theodore, Chemical Engineering: The Essential 
Reference, McGraw-Hill, New York City, NY, 2014 [9].
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2.7  Illustrative Open-Ended Problems

This section provides open-ended problems. However, solutions are pro-
vided for the three problems in this section in order for the reader to 
hopefully obtain a better understanding of these problems, which differ 
from the traditional problems/illustrative examples. The first problem is 
relatively straightforward, while the third (and last problem) is somewhat 
more difficult and/or complex. Note that solutions are not provided for the 
45 open-ended problems in the next Section.

Problem 1: Provide a general description in layman terms of optimization 
methods.

Solution: The optimization problem has been described by some (see 
pervious section) as “getting the best you can out of a given situation.” 
Problems amenable to solution by mathematical optimization techniques 
are those that generally have one or more independent variables whose 
values must be chosen to yield a viable solution; and possess some measure 
of success to distinguish between the many viable solutions generated by 
different choices of these variables. Mathematical optimization techniques 
are used for guiding the problem-solver to that choice of variables that 
maximizes the approximation measure (profit, for example) or that mini-
mizes some approximation measure (cost, for example). In addition, one 
of the most important areas for the application of mathematical optimiza-
tion techniques is in engineering design; and, these methods have wide 
applicability for large classes of problems involving the search for extreme 
functional values. Applications vary from the generation of “best” func-
tional representations (curve fitting, for example) to the design of optimal 
operating conditions.

Problem 2: Define the Laplace Transform and provide several transforms 
of some elementary functions.

Solution: Assume F(t) is a function of t specified for t > 0. The Laplace 
transform of F(t) is usually denoted by L[F(t)] and is defined by 

	
L F t f s e F t dtst( )  = ( ) = ( )

∞
−∫

0

	 (2.15)



Applied Mathematics  49

where the parameter t is usually considered to be real; however, it can also 
be complex. In addition, L[F(t)] exists if it converges for some value of s; 
otherwise it does not exist. 

The Laplace transforms of some simple functions are provided in 
Table 2.1. The reader may choose to refer to Chapter 9, Illustrative open-
ended Problem 1.

Problem 3: Discuss the subject of regression analysis as it applies to scatter 
diagrams.

Solution [10]: It is no secret that many statistical calculations are now per-
formed with the help of spreadsheets or packaged programs. This state-
ment is particularly true for regression analysis. Often, the use of packaged 
programs reduces or eliminates one’s fundamental understanding of 
regression analysis. 

Chemical engineers encounter applications that require the need to 
develop a mathematical relationship between data for two or more variables. 
For example, if y (a dependent variable) is a function of or depends on x (an 
independent variable) i.e., y = f(x), one may be required to express this (x,y) 
data in equation form. This process is referred to as regression analysis, and 

Table 2.1  Laplace Transforms of Simple Functions
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the regression method most often employed is the method of least squares. 
An important step in this procedure—which is often omitted—is to prepare 
a plot of y vs. x. The result, referred to as a scatter diagram, could take on any 
form. Three such plots are provided in Figure 2.2 (a to c).

The first plot (a) suggest a linear relationship between x and y; i.e.,

	 Y a a Xo= + 1 	 (2.16)

The second graph (b) appears to be represented by a second order (or para-
bolic) relationship:

	 Y a a X a Xo= + +1 2
2 	 (2.17)

(a)

(b)

(c)
XMXM XL

X

X

Y

Y

Y

X

Figure 2.2  Scatter diagrams: (a) linear relationship, (b) parabolic relationship, and 
(c) dual-linear relationship.  
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The third plot (c) suggests a linear model that applies over two different 
ranges; i.e., it could represent the data: 

	 Y a a X X X Xo o M= + < <1 ; 	 (2.18)

and

	 Y a a X X X Xo M L= + < <' '1 ; 	 (2.19)

This multiequation model finds application in representing adsorption 
equilibria, multiparticle size distributions, quantum energy relationships, 
etc. In any event, a scatter diagram and individual judgment can suggest an 
appropriate model at an early stage in the analysis.

2.8  Open-Ended Problems

This last Section of the chapter contains open-ended problems as they 
relate to applied mathematics. No detailed and/or specific solution is pro-
vided; that task is left to the reader, noting that each problem has either a 
unique solution or a number of solutions or (in some cases) no solution 
at all. These are characteristics of open-ended problems described earlier.

There are comments associated with some, but not all, of the problems. 
The comments are included to assist the reader while attempting to solve 
the problems. However, it is recommended that the solution to each prob-
lem should initially be attempted without the assistance of the comments.

There are 45 open-ended problems in this Section. As stated above, 
if difficulty is encountered in solving any particular problem, the reader 
should next refer to the comments if any are provided with the problem. 
The reader should also note that the more difficult problems are generally 
located at or near the end of the Section.

1.	 Describe the early history associated with the general sub-
ject of mathematics.

2.	 Discuss the recent advances in applied mathematics.
3.	 Select a refereed published article on applied mathematics 

from the literature and provide a review.
4.	 Provide some normal everyday domestic applications 

involving the general topic of mathematics.
5.	 Develop an original problem in applied mathematics that 

would be suitable as an illustrative example in a book.
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6.	 Prepare a list of the various books that have been written 
on applied mathematics. Select the three best and justify 
your answer. Also select the three weakest books and jus-
tify your answer.

7.	 Describe the term “machine language program” in layman 
terms.

8.	 Chemical engineers are aware that most numerical calcula-
tions are, by their very nature, inexact. The errors are pri-
marily due to one of three sources: 
•	 inaccuracies in the original data;
•	 lack of precision in carrying out elementary operations; 

and
•	 inaccuracies introduced by approximate method(s) of 

solution.
Of particular significance are the errors due to the round-
off and the inability to carry more than a certain number 
of significant figures in a given calculation. Terms such as 
absolute error, relative error, and truncation error have a 
very real meaning. And frequently, an analysis parallel to 
this question must be carried out to establish the reliability 
of a given answer. Describe the above four italicized terms 
in layman terms.

9.	 Error due to roundoff was not considered to be too dif-
ficult when calculations were carried out by hand or by 
desk calculators. Added places and/or error terms could 
be introduced with little additional work. However, there 
is evidence that available elementary “error theories” do 
not seem to be adequate for estimation, with any real 
degree of certainty, of the roundoff and truncation errors 
that result when modern high-speed digital computers 
are used. Develop an improved method to quantify errors 
that can arise in those numerical calculations.

10.	 There are a host of topics that reside under the applied 
mathematics umbrella. List these topics in order of impor-
tance and justify your answer.

11.	 Discuss the difference(s) between analytical mathemat-
ics and numerical methods. Which is most important? 
Explain your choice.

12.	 Discuss the difference between analog and digital computers.
13.	 Provide, in technical detail, the various methods for solv-

ing simultaneous linear algebraic equations.
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14.	 Provide, in technical detail, the various methods for solv-
ing nonlinear equations.

15.	 Provide, in technical detail, the various methods for solv-
ing ordinary differential equations.

16.	 Provide, in technical detail, the various methods for solv-
ing partial differentiation equations.

17.	 Provide, in technical detail, the various methods for solv-
ing optimization problems.

18.	 Refer to Problem 2 in the previous section. Provide a short 
paragraph describing how differential equations can be 
solved by intuition.

19.	 Refer to Problem 2 in the previous section. Provide a short 
paragraph describing how differential equations can be 
solved by analytical methods.

20.	 Refer to Problem 2 in the previous section. Provide a short 
paragraph describing how differential equations can be 
solved by analytical numerical methods.

21.	 Refer to Problem 2 in the previous Section. Discuss how 
separation of variables is employed in the analytical solu-
tion of differential equations.

22.	 Refer to Problem 2 in the previous Section. Discuss how 
the Fourier Series is employed in the analytical solution of 
differential equations.

23.	 Refer to Problem 2 in the previous Section. Discuss how 
Bessel functions are employed in the analytical solution of 
differential equations.

24.	 Refer to Problem 2 in the previous Section. Discuss how 
the Error function is employed in the analytical solution of 
differential equations. 

25.	 A $10,000 penalty is imposed on an oil service company 
every time the sulfur (S) content of a 20,000-gallon deliv-
ery of oil to an industrial facility is in excess of one half 
percent. Comment on whether the oil company should be 
penalized if the percent sulfur content is:
•	 0.5
•	 0.55
•	 0.546
•	 0.545
•	 0.51
•	 0.505
•	 0.50001
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26.	 Use any suitable method to linearize the following equations

	 ae lnx bxy = + 	 (2.20)

	
lny a b

x
c
x

= + +2 	 (2.21)
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−
1

ln( )
	 (2.22)

27.	 Fluid is flowing from a storage tank 10 ft in diameter. The 
drop in the tank level was observed at various times as fol-
lows (see Table 2.1). Develop an equation describing the 
instantaneous flow rate in gal/min as a function of time, by 
any graphical method.

28.	 Refer to the previous problem. Select an equation to 
describe the displacement as a function of time, and use 
this equation to solve the problem.

29.	 Develop another (and hopefully improved) method of 
numerically evaluating an integral.

30.	 Develop another (and hopefully improved) method of 
numerically evaluating a derivative.

31.	 Develop another (and hopefully improved) method of 
solving an ordinary differential equation.

32.	 Develop another (and hopefully improved) method of 
solving a nonlinear algebraic equation.

Table 2.1  Storage Tank Problem

Displacement 
from top, ft

Time, min

0.0 0

3.9 30

5.9 60

7.5 90

8.9 120
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33.	 Develop another (and hopefully improved) method of 
solving a set of linear algebraic equations.

34.	 Develop another (and hopefully improved) method of 
solving an optimization problem.

35.	 Monte Carlo simulation is a procedure for mimicking 
observations of a random variable that permits verification 
of results that would ordinarily require difficult mathemat-
ical calculations or extensive experimentation. The method 
normally uses computer programs called random number 
generators. A random number is a number selected from 
the interval (0,1) in such a way that the probabilities that 
the number comes from any two subintervals of equal 
“length”. For example, the probability that the number is in 
the subinterval (0.1, 0.3) is the same as the probability that 
the number is in the subinterval (0.5, 0.7). Thus, random 
numbers are observations on a random variable x having 
a uniform distribution in the interval (0,1). This means 
that the probability distribution function (PDF)—defined 
in the Probability and Statistics Chapter in Part II—of x is 
specified by 

	 f(x) = 1;    0 < x < 1	 (2.23)

	 f(x) = 0;   elsewhere	 (2.24)

The above PDF assigns equal probability to subintervals of 
equal length in the interval (0,1). Using random number 
generators, Monte Carlo simulation can generate observed 
values of a random variable having any specified PDF. For 
example, to generate observed values of t, the time to fail-
ure, when t is assumed to have a pdf specified by f(t), one 
first uses the random number generator to generate a value 
x between 0 and 1. The solution is an observed value of the 
random variable t having a PDF specified by f(t) [8].
  The above provides a technical definition of Monte 
Carlo simulation. Your task is to describe the Monte Carlo 
simulation in layman terms.

36.	 Is Monte Carlo simulation a topic that should be addressed 
as a mathematics operation?
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37.	 Describe the various searching schemes that are employed 
in optimization.

38.	 Develop a general procedure to employ to determine the 
optimum operating conditions in a plant.

39.	 Develop an optimum design for a new plant.
40.	 Develop the optimum design of a plant retrofit.
41.	 Describe advances in numerical methods this century.
42.	 Discuss the role the weighted-sum method of analysis in 

optimization studies.
43.	 In an attempt to mathematically describe the behavior of 

an operating system, a young engineer discovers that he/
she has generated six equations that contain five variables. 
Suggest some simple approaches that the youngster can 
employ to best describe the system of concern.

44.	 In an attempt to mathematically describe the behavior of 
an operating system, the same young engineer discovers 
that he/she has generated five equations that contain six 
variables. Suggest some simple approaches that the young-
ster can employ to best describe the system of concern.

45.	 Develop a simplified manual procedure (not employing a 
computer) to generate, for any number, its:
•	 square root
•	 cube root
•	 nth root
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