
Chapter 3

Modeling and SysML Modeling

3.1 INTRODUCTION

This chapter serves two major purposes: describes models and their role in the
engineering of systems and introduces several modeling techniques associated
with SysML. The modeling techniques introduced in this chapter are use case
diagrams, sequence diagrams, IDEF0 (Integrated Definition for Function
Modeling), enhanced Function Flow Block Diagrams (EFFBDs), block dia-
grams, and parametric diagrams. IDEF0 is a process modeling technique that is
not part of SysML but will be utilized throughout this book.

Models, abstractions of reality, are critical in the engineering of systems.
These models start as very high level representations that address what needs
the system should meet and how, then progressively define how the system will
meet these needs. These models contain increasingly more mathematical and
physical details of the system as the design portion of the development phase
ends. The various engineering disciplines create even more detailed mathema-
tical and physical representations of the configuration items (CIs) before the
final prototype of each CI is produced for testing and integration. During the
qualification of the system design, these CI prototypes are tested with a test
system that itself is comprised of many models of the system’s components,
other systems and the context with which the system interacts, models of
scenarios that depict how the system will be used, and analysis and simulation
models for creating and analyzing the test results. In fact, models are so
pervasive in the engineering of systems that engineers must always remind
themselves not to confuse reality with the models of reality that are being
created, tested, and used.

The Engineering Design of Systems: Models and Methods, Second Edition. By Dennis M. Buede
Copyright r 2009 John Wiley & Sons, Inc.

73

Every modeling technique is a language used to represent some part of
reality so that some question can be answered with greater validity than could
be obtained without the model. All languages have a set of symbols or signs,
known as semantics, that are used like we use letters and numbers to form
expressions. Similarly, every language has a syntax that defines proper ways of
combining the symbols to form thoughts and concepts. Section 3.2 summarizes
the descriptive versus normative purposes of models and then categorizes
models as physical, quantitative, qualitative, and mental.

SysML is a modeling language that is a modification of the Unified
Modeling Language (UML) for software engineering. SysML matches some-
what closely with the Traditional Top-Down Systems Engineering (TTDSE). In
Section 3.3 we will introduce SysML, including use case and sequence diagrams
for high level metasystem interactions, IDEF0 for process or activity modeling,
EFFBDs for dynamic behavior modeling, and block diagrams for the struc-
tural modeling and parametric models for modeling equations. Note SysML
also addresses requirements but uses textual representations of the require-
ments. Chapter 6 of this text addresses textual representations of requirements.

Use case diagrams capture the various systems that comprise the meta-
system, one of which is the system of interest. The use case diagram also
identifies a number of scenarios in which the systems in the use case diagram
interact during the relevant life cycle phase of the system of interest. Each of
these scenarios is then defined in more detail in a sequence diagram. Section 3.4
defines these diagrams and gives examples.

Process models address how outputs are transformed from inputs via some
function, activity, or task. There are numerous process modeling techniques in
use today, one of which is IDEF0. Other process modeling techniques (data
flow diagrams and N2 charts) are described in Chapter 12. Process models are
graphical representations that provide qualitative descriptions to explain how
inputs are transformed into outputs. These process models can be used at both
shallow and detailed levels of abstraction. IDEF0, presented in Section 3.5, is a
popular modeling technique because it has a rich and standardized semantics
and syntax.

Function flow block diagrams (FFBDs) and enhanced FFBDs (EFFBDs)
are part of SysML for capturing dynamic behavior in a representation that can
be simulated. EFFBDs are discussed in Section 3.6.

Block diagrams are used within SysML to capture the interconnections
between pairs of components within the physical architecture so that interfaces
between these pairs of components can be defined. Section 3.7 presents this
material.

Requirements diagrams are introduced in Section 3.8. Parametric diagrams,
used to capture variable relationships in systems of equations for simulating
system performance, are discussed in Section 3.9.

Exercise Problem 3.1 introduces a process model of the TTDSE process using
IDEF0 model. Selected pages of this IDEF0 model will be used in Chapters 6
through 11 to describe the methods that comprise this engineering process.

74 MODELING AND SysML MODELING

3.2 MODELS AND MODELING

A model is any incomplete representation of reality, an abstraction. Models can
be physical representations of reality. A subscale aircraft is used in a wind
tunnel to test the aerodynamics of the real aircraft; this subscale aircraft does
not contain the instrument panel used by the pilot or the seats in which
passengers sit because they are not relevant (we think) for testing the
aerodynamics of the aircraft. Similarly, models can be mathematical. A random
number generator can be used to model the propensity of a coin to turn up
heads or tails in a flip. Similarly, we can develop either an analytic or a
simulation model of an aircraft’s aerodynamics or an information system’s
response to user inputs. The wind tunnel data taken from the physical model of
the aircraft can be used to refine the simulation data. The simulation data can
be used to guide additional wind tunnel tests. Qualitative models are also quite
useful. The set of requirements for a system is an example of a qualitative model
that serves as a model of the system’s performance and capabilities. Finally,
each of us has a number of mental models that we use in everyday life.
However, in every case the essence of a model is the question or set of questions
that the model can reliably answer for us.

Before describing the types of models, discussing the types of questions that
can be answered is important. The questions can be divided into three
categories: descriptive (or predictive), normative, and definitive. A definitive
model addresses the question of how should an entity be defined; this is the
major category of questions that will he addressed in this book. The focus is
building a definition of how the system is being designed, in terms of its inputs
and outputs, functions, and resources. A descriptive model attempts to predict
answers to questions for which the truth may or may not be obtained in the
future. Descriptive models are the most commonly used in science and
engineering. Executable models, which will be discussed in Chapter 12, are
descriptive models because they are predicting the behavior of the system’s
design in specific situations given the modeled design definition of the system.
Normative models address how individuals or organizational entities ought to
think about a problem and guide decision making. A normative model for
decision making, in particular deciding about the engineering of a system, is
developed in Chapter 13.

Every modeling technique requires a language to establish a representation
of reality. Models should be used to provide an answer to one or more
questions; these answers should provide greater validity or insight than is
possible without the model. Any language has semantics, a set of symbols or
signs, which form the basis of representations in the language. In addition,
every language has a syntax that defines proper ways of combining the symbols
to form thoughts and concepts.

Definitive models require a rich language, both in terms of semantics and
syntax, since these models are used to establish an interpretation of some aspect
of reality and communicate that interpretation to a broad range of people and

3.2 MODELS AND MODELING 75

possibly computers. This language must be understandable to its audience.
Unfortunately, richness and understandability often conflict with each other.
That is, making a modeling language richer usually makes it less under-
standable. A third aspect, formality, is useful for proving that certain
characteristics exist or do not exist; formality tends to conflict with both
richness and understandability.

Descriptive models are measured by their power or richness for addressing a
wide range of problems, understandability to both wide and narrow audiences,
and accuracy or precision with which they can be used to define the relevant
entity. Descriptive models can sometimes be tested as to their predictive accuracy
in various situations. This predictive accuracy must be understood by those using
the descriptive model because the ability to predict accurately in the situation in
which the model is being used cannot be known exactly. Nonetheless, talking
about descriptive models as being right or wrong is fruitless—all models are
wrong. Rather, the model’s usefulness in terms of predictive accuracy in general
and the cost of building and using the model are very relevant.

Normative models, on the other hand, cannot be tested but are judged on
their understandability and appeal across all disciplines in which they can be
used. A normative model for making decisions cannot be tested because the
world can never be examined in the same conditions with and without the use
of the normative model. Rather, the normative model is tested by decision
makers based upon the model’s ability to reflect the intuitions of the decision
makers or provide logical arguments that refute this intuition.

One possible taxonomy of models is shown in Table 3.1. This taxonomy
begins by breaking models into physical, quantitative, qualitative, and mental
models. A physical model represents an entity in three-dimensional space
and can be divided into full-scale mock-up, subscale mock-up, breadboard,
and electronic mock-up. Full-scale mock-ups are usually used to match
the interfaces between systems and components as well as to enable the
visualization of the physical placement of elements of the system. The design
of the Boeing 777 replaced the physical mock-ups with a very detailed three-
dimensional electronic mock-up. Subscale models are commonly used to
examine a specific issue such as fluid flow around the system. A breadboard
is a board on which electronic or mechanical prototypes are built and tested;
this phrase was legitimized in dictionaries in the mid-1950s but is not used as
much now.

Quantitative models provide answers that are numerical; these models can be
either analytic, simulation, or judgmental models. Simulation models can be
either deterministic or stochastic, as can analytic and judgmental models.
Similarly, these models can be dynamic (time varying) or static snapshots (e.g.,
steady state). An analytic model is based upon an underlying system of
equations that can be solved to produce a set of solutions; these solutions
can be developed in closed form. Simulation methods are used to find a numeric
solution when analytic methods are not realistic, such as when friction in some
form is introduced as an element of the model. When the equations involve the

76 MODELING AND SysML MODELING

movement through time of a number of variables, we say the simulation is
dynamic, involving differential or difference equations. However, a simulation
need not involve time; the model may address spatial issues. Simulations that
include uncertainty are often called ‘‘Monte Carlo’’ simulations; Monte Carlo
simulations involve the repetitive solution of the same set of equations based
upon different samples of the underlying probability distributions for the
uncertainty specified in the equations. Judgmental models provide representa-
tions of real-world outcomes based solely on expert opinions. Explicit judg-
mental models are not used as often as the other types discussed here, but many
analysts have found them to be an extremely useful precursor to other
quantitative modeling activities.

Qualitative models provide symbolic, textual, or graphic answers. Symbolic
models are based on logic or set theory, samples of which are provided in
Chapter 4. Textual models are based in verbal descriptions; many models of the
social sciences use textual models in which a model is described in one or more
paragraphs. Many requirements documents in systems engineering are exam-
ples of textual models of the system’s ultimate performance. Graphical models
use either elements of mathematical graph theory or simply artistic graphics to
represent a hierarchical structure, the flow of items or data through a system’s
functions, or the dynamic interaction of the system’s components. This use of
artistic graphics as a modeling approach is often given the pejorative name of
‘‘view graph’’ engineering. Most engineers view graphical models as one step
above textual models. If graphical models can be based on mathematical graph
theory, then these qualitative models can be powerful additions to the systems
engineers’ toolkit.

Finally, we need to address the mental models that we all carry around inside
of us as abstractions of thought. The concept of a mental model arose in at least

TABLE 3.1 Taxonomy of Models

Model Categories Model Subcategories Typical Systems Engineering
Questions

Physical Full-scale mockup How much?

Subscale mock-up How often?

Breadboard How good?

Do they match?

Quantitative Analytic How much?

Simulation How often?

Judgmental How good?

Qualitative Symbolic What needs to be done?

Textual How well?

Graphic By what?

Mental Explanation All of the above!

Prediction

Estimation

3.2 MODELS AND MODELING 77

three separate communities relatively independently. Craik [1943] introduced
mental models to cognitive psychology as our foundation for reason and
prediction. Little was done with Craik’s concept of a mental model until the
early 1980s when Johnson-Laird [1983] and Gentner and Stevens [1983]
published two books on the subject. The research in cognitive psychology
has moved from the question of whether people do have mental models to the
question of how best to capture and utilize these mental models for educational
and other pursuits. The second field in which mental models became popular
and useful was that of manual control, comprised of both psychologists and
engineers. Early authors in the manual control field [Veldhuyzen and Stassen,
1977; Jagacinski and Miller, 1978; Rasmussan, 1979] addressed the use of
mental models by system operators for controlling and predicting system
performance. The third field to adopt mental models [Alexander, 1964;
Pennington, 1985] is our field of engineering and architectural designers.
Alexander [1964] discussed mental pictures as representations of the problem
definition and alternate solutions. Do you have a mental model of the street
network in your neighborhood, of your residence?

Engineers need to develop a mental model of the system on which they are
working to be successful. Modelers who are developing qualitative, quantita-
tive, or physical models clearly have to develop a mental model of the model
they are developing. The advantage of these non-mental models is that there is
a much clearer communication mechanism; mental models fall down in benefit
in terms of enabling communication among people. People engaged in the same
conversation may have a very different mental model but due to the imprecise
nature of natural language they often feel that they can agree with each other at
the end of a conversation even though their models of reality are quite different.

SIDEBAR 3.1

It is tempting to think that a quantitative model is more objective than a
mental model and, by extension, that a more complex quantitative model
is more objective than a less complex quantitative model. Certainly
more complex models are more explicit than less complex models. Also
the data inputs to these complex models are more specific and objective
appearing. However, we must always remember that any quantitative
model is developed via a mental process of one or more people and is
the product of their mental models. Therefore, it is a mistake to ascribe
objectivity to models. Complex mathematical models often have sub-
jective assumptions throughout their equations and data.

This book emphasizes the qualitative aspects of systems engineering. As a
result, this chapter introduces the qualitative modeling approaches in SysML

78 MODELING AND SysML MODELING

and IDEF0. The next two chapters introduce the mathematics of set theory and
graph theory, which should provide some mathematical underpinnings and
limitations of these modeling approaches. Chapter 13 introduces decision
analysis as the quantitative method for framing the design decisions discussed
throughout this book.

The purpose in developing a model is to answer a question or set of questions
better than one can without the model. Often models are used to check each
other; non-mental models should always be used to check mental models. This
checking process is a two-way street; each model can be assumed to have
certain strengths (answers known to be valid within some degree of accuracy or
precision). These strengths can be used to help verify the abilities of the other
model. Ultimately, a model is developed to provide answers in an area for
which we feel we cannot get reliable answers any other way. However, we are
commonly looking for more than just an answer; we want to understand ‘‘why’’
the answer is what it is, that is, obtain insight into how the real world works.
Qualitative models are typically created to achieve agreement among indivi-
duals (shared visions) and to communicate that agreement to other people.
Quantitative and physical models are better mechanisms to provide insight.

The more specific a question or set of questions is that a model has to answer;
the easier it is to develop a model that can be useful. Models that are expected to
answer a wide range of questions or generic questions well are the most difficult
to develop and the least likely to provide insight into the logic for the answer.
The easiest questions to answer are those for which we are looking for a relative
comparison of alternate options: Which aircraft design weighs the most? How
much more does one design weigh than another? The hardest questions involve
providing an absolute answer: How much does this aircraft weigh?

The most effective process for developing and using a model is to begin by
defining the questions the model should be able to answer. (This is analogous to
defining the requirements for a system.) Then the model should be developed,
tested, and refined. The model should be validated, shown to be answering the
right questions. Finally, there should be some verification process to show that
the model is providing the right answers for known test cases. Now we are
ready to use the model for unknown test cases.

Often, there may be existing models that we believe are appropriate for use.
In this case we should again begin by defining the questions to be answered.
Then we can decide which model to use, perhaps with some enhancements.
There should again be a period of verification for the chosen model in relevant
cases before usage begins.

The incorrect approach to modeling is to begin by building or revising a
favorite model before we know what questions need to be answered. People
enthralled with the modeling process rather than the question answering
process employ this approach far too often. Modeling enthusiasts are more
interested in the intrinsic properties of the model than with the model’s ability
to answer important questions. Note the more complex the model, the harder it
is to obtain that insight we are seeking as to why the answer is what it is. This is

3.2 MODELS AND MODELING 79

why many experienced model builders opt for the most parsimonious (simplest)
model that will provide a reasonably accurate answer.

Before using a model, it is important to establish the validity of the model.
Model validity is difficult to establish and must first be defined. Recall from
Chapter 1 that a system’s validity addresses whether we have built the right
system. By extension model validity concerns whether we have built the right
model. Validity of a model has several dimensions: conceptual, operational,
and data. Conceptual validity addresses the model representation, that is, the
theories employed, the assumptions made. Conceptual validity addresses
whether the model’s structure is appropriate to answer the questions being
asked. For a qualitative model conceptual validity is the most important. For a
quantitative model the operational validity is key; that is, does the model’s
output behavior represent that of the real world for the questions being asked.
Finally, data validity addresses whether the appropriate inputs were employed
in building, testing, and using the model. Data validity for a qualitative model
addresses whether the right individuals were involved in creating the model and
whether they obtained access to the best set of information about the real world
during the creation process. For quantitative models, the selection of a
modeling technique may ride on what type of information will be available
for running the model. When input data is scarce, judgmental models are often
selected. In summary, establishing a model’s validity has to be tied to the
model’s ability to answer the questions that the model was designed to address.

Models have many potential uses in systems engineering: creation of a shared
vision, specification of the shared vision, communication of the shared vision,
testing the shared vision, estimation or prediction of some quantitative measure
associated with the system and selection of one design option over other design
options. The shared vision could be the inputs and outputs of the system, the
system’s requirements, the system’s architecture, or the test plan for validating
the system’s design. As can be seen, all but the last two uses involve a qualitative
activity. This is the basis for emphasizing the use of qualitative models as adjuncts
to our mental models in this book. Quantitative models remain important, but
qualitative models are not given their due value in engineering.

3.3 SysML MODELING

In Table 1.5 there were four topic areas defined for SysML modeling
[Friedenthal et al., 2008]: structure, behavior, interaction, and requirements.
This is the decomposition provided by the Object Management Group, Inc.
(OMG), which produced the specification for SysML.

Another way of viewing these categories that is more consistent with the
organization of this book would be:

1. meta-system modeling with use case and associated sequence diagrams as
well as requirements relations with requirements diagram

80 MODELING AND SysML MODELING

2. behavior modeling of the system’s activities or processes (including both
static and dynamic modeling) using activity and state machine diagrams

3. structural modeling of the system’s components including block defini-
tion and internal block diagrams

4. parametric modeling of performance characteristics of the system

5. the process and structure of that the systems engineering team is taking
using package diagrams

Section 3.4 will introduce use case diagrams and sequence diagrams. This
material is presented in terms of the very important modeling of the system’s
interaction with other systems (or the meta-system) that is often not done.
Chapter 6 will revisit this material and provide more context about how to use
these diagrams.

Systems and software engineers have devised many ways to model processes
or activities, at all levels of granularity—meta-system, system, through
components. The activity or process modeling category within SysML includes
state machines, a new modeling technique that combines some properties of
Petri nets (see Chapter 12) and control flow diagrams as well as EFFBDs. Not
directly mentioned are the standard static, time-lapsed representations of
dynamic processes such as IDEF0, data flow diagrams, and N2 charts. This
text will continue to stress the value of static modeling techniques such as
IDEF0 as a stepping stone for getting to the more complex behavior models, as
well as for capturing the inputs and outputs that are passed from function to
function in the behavioral model. The process modeling approach primarily
employed in this book is IDEF0, which is described in Section 3.5. The SysML
framers did include state–machine models and activity diagrams (otherwise
called extended function flow block diagrams or EFFBDs). State-machine
models are discussed in Chapter 12. EFFBDs are described in detail here in
Section 3.6. Table 3.2 provides a categorization of process models into static
and dynamic, as well as into SysML versus non-SysML approaches. Chatper 12
covers most of the techniques not addressed here in Chapter 3. Chapter 7 will
return to this material and provide a process for building these types of models.

TABLE 3.2 Representation of process modeling techniques

Static View Dynamic View

SysML – State machines

Activity diagrams

EFFBDs

Non-SysML Data flow diagrams FFBDs

Control flow diagrams Behavior diagrams

N2 diagrams Petri Nets

IDEF0 diagrams Statecharts

ROOMcharts

3.3 SysML MODELING 81

Structural modeling diagrams (block definition and internal block) are
described and illustrated in Section 3.7. These diagrams have a long history
in systems engineering and have finally been formally defined and standardized
by SysML. Chapter 8 will provide more detail on how to build these kinds of
models.

Systems engineers have historically built many types of performance
models of their system design so as to estimate final performance capabilities
of the design prior to fabrication of the initial prototypes. Chapter 9 introduces
the types of performance modeling commonly used in the engineering of
systems.

3.4 META-SYSTEM MODELING

In order to describe a modeling language we have to describe the way in which
the language is used to communicate to its readers/listeners. To describe a
language we need to identify the semantics (signs and symbols) and the syntax
(composition of signs and symbols) of that language. The following definitions
for semantics and syntax are taken from The American Heritage Dictionary
[Berube, 1991].

Semantics: study of relationships between signs and symbols and what they
represent.

Syntax: way in which words are put together to form phrases and sentences.

This and each of the following sections will describe the semantics of the
language tool. The syntax will then be described formally or via examples.

It is critical that there be a team of engineers and domain experts that is
performing the systems engineering process. This team can create a huge
problem for itself by diving right into the design of the system without first
learning about the other systems with which the focus of the design activity is to
interact. This is probably the most common and most major problem
encountered in the engineering of systems.

Chapter 6 introduces the operational concept, which includes scenarios or
use cases that are supposed to describe how the system interest will interact with
humans and other systems throughout its life cycle. It is in the operational
concept that the use case diagram and many sequence diagrams would be used
to describe these scenarios. Developing these sequence diagrams is a major part
of getting ready to develop the system’s requirements. This section provides the
fundamental semantics and syntax for using use case diagrams, sequence
diagrams and requirements diagrams within SysML.

The purpose of the use case diagram is to provide a higher level of how all of
the individual use cases or usage scenarios combine within the operational
concept to describe how the stakeholders think the system will be operated.

82 MODELING AND SysML MODELING

This use case diagram originated in software engineering and is now commonly
employed within the engineering of systems.

The semantics of a use case diagram contains:

1. labeled stick figures for each class of humans or external systems

2. labeled ovals to define each use case

3. solid lines connecting stick figures and ovals

4. labeled dashed lines connecting ovals

The syntax is that there is a diagram for each relevant phase of the system’s
life cycle, (e.g., operations, training). For a given phase of the life cycle, the
appropriate classes of humans (e.g., operators, maintainers) and other external
systems are each given a stick figure. Then all of the possible interaction
sequences among the system and these classes of humans and external systems
are categorized and labeled as ovals. These interaction sequences are later
defined one at a time in a sequence diagram. Actually there is a significant
amount of iteration between the first draft of the use case diagram, the defining
of individual sequence diagrams, the improvement of the use case diagram, and
so on.

Figure 3.1 provides an example of a use case diagram for an elevator. The
stick figures are (1) passenger class of humans, (2) maintenance workers, (3)
building personnel, (4) a centralized service center including humans and other
technology assets, and (5) the building. The high level operational scenario is of
course to use and maintain the elevator. There are four extensions of this basic
scenario: responding to a fire, keeping the doors open, rescuing people from a
stopped elevator, and ensuring that the load on the elevator is within a safe
range. These extensions provide more detail about the basic scenario in specific
situations that may or may not occur. There are two other ovals on this use case
diagram for updates to the basic scenario that must always be present:
providing electric power and maintaining a comfortable environment. Finally,
there is one use case (fix the elevator) that does not involve passengers. In fact,
this would be a basic scenario with extensions and inclusions if we were
designing a real elevator.

For each labeled oval in the use case diagram there should be a sequence
diagram that defines the interactions among it and the other systems (including
people, facilities, etc.) that the use diagram depicts as relevant. The semantics of
a sequence diagram are:

� a labeled vertical line

� a labeled horizontal arrow that connects two or more vertical lines

One labeled vertical line represents the system of interest. Each vertical line
represents an external system with which the system interacts (exchanges inputs

3.4 META-SYSTEM MODELING 83

and outputs) during the use case. There must be at least two vertical lines. Time
is assumed to go from the top to the bottom of the vertical lines. The labeled
horizontal arrows represent the flow of items (information, energy, or physical
entities) between the systems that the horizontal arrows connect. These items
move in the direction of the arrow.

The syntax of sequence diagrams dictates that earlier flows in the use case
appear above later flows, but time is not represented in appropriately scaled
time units. Figure 3.2 provides a simple example for an elevator system in which
a potential passenger calls an elevator to go up or down.

One contentious issue in sequence diagrams is what the labels of the
horizontal arrows should represent. Many authors and practitioners label the
arrows with the function being performed by the system of interest. In this
book we adopt the convention of labeling the horizontal arrows with a name
that represents the item being transferred from one system to another. The
reason for this convention will be described in detail in Chapter 6 and is
associated with the contention that functional requirements should be written
about inputs and outputs rather than functions.

Finally, SysML provides a basic representation for defining requirements
and a broad set of representations for relating requirements to other require-
ments and system concepts. Rather than detail this part of SysML, we will use
the capabilities in CORE that were described in Chapter 2.

Passenger Take
Elevator

Respond
to Fire

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<include>>

<<include>>

Keep
Doors
Open

Rescue
from Stopped

Elevator

Ensure
Safe Weight

Level

Maintain
Comfortable
Environment

Provide
Electric
Power

Fix
Elevator

Maintenance
Person

Building
Personnel

Centralized
Service Center

Building

FIGURE 3.1 Exemplary use case diagram.

84 MODELING AND SysML MODELING

3.5 STATIC BEHAVIORAL PROCESS MODELING WITH IDEF0

While IDEF0 was not included in SysML as a modeling technique, it will
continue to be used throughout this book. First, it provides a very useful
graphical representation of the interaction of the functional and physical
elements of a system. IDEF0 is definitely not a sufficient modeling representa-
tion for the engineering of systems since it is not precise enough to define a
unique dynamic representation of the system’s design. In fact, it is not even a
necessary modeling language since other languages have been successfully used
for decades in its place. However IDEF0 has gained wide acceptance and
standardization and also has been used successfully for decades as an approach
to start the modeling process.

The IDEF acronym comes from the U.S. Air Force’s Integrated Computer-
Aided Manufacturing (ICAM) program that began in the 1970s. IDEF is a
complex acronym that stands for ICAM Definition. The number, 0, is
appended because this modeling technique was the first of many techniques
developed as part of this program. More recently the U.S. Department of
Commerce [National Institute of Standards and Technology (NIST)] has issued
Federal Information Processing Standard (FIPS) Publication 183 [1993a] that

1: Up Service Request

4: Feedback that door is opening

5: Entry Opportunity

6: Floor Request

10: Feedback that door is opening

11: Exit Opportunity

8: Feedback that door is closing

9: Feedback about floor where stopped

7: Feedback that request was received

3: Feedback that car is on the way

2: Feedback that request was received

Passenger Elevator

FIGURE 3.2 Exemplary sequence diagram.

3.5 STATIC BEHAVIORAL PROCESS MODELING WITH IDEF0 85

defines the IDEF0 language and renames the acronym, Integrated Definition
for Function Modeling.

The roots of IDEF0 can be traced to the structured analysis and design
technique (SADT), developed and tested by Doug Ross at SofTech, Inc. from
1969 to 1973.

A sample of the modeling languages developed as part of the IDEF family
follows.

IDEF0: a major subset of SADT; focus is a functional or process model of a
system

IDEF1: focus is an informational model of the information needed to support
the functions of a system

IDEF1X: focus is a semantic data model using relational theory and an entity–
relationship modeling technique

IDEF2: focus is a dynamic model of the system

IDEF3: focus is both a process and object state-transition model of the system

3.5.1 IDEF0 Semantics or Elements

An IDEF0 model is comprised of two or more IDEF0 pages. The two
semantical elements of an IDEF0 page are functions and flows of material,
energy, or information.

A function or activity is represented by a box and described by a verb-noun
phrase and numbered to provide context within the model (see Figure 3.3). A
function in this context is a transformation that turns inputs into outputs.

Inputs to be transformed into outputs enter the function box from the left,
controls that guide the transformation process enter from the top, mechanisms
(physical resources that perform the function) enter from the bottom, and
outputs leave from the right.

A flow of material, energy or data is represented by an arrow or arc that is
labeled by a noun phrase (see Figure 3.4). The label is a noun phrase and
represents a set or collection of elements defined by the noun phrase. The label
is connected to the arrow by an attached line, unless the arc leaves the page, in
which case the label is placed on the appropriate edge of the page.

Verb...noun

phrase

A#

FIGURE 3.3 Syntax for an IDEF0 function.

86 MODELING AND SysML MODELING

3.5.2 IDEF0 Diagram Syntax

An IDEF0 model has a purpose and viewpoint and is comprised of two or more
pages, each page being a syntactical element of the model. The IDEF0 model:

� Answers definitive questions about the transformation of inputs into
outputs by the system.

� Establishes the boundary of the system on the context page. This
boundary is explicated, if needed, as a meta description.

� Has one viewpoint; the viewpoint is the vantage or perspective from which
the system is observed.

� Is a coordinated set of diagrams, using both a graphical language and
natural language.

The A-0 page is the context diagram, which defines the inputs, controls,
outputs, and mechanisms (ICOMs) for the single, top-level function, labeled
A0. The context page establishes the boundaries of the system or organization
being modeled by defining the inputs and controls entering from external
systems and the outputs being produced for external systems.

Other pages in the IDEF0 model represent a decomposition of a function on
a higher page, with the exception of the external system diagram page, which is
described later. The number of subfunctions for any IDEF0 function is limited
to six, or possibly seven, for purposes of a readable display on a page. The
decomposition of a parent function preserves the inputs, controls, outputs, and
mechanisms of the parent. There can be no more, no less, and no differences.
Every function must have a control. An input is optional. Functional boxes are
usually placed diagonally on the page with the more control-oriented functions
being on the top left and the functions responsible for producing the major
outputs being on the bottom right. Arcs are decomposable, just as functions
are. Feedback is modeled by having an output from a higher numbered
function on a page flow upstream as a control, input, or mechanism to a lower
numbered function.

Arc decomposition and joining are necessary to minimize the number of arcs
on the upper pages of a model, enhancing the readability or communicability.
Arc decomposition and joining are handled by branching and joining, respec-
tively. The labeling conventions for joins and branches are shown in Figure 3.5.
If an arc is labeled before a branch and not labeled after the arc branches into

noun-phrase

FIGURE 3.4 Syntax for an IDEF0 flow of material or data.

3.5 STATIC BEHAVIORAL PROCESS MODELING WITH IDEF0 87

two or more segments (as shown on the first of four examples in Figure 3.5),
then the arc before the branch carries on after the branch. Similarly, if an arc is
labeled after two or more arcs join (see the second example in Figure 3.5), then
the label after the join also applies to the arcs before the join. If the label before
a branch (after a join) does not apply to one or more of the arcs after the branch
(before the join) then the arcs that deviate must have their own label. These
labels of the exception branches have to be subsets of the labels before the
branch (after the join), as shown in the bottom two examples of Figure 3.5.

Three different types of feedback are possible within an IDEF0 page:
control, input, and mechanism. (The general topic of feedback will be discussed
in more detail in Chapter 7.) Feedback in an IDEF0 diagram enables data or
physical resources to be sent against the flow, down and to the right, so that
closed-loop control can be used to improve key performance issues. The
semantical protocols for showing these three types of feedback are shown in
Figure 3.6. A control arc indicating feedback must go up and over the functions
involved, coming down on the function for which it is a control. Input feedback
is indicated by an arc that goes down and under the functions involved, coming
up and into the function for which it is an input from the left. Finally,
mechanism feedback must also be achieved by an arc that goes down and under
the function for which it is a mechanism.

A major difficulty with IDEF0 models is determining whether an item
should be an input or control. The primary distinction is that inputs are items
that are transformed or consumed in the functional process associated with the
production of its outputs. Controls, on the other hand, are not transformed or
consumed, but rather are information or instructions that guide the functional

A

A

B

A

A

B

A

A

B

A

A

B

means

means

means

means

A

A A

A ∪ B

FIGURE 3.5 Labeling conventions for branches and joins.

88 MODELING AND SysML MODELING

process. Typical examples of controls are a blueprint and recipe instructions
(e.g., bake at 3751F for one hour, use a 9.5- by 12-inch baking pan). None-
theless, there are many times when it is very difficult to determine whether an
item is an input or control. In these cases, the decision is the author’s, with the
provision that every function must have at least one control while inputs are
optional.

Readers of an IDEF0 model are often surprised to see a function with a
control and output, but no input. This seems to suggest a counterexample to
the conservation of mass and energy in physics. Remember though that outputs
of a function in an IDEF0 model do not have to have mass or energy but can be
information. A common example of a function that can produce an output
without an input is a function that produces a time mark for other parts of the
system. This function receives a control whenever the time mark is needed and
uses its timekeeping resources to produce the time mark as an output.

3.5.3 IDEF0 Model Syntax

An IDEF0 model is a functional decomposition of the top-level, or A0,
function. The decomposition is a hierarchy, as shown in Figure 3.7. The
function numbers are shown on the right and the corresponding IDEF0 page
numbers are shown on the left.

The function that is being decomposed is the parent, while the functions
decomposing it are called its children. The node numbering process defines the
tree. The node numbering convention as shown in Figure 3.7 is summarized in
Table 3.3.

Mechanism Feedback

Input Feedback

down & under

label

Control Feedback

up & over
label

down & under label

FIGURE 3.6 Feedback semantics within an IDEF0 page.

3.5 STATIC BEHAVIORAL PROCESS MODELING WITH IDEF0 89

As an example of this decomposition process, the A0 page, shown in
Figure 3.8, defines the decomposition of the A0 function by three functions in
this case. Note there are two inputs, three controls, three outputs, and one
mechanism for the function A0; each of these ICOMs is given a generic label to
emphasize the conservation of ICOMs. On the decomposition of A0 into Al, A2,
and A3, there are again two external inputs, three external controls, three external
outputs, and an external mechanism. Note that I1, C2, C3, and M1 branch on
this A0 page. In addition, the joining of outputs from Al and A2 produces 02. A
number of internal items are produced, some of which branch and join.

IDEF0 models can also address the interaction of the system with other
systems. This interaction is modeled on the A-1 page, which takes the A0
function and places it in context with other systems or organizations. This
representation is often critical to understand the relationship of the system
being addressed to the system’s outside world and establishing the origination
of inputs and controls and the destination of outputs.

An IDEF0 model also has a data dictionary. An IDEF0 model should have
a glossary page that defines the special words and acronyms in the labels and

Page #’s Function #’s

A-1

A-0

A0

A1, A3

A33

A0

A1 A2 A3

A11 A12 A13 A31 A32 A33 A34

A331 A332 A333 A335A334

A-0 A-12A-11 A-13

FIGURE 3.7 IDEF0 functional decomposition.

TABLE 3.3 IDEF0 Page Hierarchy

Page Number(s) Page Content

A–1 Ancestor or External System Diagram

A–0 Context or System Function Diagram (contains A0)

A0 Level 0 Diagram with first tier functions specified

A1, A2, y Level 1 Diagrams with second tier functions specified

A11, A12, y, A21, y Level 2 Diagrams with third tier functions specified

y y

90 MODELING AND SysML MODELING

functions of the model. The data dictionary defines the arc decompositions.
These decompositions reflect the arc branches and joins in the model. The
dictionary also describes which functions use/produce which data elements.

3.5.4 IDEF0 Advanced Concepts

Advanced concepts to be discussed in this section are loops, tunneling,
functional activation rules, exit rules, and call arrows.

IDEF0 allows the use of loops to show memory storage and feedback
(see Figure 3.9). A loop is showing that there is feedback involved in the

Transform I1.1
into O1 & O2.1

as determined by
C1 & C2

using M1.1

Transform O2.1 & I1.2
into O2.2

as determined by
C2, C3 & O1
using M1.2

Transform I2
into O3

as determined by
C2 & C3

using M1.3

I1

I2

C1 C2 C3

O1

O2

O3

M1

M1.1

M1.2

M1.3

O2.1

O2.2I1.2

I1.1

A1

A2

A3

Transform I1 & I2
into O1, O2 & O3
as determined by

C1, C2 & C3
using M1

I1

I2

C1 C2 C3

O1

O2

O3

M1

A0

FIGURE 3.8 Functional decomposition in an IDEF0 model. Showing the preservation
of inputs, controls, outputs, and mechanisms.

3.5 STATIC BEHAVIORAL PROCESS MODELING WITH IDEF0 91

decomposition of the function shown with the loop. Usually the loop is not
needed because the feedback will be seen on the decomposition. If the function
is not going to be decomposed, it may be wise to show the loop. There are very
few instances in which a loop is appropriately shown.

Tunneling is a technique within IDEF0 to hide an input, control, output, or
mechanism in part of the model. The use of parentheses around either the head
or tail of an arrow depicts a tunnel in IDEF0. Parentheses around the head of
an arrow that is entering a functional box indicates that the input, control,
output, or mechanism associated with that arrow will not be seen on the
decomposition of that function; that is, the ICOM is going underground and
may or may not reappear. If the ICOM does reappear, it will have parentheses
around its tail to depict that it is exiting the ground. The rationale for tunneling
is that certain ICOMs are not particularly relevant for understanding the
functional model at specific levels of detail and therefore should not clutter up
these pages of the model.

Each function is activated when sufficient inputs and controls are present to
produce the relevant outputs, given those inputs and controls. This functional
activation is typically defined as a set of rules. A rule is a set of ‘‘if y, then
y‘‘statements, or pre-conditions and post-conditions. Boolean algebra is used
to specify these rules. These activation rules are embedded in each function; a
‘‘for exposition only,’’ or EEO page, is often used to articulate the activation
rules of a particular function or sets of functions.

For each function there are one or more exit criteria that determine when the
function has completed its execution. Typically, the exit criterion is associated
with the production of one or more outputs. If more than one output may be
produced by a given function, then it is critical to state the exit criteria.

The final advanced concept is that of a call arrow. A call arrow is an arrow
that breaks all of the rules of ICOMs that have been presented so far and is
seldom used in the author’s experience. The call arrow exits the bottom of an
activity’s box and points toward the bottom of the page; see FIPS Publication

label

label

Memory Feedback

Memory Storage

FIGURE 3.9 Memory semantics in IDEF0.

92 MODELING AND SysML MODELING

183 [1993a] for an example. The label attached at the end of the call arrow
signifies another box that may be part of the IDEF0 model, or part of another
IDEF0 model. The call arrow is indicating that there is no decomposition of the
activity from which the call arrow is exiting, but that there is a decomposition
of the activity at the box associated with the label of the call arrow. The
advantage of the call arrow is that fewer pages need to be part of the IDEF0
model if several of the boxes have the same decomposition.

3.5.5 Systems Engineering Use of IDEF0 Models

A major emphasis in this book is the development of a functional architecture
for the system that defines what functions the system must perform to trans-
form the system’s inputs into its outputs. An IDEF0 model, minus the
mechanisms, can be used to define the functional architecture.

As part of the development of the allocated architecture the system’s
functions are allocated to the system’s components and CIs. This allocation
of functions is captured by adding the mechanisms to the functional architec-
ture, producing a description of the allocated architecture.

3.6 DYNAMIC BEHAVIORAL PROCESS MODELING WITH EFFBDS

Function flow block diagrams (FFBDs) were traditionally used in conjunction
with N2 diagrams as the original approach to functional decomposition
in systems engineering. (In this book we are substituting IDEF0 for N2

diagrams; N2 diagrams are covered in Chapter 12 for the interested reader.)
Later FFBDs were extended and enhanced to become EFFBDs. The extended
FFBDs added more types of dynamic control logic. The enhanced FFBDs
included some items into the models for better explication and understanding.
This section first presents the full set of control logic of EFFBDs. Then shows
how the items will be added.

An EFFBD model contains all of the information in an IDEF0 model plus
sufficient information to create a unique discrete event simulation of the
dynamic behavior of the system. This is quite an added benefit over the
IDEF0 model, but it also requires additional sophistication to create. The view
adopted here is that the IDEF0 model is a stepping stone to the completed
EFFBD model for beginning systems engineers. Many experienced systems
engineers can skip the IDEF0 model and create the EFFBD directly. However
there are many other experienced systems engineers who view the IDEF0
modeling process as an important learning and communication process for the
stakeholders.

An EFFBD model has pages just as an IDEF0 model does. In fact, one
could take an IDEF0 model, add control logic to each page, and end up with an
EFFBDmodel. So the EFFBD model provides a hierarchical decomposition of
the system’s functions with a control structure that dictates the order in which

3.6 DYNAMIC BEHAVIORAL PROCESS MODELING WITH EFFBDS 93

the functions can be executed at each level of the decomposition. The control
structure and arrival sequence of ‘‘triggers’’ (special control inputs) determines
this order. This makes the syntax and semantics of an EFFBD model identical
to that of an IDEF0 model.

The only semantical difference between an IDEF0 and EFFBD page is that
the EFFBD has control symbols and lines that are not present in IDEF0. These
control symbols and lines will be the main emphasis of this section.

In the original, or basic, FFBD syntax there were four types of control structure
that were allowed: series, concurrent, selection, and multiple-exit function. A set
of functions defined in a series control structure (see Figure 3.10) must all be
executed in that order. In fact, the second function cannot begin until the first
function is finished, and so on. (Note that in the diagrams shown in this chapter
the two nodes at each end with missing center panels on the top and bottom of the
functional rectangles are functions that are outside of the decomposition of the
system function.) Control passes from left to right in FFBDs along the arc shown
from outside (depicted by a function in a box with broken top and bottom lines)
and activates the first function. When the first function has been completed (i.e.,
the function’s exit criterion has been satisfied), control passes out of the right face
of the function and into the second function, and so on. (Note that the little solid
squares in the upper left corner of functions 1 and 2 are a software construct of
CORE that indicate the function has been further decomposed.)

The concurrent structure (Figure 3.11) allows multiple functions to be
working in parallel, thus this structure is sometimes called ‘‘parallel.’’ However,
the concurrent structure should not be confused with the concepts of parallel in
electric circuits or redundant systems. Essentially control is activated on all
lines exiting the first AND node and control cannot be closed at the second
AND node until all functions on each control line entering this second AND
are completed. This control structure is almost always appropriate for the
external systems diagram; the external systems typically act concurrently with
each other and the system in which we are interested. The concurrent control
structure is also common for the first level functional decomposition of the
system function.

A selection structure and a multiple-exit function achieve essentially the
same purpose: the possibility of activating one of several functions. The
multiple-exit function (see Figure 3.12) achieves this by having a function
placed at the fork of the selection process to make the selection explicit; this is
the preferred approach to the selection structure.

Ref.

1

Perform Design
Activities

2

Perform
Integration
Activities

Ref.

FIGURE 3.10 A series function flow block diagram.

94 MODELING AND SysML MODELING

When the selection function has been completed, one of the two or more
emanating control lines is activated. Each control line can have zero, one, two,
or more functions on it. Additional control structures, such as concurrent, can
be placed on any of these exiting control lines. Once all of the functions on the
activated line have finished execution, control passes through the closing OR
node. Each exit criterion for the control lines exiting the multiple-exit function
appears has a label on the control line. (Note there is an exit criterion for every
function with only one exit but the exit criterion is not commonly shown on the
exiting control line. The engineer may add a label for this purpose if desired.)

For the selection construct, which is an exclusive or, the first OR node passes
control to one of the exiting control lines in a manner that is unspecified on the
diagram. This control line stays active until the set of functions on that control
line are completed; control then passes through the second OR node. Figure 3.9
would be a selection construct if the AND nodes were OR nodes. Since the
passing of control at the first OR node is not defined on the diagram, the author
strongly recommends the use of a multiple-exit function instead of the selection
control construct.

Additional control structures have been added to FFBDs to form what are
called enhanced FFBDs: iteration, looping, and replication. See Sidebar 3.2 for
a comparison of FFBD control constructs to structured programming.

Looping (Figure 3.12) is the repetition of a set of functions, based upon a
specific criterion. The loop control structure begins with an LP control
node and ends with a second LP node, as shown in Figure 3.12. The exit
criterion for a loop is shown on the line that closes the two LP nodes. In the
loop structure it is possible to exit the loop if the appropriate criterion has been
satisfied.

Ref. AND AND

1.1

Perform
System Level

Design Activities

1.2

Perform
Subsystem

Level Design ...

1.3

Perform
Component

Level Design ...

2

Perform
Integration
Activities

FIGURE 3.11 A concurrent control structure in an FFBD.

3.6 DYNAMIC BEHAVIORAL PROCESS MODELING WITH EFFBDS 95

SIDEBAR 3.2: STRUCTURED PROGRAMMING AND FFBD
CONSTRUCTS

These constructs are quite analogous to those of structured programming,
which began in the late 1950s and early 1960s with people such as Bohm,
Dijkstra, Jacopini, and Warnier [De Marco, 1979]. Initially, the goal of
structured programming was to define programming control structures
that enhanced readability and improved testing. However, the goal evolved
to define the control structures that would enable proving the correctness
of an algorithm. While correctness proofs are still a goal, it was clear to
these early investigators that program simplicity was critical. An inter-
mediate goal to a correctness proof became the identification of the
minimum set of logical constructs that would be sufficient to write any
program. Bohm and Jacopini [1966] showed that only two constructs are
necessary beyond the obvious series processing construct: ‘‘if-then-else’’
and ‘‘do-while.’’ The if-then-else construct is the equivalent of the multi-
exit function in FFBDs for situations in which a function does not need to
be repeated. For repetitive activities that fit within if-then-else, the looping
control structure is used. The iteration control structure is the same as the
do-while programming construct. The other FFBD control structures are
needed for implementation-peculiar issues of a system: Concurrent struc-
tures represent multiple resources of the system performing different
functions simultaneously, and replication represents multiple resources
performing the same function simultaneously.

Iteration is the repetition of a set of functions, as often as needed to satisfy
some domain set; this domain set must be defined based upon a number or an
interval. The iteration control structure begins with an IT control node and
ends with a second IT node, see Figure 3.12. The domain set for the iterative
repetition is shown on the line closing the two IT nodes.

Finally, replication is the repetition of the same function concurrently using
identical resources. This repetition is shown using the stacked paper icon; the
reader can see an example of this in the section of Chapter 12 on behavior
diagrams. This control structure is appropriate for certain physical designs and
some functional architectures.

In general FFBDs and EFFBDs do not show the inputs and outputs for
functions. However, the SysML examples of EFFBDs do show at least a subset
of the most important inputs and outputs, bringing the diagrams closer to
IDEF0 diagrams. Remember, IDEF0 has no way to capture the dynamic
information that EFFBDs do.

96 MODELING AND SysML MODELING

FI
G

U
R

E
3
.1

2
Se

le
ct

io
n

an
d

m
u
lt

ip
le

-e
xi

t
fu

n
ct

io
n
s

in
an

FF
B

D
.

97

3.7 STRUCTURAL MODELING OF THE SYSTEM’S COMPONENTS

Systems engineers have been using block diagrams since the beginning of
systems engineering. However there has been no standardization of how to
construct these block diagrams, no uniform syntax and semantics. SysML has
provided a much needed syntax and semantics. A block is some element within
the spectrum from meta-system down to configuration item (CI). Each element
represents a set of resources (people, hardware, software, etc.) that can be used
to perform one or more functions as inputs are transformed into outputs. The
purpose of the block diagram is to display which blocks are connected to others
based on either a hierarchical relationship or on a peer to peer basis. Block
definition diagrams represent hierarchical relationships such as how one block is
composed of several other blocks. Internal block diagrams show which blocks
within a higher level block are connected to each other via interfaces.

The semantics for the block definition diagram include a labeled rectangle to
define blocks, a labeled connector with a diamond on one end and an arrow
head on the other to show the hierarchical relationships. Figure 3.13 shows these
two syntactic elements. Note the full SysML semantics [Friedenthal et al., 2008]
includes many other elements, but these two are the basic ones that will be used
later in Chapter 8. Figure 3.14 shows the syntax of a block definition diagram
for the elevator system and its subsystems that was discussed in Chapter 2.

The semantics of an internal block diagram (see Figure 3.15) include a
labeled rectangle for the specific blocks that compose the higher level block that
is the subject of the diagram, small unlabeled blocks on the boundary of the
larger labeled blocks to define the connection between the block and the
interface to another block, and unlabeled lines to show the interfaces or ports

Name of Component

Name of subcomponent

Number of
multiplicities

Number of
multiplicities

Note “number of multiplicities” means the number of components that
are associated with the component on each end of the connector.
If the multiplicity is1 at either end, the multiplicity is commonly left blank.
Sample multiplicities include 0..1(zero to one), 0..*(zero to many),1..*
(one to many), 1..n (one to n),n (exactly n).

The labeled rectangle represents
a component (from meta-system
to CI) of the system with the
name of the component inside
the rectangle.

The labeled connector shows a
decomposition relationship (from
the end with the diamond to the
end with no diamond). An
abbreviated name of the
component that is lower in the
hierarchy is often shown at the
end with no diamond.

FIGURE 3.13 Semantic elements of a block definition diagram.

98 MODELING AND SysML MODELING

<<block>>
Elevator System

<<block>>

<<block>>

<<block>>

<<block>>

Hallway
Passenger
Interface

Elevator
Controller

Elevator Car

Maintenance
and Service

h1

c1

m1

car

1..*

FIGURE 3.14 Exemplary block definition diagram (syntax) for an elevator.

Name of Component

The labeled rectangle represents a
component (from meta-system to CI)
of the system with the name of the
component inside the rectangle.

The unlabeled connector shows a
connection relationship between two
components that comprise a higher
level component.

A port associated with the component
and the connector, designating the
connection of the two.

FIGURE 3.15 Semantic elements of the internal block diagram.

3.7 STRUCTURAL MODELING OF THE SYSTEM’S COMPONENTS 99

that connect blocks. Again, there are more elements of the semantics for an
internal block diagram but these will suffice for an introduction. Figure 3.16
shows an internal block diagram showing the interface connections among the
subsystems of the elevator.

3.8 REQUIREMENTS MODELING

SysML also includes diagrams for requirements modeling. These diagrams show
the requirements taxonomy being used by the systems engineering team. Far too
many systems engineering teams do not have a requirements taxonomy so this
feature of SysML should dramatically improve the practice of systems engineer-
ing. Chapter 6 of this book covers one possible requirements taxonomy.

In addition, SysML includes diagrams for showing the relationships
established by the systems engineering team between each requirements and
specific system functions, components, items (inputs and outputs of functions),
and interfaces. Establishing these kinds of relationships was covered in the
previous chapter as part of learning how to use CORE so it will not be repeated
here.

3.9 PERFORMANCE MODELING

SysML uses a combination of block definition and parametric diagrams to
enable the systems engineer to define performance and trade off models for use
as part of the design process. The semantics of the block definition diagrams for
performance modeling is not quite the same as that for block diagrams, see
Figure 3.17. A rectangle, called a constraint block, is used to define each major
variable for which an equation or constraint is defined. Besides the name of the
variable appearing in the rectangle, the constraint equation appears inside the
delimiters – {y}. In addition, a list of parameters used in the equation with
their mathematical abbreviations is shown in the rectangle below a separating

: Elevator Car [1..*] : Elevator
Controller

: Hallway
Passenger
Interface

: Maintenance
and Service

FIGURE 3.16 Exemplary internal block diagram for subsystems of an elevator system.

100 MODELING AND SysML MODELING

line. The same sort of connecting line is used to show decomposition as in the
block diagram case. Multiplicities are not needed. Figure 3.18 shows an
example of a partial fundamental objectives hierarchy for a hypothetical
elevator system.

Name of Constraint Variable
{constraint equation}

--------------------- ------------ ------------ ------ ------

parameters

The labeled rectangle represents a
constraint variable for use in defining
the equations in the parametric
diagram.

The unlabeled connector shows a
decomposition relationship (from the
end with the diamond to the end with
no diamond).

FIGURE 3.17 Semantic elements for the block definition diagram used for perfor-
mance modeling.

FIGURE 3.18 Exemplary block definition diagram for the fundamental objectives
hierarchy of an elevator system.

3.9 PERFORMANCE MODELING 101

The second SysML diagram used as part of specifying a performance model
is called a parametric diagram. The parametric diagram contains roundtangles
for the variables with equations and rectangles for the input variables
associated with those equations. Regular lines are used to connect the concepts
in the roundtangles and rectangles. Finally, a small rectangle is used to show
connecting ports for the roundtangles. These connecting ports are associated
with variables being used in the equation. Figure 3.19 shows the semantics of
the parametric diagram.

3.10 SUMMARY

The role of qualitative modeling in the engineering of systems is essential. This
chapter introduced modeling, purposes of models, and categories of models
and discussed how engineers use models in the engineering of a system. Models
are used to answer questions for which better answers are needed than currently
exist; each modeling technique has its own language of symbols and conven-
tions for combining symbols into higher level concepts. A model is an
abstraction of reality; models were characterized for the purposes of this
book as mental, qualitative, quantitative, and physical. Each type of model has
its advantages in terms of the types of questions that it answers best, as well as
the development and operational costs for the model.

SysML’s diagrams were introduced. The meta-system approaches of use
case diagrams and sequence diagrams were described and illustrated for the
elevator system that will be used throughout this book to illustrate the
engineering of a system.

Next, IDEF0, a commonly used process modeling technique, was introduced
and described in sufficient detail so that the reader should not only be able to

Name of Input Variable Needed
in Constraint Equation

The labeled rectangle represents an
input variable that is needed as part
of one of the constraint equations.

The labeled connector shows a
connection relationship between two
concepts, either constraints or input
variables.

A port associated with a constraint
equation for a variable from another
concept.

The labeled round tangle represents a
constraint, as defined by an equation,
that is needed in the performance model.

Name of Constraint &
Associated Equation

x x

FIGURE 3.19 Semantic elements for the parametric diagram.

102 MODELING AND SysML MODELING

read an IDEF0 model authored by someone else but will be able with
additional practice to develop IDEF0 models on her or his own. This process
modeling technique was introduced here because this book concentrates on the
methods to be used in the engineering of systems, and some process modeling
technique is needed to describe these methods. IDEF0 has the advantage of
being a good communication tool as well as having a standardized syntax and
semantics that do not vary by organization and discipline.

Enhanced Function Flow Block Diagrams (EFFBDs) were described next as
a way to capture the dynamic execution of functions within the system.
EFFBDs have a general set of control structures that overlay the functional
decomposition in an IDEF0 model to capture the unique dynamics envisioned
within the system.

Next the block diagram semantics and syntax introduced by SysML were
presented for both block definition diagrams and internal block diagrams. The
former shows the decomposition of the physical architecture. The second shows
the interface connections within a specific decomposition of a component.

Finally the new concept of parametric diagrams to define the performance
modeling being done within the engineering of the system is presented.

PROBLEMS

3.1 Reproduce the IDEF0 diagrams of the process for engineering a system
in Appendix B using CORE. You must pay attention to details of
content as well as format. Both will be graded very carefully.

3.2 Create an FFBD diagram in CORE for each page of the IDEF0 model
in Appendix B using CORE. Write a justification for the control logic of
each diagram.

3.3 Describe at least three ways to estimate how much storage space would
be needed if all of the emails sent during a 24 hour period from all of the
people in the United States to anyone else in the United States were
intercepted.

PROBLEMS 103

