
Chapter 4

Discrete Mathematics:
Sets, Relations, and Functions

4.1 INTRODUCTION

Chapter 4 introduces material from the field of discrete mathematics. Much of
this chapter will be review material (e.g., sets and functions) for most readers.
The concepts of sets, relations, and functions are defined, discussed, and
illustrated. A function, with which almost everyone is familiar, is shown to
be a specialization of a relation, which in turn is a specialization of a set.

There are some key concepts introduced here that will be referred to in many
of the succeeding chapters. For example, we will be discussing requirements
and requirements documents in Chapter 6. Many system-level requirements
documents are very large, larger than they need to be. These large system-level
requirements documents can contain thousands and even tens of thousands of
requirements. Examples might include:

� The system shall be able survive attacks from another computer system.

� The system shall be able survive buffer overflow attacks from another
computer system.

� The system shall be able to survive stack-based buffer overflow attacks
from another computer system.

� The system shall be able to survive stack-based buffer overflow attacks
from an internal employee.

� The system shall be able to survive buffer overflow attacks against its
operating system.
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� The system shall be able to survive buffer overflow attacks against its
application programs.

� The system shall be able to survive buffer overflow attacks originating in
emails.

� The system shall be able to survive buffer overflow attacks while connected
to web sites on the Internet.

� And more of the same.

In Chapter 6 we will present an approach to writing such requirements and
make the point that only one or a few of the above requirements should be in
the system-level requirements document. We will use the concept of a partition,
introduced and defined here in Chapter 4, to make this case. A partition, based
on the set theory introduced in this chapter, ensures that the requirements are
not overlapping and are complete. Satisfying the non-overlapping part will be
relatively easy, but it is amazing how often it happens in practice. Achieving the
completeness is a goal that is seldom, if ever, achieved. But there are
approaches based on a partition that can help. Many requirements documents
contain duplicate, triplicate, and higher copies of requirements. Over time some
of these copies of requirements get changed while others do not, resulting in
inconsistent requirements such as happened on the Space Shuttle for operations
in ambient temperatures, resulting in part in the explosion of the Challenger in
1986. Getting the concept of a partition of a set is key to many aspects of
systems engineering.

In Chapter 7 we will discuss functions that systems perform in transforming
their inputs into their outputs. When we have this discussion, you should
remember the definition of a mathematical function, which we cover here in
Chapter 4. What you may not have learned previously is the concept of a
mathematical relation, which is a weaker concept than that of a mathematical
function. In order to perform mathematical analyses of our system’s functional
architecture we will need eventually to be able to satisfy the mathematical
definition of a function, not simply a relation, provided in this chapter. We will
also need to recognize that we are dealing with relations when we are dealing
with higher level functions of a system. Ensuring that our functional decom-
position is a partition will arise again and again.

As part of the discussion of functional architectures in Chapter 7, we will be
talking about decomposing higher level functions into sets of lower level
functions. (Note the word set has been used again.) The mathematical concept
of composition is defined here in Chapter 4 and discussed relative to
hierarchical decomposition; mathematical composition will be shown to be a
very limited representation of the functional modeling described in Chapter 7.

Two advanced concepts, power set and partial ordering, are introduced in
this chapter. These concepts have great usefulness to the theoretical develop-
ment of the engineering of systems, most of which is beyond the scope of this
book but elements of which are discussed in Chapters 6, 7, and 9. The interested
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reader is referred to Mott et al. [1986] and Rosen [1995] for more details on set
theory. Larsen and Buede [2002] provide a mathematical structure for perform-
ing early validation of requirements using many of the set theory concepts
presented in this chapter.

Section 4.2 introduces the general concept of a set and then discusses special
characteristics of sets, including operations on sets, the partition of a set, and
the power set of a set. Section 4.3 defines relations in terms of sets. In particular,
important characteristics of relations are defined. The partial ordering on a set
is introduced and illustrated. Section 4.4 discusses functions and the composi-
tion of functions.

There are no models introduced in this chapter, but all of this material is
critical in understanding the development of models, as well as the power and
limitations of models. Software engineers often make much more use of the
discrete mathematics presented here than do the engineers of systems, but the
material has the same richness and importance to engineers of systems and
should be utilized to a fuller degree in the future. In addition, having a grasp of
this material is essential to carrying on a conversation about architectures with
many software engineers. I have seen systems engineers lose important and
valid arguments to software engineers because the systems engineers were not
equipped to understand what the software engineers were saying.

4.2 SETS

A set is a collection of well-defined objects, called elements or members. These
elements or members are said to belong to the set. Sidebar 4.1 defines the
mathematical symbols used in these and other definitions.

SIDEBAR 4.1 GLOSSARY OF MATHEMATICAL SYMBOLS

A is an element of

e is not an element of

D is a subset of

� is a proper subset of

g is not a subset of

+ is a superset of

� is a proper superset of

- intersection

, union

-,. implies

3 if and only if
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6¼ is not equal to

U the null set

U the universal set
�A the complement of A

’ for all

( there exists

D such that

| given that

B,: not (negation)

4 and

3 or

Examples of sets are:

� An interval of numbers [7, 21]

� The students in SYST 520 at George Mason University during the spring
semester of 1996

� The categories of inputs to elevator

� The possible states or outcomes that a particular input to the elevator can
take

� The functions of an ATM (automated teller machine)

4.2.1 Writing Set Membership

A set is denoted by capital letter A, B, X, Y, with the exception of sets that are
functions, which will be denoted by a lowercase italic, letter. Members are also
denoted by lowercase letters: a, b, x, y. The mathematical expression of set
membership is

x 2 A : x is an element of A

x =2A or: ðx 2 AÞ :x is not an element of A

4.2.2 Describing Members of a Set

There are at least five ways to describe the members of a set.

1. A is the set of elements, x, that satisfies the property (or predicate), p(x).
A={x|p(x) is true} (braces are the common delimiter of a set’s defini-
tion). The property p(x) must be well-defined, that is, able to be
determined by means of rules. One test of such a property is called the
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clairvoyant’s test — a clairvoyant is able to predict the future or describe
the past/present perfectly. Is the property or rule defined sufficiently well
that the clairvoyant can answer the question? For example, the property
‘‘Is tall’’ does not meet the clairvoyant’s test, but the property ‘‘is taller
than 6 feet 3 inches’’ does.

2. Complete enumeration is the listing of all of the members of the set.

A1 ¼ f0; 1; 2; 3; 4g

A2 ¼ fstudent1; student2; . . . student31g

3. Use the characteristic function of the

mAðxÞ ¼
1 for x ¼ 0; 1; 2; 3; 4

0 otherwise

�

where mA(x) is the characteristic function of set A for elements, x, in the
set, U, of all elements. For conventional (crisp, nonfuzzy) sets, mA(x) may
only take the values 0 for nonmembers or 1 for members.

4. Use recursive definition: A={xi+1=xi+1, i=0, 1, 2, 3; where x0=0}.
Here A is defined by a recursive formula.

5. Use one or more set operators such as union, intersection, and comple-
ment. These operations should be familiar to most readers and will be
defined shortly.

4.2.3 Special Sets

U: the universal set or set of all possible members.

U: the null set, a set with no elements. F and {F} are not the same. F has no
elements, while {F} has one.) We can write F={xAU | x 6¼ x}.

Singleton set: a set with only one element.

Finite set: a set with a finite number of distinct elements.

Infinite set: a set with an infinite number of distinct elements.

For example: A1={1, 2, 3, 4, y, 101} is finite, A2={1, 2, 3, 4,y,} is
infinite, and A3={x, {1, 2}, y, {z}} may be finite or infinite. The finiteness of A3

depends on whether x and y are finite or infinite. (Note {1,2} and {z} are sets,
but each is only one element of A3. Also note that z is not an element of A3, but
{z} is.)

Subsets or set inclusion: if A and B are two sets, and if every element of A is an
element of B, then A is a subset of B, ADB. If A is a subset of B, and if B has
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at least one element that is not in A, then A is a proper subset of B, A�B. See
Figure 4.1.

Equality of sets: if A and B are sets, and A and B have precisely the same
elements, then A and B are equal, A=B.

The following properties follow from the above definitions:

ADA; a set is a subset of itself.

FDA, ADU. The null set is a subset of every set; every set is a subset of the
universal set.

If F 6¼A, then F�A. If a set is not the null set, then the null set is a proper
subset of the set.

If ADB and BDA, then A=B. If two sets are subsets of each other, then
they are equal.

If ADB and BDC, then ADC. Set inclusion is transitive, a property that we
will formally define later.

4.2.4 Operations on Sets

The following operations are performed on sets:

Absolute complement, �A: Let ADU. �A¼fx jx =2Ag ðNote �F¼ U; �U¼F;
��A ¼ AÞ See Figure 4.2.

Relative complement of A with respect to B, B � A: Let A and B be sets, B �
A={x|xAB and xeA}. The relative complement is also called set
difference. See Figure 4.3.

Union of A and B, A,B: A,B={x | xAA or xAB or both}.

A

B

FIGURE 4.1 Set inclusion.

A

A
_u

FIGURE 4.2 Absolute complement.
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Intersection of A and B, A-B: A-B={x | xAA and xAB}. (Note A and B
are called disjoint if A-B=F. See Figure 4.4.

Boolean sum (symmetrical difference), A+B or ADB:

Aþ B ¼ fxjx 2 A or x 2 B; but not bothg ¼ ðA� BÞ [ ðB� AÞ

The following properties of the above set operations can be easily derived:

1. A,F=A, and A-F=F.
2. A,U=U, and A-U=A.

3. Idempotent: A,A=A, and A-A=A

4. Associative:

ðA [ BÞ [ C ¼ A [ ðB [ CÞ
ðA \ BÞ \ C ¼ A \ ðB \ CÞ

5. Commutative: A,B=B,A, and A-B=B-A

6. Distributive:

A [ ðB \ CÞ ¼ ðA [ BÞ \ ðA [ CÞ
A \ ðB [ CÞ ¼ ðA \ BÞ [ ðA \ CÞ

7. DeMorgan’s Laws: ðA [ BÞ ¼ �A \ �B, and ðA \ BÞ ¼ �A [ �B

A

BA ∩ B 

u

FIGURE 4.4 Set intersection.

B

B-A

u

A

FIGURE 4.3 Relative complement.
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Example Use DeMorgan’s laws to prove that the complement of
ð �A \ BÞ \ ðA [ �BÞ \ ðA [ CÞ is ðA [ �BÞ [ ð �A \ ðB [ �CÞÞ.

Solution: Starting with ð �A \ BÞ \ ðA [ �BÞ \ ðA [ CÞ, note that ðA [ �BÞ \
ðA [ CÞ is the same as A [ ð �B \ CÞ.

Step 1: Making this substitution, we want to find the complement

ð �A \ BÞ \ ðA [ ð �B \ CÞÞ.
Step 2: By DeMorgan’s law, the complement of an intersection is the union

of set complements. So this can be written as ð �A \ BÞ [ ðA [ ð �B \ CÞÞ.
Step 3: Again, the complement of an intersection is the union of the set

complements. So this can be written as ðA [ �BÞ [ �ðA [ ðB \ CÞÞ.
Step 4: Also by DeMorgan’s law, the complement of a union is the

intersection of the set complements. So this can be written as

ðA [ �BÞ [ ð �A \ ð �B \ CÞÞ.
Step 5: Again, the complement of an intersection is the union of the set

complements. This yields ðA [ �BÞ [ ð �A \ ðB [ �CÞÞ. QED

4.2.5 Partitions

A partition on a set A is a collection P of disjoint subsets of A whose union is A.
For a collection Bi (i=1, 2, y, n) to be a partition P of A:

1. BiDA for i=1, 2, y, n.

2. Bi-Bj=F for i 6¼ j.

3. for any xAA, xABi for some i; (alternatively B1,B2,y,Bn)

The concept of a partition (Fig. 4.5) is the most basic and far-reaching
mathematical concept to our development of systems engineering. We will talk

A B2

B1
B3

B4

A

 Partition of A Not a Partition of A

B1

B2

B3

B4

FIGURE 4.5 Set partition.
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about the importance of creating a partition of the system’s requirements, and a
partition of the system’s function, and a partition of the system’s physical
resources. This is just the beginning.

4.2.6 Power Set

The power set of a set A is denoted, P(A). The power set is the set of all sets that
are subsets of A. Mathematically, the power set is the family (or set) of sets such
that XDA3XAP(A), or P(A)={X | XDA}.

1. Let A0=F, P(F)={F}, [where A0 is a set with zero elements and P(A0)
has one element].

2. Let A1={a}; P(A1)={F, A1}={F, {a}} [where A1 is a set with one
element and P(A1) has two elements].

3. Let A2={a, b}; P(A2)={F, {a}, {b}, {a, b}} [where A2 is a set with two
elements and P(A2) has four elements].

How many elements does the power set of a set of An have?

Theorem If An is a set with n elements, then P(An) has 2
n elements.

Proof We will use mathematical induction. For n=0, 1, 2, 3,y, let S(n) be the
statement: If An is a set with n elements, then P(An) has 2

n elements.

i. First show that if A0 has 0 elements, then P(A0) has 2
0=1 element.

A ¼ F; PðAÞ ¼ fFg

ii. Assume S(k) is true and then show that S(k+1) is true. Let Ak+1 be a set
with k+1 elements. Define B to be a proper subset of Ak+1 with k of
Ak+1’s elements:

Akþ1¼ fa1; a2; . . . ; ak; akþ1g

B ¼ Ak¼ fa1; a2; . . . ; akg

SoAkþ1¼ fakþ1g [ B:

Therefore, every subset of Ak+1 either contains ak+1, or it does not.

1. If a subset does not contain ak+1, then it is a subset of B, and we know
there are 2k subsets of B, by induction.

2. If a subset does contain ak+1, then it is the union of a subset of B and
ak+1. There must be 2k of these since there are 2k subsets of B.
So there are 2k+2k=2k(1+1)=2k 2=2k+1 subsets of Ak+1 or 2k+1

elements of P(Ak+1).
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The concept of a power set has many potential uses in systems engineering.
For example, the power set of system inputs is an upper bound on the test
sequences required to test the system exhaustively.

4.3 RELATIONS

This section defines relations using the concepts of ordered pairs and Cartesian
products. Important properties of relations are defined, followed by definitions
of partial orderings and equivalence relations.

4.3.1 Ordered Pairs and Cartesian Products

An ordered pair is (x, y) if xAA, yAB. A Cartesian product, A�B, is defined
over two sets, A and B, such that A�B={(a, b) | aAA and bAB}. That is, the
Cartesian product of two sets is the set of all possible ordered pairs of those two
sets. The following are examples of Cartesian products:

1. A={1}, B={2}: A�B={(1, 2)} and B�A={(2, 1)} 6¼A�B.

2. X={students of SYST 520 during the spring semester of 1996}={S1, S2,
y, S31}, Y={A, B, C}: X�Y={(S1, A), (S1, B), (S1, C), y , (S31, A),
(S31, B), (S31, C)}

An ordered n-tuple is defined to be A1�A2 �?�An={(a1, a2,y, an) |
aiAAi, i=1, 2, y , n}, where (a1, a2,y, an).

4.3.2 Unary and Binary Relations

A unary relation on a set A relates elements of A to itself and is a subset, R, of
A�A. R is usually described by a predicate that defines the relation. Examples
are r,=,W, ‘‘taller than,’’ and ‘‘older than.’’ If a1 and a2AA, we write
(a1, a2) A R, which means that a1 R a2 or a1 ‘‘is related to’’ a2.

A binary relation is a relation R that relates elements of A to elements of B
and is a subset of A�B. The domain of R, written as ‘‘dom R,’’ is defined as:
dom R={x | xAA and (x, y)AR for some yAB}. The range of R, written as ‘‘ran
R,’’ is defined as: ran R={y | yAB and (x, y)AR for some xAA}. Again (a1,
b1)AR3a1 R b1.

Example Let R be the relation from A={1, 3, 5, 7} to B={1, 3, 5}, which is
defined by ‘‘x is less than y.’’ Write R as a set of ordered pairs.

Solution:

R={(x, y) | xAA, yAB, xoy}

R={(1, 3), (1, 5), (3, 5)}
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Recall the relations within and between systems engineering classes that were
discussed in Chapter 2. The hierarchy of requirements was defined by the relation
‘‘incorporates’’ in moving from the top of the requirements hierarchy to the
bottom; ‘‘incorporated in’’ was the relation that moved from bottom to top. The
relation ‘‘is decomposed by’’ moved from the top of the functional decomposi-
tion to the bottom; ‘‘decomposes’’ moves in the opposite direction. The physical
hierarchy of a system and its components used the relation ‘‘is built from’’ in
moving from top to bottom and ‘‘is built in’’ for moving from bottom to top.

Binary relations included the tracing from requirements to functions or the
system, the performance of functions by the system and its components, and
inputs and outputs of items for functions. The relation ‘‘is traced to’’ was used
for the binary relations of input/output stakeholders’ requirements being
mapped to functions and for system-wide/technology requirements being
mapped to the system. The binary relation for the system and components
being related to functions used the relation ‘‘pertains.’’ The relations ‘‘inputs’’
and ‘‘outputs’’ addressed functions being related to items.

To discuss the properties of unary relations, some additional information is
needed concerning the possible ways to prove an implication. An implication is
an ‘‘If y, then y’’ statement, which is commonly written as ‘‘If p is true, then
q is true’’ or ‘‘p-q.’’ There are eight common methods for proving implica-
tions of this form.

1. Trivial proof: Show that q is true independently of the truth of p.

2. Vacuous proof: By mathematical convention, whenever p is false, p-q is
true. The vacuous proof involves showing that p is false. This method is
key to understanding the full implications of the properties of unary
relations that are discussed below.

3. Direct proof: Assume that p is true and use arguments based upon other
known facts and logic to show that q must be true.

4. Indirect proof: Use direct proof of the contrapositive of p-q. The
contrapositive of a true implication is known to be true; the contra-
positive of p-q is Bq-Bp (or q is false implies p is false). Here we
assume q is false and prove via logic and known facts that pmust be false.

5. Contradiction-based proof: DeMorgan’s laws can be used to show that
p-q is equivalent toB(p4(Bq)), that is, the statement ‘‘p is true and q is
false’’ is false. Proof by contradiction starts by assuming that (p4(Bq)) is
true and then proving, based on this assumption, that some known truth
must be false. If the only weak link in the argument is the assumption of
( p 4 (Bq)), then this assumption must be wrong.

6. Proof by cases: If p can be written in the form of p1 or p2 or y or pn
( p13p23y3pn), then p-q can be proven by proving p1-q, p2-q, y,
pn-q as separate arguments.

7. Proof by elimination of cases is an extension of the method above: Recall
from the second method that p-q is equivalent to [ (p3q)4(Bp)], that is
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(p and q are true) or (p is false). Now p can be partitioned into a set of
cases as done in 6 and attacked one at a time.

8. Conditional proof: If we are to prove p-(q-r), we can prove the
equivalent (p4q)-r.

4.3.3 Properties of Unary Relations on A

The seven properties discussed here are reflexive, irreflexive, symmetric,
antisymmetric, asymmetric, transitive, and intransitive.

1. Reflexive: x R x for all xAA, e.g., equality, r, Z.

2. Irreflexive: x =Rx for all xAA, for example, greater than, is the father of.

3. Symmetric: If x R y, then y R x ’x, yAA, for example, equality, is spouse
of. Note if x =R y for all x and y in A, then the relation is symmetric by a
vacuous proof.

4. Antisymmetric: If x R y and y R x, then x=y ’x, yAA, for example,
equality,r,Z. Note if there is no situation in which ‘‘x R y and y R x’’ is
true, then the relation is antisymmetric by vacuous proof.

5. Asymmetric: If x R y, then y =R x ’x, yAA, e.g., o, >.

6. Transitive: If x R y and y R z, then x R z ’x, y, zAA, for example, r,
Z,=,W. This property is the most difficult to grasp. If there is no
situation in which ‘‘x R y and y R z,’’ then the relation is transitive by
vacuous proof.

7. Intransitive: If for some x, y, zAA, it is true that x R y, y R z, but x =R z,
the relation is considered intransitive.

Example Let L be the set of lines in the Euclidean plane and let R be the
relation on L defined by ‘‘x is parallel to y.’’ Is R a reflexive relation? Why? Is R
a symmetric relation? Why? Is R a transitive relation?

Solution:

1. This question reduces to whether a line is parallel to itself. If the definition
of parallel is having no points in common (everywhere equidistant), then
a line cannot be parallel to itself because the two lines have every point in
common. So R is not a reflexive relation.

2. R is a symmetric relation. Consider each xAL. x will have an infinite
number of yAL which satisfy the parallel relationship. Each such y is in
turn parallel to x. Thus, (x, y)AR for all x and y that are parallel, and
(y, x)AR, so the relation is symmetric.

3. R is a transitive relation. Again, consider (x, y)AR and (y, z)AR; x will be
parallel to z, so x R z and R is transitive for all x, y, zAL.

Example Let F be the set of functions in the functional decomposition for a
system. Let R be the relation on F defined by ‘‘is decomposed by.’’ Is R a
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reflexive relation? Why? Is R a symmetric relation? Why? Is R a transitive
relation?

Solution:

1. R is not a reflexive relation because a function does not decompose itself.

2. R is not a symmetric relation because if f1 decomposes f0, then f0 cannot
decompose f1.

3. R is not a transitive relation. The function f0 is decomposed by f1, f2 and
f3, and f1 is decomposed by f11, f12 and f13. However f0 is not decomposed
by f11, f12 or f13.

4.3.4 Partial Ordering

A relation R on A is a partial ordering if R is reflexive, antisymmetric, and
transitive. Examples of partial orderings areZ orr on the real number line, or
+ orD on P(A). Examples of nonpartial orderings are o or Won the real
number line,� or � on P(A). (Both of these are asymmetric and
antisymmetric.)

4.3.5 Equivalence Relations

A relation R on a set A is an equivalence relation if R is reflexive, symmetric, and
transitive. An example of an equivalence relation is equality.

4.4 FUNCTIONS

This section defines functions and discusses the composition of functions.

4.4.1 Definitions

Let A and B be two nonempty sets. We write a function f as f : A-B and say
that f maps every element of A (the domain) to one and only one element of B
(the range). If (a, b)Af, then element b is the image of element a under f. Note
that a function can map elements of A onto itself, f : A-A. A function f from A
to B is a relation such that

(a) dom f=A

(i) f is defined for each element of A, aAA.
(ii) ((a, b) where bAB for each element of A, aAA.

(b) if (a, b) A f and (a, c)Af, then b=c; that is, f is single-valued, or no
element of A is related to two elements of B.

A function is called one-to-one or injective if (a, b)Af and (c, b)Af implies a=c.
That is, no two elements of A can be mapped into the same element of B by f.
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A function f : A-B is onto or surjective if and only if the range of f=B, that
is, f is defined for every bAB.

If a function is both one-to-one and onto (or bijective), then the relation f �1

is single-valued and maps every element of B onto some element of A; f �1 is
therefore a function, called the inverse function.

Example If A={1, 2, 3, 4} and B={a, b, c, d}, determine if the following
functions are one-to-one or onto.

(a) f ¼ ð1; aÞ; ð2; aÞ; ð3; bÞ; ð4; dÞf g
(b) g ¼ ð1; dÞ; ð2; bÞ; ð3; aÞ; ð4; aÞf g
(c) h ¼ ð1; dÞ; ð2; bÞ; ð3; aÞ; ð4; cÞf g

Solution:

(a) f is NOT one-to-one since f �1ðaÞ ¼ 1; 2f g. f is NOT onto since
f �1ðcÞ ¼ F.

(b) g is NOT one-to-one since g�1ðaÞ ¼ 3; 4f g. g is NOT onto since
g�1ðcÞ ¼ F.

(c) h is one-to-one since all elements of B correspond to unique elements in
A. h is onto since every element of B has some pre-image in A.

So we have progressed mathematically from sets to relations to functions.

FunctionsDRelationsDSets, or a function is a relation is a set.

As systems engineers we will focus on functional architectures. We will
represent the functions of the system as relations or functions in graph-like
structures. The underlying theory is set theory.

4.4.2 Composition

Let R be a relation from A to B, and S be a relation from B to C. (a, c) is an
element of the composition of R and S, (denoted R �S or R S) if and only if
there is an element bAB such that a R b and b S c. That is, a and c must be
linked together by b; a is mapped to b and b is mapped to c. (Note that some
authors write the composition of R and S as S �R so be careful.)

The composition of functions is defined in the same way as the composition
of relations.

Example Assume R and S are relations from A to A. If A={1, 2, 3, 4},
R={(1, 2), (2, 3), (3, 4), (4, 2)}, and S={(1, 3), (2, 4), (4, 2), (4, 3)}, then
compute R �S, S �R and R �R.

Solution:

R �S={(1, 4), (3, 2), (3, 3), (4, 4)}.
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(1, 2) from R is composed with (2, 4) from S (this is written (1, 2) � (2, 4) )
and yields (1, 4).

(1, 2) from R cannot be composed with any of the other elements of S
because they do not begin with a 2.

(3, 4) � (4, 2)=(3, 2).

(3, 4) � (4, 3)=(3, 3).

(4, 2) � (2, 4)=(4, 4).

S �R={(1, 4), (2, 2), (4, 3), (4, 4)}, which is not equal to R �S.
R �R={(1, 3), (2, 4), (3, 2), (4, 3)}.

As systems engineers we will employ functional decomposition to develop
the functional architecture. Composition is the mathematical property from
which decomposition derives its name. However, as discussed in Chapter 7,
composition is only applicable to functional decomposition in limited
situations.

4.5 SUMMARY

This chapter began with the introduction of a set, the foundation of a branch of
mathematics called discrete mathematics. A great deal of terminology was
introduced to define special sets such as the universal and null sets and
operations on sets.

During the discussion of sets, the concept of partition was defined. The
partition is perhaps the most important mathematical concept introduced in
this chapter for application in this book. A partition is a subdivision of a set
into subsets, which contain no common members, and yet the union of the
subsets contains every element of the original set. In future chapters require-
ments will be partitioned, functional decompositions will be defined to be
partitions, and the physical decomposition will be defined to be a partition.

The power set of a set is the set of all subsets of that set. This notion of a
power set is not exploited fully in this book but will become key to the future
development and application of mathematics to the engineering of systems.

The next major section of this chapter dealt with relations and the key
properties associated with relations. A relation is a set of ordered pairs; the
elements of the ordered pairs come from one or two sets. If the functions of a
system are not fully defined in terms of inputs, then these system functions are,
in fact, mathematical relations. Functions are relations that satisfy certain
properties; a function maps every element of the domain of the function to
some element of the range, but does not map any element of its domain to more
than one element of the range. One-to-one and onto properties of functions
were also discussed. Finally the composition of functions was defined.
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PROBLEMS

4.1 Define the students enrolled in this class during this semester as a set, S.

a. Specify a partition of S into 2 subsets.

b. Specify a partition of S into 3 subsets.

c. Specify a partition of S into 5 subsets.

4.2 Let A1={1, 3, 5, 7, 9, 11}, A2={�2, 6, 9, 11}, A3={�2, 4, 6, 9, 11}.
Show that:

a. A1+A2=(A1�A2),(A2�A1)

b. A1,(A2-A3)=(A1,A2)-(A1,A3)

4.3 Prove that the following relations are true in general:

a. A1+A2=(A1�A2),(A2�A1)

b. A1,(A2-A3)=(A1,A2)-(A1,A3)

4.4 Let R be a relation from A to B and defined ‘‘x is at least twice as big as
y.’’ Write R as a set of ordered pairs for

a. A={1, 3, 5, 7} and B={2, 3, 4, 6}

b. A={0, 1} and B={0, 1}

c. A={1, 2, 3, 4, 5, 6, 7} and B={3, 6}

4.5 Let R be relation from A to B where ‘‘x is greater than or equal to y
squared.’’

Then define R as a set of ordered pairs for the following:

a. A={1, 2, 3, 4, 5}, B={1, 2, 3, 4, 5}

b. A={25}, B={5, 6, 7}

4.6 There are three families defined by the sets A, B, and C; each family has
a dad, mom and three kids:

A={Dad, Mom, Doris, Bill, Tom}

B={Dad, Mom, Doris, Daisy, Debbie}

C={Dad, Mom, Bill, Bob, Biff}

Consider the relations ‘‘is the spouse of,’’ ‘‘is the brother of,’’ and ‘‘is the
blood relative of.’’ (Hints: I am not the brother of myself. Two people
are blood relatives if they share the blood of a common ancestor, who
may or may not be part of sets A, B, or C. I am the blood relative of
myself. Biff is a male.)

Identify which of these relations satisfy which of the seven properties of
unary relations for each of the three sets by placing a yes or no in the
empty cells of the following table.
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‘‘is the spouse of ’’ on A

‘‘is the brother of ’’ on A

‘‘is the blood relative of ’’ on A

‘‘is the spouse of ’’ on B

‘‘is the brother of ’’ on B

‘‘is the blood relative of ’’ on B

‘‘is the spouse of ’’ on C

‘‘is the brother of ’’ on C

‘‘is the blood relative of ’’ on C

4.7 Let R be a relation from A to B and S be a relation from B to C.

a. Find R �S for A={1, 3, 5, 7}, B={1, 2, 4, 5, 7}, C={1, 2, 3, 4, 5, 6},
R={(1, 2), (3, 4), (5, 2), (7, 4)} and S={(1, 2), (2, 4), (4, 3), (7, 5)}.

b. Are any of these relations R, S, R �S functions? One-to-one
functions? One-to-one and onto functions?

4.8 If A1={1, 2, 3, 4} and A2={1, 4, 9, 25}, determine if the following
functions that map A1 onto A2 are one-to-one, onto, or both one-to-
one and onto.

a. f1={(1, 1), (2, 4), (3, 4), (4, 25)}

b. f2={(1, 1), (2, 4), (3, 25), (4, 25)}

c. f3={(1, 1), (2, 4), (3, 9), (4, 25)}

4.9 Develop two relations R (from A to B) and S (from B to C) that have to
do with people. Show the result of R �S.

4.10 Let R and S be relations from A-A, where A={1, 2, 3, 4} and:

R={(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3), (2, 1), (3, 1), (3, 2)}

S={(2, 3), (1, 2), (2, 1), (3, 1), (1, 3)}

a. Find if these relations are symmetric, reflexive, and transitive.

b. Find R �S, S �R and R �R.
4.11 Let A be a set of three colors: {red, blue, green}. What are the elements

of the power set of A?
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4.12 Let SIBLINGS={Andrea, Bobby, Catherine, David, Eric}. Find the
elements of the power set of SIBLINGS, P(SIBLINGS).

4.13 Show that the P{Andrea, Bobby} is a subset of the P(SIBLINGS) from
Problem 4.12.

4.14 Prove that for any two sets A and B, (P(A)-P(B))=P(A-B).

4.15 Find two sets A and B that show (P(A),P(B)) 6¼P(A,B).

4.16 Prove that for any two sets A and B, (P(A),P(B))DP(A,B).

4.17 Prove that the seven properties of set operations in Section 4.2.4 are
true.
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