
Chapter 5

Graphs and Directed Graphs
(Digraphs)

5.1 INTRODUCTION

This chapter introduces the mathematics of graph theory, the formal repre-
sentation of a relation (or function) among elements of a set or a pair of sets.
The concept of a relation discussed in this chapter is the same concept
introduced in Chapter 4. A graph in mathematics is a set of nodes and a set
of edges between pairs of those nodes; the edges are ordered or nonordered
pairs, or a relation, that defines the pairs of nodes for which the relation being
examined is valid. As an example, the people working as systems engineers on a
project could be the members of a set. One relation defined over this set could
be ‘‘works for.’’ Another relation could be ‘‘respects.’’ The edges can either be
undirected or directed; directed edges depict a relation that requires the nodes
to be ordered while an undirected edge defines a relation in which no ordering
of the edges is implied. The ‘‘works for’’ and ‘‘respects’’ relations would be
examples of ordered relations. An example of an undirected relation would be
‘‘sits next to.’’

A graph enables us to visualize a relation over a set, which makes the
characteristics of relations such as transitivity and symmetry easier to under-
stand. The reader will hopefully comprehend the power of visualizing math-
ematical concepts, as enabled by mathematical graph theory, by the end of
reading this chapter.

The Engineering Design of Systems: Models and Methods, Second Edition. By Dennis M. Buede
Copyright r 2009 John Wiley & Sons, Inc.

122

There is a great deal of terminology associated with graph theory; most of
the basics are introduced in this chapter. Notions such as paths and cycles are
key to understanding the more complex and powerful concepts of graph theory.
There are many degrees of connectedness that apply to a graph; understanding
these types of connectedness enables the engineer to understand the basic
properties that can be defined for the graph representing some aspect of his or
her system. The concepts of adjacency and reachability are the first steps to
understanding the ability of an allocated architecture of a system to execute
properly.

In addition to aiding in the visualization of relations, graph theory is the
basis of many modeling languages. However, there are many more modeling
languages, such as IDEF0, that look like graphs but which have no underlying
mathematics. The material presented in this chapter is necessary but not
sufficient to be able to detect when a modeling language with graphical
representations has a mathematical basis or not. For example, understanding
the seven properties of unary relations presented in this chapter will enable the
reader to detect key assumptions such as transitivity being made or assumed by
a modeling language.

Similarly, understanding the difference between a partial order and a total
order will give the reader an appreciation of the restrictions and power of a
modeling language. A specific example of the use of some of the key concepts
in this chapter relates to total and partial orders of elements of a set based
upon the relation defined over the set. When a relation induces a total order,
the elements of the set over which the relation is defined can be numbered
from 1 to n. However, the concept of a partial order suggests that there is
more than one possible order from 1 to n of the set’s elements that is
consistent with the relation. There are a number of applications of a partial
order in systems engineering. For example, the set of functions being executed
by the system’s components can often be executed in more than one sequence.
Understanding the many partial orders of functional execution is key to
developing test plans to verify the system’s performance characteristics. The
interested reader is referred to Goodaire and Parmentar [1998], Harary
[1972], and Harary et al. [1965] for more details on graph theory. Shin and
Levis [2003] provide a performance prediction model based upon a creative
application of Petri nets, which is a graph theoretic modeling language based
on set theory.

Another specific example of the use of concepts from this chapter relates to
the power of hierarchies in the engineering of systems; hierarchies for require-
ments, functions, and physical components are discussed in Chapter 2. In graph
theory a hierarchy is represented as a directed tree. This chapter introduces the
terminology associated with trees in graph theory.

The state-of-the-art practice in the engineering of systems is to use a number
of graphical concepts that have various amounts of grounding in mathematics
as communication mechanisms. The challenge for the future is to develop
additional modeling techniques that have significantly more grounding in

5.1 INTRODUCTION 123

mathematics while maintaining the quality of the communication among
the stakeholders and the engineers in the various disciplines. The software
engineering community has been moving in this direction for at least 15 years.
The systems engineering community has just started this trek with SysML.

5.2 TERMINOLOGY

A graph, G, is a pair of sets, V(G) and E(G). V(G)= {n1, n2,y, nN} is the set of
vertices or nodes. E(G)= {eij}D(V(G)�V(G)) is a relation that defines the set
of edges that are unordered, not necessarily distinct pairs of nodes. V(G) is a
finite, nonempty set; E(G) may be empty and is a subset of the Cartesian
product of V(G) with itself.

Due to the undirected nature of the edges in a graph, the edges represent
symmetric relations such as ‘‘____ is next to ____’’, ‘‘____ is the sibling of
____’’, ‘‘____ is married to ____.’’ Due to the symmetry the order in which the
nodes are placed does not matter.

The following Konigsberg bridge problem is one of the earliest known graph
theory problems (See Sidebar 5.1). Euler’s graph of the Konigsberg bridge
problem is known as a multigraph, in which two or more edges connecting the
same nodes is possible. This graph is also known as a simple graph because
there are no loops. A loop is an edge connecting a node to itself, eii.

A directed graph or digraph, G, is a pair of sets, V(G) and E(G); V(G)=
{n1, n2, y, nN} is the set of vertices or nodes. V(G) is again a finite, nonempty
set; E(G)= {eij} is a subset of V�V or ordered pairs of nodes; eij is said to be
from ni to nj. Again E(G) may be empty.

The edges in a digraph represent antisymmetric or asymmetric relations.
Examples are ‘‘____ is a parent of ____’’ and ‘‘____ is higher than ____.’’ Here
the order in which the nodes are placed in the blanks does matter. Examples
include Markov chains and Program Evaluation Review Technique (PERT)
charts.

Figure 5.1 shows a sample digraph for the relation ‘‘is the parent of.’’ Nodes
that are connected by a directed edge are often discussed in terms of parent and
child. The node at the tail of the edge is often called the parent and the node at
the arrow of the edge is called the child.

The definitions of loop and simple digraph are the same as above. A
multigraph digraph requires multiple copies of eij for the same i and j in
E(G). The presence of eij and eji are not sufficient for G to be a multigraph
digraph.

Cardinality of a set A=|A|=the number of elements of A. Note, the
cardinality of f is 0. If A has n elements, then P(A) has cardinality is 2n.

Order of G= |V(G)|= the number of nodes of G.

Size of G=|E (G)|= the number of edges of G.

124 GRAPHS AND DIRECTED GRAPHS (DIGRAPHS)

SIDEBAR 5.1: THE KONIGSBERG BRIDGE PROBLEM

In the 1700s the inhabitants of Konigsberg in eastern Prussia were
entertained by a puzzle involving seven bridges over the Pregel River.
The puzzle posed by mathematicians was whether it was possible to start
at any one of the four distinct parcels of land (A, B, C, or D) and find a
tour that crossed every bridge once and only once in such a way that the
tourer ends up at the same parcel of land from which the tour began. L.
Euler, the Swiss mathematician, proved that such a tour could not be
done, and in 1736 gave precise conditions for when such a tour could be
defined for any system of interconnected bridges.

1 3

4

5

7

B

C

D

A

6

2

The following graph is a mathematical representation that Euler
created as part of his mathematical proof. The parcels of land are the
nodes and the bridges are the edges. Would it be possible to define a
graph for this problem in which the bridges were nodes and the parcels
were edges?

A

B

C

D

1 2
3

4

5 76

5.2 TERMINOLOGY 125

The incidence of edges (Fig. 5.2) is defined as: (a) eij is incident on ni and nj in
a graph and (b) eij is incident from ni to nj in a digraph.

Degree of node ni= the number of edges connected to ni in a graph, deg(ni).

Out degree of node ni= the number of edges incident from (or exiting) ni in a
digraph, degG

�(ni).

In degree of node ni= the number of edges incident to (or entering) ni in a
digraph, degG

+ (ni).

Adjacency – two nodes ni and nj are said to be adjacent if eij or ejiAE(G).

If V={n1, n2, y, nN} is the set of nodes of an undirected graph G, then

XN

i¼1
degðniÞ ¼ 2jEðGÞj:

Terah

Nahor Hanan Abram

Milchah Sarai

Bethuel Isaac

Rebecca

Esau Jacob

FIGURE 5.1 Sample directed graph for ‘‘is the parent of.’’

ni

ni

nj

nj

FIGURE 5.2 Samples of incidence.

126 GRAPHS AND DIRECTED GRAPHS (DIGRAPHS)

If G is a digraph, then

XN

i¼1
deg�GðniÞ ¼

XN

i¼1
degþGðniÞ ¼ jEðGÞj:

Edge labeling of a graph or digraph G is a function f: E(G)-D, where D is a
domain of labels.

Node labeling of a graph or digraph G is a function f: V(G)-D, where D is a
domain of labels.

Recall from Chapter 3 that IDEF0 (Integrated Definition for Function
Modeling) uses edge and node labeling.

A bipartite graph is a graph (digraph) whose set of nodes can be partitioned
into two sets A and B such that no edge connects a node in A to another node
in A and, similarly, no edge connects a node in B to another node in B. See
Figure 5.3. Is the family tree in Figure 5.1 a bipartite graph?

5.3 PATHS AND CYCLES

A walk in a digraph is a sequence of one or more nodes {n0, n1,y, nk} and zero
or more edges {e01, e12,y, ek�1,k}. See Figure 5.4. A walk may revisit the same
node more than once. A walk is closed if its initial and end vertices are the same;
otherwise it is open. A walk is nontrivial if it has one or more edges.

A path is a walk in which each node is distinct (i.e., there are no repeats),
except possibly the end nodes. See Figure 5.4. Note since the nodes cannot
repeat, the edges cannot repeat.

FIGURE 5.3 Sample bipartite graph.

a b

c d e

FIGURE 5.4 Digraph with a walk (d-b-a-c-d-e), closed walk, path, and a cycle (a-c-d-b).

5.3 PATHS AND CYCLES 127

A trail is a walk in which each edge is distinct. Note the same node may be
revisited more than once. A closed trail is a circuit.

A circuit is a nontrivial walk with no repeated edges and whose endpoints are
the same. Figure 5.5 has a circuit: a, b, c, d, e, c, a.

A cycle is a circuit in which all of the nodes are distinct except the first and
last. See Figures 5.4 and 5.5. The nodes a, c, d, b in Figure 5.4 are a cycle. This
cycle could be defined as (d, b, a, c) or (b, a, c, d) or (c, d, b, a) as well, but there
is only a single cycle in this graph.

A nondirected walk (or semiwalk) in a digraph is a sequence of one or more
nodes {n0, n1,y, nk} and zero or more edges {e10 or e01, e21 or e12,y, ek,k�1 or
ek�1,k}. A semiwalk can travel the wrong way on a directed edge.

A semipath (or chain) is a semiwalk in which each node is distinct, again with
the possible exception of the end nodes. See Figure 5.6.

A semicircuit is a nontrivial semiwalk in which the first and last nodes are the
same and no edges are repeated.

A semicycle is semicircuit in which the only repeated nodes are the first and
last. See Figure 5.6.

A digraph is acyclic if there exists no subgraph that is a cycle.
By now most readers are probably wondering how these definitions are

going to be useful. The vocabulary provided by these definitions is very useful
in describing when a graph has the seven unary characteristics (e.g., reflexivity,
transitivity) from Section 4.3.3. In addition, there are other concepts that will
be introduced in this chapter that have general applicability to the engineering
of a system, for which this vocabulary will also be useful.

a

b

c

d

e

FIGURE 5.5 Digraph with 2 cycles (a-b-c and c-d-e) and a circuit (c-a-b-c-d-e-c).

a b

c d e

FIGURE 5.6 Digraph with a semipath (b-a-c-d-e) and semicycle (d-b-a-c).

128 GRAPHS AND DIRECTED GRAPHS (DIGRAPHS)

5.4 CONNECTEDNESS

Another vocabulary that proves very useful is connectedness. A pair of nodes in
a digraph is weakly connected if there is a semipath between them, for example,
nodes b and c in Figure 5.6. The nodes are unilaterally connected if there is a
path between them, for example, all of the pairs of nodes in Figure 5.6 except b
and c. Finally, the nodes are strongly connected if there is a path in both
directions. No pair of the nodes in Figure 5.6 is strongly connected; every pair
of nodes in Figure 5.5 is strongly connected. Note a pair of nodes that is
strongly connected is also weakly and unilaterally connected.

A digraph is weakly (unilaterally, strongly) connected if every pair of nodes in
the graph is weakly (unilaterally, strongly) connected. The digraph in Figure
5.6 is weakly connected because of the weak connection between nodes b and c.
The digraph in Figure 5.4 is unilaterally connected because node e is
unilaterally connected with the other four nodes, even though each of the
other four nodes is strongly connected to each of the other three. The digraph
in Figure 5.5 is strongly connected. The digraphs in Figures 5.1 and 5.3 are
weakly connected.

A pair of nodes is disconnected if there is no path or semipath between them.
A digraph is disconnected if one of its nodes is disconnected from any other
node of the graph. A graph is connected if it is not disconnected. All of the
digraphs presented so far are connected.

5.5 ADJACENCY AND REACHABILITY*

The adjacency matrix of a graph G, A(G), provides a mathematical representa-
tion of which nodes in a digraph are adjacent to each other. Recall that a
relation fromN(G) toN(G) is defined by the edges of G, E(G). So in fact, A(G) is
a description of the relation E(G) from N(G) to N(G).

AðGÞ ¼ aij
� �

is an N � N Boolean matrix where N is the order (number of nodes) of G.

aij ¼
1 if eij 2 EðGÞ
0 if eij =2EðGÞ

(

Note a Boolean matrix is one whose elements are 0 or 1. The row sums of A(G)
give the out-degrees of the associated node; the column sums give the in-
degrees. If G is not a digraph but a graph, A(G) will be a symmetric matrix.

*Advanced material.

5.5 ADJACENCY AND REACHABILITY 129

A node nj of G is said to be reachable from node ni of G if there exists a path
from ni to nj in G. The reachability matrix, R(G), is a Boolean matrix that
indicates which nodes can be reached from which other nodes.

RðGÞ ¼ rij
� �

is anN�N Boolean matrix whereN is the order of G. To compute R(G) we first
compute A, A2, A3, y, A|E(G)|

rij ¼
1 if i ¼ j

1 if a
ðkÞ
ij 40 for some Ak

0 otherwise

8
><

>:

Node ni is reachable from node nj if rij= 1. R(G) is also called the transitive,
reflexive closure of E(G) because R(G) is defined to be a reflexive relation that
adds the edges necessary to make E(G) a transitive relation. R(G) is sometimes
denoted R*(G).

The transitive closure, R+(G), is defined to be RþðGÞ¼ rþij

h i
, where

rþij ¼
1 if a

ðkÞ
ij 40 for some Ak

0 otherwise

(

Note in this case the reflexivity of the transitive closure is determined by the
reflexivity of E(G).

The distance between two nodes is the smallest number of edges between the
nodes on any path connecting the two nodes. The distance matrix, D(G),
reflects these numbers.

DðGÞ ¼ dij
� �

is an N�N matrix where N is the order of G.

dij ¼

0 if i ¼ j

k if nj is reachable from ni; k is the exponent

of the first Ak in which a
ðkÞ
ij 40

1 if there is no path from ni to nj

8
>>>><

>>>>:

5.6 UNARY RELATIONS AND DIGRAPHS

Now directed graphs will be used to visualize the seven properties of unary
relations that were introduced in Chapter 4.

130 GRAPHS AND DIRECTED GRAPHS (DIGRAPHS)

Reflexivity: 8x; xRx: That is, all nodes must have loops. The top of Figure 5.7
shows a reflexive relation.

Irreflexivity: 8x; x =Rx: That is, no nodes can have loops. The relations shown in
the digraphs of Figures 5.1 and 5.3 through 6 are irreflexive. The bottom of
Figure 5.7 shows an irreflexive relation.

Note digraphs can depict relations that are neither reflexive nor irreflexive
when some of the nodes have loops and others do not.

Symmetry: 8x; y ; if xRy ; then yRx: That is, there must be a cycle between any
two nodes that are adjacent to each other. There is no limitation about arcs
besides this. The relations shown in the digraphs of Figures 5.4, 5.5, and 5.6
are not symmetric. The relation in the digraph shown in Figure 5.8 is
symmetric.

Antisymmetry: 8x; y ; if xRy and yRx; then x ¼ y: That is, there cannot be a
cycle between any two nodes that are adjacent to each other. Again, there is
no limitation about arcs besides this one; so cycles containing three or more
nodes can exist. Any node can have a loop. The digraphs in Figure 5.1 and
5.3 through 5.6 show antisymmetric relations; the relation in the digraph
shown in Figure 5.8 is not.

Asymmetry: 8x; y ; if xRy; then y =Rx: That is, there can be no cycle between
any two nodes, and there can be no loops. Asymmetric relations must be

c

A Sample Reflexive Relation

a b

A Sample Irreflexive Relation

FIGURE 5.7 Reflexive and irreflexive relations.

a b

c

FIGURE 5.8 Digraph of a symmetric relation.

5.6 UNARY RELATIONS AND DIGRAPHS 131

irreflexive. Again cycles among three or more nodes are allowed. The
relations in the digraphs shown in Figures 5.1 and 5.3 through 5.6 are
asymmetric; the digraph in Figure 5.8 shows a relation that is not.

Note a relation that is irreflexive but in which no node is adjacent to any
other node (completely disconnected) is symmetric, antisymmetric, and asym-
metric due to the vacuous proof in Chapter 4.

Transitivity: 8x; y; z if xRy and y R z; then x R z: This condition only applies
to triplets of nodes and requires that there be a semicycle among the three
nodes in the triplet. (Note the first and third node in a triplet can be the
same, in which case there must be cycle between the two nodes and loops
at each node.) A relation to which this condition, or left-hand side, is
not applicable (i.e., the ‘‘if condition’’ is never satisfied) will be transitive.
Figure 5.9 shows a transitive relation:

dRa and aRb dRb,

aRb and bRe aRe,

dRb and bRe dRe,

dRa and aRe dRe.

Intransitivity: for some x, y, z, if x =Rz; then xRy and yR z: Relations are
either transitive or intransitive. Cycles may exist in transitive relations; but
note that a transitive relation with cycles that contains three or more nodes
means that there must be a cycle between every pair of nodes that is part of
the cycle, resulting in a symmetric relation with loops for the subset of nodes
in the cycle. The relation in Figure 5.8 is symmetric but not transitive
because aRb and bRa, but a is not related to a; the same applies for nodes b
and c. Figure 5.10 shows the transitive version the relation of Figure 5.8; the
loops are added at each node.

It should be obvious that it is easier to use a directed graph to visualize the
properties of unary relations than the mathematical expressions discussed in

a b c

d e

FIGURE 5.9 Digraph of a transitive relation.

132 GRAPHS AND DIRECTED GRAPHS (DIGRAPHS)

Chapter 4. Likewise, graphical techniques for visualizing functional relation-
ships together with inputs and outputs are much more comprehensible than
purely written or tabular methods for most people. ‘‘A picture is worth a 1000
words.’’

5.7 ORDERING RELATIONS*

Relation R is a partial order on set A when R is reflexive, antisymmetric, and
transitive on the set A. In this case A is called a partially ordered set, or POSET,
written [A; R]. Therefore a relation that is a partial order cannot have any cycles.
As discussed in the previous section, a relation that is transitive and has cycles
must have pairs of nodes that are symmetric. If any pair of nodes in a relation is
symmetric, then the relation cannot be antisymmetric.

Two elements a1 and a2 inA are said to be comparable underR if either a1R a2
or a2 R a1. Otherwise the elements are incomparable. If every pair of elements is
comparable, then [A; R] is totally ordered.

A Hasse diagram is an undirected graph of the relations between the
elements of a partially ordered set. See Figure 5.11. Each element of A is
represented as a node. Reflexivity is not represented in the Hasse diagram,
thereby eliminating all loops from the graph. Edges that are required by the
transitivity property are also omitted; that is, any edge that depicts a shorter
path to another node than some other combination of edges is deleted. To draw
a Hasse diagram, we place the nodes on a piece of paper such that ai is below aj
if ai R aj. We connect ai to aj with an undirected edge if and only if ai R aj and
there is no ak such that ai R ak and ak R aj. Figure 5.12 provides a second
example of a Hasse diagram and the resulting partial orderings of A.

If there is only one node at the top of the Hasse diagram and only one node
at the bottom, then the poset is called a lattice. That is, with the transitivity
property in force there must be one and only one element, the upper bound or a
of A, such that a R ai ’i, and a second element, the lower bound or z of A, such
that ai R z ’i.

a b

c

FIGURE 5.10 Transitive version of the digraph in Figure 5.8.

*Advanced material.

5.7 ORDERING RELATIONS 133

a b

c d

Relation R on A

making R a
partial order

c d

ba

making a
Hasse diagram

a

b c

d possible orderings
of elements of A

a, b, c, d
a, c, b, d

FIGURE 5.11 Partial order on a set A, Hasse diagram, and partial orderings of A.

The relation is transitive. Reflexive arcs are
dropped for ease of display.

1

2

3

4

6

9

R = “divides evenly”
on A = {1, 2, 3, 4, 6, 9}

1

2

3

4

6

9

6

23

4

1

9

Making R a Hasse diagram 16 possible orderings of elements of A:

1, 2, 3, 4, 6, 9 1, 3, 2, 4, 6, 9
1, 2, 3, 4, 9, 6 1, 3, 2, 4, 9, 6
1, 2, 3, 6, 4, 9 1, 3, 2, 6, 4, 9
1, 2, 3, 6, 9, 4 1, 3, 2, 6, 9, 4
1, 2, 3, 9, 4, 6 1, 3, 2, 9, 4, 6
1, 2, 3, 9, 6, 4 1, 3, 2, 9, 6, 4
1, 2, 4, 3, 6, 9 1, 3, 9, 2, 4, 6
1, 2, 4, 3, 9, 6 1, 3, 9, 2, 6, 4

FIGURE 5.12 Second Hasse diagram example.

134 GRAPHS AND DIRECTED GRAPHS (DIGRAPHS)

5.8 ISOMORPHISMS*

Two graphs, G1= (V1, E1) and G2= (V2, E2), are isomorphic if there exists a
one-to-one and onto function, f, such that f: V1-V2 and f preserves adjacency.
That is, E2= {(f (v), f (w)) | (v, w) A E1}. Note that ‘‘___ is isomorphic to ___’’
is an equivalence relation.

An isomorphism f from G1 to G2 is not necessarily unique. Some necessary
properties for G1 and G2 to be isomorphic are: (1) |V(G1)|= |V(G2)|, (2)
|E(G1)|= |E(G2)|, and (3) if n1 A V(G1), then degþG1

ðn1Þ ¼ degþG1
ð f ðn1ÞÞ and

deg�G1
ðn1Þ ¼ deg�G1

ð f ðn1ÞÞ.

5.9 TREES

A tree is a graph G with no loops in which there is a unique, simple (no loops),
nondirected path (or semipath in the case of a digraph) between each pair of
nodes. Figure 5.13 shows a graph that is a tree.

A rooted tree is a tree in which there is a designated ‘‘root’’ node. In a graph,
the root node must have a degree of 1. In Figure 5.13 nodes a, c, and j could be
root nodes. In a directed tree, the root node must have no parents, or an in
degree of 0. In Figure 5.14, in the left digraph nodes a and c could be root
nodes; in the right digraph only node a can be root node.

A directed tree is a rooted tree in which there is a (directed) path from the
root to every other node. Note that the tree in Figure 5.13 is not a directed tree
because the graph is not a digraph. The right-hand digraph in Figure 5.14 is a
directed tree in which node a is the root. The left-hand graph is a tree because
there exists a semipath from every node to every other node; that is, the graph is
weakly connected. The graph is not a directed tree because there is not a path
from any root (a or c) to every other node.

Note the following statements are consistent with the above definitions:

1. A simple nondirected graph G is a tree if and only if G is connected and
contains no cycles.

2. A tree with n nodes has exactly n�1 edges.

3. A graph G is a tree if and only if G has no cycles and |E(G)|= |V(G)|�1.

A directed tree is a graphic representation of a partition, the fundamental
construct of our requirements, functional and physical decompositions.

5.9.1 Spanning Trees*

A graph H is a subgraph of a graph G if V(H) D V(G) and E(H) D [E(G) -
(V(H)�V(H))]. That is, the nodes in the subgraph must be a subset of the

*Advanced material.

5.9 TREES 135

nodes in the graph, and the edges in the subgraph must be a subset of those in
the graph, with the added stipulation that all of the edges are connected to two
nodes, one on each end of the edge.

Graph H is a proper subgraph of G if V(H) 6¼ V(G).
A graph H is a spanning subgraph of G if H is a subgraph of G and

V(H)=V(G). So a spanning subgraph cannot be a proper subgraph.
Let W be a subgraph of G. The subgraph induced by W is the subgraph H of

G in which V(H)=V(W) and E(H)= [E(G) - (V(W)�V(W))]. That is, H,
the subgraph of G induced by W, contains all of the edges of G that are
consistent with the nodes of W. A subgraph H of a graph G is called a spanning

a b c

d

e f

g h i

j

a b c

d

e f

g h i

j

Directed TreeNondirected Tree

FIGURE 5.14 Sample nondirected and directed trees.

a b c

d

e f

g h i

j

FIGURE 5.13 Sample tree.

136 GRAPHS AND DIRECTED GRAPHS (DIGRAPHS)

tree of G if (a) H is a tree and (b) V(H)=V(G). A spanning tree that is a
directed tree is a directed spanning tree.

5.9.2 Directed Trees

Two nodes, n1 and n2, in a digraph G are quasi-strongly connected if there exists
a node n3 such that there is a path(s) from n3 to n1 and from n3 to n2. The path
from n3 to n2 can pass through n1.

Digraph G is a quasi-strongly connected digraph if and only if there is at least
one node, r, in G such that there exists a path from r to all of the remaining
nodes of G. See Figure 5.15.

Let G be a digraph with |V(G)|W1. Then the following statements are
equivalent:

(1) G is a directed tree.

(2) There is a node r in G such that there exists a unique path from r to every
node in G.

(3) G is quasi-strongly connected and G – (any edge) is not quasi-strongly
connected.

(4) G is quasi-strongly connected and contains a node r such that the in
degree of r is 0 and the in degree of every other node in G is 1.

The height of a directed tree is the length of the longest path. The height of
the directed tree in Figure 5.14 is 8. A directed tree has levels. Level 0 is
associated with the root of the directed tree. The first level of the directed tree
contains all nodes adjacent to the root, or the children of the root. The second
level contains the children of all nodes in level 1, and so on. See Figure 5.16.
Note that a directed tree need not be symmetric, that is, reach the same level
along every path.

5.9.3 Forest

A directed forest is a collection of directed trees. See Figure 5.17. Forests are
important in systems engineering as we practice concurrent engineering.

a b

cd

e f

FIGURE 5.15 Quasi-strongly connected digraph.

5.9 TREES 137

Recall from Chapter 1 that we must be concerned not only with the system that
will be used during the operational phase but also with the development,
manufacturing, training, deployment, refinement, and retirement systems. The
concurrent requirements form a requirements forest.

5.10 FINDING CYCLES AND SEMICYCLES IN A GRAPH

In very large digraphs it will not always be apparent that there are cycles or
semicycles. To find the cycles, remove all barren nodes (nodes without children)
and border nodes (nodes without parents). Continue this process until there are
no remaining barren or border nodes. If there are any nodes remaining, then

r

a b

c d e

f g

h

Level 0

Level 1

Level 2

Level 3

Level 4

FIGURE 5.16 Levels of a directed tree.

s t

x

y z

r

a b

c d e

f g

h

FIGURE 5.17 Sample directed forest.

138 GRAPHS AND DIRECTED GRAPHS (DIGRAPHS)

there are one or more cycles and the remaining nodes are part of at least one of
the cycles.

To find the semicycles in a digraph, first replace all of the directed arcs with
non-directed arcs. Then remove all nodes of degree 1. Continue this process
until there are no remaining nodes of degree 1. If there are any nodes
remaining, then there are one or more semicycles, and the remaining nodes
are part of at least one of the semicycles.

5.11 REVISITING IDEF0 DIAGRAMS

At a superficial level IDEF0 diagrams resemble the digraphs that we have been
discussing. On any IDEF0 page there are nodes, depicted as boxes, and arcs.
All of the boxes and edges are labeled as discussed earlier in this chapter.
However, we need not look too deep to see some major discrepancies between
digraphs and a page of an IDEF0 model. The inputs, controls, outputs, and
mechanisms (ICOMs) coming from external sources to the page are not nodes
but labels on the edges. These edges, associated with the external ICOMs, do
not have a node at one of their ends; this never happened in a digraph since an
edge depicted a relation between two elements of a set A and all of the elements
of A were shown in the graph.

As mentioned in the previous paragraph, each edge on the IDEF0 diagram is
labeled. While there can be labels on the edges in digraphs, all of the digraphs
presented in this chapter had none. In a digraph each edge represents the fact
that a single relation exists between each pair of connected nodes, aRb.

Each node in the IDEF0 diagram is called a function and is named
consistently with our understanding of a function, namely a transformation.
Yet, digraphs represent a specific relation, which may be a mathematical
function if certain conditions are satisfied (see Chapter 4). The relation, or
function, in a digraph is represented by the edges, not the nodes.

At an even deeper level, each label on the edge of an IDEF0 arrow actually
represents a set of possible items that can become an input, control, or output
of the relevant function. All of the possible inputs and controls entering a
function must then be represented by n-tuple of the Cartesian product across all
input and control arrows entering that function. Similarly, the Cartesian
product represents all possible outputs of a function across all output arrows
exiting a function. So, there are, in fact, many important differences between a
digraph and a page of an IDEF0 diagram.

A number of people have attempted to transform an IDEF0 model into a
bipartite graph. The first step is to turn the arc labels into nodes of a second
type, say circles. The IDEF0 diagram (without mechanisms) in the top of
Figure 5.18 is converted into a bipartite graph in the bottom of Figure 5.18.
Each label is replaced by a circular node. Each external label is connected by
the edge entering or leaving the appropriate function. The new nodes for I12
and C12 are now connected by two edges; one going into the new node and one

5.11 REVISITING IDEF0 DIAGRAMS 139

coming out of the new node. We have now satisfied the basic requirements of a
bipartite graph; there are two types of nodes and no edge connects two nodes of
the same type. There are, in essence, two types of edges; those that connect
boxes to circles (outputs of the function in the box) and those that connect
circles to boxes (inputs to the function in the box).

However, there are two remaining problems. First, IDEF0 differentiates
between arcs entering a function from the top and left. There is no provision for
such differentiation in digraphs. Other process modeling techniques in Chapter
12 do not differentiate between inputs and controls; it is necessary to drop this
distinction between inputs and controls, as is done in Petri nets, which is the
only graph-theoretic modeling tool discussed in Chapter 12.

Second, there is a problem with branches and joins. There is no analogous
construct in graph theory. To solve this problem a function must be inserted at
each branch to accomplish a divide or copy, and at each join to accomplish a
paste. See Figure 5.19.

I1

C1

O1

Transform I1
into I12 and

C12 in
accordance

with C1

A1
Transform I12

into O1 in
accordance
with C12

A2

I12

C12

I1

C1

O1

A1

Transform I1
into I12 and C12
 in accordance

with C1

A2

Transform I12
into O1 in

accordance with
C12

I12

C12

FIGURE 5.18 ICOM labels converted to nodes.

140 GRAPHS AND DIRECTED GRAPHS (DIGRAPHS)

With all of these workarounds, IDEF0 remains a static snapshot of a
dynamic process. There are potentially infinite dynamic models that can be
created from each IDEF0 model. The information that separates the proper
dynamic model from the rest of the possible dynamic models is not in the IDEF0
model but remains in the mental model of the creator of the IDEF0 model. If a
team (which is most common) creates the IDEF0 model, it is possible, even
likely, that each team member has a mental model of a different dynamic
representation of the static IDEF0 model. This is why creating a dynamic model
from the IDEF0 representation is so important; the communication process
among the systems engineering team must be carried as far as possible.

5.12 SUMMARY

A graph consists of a set of nodes and a set of edges. The edges define a relation
over the set of nodes. The relation can require an order of the nodes in which
case the edges are directed; directed graphs are the most applied in the
engineering of systems. Bipartite graphs are a special form of a directed graph
in which there are two types of nodes, and the edges cannot connect nodes that
are the same type.

I1

C1

O1

Transform I1
into I12 and

C12 in
accordance

with C1
A1

Transform I12
 into O1 in
accordance

with C12

A2

C12
O1a

I12

I12 & O1a

O1b

I1

C1

O1
A1

Transform I1
into I12&O1a

C12 in
accordance

with C1

A2

Transform I12
into O1b in

accordance with
C12

I12

C12

A4

Paste O1a
together with

O1b
A3

Divide
I12&O1 a
into I12

and O1a

I12&O1a O1a

O1b

FIGURE 5.19 IDEF0 page with divide and paste functions added.

5.12 SUMMARY 141

Sequences of nodes in a graph can be defined by the terms walk, path, trail,
circuit, and cycle. Graphs can be connected or disconnected; there are variations
of connectedness, ranging from weakly to strongly. Nodes that are not adjacent
to each other in a graph can be reachable via a path in the graph. This notion of
reachability can be critical if attaining some output requires the execution of a set
of functions, but the set of functions is not part of a reachable set.

The properties of reflexivity, irreflexivity, symmetry, antisymmetry, asym-
metry, transitivity, and intransitivity were defined in Chapter 4 and then
redefined in terms of graphs in this chapter. Visualizing these relations provides
a much greater understanding of their meaning and ability to detect their
absence or presence in a graph.

Partial orders of the elements of a set were defined as alternative orders of
the nodes based upon the relation defined over the nodes. The Hasse diagram
was defined and illustrated for finding the partial order on the set and then
enumerating the possible partial orders.

Trees and several variations of trees were introduced as a special form of a
graph. A directed tree describes the notion of a hierarchical decomposition.
Hierarchies of requirements, functions, and components were discussed in
Chapter 2 and will be revisited in Chapters 6 through 11. These hierarchies
must be partitions (as defined in Chapter 4) and can be represented as directed
trees.

Finally the IDEF0 process modeling technique was revisited and discussed
in terms of mathematical graph theory. The reasons why an IDEF0 model is
not a directed graph were discussed, as well as the difficulty associated with
turning an IDEF0 model into a graph.

PROBLEMS

5.1 For the following graph, G1:

b

a

f

d

g

e

c

142 GRAPHS AND DIRECTED GRAPHS (DIGRAPHS)

a. Find |V(G1)| and |E(G1)|.

b. Write the relation depicted by G1 as a set of ordered pairs.

c. Define the adjacency matrix of G1.

d. What is the out degree of each node of G1? What is the in degree of
each node of G1?

e. Could G1 be a bipartite graph? If no, why? If yes, what is the partition
into two subsets of nodes that makes this a bipartite graph?

f. Is the relation depicted here reflexive? irreflexive? symmetric? anti-
symmetric? asymmetric? transitive? intransitive?

g. What arcs (if any) would you have to add to this relation to make it
transitive

5.2 For the following graph, G2:

b

a

f

d

g

e

c

a. Write the relation depicted by G2 as a set of ordered pairs.

b. Define the adjacency matrix of G2.

c. Could G2 be a bipartite graph? If no, why? If yes, what is the partition
into two subsets of nodes that makes this a bipartite graph?

d. *Is there a cycle in G2? How many?

e. *Is there a semicycle in G2? Which nodes are included?

f. Is the relation depicted here reflexive? irreflexive? symmetric? anti-
symmetric? asymmetric? transitive? intransitive?

g. What arcs (if any) would you have to add to this relation to make it
transitive?

h. *Delete the arc from g to a and draw a Hasse diagram for G2. Why
must we delete the arc from g to a before we can draw a Hasse

*Advanced assignment.

PROBLEMS 143

diagram? Define at least 10 different node orderings consistent with
this Hasse diagram.

5.3

a. Develop a directed graph for the relation ‘‘_____ has defeated ____.’’
using the following won/lost records of the two 1993 Super Bowl
teams. Create a single node for each team and an arc for each defeat.
Note this will be a multigraph.

Buffalo Bills Dallas Cowboys (DC)

(BB) Schedule Schedule

BB 38 NEP 14 DC 16 WR 35

BB 13 DC 10

BB 13 MD 22 DC 17 PC 10

BB 17 NYG 14 DC 36 GBP 14

BB 35 HO 7 DC 27 IC 3

BB 19 NYJ 10 DC 26 SFF 17

BB 24 WR 10 DC 23 PE 10

BB 0 PS 23 DC 20 PC 15

BB 13 NEP 10 DC 31 NYG 9

BB 23 IC 9 DC 14 AF 27

BB 7 KCC 23 DC 14 MD 16

BB 24 LAR 25 DC 23 PE 17

BB 10 PE 7 DC 37 MV 20

BB 47 MD 34 DC 28 NYJ 7

BB 16 NYJ 14 DC 38 WR 3

BB 30 IC 10 DC 16 NYG 13

BB 29 LAR 23 DC 27 GBP 17

BB 30 KCC 13 DC 38 SFF 21

SUPER BB 13 DC 30

b. Is this directed graph reflexive? irreflexive? transitive? asymmetric?

c. *There will be cycles in the graph created in part (a). Break these cycles
by eliminating arcs in favor of the two Super Bowl teams; that is, if
there is a cycle between a Super Bowl team and another team,
eliminate the arc showing that the Super Bowl team was defeated by

*Advanced assignment.

144 GRAPHS AND DIRECTED GRAPHS (DIGRAPHS)

the other team. Assume the resulting relation is a partial order and
draw a Hasse diagram of the relation.

5.4 For the following adjacency matrix:

a b c d e f g h i

a 0 1 0 0 0 0 0 0 0

b 0 0 1 0 1 0 0 0 0

c 0 0 0 1 0 0 0 0 0

d 1 0 0 0 0 0 0 0 0

e 0 0 0 0 0 0 0 0 1

f 0 0 0 0 0 0 0 0 1

g 0 0 0 0 0 1 0 0 0

h 0 0 0 0 0 0 1 0 0

i 0 0 0 0 0 0 0 1 0

a. Draw the graphical representation, G4, that is defined by the adjacency
matrix.

b. Find |V(G4)| and |E(G4)|.

c. Write the relation depicted by G4 as a set of ordered pairs.

d. What is the out degree of each node of G4? What is the in degree each
node of G4?

e. Could G4 be a bipartite graph? If no, why? If yes, what is the partition
into two subsets of the nodes that makes G4 a bipartite graph?

f. Which of the seven properties (reflexive, irreflexive, transitive, intran-
sitive, symmetric, asymmetric, antisymmetric) does this relation satisfy

5.5 *Drop the arc from b to c in Figure 5.15 and draw a Hasse diagram for
the resulting graph. How many orderings of the nodes in the digraph are
consistent with this Hasse diagram?

5.6 There are three families defined by the sets A, B, and C; each family has
a dad, mom, and three kids:

A={Dad, Mom, Doris, Bill, Tom}
B={Dad, Mom, Doris, Daisy, Debbie}
C={Dad, Mom, Bill, Bob, Biff}

Consider the relations ‘‘is the spouse of,’’ ‘‘is the brother of,’’ and ‘‘is the
blood relative of.’’ (Hints: I am not the brother of myself. Two people are
blood relatives if they share the blood of a common ancestor, who may or
may not be part of sets A, B, or C. I am the blood relative of myself.)

*Advanced assignment.

PROBLEMS 145

Create a digraph for each of the three relations on each of the three sets.
Identify which of these relations satisfy which of the seven properties of
unary relations for each of the three sets by placing a yes or no in the empty
cells of the following table.

R
efl

ex
iv

e

Ir
re

fl
ex

iv
e

Sy
m

m
et

ri
c

A
n
ti
-s

ym
m

et
ri

c

A
sy

m
m

et
ri

c

T
ra

n
si

ti
ve

In
tr

an
si

ti
ve

‘‘is the spouse of ’’ on A

‘‘is the brother of ’’ on A

‘‘is the blood relative of ’’ on A

‘‘is the spouse of ’’ on B

‘‘is the brother of ’’ on B

‘‘is the blood relative of ’’ on B

‘‘is the spouse of ’’ on C

‘‘is the brother of ’’ on C

‘‘is the blood relative of ’’ on C

5.7 A city street snapshot is shown in the figure. Note there are streets with
arcs on them indicating one-way streets. The streets with double-headed
arcs are two-way streets. There are 11 intersections, labeled 1 through 11.

1

2

3

4

5

6

8

7

9

10

11

146 GRAPHS AND DIRECTED GRAPHS (DIGRAPHS)

a. Draw a directed graph that represents this street system. (Hint: Use a
node to represent street intersections.)

b. Is this digraph quasi-strongly connected? If not, what is the minimum
number of arcs that must be added and what nodes must they connect
to make it quasi-strongly connected? If yes, why?

c. If you think the digraph in part (a) is quasi-strongly connected, draw a
directed spanning tree for it. If you do not think the digraph in part (a)
is quasi-strongly connected, add arcs so that it is and then draw a
directed spanning tree for it.

d. What is the height of the tree that you have drawn?

5.8 For the set of all possible relations, create a partition using combina-
tions of the properties symmetric, antisymmetric, and asymmetric
where each subset in the partition cannot be empty. As an example, a
partition of all relations using the properties reflexive and irreflexive
would be: (reflexive relations), (irreflexive relations), (relations that
are neither reflexive nor irreflexive). Note the subset of relations that
are both reflexive and irreflexive is left out because this combination is
impossible.

5.9 Consider an IDEF0 model in which the function A0 has two inputs (I1
and I2), three controls (C1, C2, and C3) and three outputs (O1, O2, and
O3). The IDEF0 function, A0, can be considered a relation that maps
elements of D=(I1 X I2 X C1 X C2 X C3) into elements ofP=(O1 X O2

X O3). The 5-tuple for inputs and controls to A0 and the 3-tuple for
outputs are used because each input, control, and output represents a set
of possible inputs, controls, or outputs, respectively. The n-tuples define
all possible combinations of inputs and outputs, respectively. Under
what restrictions is A0 a function? Why?

PROBLEMS 147

