
Chapter 7

Functional Architecture
Development

7.1 INTRODUCTION

Time-tested engineering of systems has shown that the design process for a
system has to consider more than the physical side of the system; the functions
or activities that the system has to perform are a critical element for the design
process to be successful on a consistent basis. This is not to say that the designs
of functions and physical resources for the system proceed independently; they
cannot. However, for success these two design elements must be equal partners
in the design process, providing checks on each other and complementing each
other’s progress. The functional architecture of a system contains a hierarchical
model of the functions performed by the system, the system’s components, and
the system’s configuration items (CIs); the flow of informational and physical
items from outside the system through the transformational processes of the
system’s functions and on to the waiting external systems being serviced by the
system; a data model of the system’s items; and a tracing of input/output
requirements to both the system’s functions and items. Note that functional
architecture is called a logical architecture by many people.

There are a number of key terms that need to be defined as part of this
chapter. Early in the chapter distinctions are drawn between modes, states, and
functions for a system. There is considerable difference in meaning in the
literature on systems and software related to the terms of mode, state, and
function; to be clear in our discussions these terms have to be defined
specifically for use in this book. A system mode is a distinct operational

The Engineering Design of Systems: Models and Methods, Second Edition. By Dennis M. Buede
Copyright r 2009 John Wiley & Sons, Inc.

211



capability of the system; this capability may use either the full or a partial set of
the system’s functions. An example is the initialization mode versus the full
operational mode for your personal computer. A state is a modeling description
of the status of the system at a moment in time, as defined by the values on a set
of state variables. A function is an activity or task that the system performs to
transform some inputs into outputs. Late in the chapter distinctions are drawn
between failure, error, and fault. Failure is a deviation between the system’s
behavior and the system’s requirements. An error is a problem with the state of
the system that may lead to a failure. A fault is a defect in the system that can
cause an error.

After the initial definition of key terms for describing a functional archi-
tecture, Section 7.3 defines the method for developing a functional architecture
using an IDEF0 (Integrated Definition for Function Modeling) model. This
model of the development process for a functional architecture is explained,
followed by a discussion of using a decomposition process versus a composition
process.

Section 7.4 discusses approaches, examples, and issues for defining a system’s
functions; this discussion is very important because the modeling of a system’s
functions is not a common skill that is found in engineers. Section 7.4.1 describes
several approaches for developing functional decompositions. Section 7.4.2
addresses an important theme of this entire book; namely, there is always
more than one system involved in the engineering of a system. Examples of
functional decompositions for several phases of the life cycle of a system are
presented. Third and perhaps most importantly, the concepts of feedback and
control in a system’s functions are introduced in Section 7.4.3. A common
hypothesis of many systems engineers is that most systems fail because of
inadequate design of the feedback and control functionality into the system.
Finally Section 7.4.4 provides a discussion of evaluation topics that are useful
for critiquing a functional architecture; critical examination of any model is
important for engineers, and Section 7.4.4 provides some metrics for doing so.

Section 7.5 defines the data collection activities associated with developing
the functional model of a system. This section provides some guidance on the
types of data to collect, on the need to try alternate modeling ideas, and then on
the evaluation of these model alternatives in terms of the need to capture the
system’s capabilities and communicate these capabilities to both the stake-
holders and the discipline engineers.

Then in Section 7.6, the introduction of fault tolerance functionality in terms
of the functional architecture is described. Adding fault tolerance functionality
is very important to the success of most systems and is critical to the success of
some systems, for example, air traffic control and life support. Error detection,
damage confinement, error recovery, and fault isolation and reporting are the
types of functions discussed here.

Finally tracing input/output requirements to functions and items in the
functional architecture is described in Section 7.7. This last activity is critical to
the process of developing specifications for each component that comprises the

212 FUNCTIONAL ARCHITECTURE DEVELOPMENT



system in such a way that the component specifications are directly related and
traceable to the System’s Requirements Document (SRD).

The methods described in this chapter relate to the development of the
functional architecture. The method relating to defining the elements of the
functional architecture is described in detail and presented as an IDEF0 model.
In addition, the chapter provides a data collection process for defining the
functional architecture based upon the fundamental approaches behind the
structured analysis and design technique that led to IDEF0.

The primary modeling technique relied upon in this chapter is IDEF0, as
presented in Chapter 3. In addition, feedback and control models are
introduced for evaluating the state of the system and improving the system’s
performance.

The exit criterion for the development of the functional architecture is the
coherent matching of the input/output requirements with the functions and
items in the functional architecture. Every input/output requirement should be
traced to at least one function and one item in the functional architecture. In
addition, every function associated with an external item in the functional
architecture should have at least one input/output requirement traced to the
function, as should every external item. Recall that all elements of the system’s
architectures are developed in increasing layers of detail, so the exit criterion for
the functional architecture will be applied with each completion of a layer of
detail.

7.2 DEFINING TERMINOLOGY FOR A FUNCTIONAL ARCHITECTURE

This section defines the concepts of system modes, states, and functions,
followed by simple and complete functionalities. Modes and functionalities
have long been thought to be critical to the establishment of an understanding
of the logical aspects of a system.

A system mode is defined to be a distinct operating capability of the system
during which some or all of the system’s functions may be performed to a full or
limited degree. Other authors [Wymore, 1993] define the modes of a system to
be functions of the system; that is not the definition presented here. All systems
have at least one standard or fully operational mode. Most systems have
operating modes during which they are partially operational. For example, an
elevator system has a maintenance mode during which one or more of the
elevator cars can be stopped for maintenance, while the others continue in
operation. Often systems have start-up and shutdown modes. A laptop
computer, on which I am writing this paragraph, has several modes of
operation that correspond to the power that is being supplied; all of the
laptop’s functions are available in each of these modes, but not with the same
performance characteristics. Finally, systems often have a number of unwanted
failure modes; car manufacturers have installed switches to enable the use of an
extra gallon of gasoline to try to avoid the failure mode of no gas.

7.2 DEFINING TERMINOLOGY FOR A FUNCTIONAL ARCHITECTURE 213



The state of the system is commonly defined to be a static snapshot of
the set of metrics or variables needed to describe fully the system’s capabilities
to perform the system’s functions. The system is progressing through a
constantly changing series of states as time progresses. In other words, the
state of a system is the values of a long list of variables, called state variables,
at a specific point in time. This list of state variables contains all of the
information needed to determine the system’s ability to perform the system’s
functions at that point in time. The list of state variables does not change over
time, but the values that these variables take does change over time. The
variables can be continuous or discrete. As an example, the state variables for
a laptop computer might include power input rate from the outside, power
level of the battery, input rate for each input source (keyboard, modem,
network), output rate for each output device (parallel port, serial port,
modem, network, screen), central processing unit (CPU) usage, and free
hard disk space.

A function, on the other hand, is a process that takes inputs in and
transforms these inputs into outputs. A function is a transformation, including
the possible changing of state one or more times. Every function has activation
and exit criteria. The activation criterion is associated with the availability of
the physical resources, not necessarily with the start of the transformation
activity. The function is activated as soon as the resource for carrying out the
function is available. When the appropriate triggering input arrives, the
function is then ready to receive the input and begin the transformation
process. The activation criterion for the function then is the combination of
the availability of the physical resource and the arrival of the triggering input.
The exit criterion of a function determines when the function has completed its
transformation tasks.

Chapters 3 and 12 cover a number of behavioral modeling techniques that
address issues related to the activation and deactivation of functions, both as
the result of the natural transformation processes associated with functions as
well as the control structure that controls the functional processing and causes
the system to change modes. Included in Chapter 12 are behavior diagrams,
finite-state machines (state-transition diagrams), statecharts, control flow
diagrams, and Petri nets. Note that state-transition diagrams and statecharts
are related to the definition of mode being used here rather than the definition
of state.

Must a function represent a dynamic process? Can a function be used to
represent a constant process? All of the functions that are shown in Appendix B
for the elevator case study represent a dynamic function; that is, inputs
enter the function over a given time period and some time later the outputs
emerge. Does a pedestal that is holding a vase perform a function? The perspec-
tive taken here is that the pedestal does perform a function in this case; if the
pedestal fails due to fatigue or an earthquake, then a dynamic process that
the system is trying to prevent will occur (the vase will crash to the ground and
be ruined).

214 FUNCTIONAL ARCHITECTURE DEVELOPMENT



A functionality is a set of functions that is required to produce a particular
output. Now we define simple and complete functionalities:

Simple Functionality: an ordered sequence of functional processes that
operates on a single input to produce a specific output. Note there may
be many inputs required to produce the output in question, but this
simple functionality is only related to one of the inputs. As a result the
simple functionality may not include all of the necessary functional
processes needed to produce the output. Nor does this simple function-
ality trace the only possible sequence of these functional processes. Note
each simple functionality has a specific order associated with the func-
tions that define the simple functionality; for this reason we cannot say
that a simple functionality is an element of the power set of functional
processes because there is no order associated with an element of the
power set. Also we cannot say that this simple functionality is a
mathematical function since a given input may be mapped into more
than one output.

Complete Functionality: a complete set of coordinated processes that oper-
ate on all of the necessary inputs for producing a specific output. There is
usually no specific order associated with the complete set of functional
processes; however a partial order of the functional activities can be
established because some functions will usually have to be activated and
completed before some others. The complete functionality cannot be an
element of the power set of functional processes because there is still some
order information associated with the functions in the complete function-
ality. There is no order information in the sets of functions that comprise
the power set of functions. There is a well-defined set of inputs, which is
one element of the Cartesian product (or n-tuple) of inputs, and is
uniquely associated with the output. This output is also an element of
the Cartesian product, or m-tuple, of outputs.

A functional architecture can be defined at several levels of detail:

1. A logical architecture that defines what the system must do, a decom-
position of the system’s top-level function. This very limited definition of
the functional architecture is the most common and is represented as a
directed tree.

2. A logical model that captures the transformation of inputs into outputs
using control information. This definition adds the flow of inputs and
outputs throughout the functional decomposition; these items that
comprise the inputs and outputs are commonly modeled via a data model
(see Chapter 12). An IDEF0 model without any mechanisms is used as
the modeling technique in this chapter to represent the functional
architecture at this level of detail. Other modeling techniques in Chapter
12 for data and process modeling could also be used.

7.2 DEFINING TERMINOLOGY FOR A FUNCTIONAL ARCHITECTURE 215



3. A logical model of a functional decomposition plus the flow of inputs and
outputs, to which input/output requirements have been traced to specific
functions and items (inputs, outputs, and controls).

An example of a functional architecture for the elevator case study can be
downloaded from the following web site:
http://www.theengineeringdesignofsystems.com.

7.3 FUNCTIONAL ARCHITECTURE DEVELOPMENT

IDEF0 is used here as the graphical process modeling technique to represent
the first elements of the functional architecture defined above. In Chapter 12
several alternate graphical process-modeling techniques are presented that can
be used in place of or in addition to IDEF0. IDEF0 was chosen because IDEF0
has well-defined, standardized syntax and semantics that distinguish between
the inputs to be transformed into outputs and the control information that
guides the transformation process. In addition, IDEF0 has a place to represent
the physical architecture, namely the mechanisms. Later the allocated archi-
tecture can be illustrated using the mechanisms within IDEF0.

It is possible to complete the functional architecture without resorting to any
graphical techniques. Text and tables are sufficient to represent all of the
information conveyed by any of the graphical techniques. However, Jones and
Schkade [1995] provide convincing evidence that most systems and software
professionals resort to graphical techniques during the system or software
engineering process. The graphical techniques contain much greater informa-
tion in a format that can be communicated more effectively and efficiently.

7.3.1 Functional Architecture Process Model

Figure 7.1 shows the IDEF0 model for the development of a functional
architecture. See the full IDEF0 model for engineering a system in Appendix
B. The approach shown in this figure begins by creating many function
sequences, or simple functionalities, that satisfy the scenarios in the operational
concept. These functionalities are created by shining a light into the black box
of Chapter 6, thus turning the black box into a ‘‘white’’ box. Now the functions
that are needed to transform system inputs into system outputs become visible.

Then the engineer synthesizes these many simple functionalities into a
functional decomposition; this synthesis can be accomplished via a top-down
decomposition or a bottom-up aggregation. Section 7.4 examines these two
approaches in more detail. In practice this second step of defining the
functional decomposition combines both aggregation and decomposition.
The flow of inputs and outputs from outside the system are added, and the
necessary internal items are added, creating a functional model. Before
distributing this functional model widely for comment (step three) the scenarios

216 FUNCTIONAL ARCHITECTURE DEVELOPMENT



 U
SE

D
 A

T
:

C
O

N
T

E
X

T
:

N
O

D
E

:
T

IT
L

E
:

N
U

M
B

E
R

:

A
U

T
H

O
R

: D
en

ni
s 

B
ue

de
P

R
O

JE
C

T
: E

ng
in

ee
rin

g 
D

es
ig

n 
of

 a
 S

ys
te

m

N
O

T
E

S
:  

1 
 2

  3
  4

  5
  6

  7
  8

  9
  1

0

D
A

T
E

: 0
5/

24
/9

9
R

E
V

:
W

O
R

K
IN

G

D
R

A
FT

R
E

C
O

M
M

E
N

D
E

D

PU
B

L
IC

A
T

IO
N

R
E

A
D

E
R

D
A

T
E

P
. 7

S
ta

ke
ho

ld
er

s'
 &

 S
ys

te
m

 
R

eq
ui

re
m

en
ts

, 
O

bj
ec

tiv
es

 H
ie

ra
rc

hy
, 

B
ou

nd
ar

y 
&

 Q
ua

lif
ic

at
io

n 
S

ys
te

m
 R

eq
ui

re
m

en
ts

S
ys

te
m

-le
ve

l 
O

pe
ra

tio
na

l 
C

on
ce

pt
 

C
re

at
e 

S
im

pl
e 

F
un

ct
io

na
lit

ie
s

fo
r 

O
pe

ra
tio

na
l

C
on

ce
pt A

11
21

D
ra

ft 
&

 
E

va
lu

at
e

F
un

ct
io

na
l

 M
od

el
 

A
11

22

C
om

pl
et

e
F

un
ct

io
na

l
an

d 
D

at
a 

M
od

el
s A

11
24

T
ra

ce
 

In
pu

t/O
ut

pu
t 

R
eq

ui
re

m
en

ts
 

to
 F

un
ct

io
ns

 
an

d 
Ite

m
s A
11

25

S
im

pl
e

F
un

ct
io

na
lit

ie
s

D
ra

ft
F

un
ct

io
na

l
M

od
el

F
un

ct
io

na
l

an
d 

D
at

a
M

od
el

s

A
rc

hi
te

ct
ur

e
Is

su
es

B
ou

nd
ar

y 
In

pu
ts

,
C

on
tr

ol
s,

 a
nd

O
ut

pu
ts

 a
nd

O
bj

ec
tiv

es

In
pu

t/O
ut

pu
t

R
eq

ui
re

m
en

ts

F
un

ct
io

na
l

R
eq

ui
re

m
en

ts
,

In
p

u
ts

, 
a

n
d

O
u

tp
u

ts

F
un

ct
io

na
l 

A
rc

hi
te

ct
ur

e
C

ha
ng

es

C
an

di
da

te
 

G
en

er
ic

 
P

hy
si

ca
l 

A
rc

hi
te

ct
ur

es

D
ra

ft
 D

at
a 

M
od

el
 f

or
Fu

nc
tio

na
l 

M
od

el A
11

23B
ou

nd
ar

y 
In

pu
ts

,
C

on
tr

ol
s,

 a
nd

O
ut

pu
ts D

at
a

M
od

el

x

G
M

U
 S

ys
te

m
s 

E
ng

in
ee

ri
ng

 
Pr

og
ra

m

D
ev

el
op

 S
ys

te
m

 F
un

ct
io

na
l A

rc
hi

te
ct

ur
e

A
11

2

S
ys

te
m

-le
ve

l
 F

un
ct

io
na

l
A

rc
hi

te
ct

ur
e 

FI
G

U
R

E
7
.1

P
ro

ce
ss

fo
r

d
ev

el
o
p
in

g
a

fu
n
ct

io
n
al

ar
ch

it
ec

tu
re

.

217



from the operational concept are used once more to test the draft decomposi-
tion and ensure that the functional model is consistent with these scenarios.

The third step addresses the data or items that serve as inputs or outputs to
the various functions of the functional architecture. For computer-intensive
systems developing a data mode is critical (see Chapter 12) so that the relations
among the various items flowing through the system are understood at the level
needed for a successful design.

The fourth step is the solicitation of the opinions of other engineers and
stakeholders about missing functions or alternate decompositions that are more
meaningful than have been produced during the second and third steps. During
this third step the allocated architectural activity, which combines the functional
and physical architectures, is proceeding. Feedback from the development of the
allocated architecture often causes changes to the functional model, changes that
enable the functional model and the physical architecture to match more closely.
(Chapter 9 discusses these issues in more detail.)

The final step in the development of the functional architecture addresses the
tracing of input/output requirements to both the functions in the data model
and the items (data elements) flowing through this functional model. Each
input (output) requirement is traced to those functions that have been
designated as receiving (producing) the respective input (output). Similarly,
each input (output) requirement is traced to the item for which the requirement
is defined. The functional requirements are traced to the top-level system
function because this top-level function is responsible for accomplishing these
subfunctions. Each external interface requirement is traced to each item that
will be delivered to the system (or carried away from the system) by that
interface. In addition, each external interface requirement is traced to the
function that is receiving the input or sending the output that has been traced to
that same external interface. This process of tracing input/output requirements
often raises issues about the structure of the functional decomposition, leading
to possible changes in this decomposition. By tracing the input/output
requirements to functions and data in the functional architecture, these
requirements are being ‘‘flowed down’’ so that the allocated architecture will
have all requirements associated with the elements of specifications that are
developed for individual system components.

7.3.2 Decomposition Versus Composition

Decomposition, often referred to as top-down structuring, begins with the top-
level system function and partitions that function into several subfunctions.
This decomposition process must conserve all of the inputs to and outputs from
the system’s top or zero-level function. By conserve, we mean use/produce all
and add no new ones. Next, each of the several first-level functions is
decomposed (partitioned) into a second level set of subfunctions. Note that
not every function must be decomposed; only those for which additional insight
into the production of outputs is needed should be partitioned.

218 FUNCTIONAL ARCHITECTURE DEVELOPMENT



The success of decomposition is predicated on having a sound definition of
the top-level function of the system and the associated inputs and outputs, that
is, a compete set of requirements. The benefit of having an external systems
diagram is to achieve this complete set of requirements. A major difficulty of
decomposition is the partitioning process to develop the subfunctions of the
system is somewhat unguided. Section 7.4 provides some guidance for this
decomposition. The best decomposition is usually one that will match the
partitioning of the system’s physical resources, the physical architecture. This
way the flow of data and physical items that cross the internal interfaces
between components will be clearly identified.

The opposite approach, composition, is a bottom-up approach. With
composition one starts by identifying the simple functionalities associated
with simple scenarios involving only one of the outputs of the system. Each
functionality is a sequence of input, function, output–input, y, function,
output–input, function, output–input, function, output. The functions in the
functionality are all functions of the system and are relatively low-level
functions in the functional hierarchy. These functions usually show up in third,
fourth, or even lower levels of the hierarchy. For complex systems this initial
step is a substantial amount of work. After the many functionalities have been
defined, one begins the process of grouping the functions in the functionalities
into similar groups. These groups are aggregated into similar groups; this
process continues until a hierarchy is formed from bottom to top.

The advantage of the composition approach is that the composition process
can be performed in parallel with the development of the physical architecture
so that the functional and physical hierarchies match each other. Second, this
approach is so comprehensive that the approach is less likely to omit major
functions. The drawback is that the many functionalities must be easily
accessible during the composition process so that all of this work can be
successfully used; the simple functionalities are often pasted on the walls of a
large conference room. The composition method dates back to the 1960s and
1970s when systems engineering was in its infancy; many systems engineers
continue to prefer this approach. There is no empirical evidence that either the
composition or decomposition approach is better than the other.

Ultimately, using a combination of decomposition and composition ap-
proaches is wisest. This is sometimes referred to as middle-out. Often, one
makes use of simple functionalities associated with specific scenarios defined in
the operational concept to establish a ‘‘sense’’ of the system. Then positing a
top-level decomposition that is likely to match the top-level segmentation of the
physical architecture is common before proceeding to do decomposition that is
reinforced by periodic reference to the functionalities to assure completeness.

Decomposition is efficient and often successful when the system is an update
or variation of an existing system. Composition is strongly recommended when
the system is unprecedented or a radical departure of an existing system.

Before proceeding, it is important to discuss some valuable properties
of the functional hierarchy. Besides the obvious design implications that are

7.3 FUNCTIONAL ARCHITECTURE DEVELOPMENT 219



embodied in this hierarchy, the hierarchy is also important as a communication
tool. This communication is important for both other engineers and the
stakeholders. For this reason, limiting the number of functions at each node
in the functional tree to a number that enhances communication is advisable;
large numbers of functions at a given level of a decomposition turn any
graphical technique into a ‘‘bowl of spaghetti,’’ where the functions are the
meat balls and the arrows are the spaghetti.

7.4 DEFINING A SYSTEM’S FUNCTIONS

As discussed above, assigning functions in the functional architecture in total-
to-one and only one resource in the physical architecture is best. Clearly, the
functional and physical architectures cannot be developed independently and
satisfy this property. In fact, there are times when the decision to allocate a
particular function to one of several resources has substantial performance
implications and is the subject of one or more trade studies. The bottom line is
that the functional architecture may be revised several times as the allocated
architecture is finalized. Therefore, focusing on getting the functional hierarchy
right the first time is improper since this is an impossible task.

7.4.1 Approaches for Defining Functions

There are a number of keys one can use to partition a function into
subfunctions. At the top of the hierarchy we would expect to see functions
devoted to the system’s operating modes, if there are any. For functions that
have multiple outputs, we could partition the function into subfunctions that
correspond with the production of each output. Similarly, we could key on the
inputs and controls to find a partition of the function. More appropriate than
either of these is to decompose on the basis of stimulus–response threads that
pass through the function being decomposed. Finally, there is often a natural
sequence of subfunctions for a particular function. For example, at the bottom
of the functional architecture we would expect to see functions such as receive
input, store input, and disseminate input or retrieve output, format output, and
send output.

Hatley and Pirbhai [1988] developed an architectural template for represent-
ing the physical architecture of the system; Figure 7.2 shows the physical
segments of the template. This template suggests the creation of a generic
partition of six subfunctions, one for each of the Hatley–Pirbhai components.
These six generic functions could be used in any functional architecture:

� Provide user interface: those functions associated with requesting and
obtaining inputs from users, providing feedback that the inputs were
received, providing outputs to users, and responding to the queries of
those users

220 FUNCTIONAL ARCHITECTURE DEVELOPMENT



� Format inputs: those functions needed to receive inputs from external
interfaces (nonhumans), and other nonhuman system components and to
process (e.g., analog-to-digital conversion) those inputs to put them into a
format needed by the system’s processing functions

� Transform inputs into outputs: the major functions of the system

� Control processing: those functions needed to control the processing
resources or the order in which these processing functions should be
conducted

� Format outputs: those functions needed to convert the system’s outputs
into the format needed by the external interfaces or other nonhuman
system components and then place those outputs onto the appropriate
interface

� Provide structural support, enable maintenance, conduct self-test, and
manage redundancy processing: those functions needed to perform inter-
nal support activities, respond to external diagnostic tests, monitor the
system’s functionality, detect errors, and enable the activation of standby
resources

This partition is a very valid approach at the top of the functional
architecture; the author has used this approach several times to initiate
decomposition with success. Most systems would have all or nearly all of these
functions as an initial partition. Figure 7.3 uses the Hatley–Pirbhai template to
show the four top-level functions of the elevator case study, which can be
downloaded from the following web site: http://www.theengineeringdesignof
systems.com.

As the decomposition of system functions proceeds, we would expect to find
smaller subsets of these six generic functions being embedded within each of the
higher level functions. Figure 7.4 renames the Hatley–Pirbhai [1988] partition

Maintenance, Self-Test,
and Redundancy

Management Processing

Process Model

Input
Processing

Output
Processing

User Interface Processing

Control Model

 

FIGURE 7.2 Architecture template of Hatley and Pirbhai [p. 195, 1988].

7.4 DEFINING A SYSTEM’S FUNCTIONS 221



as functions and illustrates the functional decomposition by showing likely
decompositions within the top level functions; the top-level decomposition of
the system function is in the middle of the figure.

McMenamin and Palmer [1984] describe a system’s functions as being
composed of essential or fundamental activities and custodial activities. All
but one of the functions implied by the Hatley and Pirbhai [1988] template are
fundamental activities. The function, ‘‘enable maintenance, conduct self-test,
and manage redundancy processing,’’ performs custodial activities. Additional
custodial activities that could be embedded in this function are the provision of
structural support, maintenance of information archives, provision of security
services, and so forth. In addition, custodial activities maintain the system’s
memory so the system knows what it needs to know to perform its fundamental
activities. This knowledge is called the essential memory of the system; examples
include the storage of data items between the time they become available and the
time they are used by the fundamental activities. McMenamin and Palmer [1984]
recommend separating the custodial activities and the fundamental activities.
This separation is not completely possible at the top-level with the taxonomy
suggested by the Hatley–Pirbhai [1988] template, nor is this separation often
desirable at this high level. However, achieving this separation at lower levels of
the functional decomposition is possible and desirable.

Baylin [1990] provides a number of interesting insights into modeling the
functional aspects of a system by focusing on the system’s objectives. The
purpose of any system is to achieve the objectives that have been defined for
that system. As a result the engineer of a system would be foolish not to use the
system’s objectives as a guide for defining the top-level functions of the system.

Many engineers involved in developing systems have read and suggested
Miller’s [1978] classic titled Living Systems as a guide for defining the functions
of a system. Miller examines seven levels of systems that range from a cell
through a supranational system, and include an organ, an organism, a group, an

“Enable Effective
Maintenance & Service”

“Move Passengers
between Floors”

“Accept Passenger Requests & Provide Feedback”

“Control Elevator Cars”

FIGURE 7.3 Elevator functions within the Hatley–Pirbhai template.

222 FUNCTIONAL ARCHITECTURE DEVELOPMENT



E
na

bl
e 

M
ai

nt
en

an
ce

, 
C

on
du

ct
 S

el
f-

T
es

t, 
an

d 
M

an
ag

e
R

ed
un

da
nc

y 
P

ro
ce

ss
in

g

E
na

bl
e 

M
ai

nt
en

an
ce

, 
C

on
du

ct
 S

el
f-

T
es

t, 
an

d 
M

an
ag

e
R

ed
un

da
nc

y 
P

ro
ce

ss
in

g

E
na

bl
e 

M
ai

nt
en

an
ce

, 
C

on
du

ct
 S

el
f-

T
es

t, 
an

d 
M

an
ag

e
R

ed
un

da
nc

y 
P

ro
ce

ss
in

g

E
na

bl
e 

M
ai

nt
en

an
ce

, 
C

on
du

ct
 S

el
f-

T
es

t, 
an

d 
M

an
ag

e
R

ed
un

da
nc

y 
P

ro
ce

ss
in

g

E
na

bl
e 

M
ai

nt
en

an
ce

, 
C

on
du

ct
 S

el
f-

T
es

t, 
an

d 
M

an
ag

e
R

ed
un

da
nc

y 
P

ro
ce

ss
in

g

T
ra

ns
fo

rm
 In

pu
ts

in
to

 O
ut

pu
ts

F
or

m
at

In
pu

ts
F

or
m

at
In

pu
ts

F
or

m
at

In
pu

ts
F

or
m

at
In

pu
ts

F
or

m
at

In
pu

ts
F

or
m

at
In

pu
ts

F
or

m
at

In
pu

ts
F

or
m

at
In

pu
ts

F
or

m
at

In
pu

ts
F

or
m

at
In

pu
ts

P
ro

vi
de

 U
se

r 
In

te
rf

ac
e

P
ro

vi
de

 U
se

r 
In

te
rf

ac
e

C
on

tr
ol

 P
ro

ce
ss

in
g

T
ra

ns
fo

rm
 In

pu
ts

in
to

 O
ut

pu
ts

T
ra

ns
fo

rm
 In

pu
ts

in
to

 O
ut

pu
ts

T
ra

ns
fo

rm
 In

pu
ts

in
to

 O
ut

pu
ts

C
on

tr
ol

 P
ro

ce
ss

in
g

C
on

tr
ol

 P
ro

ce
ss

in
g

C
on

tr
ol

 P
ro

ce
ss

in
g

T
ra

ns
fo

rm
 In

pu
ts

in
to

 O
ut

pu
ts

C
on

tr
ol

 P
ro

ce
ss

in
g

FI
G

U
R

E
7
.4

Ex
em

p
la

ry
fu

n
ct

io
n
al

d
ec

o
m

p
o
si

ti
o
n
.

223



organization, and a society. One ofMiller’s claims is that there are 19 subsystems
that must be part of any of these living systems. In fact, Miller defines these 19
subsystems in terms of the function that each performs (see Table 7.1); leading
the reader of Living Systems to believe that it is the 19 functions that are most
useful to engineers of human-designed systems. One key to Miller’s study or
living systems is his assertion that these systems either process matter-energy or
information or both. The top two functions in Table 7.1 address the processing
of both matter-energy and information. The functions on the left half of
Table 7.1 process matter-energy; while those on the right process information.
There are blanks left in the table so that functions on the left and right that are
similar can be opposite each other. This assertion is key to understanding the
two columns of subsystems and related functions in Table 7.1.

The common concepts for defining a partition of a function are system
modes, function outputs, function inputs and controls, system objectives,
stimulus-response threads, and the functional template based upon the
Hatley–Pirbhai [1988] architecture template.

7.4.2 Typical Functional Decompositions by Life-Cycle Phase

This section suggests functional hierarchies and segments of functional hier-
archies for the development and the manufacturing phases of the system’s life
cycle. The previous section dealt with the operational phase of the life cycle.

Duffy and Buede [1996] suggest structuring the management portion of
the development phase into three major activities— formulate the development
strategy, execute the development strategy, and evaluate the results of the
development activity. Formulating the development strategy has as many
elements of a development strategy as needed. Common elements of the
development strategy are the procurement, engineering or technical, financing,
communication, technology development, and testing strategies. Other elements
may include the regulatory and risk mitigation strategies. The IDEF0 model of
the systems engineering design and integration process in Appendix B demon-
strates the execution of the engineering elements of the development strategy.

Dietrich [1991, p. 886] defines manufacturing as ‘‘using resources to perform
operations on materials to produce products.’’ A manufacturing system is a ‘‘set
of resources used to manufacture some product, together with the associated
information system and any behavioral requirements imposed by the owners of
the resources.’’ The products being produced are the primary outputs of this
phase; inputs are defined to be bulk material; internal items are called work-in-
progress (WIP). WIP is material upon which some value-added operations have
been performed. Seven types of generic manufacturing functions are defined,
based upon the types of bulk material, WIP, and primary outputs:

� Bulk Operation: manipulate bulk material to produce other bulk material.

� Kitting Operation: transform one or more bulk materials into one or more
units of WIP.

224 FUNCTIONAL ARCHITECTURE DEVELOPMENT



TABLE 7.1 Subsystems and Functions of Living Systems [after Miller, 1978]

Subsystems which Process Both Matter-Energy and Information

1. Reproducer, the subsystem which is capable of giving rise to other systems similar to

the one it is in.

2. Boundary, the subsystem at the perimeter of a system that holds together the

components which make up the system, protects them from environmental stresses,

and excludes or permits entry to various sorts of matter-energy and information.

Subsystems which Process Matter-Energy Subsystems which Process Information

3. Ingestor, the subsystem which brings

matter-energy across the system

boundary from the environment.

11. Input transducer, the sensory

subsystem which brings markers

bearing information into the system,

changing them to other matter-energy

forms suitable for transmission within

it.

12. Internal transducer, the sensory

subsystem which receives, from

subsystems or components within the

system, markers bearing information

about significant alterations in those

subsystems or components, changing

them to other matter-energy forms of

a sort which transmitted within it.

4. Distributor, the subsystem which carries

inputs from outside the system or

outputs from its subsystems around the

system to each component.

13. Channel and net, the subsystem

composed of a single route in physical

space, or multiple interconnected

routes, by which markers bearing

information are transmitted to all

parts of the system.

5. Converter, the subsystem which

changes certain inputs to the system

into forms more useful for the special

processes of that particular system.

14. Decoder, the subsystem which alters

the code of information input to it

through the input transducer or

internal transducer into a ‘‘private’’

code that can be used internally by the

system.

6. Producer, the subsystem which forms

stable associations that endure for

significant periods among matter-

energy inputs to the system or outputs

from its converter, the materials

synthesized being for growth, damage

repair, or replacement of components

of the system, or for providing energy

for moving or constituting the system’s

outputs of products or information

markers to its suprasystem.

15. Associator, the subsystem which

carries out the first stage of the

learning process, forming enduring

associations among items of

information in the system.

(Continued)

7.4 DEFINING A SYSTEM’S FUNCTIONS 225



� Fabrication Operation: fabricate a WIP from another unit of WIP and
bulk material.

� Assembly Operation: assemble two or more units of WIP and bulk material
into a subassembly (higher level WIP).

� Byproduct Operation: transform two or more WIPs of different types into
two or more WIP types that are not identical to the input WIPs).

TABLE 7.1. Continued

Subsystems which Process Both Matter-Energy and Information

7. Matter-energy storage, the subsystem

which retains in the system, for

different periods of time, deposits of

various sorts of matter-energy.

16. Memory, the subsystem which carries

out the second stage of the learning

process, storing various sorts of

information in the system for different

periods of time.

17. Decider, the executive subsystem

which receives information inputs

from all other subsystems and

transmits to them information outputs

that control the entire system.

18. Encoder, the subsystem which alters

the code of information input to it

from other information processing

subsystems, from a ‘‘private’’ code

used internally by the system into a

‘‘public’’ code which can be

interpreted by other systems in its

environment.

8. Extruder, the subsystem which

transmits matter-energy out of the

system in the forms of products or

wastes.

9. Motor, the subsystem which moves the

system or parts of it in relation to part

or all of its environment or moves

components of its environment in

relation to each other.

19. Output transducer, the subsystem

which puts out markers bearing

information from the system,

changing markers within the system

into other matter-energy forms which

can be transmitted over channels in

the system’s environment.

10. Supporter, the subsystem which

maintains the proper spatial

relationships among components of

the system, so that they can interact

without weighting each other down or

crowding each other.

226 FUNCTIONAL ARCHITECTURE DEVELOPMENT



� Distribution Operation: divide one or more units of a single WIP into two
or more units of possibly different types of WIP.

� Consumption Operation: consume one or more WIPs yielding bulk,
dissipated, or useless material. (Note shipping finished products and
stockpiling subassemblies are considered consumption operations.)

7.4.3 Feedback and Control in Functional Design

It is important to emphasize the use of feedback in the design of the system.
Feedback and control is the comparison of the actual characteristics of an
output with desired characteristics of that output for the purpose of adjusting
the process of transforming inputs into that output (see Sidebar 7.1). Open-
loop control processes may or may not make this measurement, but in either
case make no adjustments to the process once started. See Figure 7.5. The
heating and air-conditioning systems in all but the most expensive cars allow
the driver to set the output temperature of the heater and the fan speed; this is
an example of an open-loop control system. The driver serves as the feedback
process that adjusts the heat and fan speed when a deviation from the desired
temperature is noticed. Closed-loop control processes use measurements of
the output as feedback for the purpose of adjusting or controlling the
transformation process. Heating and air conditioning systems in most houses
have a thermostat for setting the desired temperature; this thermostat adjusts
the length of time that the heating or air conditioning is left on in order to
reach the desired temperature. This is an example of a closed-loop control
system.

SIDEBAR 7.1: HISTORY OF CONTROL SYSTEMS

Mayr [1970] traced the earliest example of a control system to the second
century BC; this control system was a water clock that operates on the
same principles as current flush toilets and is not dissimilar to numerical
integration on a digital computer.

In about 1620 Cornelis Drebbel, a Dutch mechanic and chemist,
designed a system to control the temperature in a furnace used to heat
eggs in an incubator.

About 1787 Thomas Mead invented a centrifugal governor, which was
adapted about a year later by Matthew Boulton and James Watt, who
invented a fly ball governor to control the rotation speed of a grinding
stone for a wind-driven flour mill. The first study of feedback control and
the stability of such systems was described in a paper titled ‘‘On
Governors’’ by J.C. Maxwell in 1868.

7.4 DEFINING A SYSTEM’S FUNCTIONS 227



A negative feedback process attempts to close the gap between the current
output and the desired output, thus striving for a stable process. A positive
feedback process attempts to increase the difference between current output and
the desired output, usually creating an unstable situation. In the engineering
design process, feedback and control enable the comparison of the current state
of the system with the desired state for the purpose of repeating parts of the
generation of the current state to obtain a current state that is closer to the
desired state. The concept of feedback comes from the engineering of control
systems, which has been the training ground for many systems engineers.

Closed-loop control processes contain at least four subprocesses: compar-
ison of current and desired output characteristics; control adjustments to the
process based upon the comparison; the transformation process for turning
inputs into outputs; and a sensing process for turning the output into measured
dimension(s) that can be compared to the desired output. The first element is
the comparison process in which current values of key variables are compared
with desired values of those variables. The comparison process requires
definition in advance for what elements of the state of the process are going
to be compared. This comparison inevitably introduces a time lag into the
process. This element of the feedback process is trivial, but at the same time is
the cornerstone. The second element is the control process for deciding what to
do about the difference between the current value of the output and the desired

Control
Variable

Process Input
into OutputInput Output

Process Input
into Output

Input

OutputControl
Process

Desired
Output

Control
Variable

Basic Process

Open Loop Control of Process

Process Input
into Output

Input

Output
Control
Process

Desired
Output

Closed Loop Control of Process

Compare
Desired to

Actual Delta

Sense Output

FIGURE 7.5 Open and closed loop control processes.

228 FUNCTIONAL ARCHITECTURE DEVELOPMENT



value of the output. The third element of the feedback process is the
transformation process that is being controlled by the feedback process. This
process dictates how a successful feedback process should be created and is
often adapted by the feedback process as part of the correction activity. Sensing
the output of the process being controlled is the final element of the feedback
process.

While most examples of feedback control systems are in lower level elements
of complex systems, there is no reason why such a concept will not also work at
higher levels of abstraction. An example is the ‘‘Develop System Allocated
Architectures’’ function of the IDEF0 model of the process for engineering a
system in Appendix B and repeated in Figure 7.6. There are three feedback and
control loops. The first involves the first and second functions, ‘‘Allocate
Functions & System-wide Requirements to Physical Subsystems’’ and ‘‘Define
& Analyze Functional Activation & Control Structure.’’ Here the second
function performs the measurement, comparison, and control function based
upon the output, functional allocations to components, of the first function.

The measurement, comparison, and control (decision making) in the second
loop are done in the third function ‘‘Conduct Performance & Risk Analyses’’ for
the output of the second function, alternative system-level allocated architec-
tures. The analysis process determines whether the system-level allocated
architectures contain one that is ‘‘good enough’’ to be the finalized design and
then proceeds with documentation. If the decision is that there is not an
allocated architecture that is good enough, then analysis results are passed to the
first two functional processes as controls for making refinements. The intention
here is that the analysis results could be passed to either of these two processes
or the combination of them. The smallest refinements would conclude with
passing analysis results and guidance only to the second process (‘‘Define &
Analyze Functional Activation and Control Structure’’). Large refinements
would require passing results and guidance to both processes.

There is a final feedback loop during documentation, which is when many
questions arise. In this case the third function is reactivated if questions arise
that cannot be answered using the current documentation and analysis results.
If the issue deals with performance and risk analysis, the answer can be
generated and the result passed back to the documentation activity. However, if
the issue has implications for the allocation of function, tracing of require-
ments, or activation and control structures, then the initial feedback loop
discussed above is reenergized.

Besides the feedback control loops that are designed inside the system, the
engineer of the system has to be cognizant to design feedback control for the
system using the external systems. The most common example of such feedback
control occurs when a human is one of the external systems and closes a
feedback loop to improve the system’s performance. The driver of an
automobile adjusts the car’s speed and direction to achieve safe travel; there
are numerous output devices at the driver’s station of the automobile to
enhance the driver’s ability to serve as the controller of the car.

7.4 DEFINING A SYSTEM’S FUNCTIONS 229



 U
SE

D
 A

T
:

C
O

N
T

E
X

T
:

N
O

D
E

:
T

IT
L

E
:

N
U

M
B

E
R

:

A
U

T
H

O
R

: D
en

ni
s 

B
ue

de
PR

O
JE

C
T

: E
ng

in
ee

ri
ng

 D
es

ig
n 

of
 a

 S
ys

te
m

N
O

T
E

S:
  1

  2
  3

  4
  5

  6
  7

  8
  9

  1
0

D
A

T
E

: 0
5/

24
/9

9
R

E
V

:
W

O
R

K
IN

G

D
R

A
FT

R
E

C
O

M
M

E
N

D
E

D

PU
B

L
IC

A
T

IO
N

R
E

A
D

E
R

D
A

T
E

P.
 9

S
ys

te
m

-le
ve

l
O

pe
ra

tio
na

l 
C

on
ce

pt
 

C
an

di
da

te
P

hy
si

ca
l 

A
rc

hi
te

ct
ur

es

S
ub

sy
st

em
D

es
ig

n
R

eq
ui

re
m

en
ts

,
B

ou
nd

ar
ie

s,
M

is
si

on
s,

O
bj

ec
tiv

es
&

 C
on

st
ra

in
ts

A
rc

hi
te

ct
ur

e
C

ha
ng

es

A
llo

ca
te

F
un

ct
io

ns
 &

S
ys

te
m

-w
id

e
R

eq
ui

re
m

en
ts

to
 P

hy
si

ca
l

S
ub

sy
st

em
s

 

A
11

41

D
ef

in
e 

&
A

na
ly

ze
F

un
ct

io
na

l 
A

ct
iv

at
io

n 
&

C
on

tr
ol

 
S

tr
uc

tu
re

 
A

11
42

D
oc

um
en

t 
A

rc
hi

te
ct

ur
es

&
 O

bt
ai

n 
A

pp
ro

va
l

A
11

44

D
oc

um
en

t 
S

ub
sy

st
em

S
pe

ci
fic

at
io

ns

A
11

45

S
ys

te
m

-le
ve

l
A

rc
hi

te
ct

ur
es

F
un

ct
io

n 
to

S
ub

sy
st

em
A

llo
ca

tio
n

C
on

du
ct

 
P

er
fo

rm
an

ce
&

 R
is

k
A

na
ly

se
s

A
11

43

A
na

ly
si

s
R

es
ul

ts

S
ug

ge
st

ed
R

ev
is

io
ns

S
ys

te
m

-le
ve

l
 F

un
ct

io
na

l
A

rc
hi

te
ct

ur
e

D
is

cr
ep

an
ci

es
 in

 th
e

S
pe

ci
fic

at
io

ns
,

In
te

rf
ac

e 
C

on
tr

ol
,

an
d 

A
cc

ep
ta

nc
e 

T
es

t P
la

n

In
te

rf
ac

e 
A

rc
hi

te
ct

ur
e

S
ys

te
m

's
 

Q
ua

lif
ic

at
io

n 
S

ys
te

m
 

D
oc

um
en

ta
tio

n 

x

G
M

U
 S

ys
te

m
s

E
ng

in
ee

ri
ng

 P
ro

gr
am

A
11

4

A
llo

ca
te

d
A

rc
hi

te
ct

ur
e

A
lte

rn
at

iv
e

S
ys

te
m

-le
ve

l
A

llo
ca

te
d

A
rc

hi
te

ct
ur

es

S
ta

ke
ho

ld
er

s’
 &

 
S

ys
te

m
 R

eq
ui

re
m

en
ts

,
O

bj
ec

tiv
es

 H
ie

ra
rc

hy
,

B
ou

nd
ar

y 
&

 Q
ua

lif
ic

at
io

n
S

ys
te

m
 R

eq
ui

re
m

en
ts

R
is

k 
A

na
ly

si
s,

S
ys

te
m

 D
es

ig
n

D
oc

um
en

t,
A

llo
ca

te
d

A
rc

hi
te

ct
ur

e,
S

ys
te

m
 In

te
rf

ac
e

C
on

tr
ol

 D
oc

um
en

t

D
ev

el
op

 S
ys

te
m

 O
pe

ra
tio

na
l A

rc
hi

te
ct

ur
e

FI
G

U
R

E
7
.6

Il
lu

st
ra

ti
o
n

o
f

fe
ed

b
ac

k
co

n
tr

o
l

in
th

e
d
ev

el
o
p
m

en
t

o
f

th
e

sy
st

em
al

lo
ca

te
d

ar
ch

it
ec

tu
re

.

230



More detailed literature on feedback control can be found in Dickinson
[1991], Dorny [1993], Franklin et al. [1994], and Van de Vegte [1994]. A graph-
theoretic approach for analyzing control systems has been developed called
signal flow graphs. Signal flow graphs are used to transform a set of processes
with feedback into a single, composite process.

7.4.4 Evaluation of a Functional Hierarchy

A functional architecture can be evaluated for shortfalls and overlaps. A
shortfall is the absence of a functionality that is required to produce a desired
output from one or more inputs. Shortfalls can be divided into the following
categories: absence of the proper functionality for some set of inputs, inability
to produce a desired output, and insufficient feedback control to produce the
desired output.

Recall the definition of a function from Chapter 4. A function maps all
elements of the domain to some element in the range and does not map any
element of the domain into two distinct elements of the range. Whenever there
are potential inputs to the system with which the system’s functionality cannot
deal, the engineer of the system did not create a system function but rather a
system relation. A relation in Chapter 4 includes functions but also includes
those entities that fall short of a function. In fact, the most common types of
shortfall are the absence of or inappropriate functional responses to unexpected
inputs and to failure modes within the system. For example, the elevator system
must be able to respond properly when a fire alarm sounds. Less obvious
unexpected inputs might be the need for a user to stop the elevator immediately.
Therefore the systems engineer must always enumerate all possible inputs,
including those inputs that are not wanted but can arrive. In the mathematical
terms of Chapter 4, a Cartesian product of possible inputs must be formed for
each function in the functional model of the functional architecture. This is
only necessary for the lowest level functions in the functional decomposition.
The Cartesian product of inputs for a function uses each category of input
shown in the functional model for a specific function. For each of these
categories there are usually several possible input states, some of which are not
desired. For example, if there were three possible input categories to a given
bottom-level function and each input category had three possible states, there
would be three-tuple formed by taking the Cartesian product of these three
input categories. The three-tuple would have 27 (3� 3� 3) different combina-
tions. The functional definition of this bottom-level function must account for
every one of these 27 possible combinations.

The second category of shortfall is the inability to produce a needed output.
This type of functionality will be obvious if all of the system’s outputs have been
defined. This is a major benefit of the external systems diagram in Chapter 6 and
the functional architecture discussed in this chapter. Evaluating for this category
of shortfall is not always possible without constructing an overall functional
architecture.

7.4 DEFINING A SYSTEM’S FUNCTIONS 231



The final shortfall addresses the quality of the outputs produced. Often this
quality falls short of that desired by the stakeholders because the engineers have
not incorporated sufficient feedback control, either internally to the system or
inclusive of the external systems. Missing needed feedback is a common
mistake made in the functional architecture. This is true not only for the
functional architecture of the system being designed for the operational phase
of the life cycle, but also for the functional architectures of the developmental
and manufacturing systems.

An overlap is a redundancy in functionality that is not needed to achieve
additional performance, for example, reliability. Functional overlaps, unlike
physical overlaps for redundancy, are not needed and therefore can only cause
problems.

A common technique for identifying shortfalls and overlaps is to follow each
scenario in the operational concept (Chapter 6) through the functional
architecture. Each scenario in the operational concept begins with a single
input to the system from one of the external systems and continues with a
sequence of inputs to and outputs from the system to various external systems.
Each scenario was developed by treating the system as a black box. Now is the
time to shine a light into that black box (producing a white box) and see what
functions the system is performing to transform the inputs into outputs. Start
with the first input to the system for a given scenario (see Fig. 7.7); color the line
in the context diagram (A-0 page or node) for that input green (or whatever
color you choose). Find an interesting output of the system in the scenario and
color that output on the context page green also. In Figure 7.7 the input
selected was ‘‘Request for Elevator Service & Entry Support’’ by a potential
passenger, which is shown as a dotted-dashed line since color is too expensive
for a text book. The output selected was ‘‘Elevator Entry/Exit Opportunity’’
when the elevator arrives at the potential passenger’s floor; this output is also
shown as a dotted-dashed line.

Now move to the AO page (node) and color these same two lines green; see
Figure 7.8 for the dotted-dashed lines. Now go to the function on the AO page
that received that input (the Al function in Fig. 7.8) and find the appropriate
output of the function that is needed to get to the output on the context page
and color the line associated with that output green. ‘‘Digitized Passenger
Request’’ is shown with a dotted-dashed line in Figure 7.8. Proceed to this next
function on the AO page and find the most appropriate output to color. This is
like looking through a house for clues to a mystery, searching room by room,
finding a clue in each room that leads to the next room, until finally the room is
found with the already identified path outside. In Figure 7.8, ‘‘Digitized
Passenger Request’’ led to the A2 function, ‘‘Control Elevator Cars.’’ The
appropriate output of this function was ‘‘Assignments to Elevator Cars,’’
leading to A3, ‘‘Move Passengers Between Floors,’’ which is where ‘‘Elevator
Entry/Exit Opportunity’’ was found.

This process continues for every other page of the functional model. Figures
7.9–7.12 show this trace of the input and output from a given scenario

232 FUNCTIONAL ARCHITECTURE DEVELOPMENT



 U
SE

D
 A

T
:

C
O

N
T

E
X

T
:

T
IT

L
E

:
N

U
M

B
E

R
:

A
U

T
H

O
R

: D
en

ni
s 

B
ue

de
PR

O
JE

C
T

: E
le

va
to

r 
C

as
e 

St
ud

y

N
O

T
E

S:
  1

  2
  3

  4
  5

  6
  7

  8
  9

  1
0

D
A

T
E

: 0
5/

24
/9

9
R

E
V

:
W

O
R

K
IN

G

D
R

A
FT

R
E

C
O

M
M

E
N

D
E

D

PU
B

L
IC

A
T

IO
N

R
E

A
D

E
R

D
A

T
E

P.
 2

P
R

O
V

ID
E

E
L

E
V

A
T

O
R

S
E

R
V

IC
E

S

A
0

P
as

se
n

g
er

C
h

ar
ac

te
ri

st
ic

s

E
le

ct
ri

c 
P

o
w

er
&

 E
m

er
g

en
cy

C
o

m
m

u
n

ic
at

io
n

R
es

p
o

n
se

S
er

vi
ce

, T
es

ts
&

 R
ep

ai
rs

R
eq

u
es

t f
o

r
E

m
er

g
en

cy
S

u
p

p
o

rt
 &

E
m

er
g

en
cy

M
es

sa
g

e

R
eq

u
es

t 
fo

r
F

lo
o

r 
&

 E
xi

t 
S

u
p

p
o

rt

R
eq

u
es

t 
fo

r
E

le
va

to
r 

S
er

vi
ce

 &
E

n
tr

y 
su

p
p

o
rt

S
tr

u
ct

u
ra

l
S

u
p

p
o

rt
,

A
la

rm
 S

ig
n

al
s

&
 B

u
ild

in
g

E
n

vi
ro

n
m

en
t

M
o

d
if

ie
d

E
le

va
to

r
C

o
n

fi
g

u
ra

ti
o

n
&

 E
xp

ec
te

d
U

sa
g

e 
P

at
te

rn
s

P
as

se
n

g
er

E
n

vi
ro

n
m

en
t

A
ck

n
o

w
le

d
g

m
en

t
th

at
 R

eq
u

es
t W

as
R

ec
ie

ve
d

 &
 S

ta
tu

s
In

fo
rm

at
io

n

D
ia

g
n

o
st

ic
 &

S
ta

tu
s 

M
es

sa
g

es

E
le

va
to

r
E

n
tr

y/
E

xi
t

O
p

p
o

rt
u

n
it

y

E
m

er
g

en
cy

S
u

p
p

o
rt

E
m

er
g

en
cy

C
o

m
m

u
n

ic
at

io
n

E
le

va
to

r 
S

ys
te

m

T
op

x
G

eo
rg

e 
M

as
on

U
ni

v.

Pr
ov

id
e 

E
le

va
to

r 
Se

rv
ic

es
A

-0
N

O
D

E
:

FI
G

U
R

E
7
.7

Sc
en

ar
io

tr
ac

e
o
n

th
e

co
n
te

xt
p
ag

e.

233



U
SE

D
 A

T
:

C
O

N
TE

X
T

:

N
O

D
E

:
T

IT
L

E
:

N
U

M
B

E
R

:

A
U

T
H

O
R

: D
en

ni
s 

B
ue

de
PR

O
JE

C
T

: E
le

va
to

r 
C

as
e 

St
ud

y

N
O

T
E

S:
  1

  2
  3

  4
  5

  6
  7

  8
  9

  1
0

D
A

T
E

: 0
5/

24
/9

9
R

E
V

:
W

O
R

K
IN

G

D
R

A
FT

R
E

C
O

M
M

E
N

D
E

D

PU
B

L
IC

A
T

IO
N

R
E

A
D

E
R

D
A

T
E

P.
 3

P
as

se
ng

er
C

ha
ra

ct
er

is
tic

s

E
le

ct
ric

 P
ow

er
&

 E
m

er
ge

nc
y

C
om

m
un

ic
at

io
n

R
es

po
ns

e

S
er

vi
ce

, T
es

ts
&

 R
ep

ai
rs

D
ia

gn
os

tic
 &

S
ta

tu
s 

M
es

sa
ge

s

A
ck

no
w

le
dg

m
en

t
th

at
 R

eq
ue

st
 W

as
R

ec
ie

ve
d 

&
 S

ta
tu

s
In

fo
rm

at
io

n

P
as

se
ng

er
E

nv
iro

nm
en

t

R
eq

ue
st

 fo
r

E
le

va
to

r 
S

er
vi

ce
 &

E
nt

ry
 s

up
po

rt

R
eq

ue
st

 fo
r

F
lo

or
 &

 
E

xi
t S

up
po

rt

R
eq

ue
st

 fo
r

E
m

er
ge

nc
y

S
up

po
rt

 &
E

m
er

ge
nc

y
M

es
sa

ge

S
tr

uc
tu

ra
l

S
up

po
rt

,
A

la
rm

 S
ig

na
ls

&
 B

ui
ld

in
g

E
nv

iro
nm

en
t

M
od

ifi
ed

E
le

va
to

r
C

on
fig

ur
at

io
n

&
 E

xp
ec

te
d

U
sa

ge
 P

at
te

rn
s

A
C

C
E

P
T

P
A

S
S

E
N

G
E

R
 

R
E

Q
U

E
S

T
S

 &
 

P
R

O
V

ID
E

 
F

E
E

D
B

A
C

K A
1

C
O

N
T

R
O

L 
E

LE
V

A
T

O
R

 
C

A
R

S
A

2
M

O
V

E
 

P
A

S
S

E
N

G
E

R
S

 
B

E
T

W
E

E
N

 
F

LO
O

R
S

A
3

E
N

A
B

LE
E

F
F

E
C

T
IV

E
 

M
A

IN
T

E
N

A
N

C
E

&
 S

E
R

V
IC

IN
G A

4

D
ig

iti
ze

d
P

as
se

ng
er

R
eq

ue
st

s

A
ss

ig
nm

en
ts

fo
r 

E
le

va
to

r
C

ar
s

E
le

va
to

r
E

nt
ry

/E
xi

t
O

pp
or

tu
ni

ty

E
m

er
ge

nc
y

S
up

po
rt

E
le

va
to

r
P

os
iti

on
 &

D
ire

ct
io

n

S
en

se
d

M
al

fu
nc

tio
ns

T
em

po
ra

ry
M

od
ifi

ca
tio

n 
to

E
le

va
to

r 
C

on
fig

ur
at

io
n

E
m

er
ge

nc
y

C
om

m
un

ic
at

io
n

E
le

ct
ric

P
ow

er

E
le

ct
ric

P
ow

er

E
le

va
to

r 
S

ys
te

m

P
as

se
ng

er
In

te
rf

ac
e

C
om

po
ne

nt

E
le

va
to

r 
C

on
tr

ol
C

om
po

ne
nt

E
le

va
to

r 
C

ar
s

C
om

po
ne

nt

M
ai

nt
en

an
ce

 &
 S

er
vi

ce
C

om
po

ne
nt

C
on

fig
ur

at
io

n
C

on
tr

ol
s

D
ia

gn
os

tic
Q

ue
rie

s

PR
O

V
ID

E
 E

L
E

V
A

T
O

R
 S

E
R

V
IC

E
S

x
G

eo
rg

e 
M

as
on

U
ni

v.

A
0

FI
G

U
R

E
7
.8

Sc
en

ar
io

tr
ac

e
co

n
ti

n
u
ed

in
th

e
A

O
d
ia

gr
am

.

234



 U
SE

D
 A

T
:

C
O

N
T

E
X

T
:

N
O

D
E

:
T

IT
L

E
:

N
U

M
B

E
R

:

A
U

T
H

O
R

: D
en

ni
s 

B
ue

de
PR

O
JE

C
T

: E
le

va
to

r 
C

as
e 

St
ud

y

N
O

T
E

S:
  1

  2
  3

  4
  5

  6
  7

  8
  9

  1
0

D
A

T
E

: 0
5/

24
/9

9
R

E
V

:
W

O
R

K
IN

G

D
R

A
FT

R
E

C
O

M
M

E
N

D
E

D

PU
B

L
IC

A
T

IO
N

R
E

A
D

E
R

D
A

T
E

P.
 4

R
eq

ue
st

 f
or

F
lo

or
 &

 
E

xi
t S

up
po

rt

R
eq

ue
st

 fo
r

E
m

er
ge

nc
y

S
up

po
rt

 &
E

m
er

ge
nc

y
M

es
sa

ge

R
eq

ue
st

 fo
r

E
le

va
to

r
S

er
vi

ce
 &

R
eq

ue
st

 fo
r

E
le

va
to

r
S

er
vi

ce

E
nt

ry
 s

up
po

rt

A
ck

no
w

le
dg

m
en

t
th

at
 R

eq
ue

st
 W

as
R

ec
ie

ve
d 

&
 S

ta
tu

s
In

fo
rm

at
io

n

E
m

er
ge

nc
y

S
up

po
rt

E
le

va
to

r
P

os
iti

on
 &

D
ire

ct
io

n

S
en

se
d

M
al

fu
nc

tio
ns

S
U

P
P

O
R

T
 W

A
IT

IN
G

 P
A

S
S

E
N

G
E

R
S

A
11

S
U

P
P

O
R

T
R

ID
IN

G
 

P
A

S
S

E
N

G
E

R
S

A
12

S
U

P
P

O
R

T
 

P
A

S
S

E
N

G
E

R
S

 IN
 

E
M

E
R

G
E

N
C

Y A
13

R
eq

ue
st

 f
or

E
nt

ry
 S

up
po

rt

D
ig

iti
ze

d
P

as
se

ng
er

R
eq

ue
st

s

E
m

er
ge

nc
y

C
om

m
un

ic
at

io
n

S
en

se
d

F
lo

or
-b

as
ed

M
al

fu
nc

tio
ns

S
en

se
d

C
ar

-b
as

ed
M

al
fu

nc
tio

ns
S

en
se

d
E

m
er

ge
nc

y
M

al
fu

nc
tio

ns

A
ck

no
w

le
dg

m
en

ts
&

 S
ta

tu
s 

fo
r

W
ai

tin
g 

P
as

se
ng

er
s

A
ck

no
w

le
dg

m
en

ts
&

 S
ta

tu
s 

fo
r

R
id

in
g 

P
as

se
ng

er
s

A
ck

no
w

le
dg

m
en

ts
&

 S
ta

tu
s 

fo
r

E
m

er
ge

nc
y

P
as

se
ng

er
s

D
ig

iti
ze

d
E

m
er

ge
nc

y
R

eq
ue

st
s

D
ig

iti
ze

d
R

eq
ue

st
s

fr
om

 R
id

in
g

P
as

se
ng

er
s

D
ig

iti
ze

d
R

eq
ue

st
s

fr
om

 W
ai

tin
g

P
as

se
ng

er
s

P
as

se
ng

er
In

te
rf

ac
e

C
om

po
ne

nt

N
on

em
er

ge
nc

y
P

as
s.

 In
te

rf
ac

e
O

ut
si

de
 E

l. 
C

ar
s

N
on

em
er

ge
nc

y
P

as
s.

 In
te

rf
ac

e
In

si
de

 E
l. 

C
ar

s

E
m

er
ge

nc
y

P
as

s.
 In

te
rf

ac
e

C
on

fig
ur

at
io

n
C

on
tr

ol
s

D
ia

gn
os

tic
Q

ue
rie

s

x
G

eo
rg

e 
M

as
on

U
ni

v.

A
C

C
E

PT
 P

A
SS

E
N

G
E

R
 R

E
Q

U
E

ST
S 

&
 P

R
O

V
ID

E
 F

E
E

D
B

A
C

K
A

1

FI
G

U
R

E
7
.9

Sc
en

ar
io

tr
ac

e
co

n
ti

n
u
ed

in
th

e
A

l
d
ia

gr
am

.

235



 U
SE

D
 A

T
:

C
O

N
T

E
X

T
:

N
O

D
E

:
T

IT
L

E
:

N
U

M
B

E
R

:

A
U

T
H

O
R

: D
en

ni
s 

B
ue

de
PR

O
JE

C
T

: E
le

va
to

r 
C

as
e 

St
ud

y

N
O

T
E

S:
  1

  2
  3

  4
  5

  6
  7

  8
  9

  1
0

D
A

T
E

: 0
5/

24
/9

9
R

E
V

:
W

O
R

K
IN

G

D
R

A
F

T
 

R
E

C
O

M
M

E
N

D
E

D

PU
B

L
IC

A
T

IO
N

R
E

A
D

E
R

D
A

T
E

P.
 5

E
le

va
to

r
P

os
iti

on
 &

D
ire

ct
io

n

R
eq

ue
st

 f
or

E
le

va
to

r
S

er
vi

ce

A
ck

no
w

le
dg

m
en

ts
&

 S
ta

tu
s 

fo
r

W
ai

tin
g 

P
as

se
ng

er
s

S
en

se
d

F
lo

or
-b

as
ed

M
al

fu
nc

tio
ns

A
C

C
E

P
T

P
A

S
S

E
N

G
E

R
R

E
Q

U
E

S
T A
11

1

D
IG

IT
IZ

E
 R

E
Q

U
E

S
T

A
11

2

A
C

K
N

O
W

LE
D

G
E

P
A

S
S

E
N

G
E

R
'S

R
E

Q
U

E
S

T A
11

3

P
R

O
V

ID
E

 
S

T
A

T
U

S
 

IN
F

O
R

M
A

T
IO

N
F

O
R

 E
A

C
H

 C
A

R A
11

4

P
as

se
ng

er
R

eq
ue

st

R
eq

ue
st

A
le

rt

D
ig

iti
za

tio
n

S
uc

ce
ss

fu
l

A
ck

no
w

le
dg

m
en

t
of

 R
eq

ue
st

 f
or

E
le

va
to

r
S

er
vi

ce

S
ta

tu
s

In
fo

rm
at

io
n

D
ig

iti
ze

d
R

eq
ue

st
s

fr
om

 W
ai

tin
g

P
as

se
ng

er
s

N
on

em
er

ge
nc

y
P

as
s.

 In
te

rf
ac

e
O

ut
si

de
 E

l. 
C

ar
s

D
ia

gn
os

tic
Q

ue
rie

s

C
on

fig
ur

at
io

n
C

on
tr

ol
s

x
G

eo
rg

e 
M

as
on

U
ni

v.

SU
PP

O
R

T
 W

A
IT

IN
G

 P
A

SS
E

N
G

E
R

S
A

11

FI
G

U
R

E
7
.1

0
Sc

en
ar

io
tr

ac
e

co
n
ti

n
u
ed

in
th

e
A

l1
d
ia

gr
am

.

236



 U
SE

D
 A

T
:

C
O

N
T

E
X

T
:

N
O

D
E

:
T

IT
L

E
:

N
U

M
B

E
R

:

A
U

T
H

O
R

: 
D

en
ni

s 
B

ue
de

P
R

O
JE

C
T

: 
E

le
va

to
r 

C
as

e 
S

tu
dy

N
O

T
E

S
:  

1 
 2

  3
  4

  5
  6

  7
  8

  9
  1

0

D
A

T
E

: 
05

/2
4/

99
R

E
V

:
W

O
R

K
IN

G

D
R

A
F

T

R
E

C
O

M
M

E
N

D
E

D

PU
B

L
IC

A
T

IO
N

R
E

A
D

E
R

D
A

T
E

P.
 6

M
od

ifi
ed

E
le

va
to

r
C

on
fig

ur
at

io
n

&
 E

xp
e

ct
e

d
U

sa
ge

 P
at

te
rn

s

A
ss

ig
nm

en
ts

fo
r 

E
le

va
to

r
C

ar
s

E
le

va
to

r
P

o
si

tio
n

 &
D

ir
e

ct
io

n

S
en

se
d

M
al

fu
nc

tio
ns

M
O

N
IT

O
R

LO
C

A
T

IO
N

O
F

 A
LL

 C
A

R
S A
21

M
O

N
IT

O
R

 
LO

C
A

T
IO

N
 A

N
D

 
D

IR
E

C
T

IO
N

 O
F

 
A

LL
N

O
N

-P
R

IO
R

IT
Y

 
W

A
IT

IN
G

 
A

23

A
LL

O
C

A
T

E
 

C
A

R
S

 T
O

 
P

A
S

S
E

N
G

E
R

 
P

IC
K

 U
P

 
S

T
O

P
S

A
24

D
ig

iti
ze

d
P

as
se

ng
er

R
eq

ue
st

s

Li
st

 o
f 

al
l

C
a

rs
 w

ith
D

ire
ct

io
n 

&
Lo

ca
tio

n

Li
st

 o
f 

al
l

F
lo

or
s 

w
ith

W
a

iti
n

g
N

on
pr

io
ri

ty
P

as
se

ng
er

s
&

 D
e

si
re

d
D

ir
ec

tio
n

Li
st

 o
f 

al
l

F
lo

or
s 

w
ith

W
a

iti
n

g
pr

io
ri

ty
P

as
se

ng
er

s
&

 D
e

si
re

d
D

ir
ec

tio
n

T
e

m
p

o
ra

ry
M

od
ifi

ca
tio

n 
to

E
le

va
to

r 
C

on
fig

ur
at

io
n

M
O

N
IT

O
R

 
LO

C
A

T
IO

N
 A

N
D

 
D

IR
E

C
T

IO
N

 O
F

 
A

LL
 P

R
IO

R
IT

Y
 

W
A

IT
IN

G
 

P
A

S
S

E
N

G
E

R
S A

22

D
ig

iti
ze

d
P

ri
o

ri
ty

P
as

se
ng

er
R

eq
ue

st
s

D
ig

iti
ze

d
N

on
pr

io
ri

ty
P

as
se

ng
er

R
eq

ue
st

s

E
le

va
to

r 
C

on
tr

ol
C

om
po

ne
nt

C
on

fig
ur

at
io

n
C

on
tr

ol
s

D
ia

gn
os

tic
Q

ue
rie

s

x
G

eo
rg

e 
M

as
on

U
ni

v.

C
O

N
T

R
O

L
 E

L
E

V
A

T
O

R
 C

A
R

S
A

2

FI
G

U
R

E
7
.1

1
Sc

en
ar

io
tr

ac
e

co
n
ti

n
u
ed

in
th

e
A

2
d
ia

gr
am

.

237



 U
SE

D
 A

T
:

C
O

N
T

E
X

T
:

N
O

D
E

:
T

IT
L

E
:

N
U

M
B

E
R

:

A
U

T
H

O
R

: D
en

ni
s 

B
ue

de
PR

O
JE

C
T

: E
le

va
to

r 
C

as
e 

St
ud

y

N
O

T
E

S:
  1

  2
  3

  4
  5

  6
  7

  8
  9

  1
0

D
A

T
E

: 0
5/

24
/9

9
R

E
V

:
W

O
R

K
IN

G

D
R

A
FT

R
E

C
O

M
M

E
N

D
E

D

PU
B

L
IC

A
T

IO
N

R
E

A
D

E
R

D
A

T
E

P.
 7

P
as

se
ng

er
C

ha
ra

ct
er

is
tic

s

P
as

se
ng

er
E

nv
iro

nm
en

t

E
le

ct
ric

 P
ow

er
&

 E
m

er
ge

nc
y

C
om

m
un

ic
at

io
n

R
es

po
ns

e

A
ss

ig
nm

en
ts

fo
r 

E
le

va
to

r
C

ar
s

E
le

va
to

r
E

nt
ry

/E
xi

t
O

pp
or

tu
ni

ty

E
le

va
to

r
P

os
iti

on
 &

D
ire

ct
io

n

S
en

se
d

M
al

fu
nc

tio
ns

R
E

C
E

IV
E

 &
D

IS
C

H
A

R
G

E
 P

A
S

S
E

N
G

E
R

S
 

A
31

T
R

A
V

E
L 

T
O

 N
E

X
T

 
S

T
O

P A
32

P
R

O
V

ID
E

 
C

O
M

F
O

R
T

A
B

LE
 

A
T

M
O

S
P

H
E

R
E A

33

E
le

ct
ric

P
ow

er

T
ra

ve
l O

K
M

es
sa

ge

T
ra

ve
l

S
to

pp
ed

M
es

sa
ge

P
as

se
ng

er
W

ei
gh

t

P
as

se
ng

er
H

ea
t

S
en

se
d

D
is

ch
ar

ge
M

al
fu

nc
tio

ns

S
en

se
d

T
ra

ve
l

M
al

fu
nc

tio
ns

S
en

se
d

C
om

fo
rt

M
al

fu
nc

tio
ns

E
le

va
to

r 
C

ar
s

C
om

po
ne

nt

E
le

va
to

r
C

ar
 D

oo
r

E
le

va
to

r 
C

ab
&

 D
oo

r

E
le

va
to

r 
C

ar
S

en
so

rs
 &

 C
on

tr
ol

s

C
on

fig
ur

at
io

n
C

on
tr

ol
s

D
ia

gn
os

tic
Q

ue
rie

s

x
G

eo
rg

e 
M

as
on

U
ni

v.

M
O

V
E

 P
A

SS
E

N
G

E
R

S 
B

E
T

W
E

E
N

 F
L

O
O

R
S

A
3

FI
G

U
R

E
7
.1

2
Sc

en
ar

io
tr

ac
e

co
m

p
le

te
d

in
th

e
A

3
d
ia

gr
am

.

238



throughout the entire functional model of the elevator system in the case study
that can be downloaded from http://www.theengineeringdesignofsystems.com.

In addition, defining failure modes for the system and creating error
detection and recovery functionalities within the common operating modes as
well as the failure modes is critical. These functionalities for error detection and
recovery are critical for stakeholder usability. How often has your computer
shut down with no warning and little support for saving open files? The more
mature an operating system is, the more functionality the operating system
commonly has for saving open files as part of the crash, and the more unlikely
such crashes are. Details on functionality for addressing error detection and
recovery are covered later in the chapter.

7.5 DEVELOPMENT OF THE FUNCTIONAL DECOMPOSITION

The literature [Marca and McGowan, 1988] surrounding the structured
analysis and design technique (SADT), which became IDEF0, suggests the
following activities for creating a functional decomposition with inputs,
controls and outputs:

� Determine the purpose and viewpoint.

� Generate a data list, based upon the system’s boundaries (the external
systems diagram).

� Generate an activity list.

� Define the AO diagram, and the level 1 functional decomposition.

� Draw the context diagram, A-0 (this has already been done, based on the
external systems’ diagram).

� Continue this process while decomposing the level 1 functions.

The purpose and viewpoint define the issues that the IDEF0 model will address.
The purpose for systems engineering applications is straightforward, namely to
depict the functional activities of the system in a particular phase of the
system’s life cycle; as can be seen in the elevator case study (available on the
author’s web site) there is a separate IDEF0 model for each phase. Similarly,
the viewpoint is the systems engineering team; this team is creating the
functional architecture, of which the IDEF0 model is a part, for the purposes
of designing the system. Typically, there are a number of stakeholders with a
somewhat diverse set of opinions that are concerned about each phase of the
life cycle; the systems engineering team should include representatives of these
stakeholders and has ultimate responsibility to integrate these opinions.

The data list of inputs, controls, and outputs for the system’s top-level
function should already be available from the external systems’ diagram.
Nonetheless, this is an excellent time to review and critique the data list to
determine if there are any missing or redundant items.

7.5 DEVELOPMENT OF THE FUNCTIONAL DECOMPOSITION 239



Next, we have the first of many decomposition decisions. How should the top-
level system function be decomposed? Spending some time gathering information
and brainstorming about system functions for each phase is always a good idea,
in addition to creating an activity list from which to choose or synthesize the
functional decomposition. For the operational phase of the life cycle a previous
section presented the options of starting with the operational modes of the
system or alternatively with the functional taxonomy derived from the Hatley–
Pirbhai [1988] architecture template. At this point in time the systems engineer-
ing team certainly has not finalized the definition of operating modes for the
system. In fact, the functional decomposition will inevitably be modified over
time as the performance of the allocated architecture is evaluated. Figure 7.3
depicted the elevator’s top-level functional decomposition for the operational
phase in terms of the Hatley–Pirbhai template.

There are many ways to gather information:

� Review documents, but watch for viewpoint changes.

� Observe operations, but be careful about the details that you do not know
well enough to recognize and the need to make major changes from the
current system to the system under development.

� Conduct interviews; questionnaires can be used but have very limited
value (be sure you get the right experts).

� Invent a strawman for the experts to critique.

� Create several alternate decompositions and create a composite strawman
based on the best features of each after some critical discussion (this
creativity technique is often called the ‘‘gallery’’).

Once a working version of the functional model is created, the functional
model should be reviewed by individuals that have substantial knowledge and
varying perspectives about the system’s functioning in a given life-cycle phase.
This review process should:

� Try alternate decompositions.

� Disaggregate the functions differently.

� Bundle and unbundle arrows differently.

� Reevaluate functional dominance in terms of feedback and control.

� Catch interface errors.

As part of this review process creating a data model of the inputs, controls, and
outputs using an entity–relationship–attribute or higraph model would be wise.
These techniques are discussed in Chapter 12. The data model often introduces
critical design issues that have been overlooked in the functional or process
model.

How far should the functional decomposition be carried out? Generally
speaking, the functional decomposition should proceed to the second, third,

240 FUNCTIONAL ARCHITECTURE DEVELOPMENT



or fourth level. At this point the physical and allocated architectures should be
developed and analyzed. The more detailed the operational concept the more
reliably the functional architecture can be developed to the fourth level.
Defining the system’s functions to line up with the physical components is
best so that the inputs, controls, and outputs clearly line up with external and
internal interfaces. The level of detail should be appropriate with the viewpoint
and purpose, that is, the stakeholders and specified phase of the system’s life
cycle. Be sure to eliminate details if they are not helping create the allocated
architecture. Also, see Sidebar 7.2 for a list of common mistakes made in the
development of a functional architecture.

SIDEBAR 7.2: COMMON MISTAKES IN DEVELOPING
A FUNCTIONAL ARCHITECTURE

1. Including the external systems and their functions. The functional
architecture only addresses the top-level function of the system in
question. The external system diagram establishes the inputs, con-
trols, and outputs for this function. A boundary has been drawn
around the system to exclude the external systems and their functions.

2. Choosing the wrong name for a function. The function name
should start with an action verb and include an object of that
action. The verb should not contain an objective or performance
goal such as maximize, but should describe an action or activity
that is to be performed.

3. Creating a decomposition of a function that is not a partition of
that function. For example, a student once decomposed ‘‘AO:
Provide Elevator Services’’ into ‘‘Al: Transport Users,’’ ‘‘A2:
Evaluate System Status,’’ and ‘‘A3: Perform Security & Mainte-
nance Operations.’’ ‘‘Al: Transport Users’’ was then decomposed as
follows: ‘‘All: Provide Access to Elevator,’’ ‘‘Al2: Transport
Users,’’ and ‘‘A13: Provide Emergency Operations.’’ Al2 cannot
be a child of itself. The sub-functions of a function should all be at
the same level of abstraction [Chapman et al., 1992].

4. Including a verb phrase as part of the inputs, controls, or outputs of
a function. Verb phrases are reserved for functions.

5. Violating the law of conservation of inputs, controls, and outputs.
That is, every input, control, and output of a particular function
must appear on the decomposition of that function, and there can
be no new ones.

6. Trivializing the richness of interaction between the functions that
decompose their parent. Consider many possible simple function-
alities that comprise the children of a parent function and then

7.5 DEVELOPMENT OF THE FUNCTIONAL DECOMPOSITION 241



develop the inputs, controls, and outputs that enable these simple
functionalities to exist, including the necessary feedback and
control.

7. Creating outputs from thin air. The most common mistake is to
define a function that monitors the system’s status but that does not
receive inputs about the functioning or lack of functioning of other
parts of the system.

7.6 FINISHING THE FUNCTIONAL ARCHITECTURE

Two key areas of the functional architecture that need to be addressed before
the job is finished are (1) defining system errors and the failure modes that
result and inserting the functionality to detect the errors and recover and (2)
inserting the appropriate functionalities for some combination of built-in self-
test (BIST) and external testability. The functionalities described here are
typically not part of the initial drafts of the functional architecture because they
depend to a significant degree on the physical architecture; as a result these
functions are often added once the allocated architecture is taking shape.

Fault tolerance is a laudable design goal, meaning that the system can
tolerate faults and continue performing. In fact, the design goal of every
systems engineering team is to create a system with no faults. However, faults
like friction have to he tolerated at best, even after our best efforts to eliminate
them. This discussion on fault-tolerant functionality depends greatly on
understanding several key terms; see Jalote [1994] and Levi and Agrawala
[1994]. Figure 7.13 provides a concept map based on these definitions.

System: an identifiable mechanism that maintains a pattern of behavior at
an interface between the system and its environment. [Anderson and Lee,
1981]

Failure: deviation in behavior between the system and its requirements.
Since the system does not maintain a copy of its requirements, a failure is
not observable by the system.

Error: a subset of the system state which may lead to a failure. The system
can monitor its own state, so errors are observable in principle. Failures
are inferred when errors are observed. Since a system is usually not able to
monitor its entire state continuously, not all errors are observable. As a
result, not all failures are going to be detected (inferred).

Fault: a defect in the system that can cause an error. Faults can be
permanent (e.g., a failure of system component that requires replacement)
or temporary due to either an internal malfunction or external transient.
Temporary faults may not cause a sufficiently noticeable error or may
cause a permanent fault in addition to a temporary error.

242 FUNCTIONAL ARCHITECTURE DEVELOPMENT



First, note the difference of the definition of system in the fault tolerance
literature and that discussed in Chapters 2 and 6 of this book, which represent
the systems engineering community. The fault tolerance community is focused
on inferring failures by detecting errors. The notions that are central to this
focus are the system’s requirements (or specifications), the boundary between
the system and the system’s environment at which the state of the system is
defined, and the interface that connects the system to its environment. The fact
that a system has objectives, as defined by the stakeholders, and functions (or
tasks), as defined by the systems engineers, is not relevant to the fault tolerance
community and is therefore not found in their definition of a system.

Achieving fault tolerance in a system means using both the designed
functions and physical resources of the system to mask all errors (deviations
between actual system outputs and required system outputs) from the system’s
environment. Fault tolerance can only be achieved for those errors that are
observed. The generic system functions associated with fault tolerance are
(1) error detection, (2) damage confinement, (3) error recovery, and (4) fault
isolation and reporting. The design of physical resources needed for fault
tolerance is discussed in the next chapter.

Error detection is defining possible errors, deviations in the subset of the
system’s state from the desired state, in the design phase before they occur, and
establishing a set of functions for checking for the occurrence of each error. Just
as with requirements development, defining error checking to be complete,
correct, and independent of the design of the system is desirable. Unfortu-
nately, this is not yet possible so error detection will be imperfect. The most
frequent error detection involves errors in data, errors in process timing, and
physical errors in the system’s components. The most common checks for data

System

may have

may have

may lead to

has

has

has

States
may have

Defect

Fault

is-a

can cause
Error

is

Subsets of States
Deviation from
Requirement

Failure

is-a

is

UnobservableObservable

Requirements

FIGURE 7.13 Concept map for fault tolerance terms.

7.6 FINISHING THE FUNCTIONAL ARCHITECTURE 243



errors include type and range errors. Type checks establish that the data is the
right type, for example, Boolean versus integer. Range checks ensure that
the value of the data is within a specified range. Knowing the correct values of
the data is not possible so type and range checks are approximations of the
checking that would be most effective if the truth were known. Semantic and
structural checks are also possible on data elements. Semantic checks compare
a data element with the state of the rest of the system to determine whether an
error has occurred. Structural checks use some form of data redundancy to
determine whether the data is internally consistent. A structural check used in
coding is to add extra bits to the data bits; these added hits take on values that
depend on the values of the data bits. Later these extra bits and the associated
data bits can be checked to ensure an appropriate relationship exists; if not, an
error is declared. Similarly robust data structures in software use redundancy in
the data structures to check for data errors. Timing checks are used in real-time
or near-real-time systems. Timing checks assume the existence of a permissible
range for the time allotted to some process being performed by the system. A
timer is activated within a process to determine whether the completion of the
process is within an appropriate range; if not, an error is declared. Hardware
systems typically detect timing errors in memory and bus access. Operating
systems also use timing checks. Finally physical errors in a component of the
system are the province of BIST and will be discussed in the next chapter.

Damage confinement is needed in fault tolerance because there is typically a
time lag between the occurrence of failure and the detection of the associated
error. During this time lag the failure or the implications of the failure may
have spread to other parts of the system; error recovery activities are dangerous
without having knowledge about the extent of damage due to a failure. As
soon as the error detection functionality has declared an error, damage
confinement functionality must assess the likely spread of the problem and
declare the portion of the system contaminated by the failure. The most
common approach to damage confinement is to build confinement structures
into the system during design. ‘‘Fire walls’’ are designed into the system to limit
the spread of failure impacts. With these predesigned fire walls declaring that a
failure is limited to a specific area of the system when an error is declared is
possible. A more sophisticated approach is to reexamine the flow of data just
prior to an error to determine the possible spread of errors due to a failure;
this sophisticated approach requires not only that error detection functionality
be designed into the system but that functionality to record a time history
of data be added so that this information exists when the information is
needed.

Error recovery functionality attempts to correct the error after the error has
been declared and the error’s extent defined. If the error concerns data in the
system, backward recovery is typically employed to reset the data elements to
values that were recorded and acceptable at some previous time. These values
may not be correct in the sense that they are the values the system should have
generated. Rather, these values are acceptable in the sense of type, range, and

244 FUNCTIONAL ARCHITECTURE DEVELOPMENT



semantics discussed above in error detection. The purpose of backward
recovery is to keep the system from a major failure, not to restore the system
to the correct state. As a result, the system’s users are typically notified as part
of the error recovery process that a failure occurred and are given the chance to
attempt to recover the correct data or restart at an appropriate place to
generate the correct data. Forward recovery is an attempt to guess at what the
correct values of the data should have been; this is dangerous but sometimes
justified in real-time systems where backward recovery and user notification is
not possible. Timing errors are handled by ending a process that is taking too
long and asserting a nominal or last computed value for the process output.
Physical errors are handled by either graceful termination of the system’s
activities or switching to redundant (standby) components when they are
available. In recovering from physical errors, capturing the last available values
of the system’s data structure prior to termination or component switching is
critical.

Fault isolation and reporting functionality attempts to determine where in
the system the fault occurred that caused the failure that generated the error.
To isolate faults the components of the system must be providing information
about their current status.

BIST for a specific component incorporates the functionality to test defined
functionality and provide feedback about the results. These types of BIST are
common during system start-up and routine operation.

The functional architecture must be expanded during the final development
of the allocated architecture to include functions for error detection, damage
confinement, error recovery, and fault isolation and reporting. In accordance
with the fault tolerance community, these functions should be defined for every
state variable of the system, which includes the system’s outputs. In addition,
including error trapping for many of the inputs to the system is important.
Error trapping includes functions for error detection, damage confinement, and
error recovery for user inputs; the system must monitor system inputs to detect
unacceptable inputs and alert the user that a given input is unacceptable and to
reenter a correct input. For example, the system is expecting the user to input a
number as part of a menu selection or data entry task. However, the user, due
to inattention or typing error, enters a letter instead. Most older software
would immediately crash, sometimes crashing the entire computer system.
However, more recent, well-designed software will monitor the input for such
an error and alert the user that this error has been made and request a new
input.

7.7 TRACING REQUIREMENTS TO ELEMENTS OF THE FUNCTIONAL
ARCHITECTURE

There are two elements of the functional architecture that should have input/
output requirements traced to them: the functions and the external items

7.7 TRACING REQUIREMENTS TO ELEMENTS OF THE FUNCTIONAL ARCHITECTURE 245



(inputs and outputs). Both of these tracings can be accomplished in systems
engineering tools such as CORE. All elements of the set of input/output
requirements should be traced to appropriate functions that have been defined
in the functional decomposition. Tracing input requirements and output
requirements to functions should be done throughout the functional decom-
position as is shown in Figure 7.13; this tracing is guided explicitly by the
association of inputs and outputs with functions in the functional architecture.
For example, since ‘‘calls (requests) for up and down service’’ is an input of
‘‘Support Waiting Passengers,’’ all of the requirements related to this input
should be traced to the function ‘‘Support Waiting Passengers’’ and that
function’s predecessors in the functional decomposition. Similarly, external
interface requirements should be traced to the function that is associated with
receiving the input or sending or output, respectively. For example, the phone
line (external interface) transmits and receives items that are associated with the
function ‘‘Support Passengers in Emergency’’; therefore the external interface
requirement to use a phone line to communicate via the building with
maintenance personnel should be traced to this function. Each external inter-
face requirement should also be traced to the predecessors of this function.
Finally, all of the functional requirements should be traced to the top-level
system function. As discussed in Chapter 6 a preferred convention for the
functional requirements is to list the functions in the top-level functional
decomposition that define the system function. This tracing of input/output
requirements to functions is illustrated in Figure 7.14 for a sample of functions
and requirements from the elevator case study, which can be downloaded from
http://www.theengineeringdesignofsystems.com.

The logic for tracing input/output requirements to functions is as follows.
The ultimate product of the systems engineering team is a set of specifications
for each CI. Intermediate products are specifications for the intermediate
components that comprise the system and are built from the CIs. Each of these
specifications will contain requirements that are derived from the system-level
requirements that are derived from the stakeholders’ requirements. In addition,
each of these specifications will contain a functional architecture that is relevant
to the component or CI of interest. This functional architecture for a
component or CI will be a subset of the system’s functional architecture and
will contain input/output requirements traced to these functions at the system
level. These input/output requirements should be contained in the specification.
Tracing system input/output requirements to functions is a method for
ensuring that the appropriate input/output requirements are contained in
each specification that has to be developed during the design process.

In addition, tracing input/output requirements to functions serve as a
consistency check. Does each function have requirements traced to it for
each input and output? Is each input/output requirement traced to at least one
function?

The input and output requirements are also traced to the external item
elements. This tracing is made explicit in the set of input and output

246 FUNCTIONAL ARCHITECTURE DEVELOPMENT



In
p

u
t/

O
u

tp
u

t 
R

eq
u

ir
em

en
ts

 (
A

 S
am

p
le

) 

In
pu

t R
eq

ui
re

m
en

ts
 

O
ut

pu
t R

eq
ui

re
m

en
ts

 
Fu

nc
tio

na
l

R
eq

ui
re

m
en

t
E

xt
er

na
l 

In
te

rf
ac

e 
R

eq
ui

re
m

en
t

F
u

n
ct

io
n

s

T
he

 e
le

va
to

r
sy

st
em

 s
ha

ll 
re

ce
iv

e 
ca

lls
 f

or
 u

p
an

d 
do

w
n 

se
rv

ic
e

fr
om

 a
ll 

fl
oo

rs
 o

f
th

e 
bu

ild
in

g.

T
he

 e
le

va
to

r
sy

st
em

 s
ha

ll
re

ce
iv

e 
pa

ss
en

ge
r

ac
tiv

at
ed

 f
ir

e
al

ar
m

s 
in

 e
ac

h
el

ev
at

or
 c

ar
.

T
he

 e
le

va
to

r
sy

st
em

 s
ha

ll 
pr

ov
id

e 
ad

eq
ua

te
ill

um
in

at
io

n.

T
he

 e
le

va
to

r
sy

st
em

 s
ha

ll 
op

en
an

d 
cl

os
e

au
to

m
at

ic
al

ly
 u

po
n

ar
ri

va
l a

t e
ac

h
se

le
ct

ed
 f

lo
or

.

T
he

 e
le

va
to

r
sy

st
em

 s
ha

ll
co

nt
ro

l
el

ev
at

or
 c

ar
s

ef
fi

ci
en

tly
.

T
he

 e
le

va
to

r
sy

st
em

 s
ha

ll 
us

e
a 

ph
on

e 
lin

e
fr

om
 th

e 
bu

ild
in

g
fo

r 
em

er
ge

nc
y

ca
lls

.

0 
Pr

ov
id

e 
E

le
va

to
r 

Se
rv

ic
es

 
X

 
X

 
X

 
 

X
 

X
 

 
X

 1
 A

cc
ep

t P
as

se
ng

er
 R

eq
ue

st
s 

+ 
Pr

ov
id

e 
Fe

ed
ba

ck
 

X
 

 
 

X
 

X
 

  1
.1

 S
up

po
rt

 W
ai

tin
g 

Pa
ss

en
ge

rs
X

 
  1

.2
 S

up
po

rt
 R

id
in

g 
Pa

ss
en

ge
rs

 
  1

.3
 S

up
po

rt
 P

as
se

ng
er

s 
in

 E
m

er
ge

nc
y 

 
X

 
X

 
 2

 C
on

tr
ol

 E
le

va
to

r 
C

ar
s 

 3
 M

ov
e 

Pa
ss

en
ge

rs
 b

et
w

ee
n 

Fl
oo

rs
 

X
 

X
 

  3
.1

 R
ec

ei
ve

 +
 D

is
ch

ar
ge

 P
as

se
ng

er
s 

X
 

  3
.2

 T
ra

ve
l t

oN
ex

t S
to

p
  3

.3
 P

ro
vi

de
 C

om
fo

rt
ab

le
 A

tm
os

ph
er

e 
X

 
 4

 E
na

bl
e 

E
ff

ec
tiv

e 
M

ai
nt

en
an

ce
 a

nd
 S

er
vi

ci
ng

FI
G

U
R

E
7
.1

4
T
ra

ci
n
g

a
sa

m
p
le

o
f

in
p
u
t/

o
u
tp

u
t

re
q
u
ir

em
en

ts
to

a
sa

m
p
le

o
f

fu
n
ct

io
n
s.

247



requirements for the operational phase of the elevator, as shown in Appendix
B. The rationale for tracing the input and output requirements to external items
is that the external interfaces need to satisfy these requirements. The internal
items of the functional architecture will also have the relevant input and output
requirements traced to them later in the design phase so that the internal
interfaces of the system will have derived requirements that they must meet.
This tracing can provide a valuable consistency check: Does each item have at
least one requirement traced to it? Also, does each requirement trace to some
item? If either of these questions is negative for any requirement or item, there
has been a breakdown in the requirements development process. Finally, an
item will be ‘‘carried by’’ a link, which ‘‘comprises’’ an interface. The item will
have one or more input/output requirements traced to it. In addition, the link
will ultimately have derived system-wide requirements traced to it. The inter-
face specifications will be built from the requirements that are traced to the
items being carried by the links comprising the interface as well as the system-
wide requirements that ultimately are traced to the interface.

7.8 SUMMARY

The functional architecture of a system, as defined in this chapter, contains a
hierarchical model of the functions performed by the system, the system’s
components, and the system’s CIs; the flow of informational and physical items
from outside the system through the system’s functions and on to the waiting
external systems being serviced by the system; and a tracing of input/output
requirements to both the system’s functions and items.

This chapter introduces quite a few terms that are key to understanding and
developing a functional architecture. A system mode is an operational
capability of the system that contains either full or partial functionality. A
state is a modeling description of the status of the system at a moment in time.
A function is an activity that the system performs in order to transform an n-
tuple of inputs into an m-tuple of outputs. These concepts are key to the
development of a functional architecture. The system’s modes and functions
should be part of the functional architecture, while the system’s state should be
definable by a set of parameters in any operational mode while performing any
set of functions. The parameters that comprise this state may vary based on the
operational mode and the functions being performed.

Other key terms addressed in this chapter include failure, error, and fault.
Failure is a deviation between the system’s behavior and the system’s require-
ments. An error is a problem with the state of the system that may lead to a
failure. A fault is a defect in the system that can cause an error. To achieve the
desired level of fault tolerance, the system must perform the functions of error
detection, damage confinement, error recovery, and fault isolation and reporting.

A method for developing a functional architecture was defined in this
chapter. Defining the functional architecture is not easy and is a modeling

248 FUNCTIONAL ARCHITECTURE DEVELOPMENT



process that the engineer of a system must learn. The modeling process uses a
combination of decomposition and composition. The concepts of feedback and
control are critical to defining the system’s functions.

The engineering of a system has to rely upon more than the physical design
of the system. The functions or activities that the system has to perform are a
critical element of the design process and the design of these functions needs to
be given an equal importance to the physical design by the engineers. The
designs of functions and physical resources for the system are not independent;
they must both be done, usually in parallel.

PROBLEMS

7.1 What are the operating modes of your car’s stereo system?

7.2 For the ATM of the Money Mart Corporation:

i. As part of the systems engineering development team, use IDEF0 to
develop a functional architecture. The functional architecture should
address all of the functions associated with the ATM. This functional
architecture should be at least two levels deep and should be four
levels deep in at least one functional area that is most complex. Note
that you will be graded on your adherence to proper IDEF0 semantics
and syntax, as well as the substance of your work.

ii. Pick three scenarios from the operational concept and describe how
these scenarios can be realized within your functional architecture by
tracing functionality paths through the functional architecture. Start
with the external input(s) relevant to each scenario and show how
each input(s) is(are) transformed by tracing from function to function
at various levels of the functional decomposition, until the scenario’s
output(s) is(are) produced. Highlight with three different colored pens
(one color for each scenario) the thread of functionality associated
with each of these three scenarios.
If your functional architecture is inadequate, make the appropriate
changes to your functional architecture.

iii. As part of the systems engineering development team for the ATM,
update your requirements document to reflect any insights into
requirements that you obtained by creating a functional architecture.
That is, if you added, deleted, or modified any input, controls, or
outputs for the system, modify your input/output requirements. Also
update your external systems diagram if any changes are needed.

7.3 For the OnStar system of Cadillac:

i. As part of the systems engineering development team, use IDEF0 to
develop a functional architecture. The functional architecture should
address all of the functions associated with OnStar. This functional

PROBLEMS 249



architecture should be at least two levels deep and should be four
levels deep in at least one functional area that is most complex. Note
that you will be graded on your adherence to proper IDEF0 semantics
and syntax, as well as the substance of your work.

ii. Pick three scenarios from the operational concept and describe how
these scenarios can be realized within your functional architecture by
tracing functionality paths through the functional architecture. Start
with the external input(s) relevant to each scenario and show how
each input(s) is(are) transformed by tracing from function to function
at various levels of the functional decomposition, until the scenario’s
output(s) is(are) produced. Highlight with three different colored pens
(one color for each scenario) the thread of functionality associated
with each of these three scenarios.

iii. If your functional architecture is inadequate, make the appropriate
changes to your functional architecture.

iv. As part of the systems engineering development team for OnStar,
update your requirements document to reflect any insights into
requirements that you obtained by creating a functional architecture.
That is, if you added, deleted, or modified any input, controls, or
outputs for the system, modify your input/output requirements. Also
update your external systems diagram if any changes are needed.

7.4 For the development system for an air bag system:

i. As part of the systems engineering development team, use IDEF0 to
develop a functional architecture. The functional architecture should
address all of the functions associated with the development system
for an air bag. This functional architecture should be at least two
levels deep and should be four levels deep in at least one functional
area that is most complex. Note that you will be graded on your
adherence to proper IDEF0 semantics and syntax, as well as the
substance of your work.

ii. Pick three scenarios from the operational concept and describe how
these scenarios can he realized within your functional architecture by
tracing functionality paths through the functional architecture. Start
with the external input(s) relevant to each scenario and show how
each input(s) is(are) transformed by tracing from function to function
at various levels of the functional decomposition, until the scenario’s
output(s) is(are) produced. Highlight with three different colored pens
(one color for each scenario) the thread of functionality associated
with each of these three scenarios.
If your functional architecture is inadequate, make the appropriate
changes to your functional architecture.

iii. As part of the systems engineering development team for the devel-
opment system for an air bag, update your requirements document to
reflect any insights into requirements that you obtained by creating a

250 FUNCTIONAL ARCHITECTURE DEVELOPMENT



functional architecture. That is, if you added, deleted, or modified any
input, controls, or outputs for the system, modify your input/output
requirements. Also update your external systems diagram if any
changes are needed.

7.5 For the manufacturing system for an air bag system:

i. As part of the systems engineering development team, use IDEF0 to
develop a functional architecture. The functional architecture should
address all of the functions associated with the manufacturing system
for an air bag. This functional architecture should be at least two
levels deep and should be four levels deep in at least one functional
area that is most complex. Note that you will be graded on your
adherence to proper IDEF0 semantics and syntax, as well as the
substance of your work.

ii. Pick three scenarios from the operational concept and describe how
these scenarios can be realized within your functional architecture by
tracing functionality paths through the functional architecture. Start
with the external input(s) relevant to each scenario and show how
each input(s) is(are) transformed by tracing from function to function
at various levels of the functional decomposition, until the scenario’s
output(s) is(are) produced. Highlight with three different colored pens
(one color for each scenario) the thread of functionality associated
with each of these three scenarios.
If your functional architecture is inadequate, make the appropriate
changes to your functional architecture.

iii. As part of the systems engineering development team for the
manufacturing system for an air bag, update your requirements
document to reflect any insights into requirements that you obtained
by creating a functional architecture. That is, if you added, deleted, or
modified any input, controls, or outputs for the system, modify your
input/output requirements. Also update your external systems dia-
gram if any changes are needed.

PROBLEMS 251


