
Chapter 8

Physical Architecture
Development

8.1 INTRODUCTION

The physical architecture of a system is a hierarchical description of the
resources that comprise the system. This hierarchy begins with the system
and the system’s top-level components and progresses down to the configura-
tion items (CIs) that comprise each intermediate component. The CIs can be
hardware or software elements or combinations of hardware and software,
people, facilities, procedures, and documents (e.g., user’s manuals).

Section 8.2 introduces the distinction between a generic and instantiated
physical architecture. The generic physical architecture defines the hierarchy in
general terms, for example, two processors with associated software, a person,
and a building. The instantiated physical architecture lays out the specifics of
the processors, software, person, and building in enough detail to permit
performance modeling of the system related to the requirements being
addressed. The intent of systems engineers should not be to design these
components but rather to state representative instantiations for the generic
components that are sufficient to model the performance of the system and
ensure that the requirements decomposition process makes sense.

Section 8.3 defines a method for developing alternatives for the generic and
instantiated physical architectures of the system. The development process
proposed here emphasizes multiple alternatives, especially for the instantiated
physical architecture, based on the supposition that the design process is quite
difficult for even moderate extensions of existing systems. The following quote

The Engineering Design of Systems: Models and Methods, Second Edition. By Dennis M. Buede
Copyright r 2009 John Wiley & Sons, Inc.

252

by Guindon [1990, p. 308] expresses the importance of this approach:

System design often involves novelty. Even though the designer may be thor-

oughly familiar with the design process itself, there may not be any precedent in

the literature for the system to be designed. — It may be a new technology. More

frequently, the system may simply involve some novelty in an otherwise well-

understood problem. The novelty may range from a novel combination of

requirements for a familiar type of system in a familiar problem domain. As a

consequence, there is often no predetermined solution path from the requirements

to the finished artifact [Newell, 1969; Nii, 1986; Reitman, 1965; Rittel, 1972;

Simon, 1973]. Thus system design frequently requires the creation of new

solutions interleaved with the application of known solutions.

Section 8.4 introduces some creativity techniques to aid in the development
of the alternate physical architectures. The morphological box is the primary
technique employed and illustrated in this chapter. The morphological box
dates back to the 1940s and breaks a system into segments as defined by the
generic physical architecture; it then provides for the listing of alternate
instantiated physical components for each segment. Other techniques that
have been proposed and utilized are classified as either brainstorming or
brainwriting and are also discussed. See West [2007]. Selecting one or more
instantiated components from each component produces an alternative for an
instantiated physical architecture for the system.

Engineers commonly resort to describing the system’s architecture in a non-
mathematics-based graphical format. Block diagrams, the commonly used and
non-standardized graphical format, are presented in Section 8.5 to represent the
physical coupling of the system’s components. A block diagram provides a box or
block for each component. The links between the blocks represent the major flows
of energy or information between the components represented by the blocks.

Section 8.6 addresses major issues and associated concepts in the develop-
ment of a physical architecture. The concepts of centralized and decentralized,
distributed, and client–server architectures are discussed and illustrated. Also
redundancies in hardware, software, information, and time are discussed as
ways to achieve fault tolerance via the physical architecture.

The exit criterion for the development of the physical architecture is the
provision of a single physical architecture that is satisfactory in terms of detail,
quantity, and quality for development of the allocated architecture. This
satisfaction of detail, quantity, and quality is typically preceded by the creation
of several alternate physical architectures for consideration during the develo-
pment and refinement of the allocated architecture.

8.2 GENERIC VERSUS INSTANTIATED PHYSICAL ARCHITECTURES

The physical architecture provides resources for every function identified in the
functional architecture. Since every phase of the life cycle is addressed in the

8.2 GENERIC VERSUS INSTANTIATED PHYSICAL ARCHITECTURES 253

requirements and is being addressed in the functional architectures, there must
be a physical architecture for each system associated with the system’s life cycle.
Recall the sample physical architecture from Chapter 1 (repeated here as
Figure 8.1). Note that this physical architecture includes the vehicle, the support
resources for the vehicle during the operational and maintenance phases, and the
training resources, which may be training for the operational phase or the
training phase. Also, note that even at the third level of the physical architecture,
the components are combinations of hardware, software, and other devices.

Military standard MIL-STD-881B [1993] contains a Work Breakdown
Structure (WBS) for Defense Material Items. The WBS is often very similar
to the physical architecture because the work is organized along the lines of the
resources that require development or procurement. For an aircraft system
there are 10 elements that partition the system, as shown in the first column of
Table 8.1. These elements span six of the seven life-cycle phases (shown in the
second column) defined in Chapter 1. The only phase that is absent from this
list is retirement, the commonly forgotten phase.

In the same military standard, 17 resource categories, shown in Table 8.2,
are defined as a partition of the generic air vehicle. These lists or partitions of
the resources for the physical architecture are most useful as memory joggers.
For some aircraft, some of these elements are not relevant; for example, airlift
aircraft do not need armament or antisubmarine warfare. More importantly, as
technology advances some of these elements are outdated. With the advent and
advance of distributed computing, the central computer element is not relevant
or misleading. In addition, at this level of the physical architecture it is often
too early to separate hardware and software.

Common resource categories for an aircraft have been described in Figure 8.1
and Tables 8.1 and 8.2. The resource categories for the elevator’s physi-
cal architecture from the case study, which can be downloaded from

F-22 Weapon System

Vehicle Training Support

Avionics
Systems

Utilities &
Subsystems

Cockpit
Systems

Vehicle
Management

System

Electronic
Warfare

Navigation,
Identification

Processing

Controls
&

Displays

Stores
Management

Inertial
Reference

System
Radar

FIGURE 8.1 Sample physical architecture (F-22 Type A Spec) (from Reed [1993]).

254 PHYSICAL ARCHITECTURE DEVELOPMENT

http://www.theengineeringdesignofsystems.com, are shown in Figure 8.2. All of
these resource categories are examples of a generic physical architecture. A
generic physical architecture is a description of the partitioned elements of the
physical architecture without any specification of the performance characteristics
of the physical resources that comprise each element (e.g., central processing
unit). An instantiated physical architecture is a generic physical architecture to
which complete definitions of the performance characteristics of the resources
have been added. An instantiated physical architecture for the elevator system
would be specific about the call announcement component (e.g., liquid crystal
lights), destination control (e.g., push buttons), and the like.

One element that is left out of most physical architectures is the set of
procedures that are developed for the users of the system to follow. These
procedures are explicit operating, maintenance, or support instructions pro-
vided in the font of a user’s or operator’s manual. These manuals usually
accompany the system when the system is delivered. These procedures are the
focus of attention during the training that is delivered to the users, maintainers,

TABLE 8.1 WBS Elements and Related Life Cycle Phases

WBS Elements Life Cycle Phase

Air vehicle Operational

Systems engineering/Program management Development

System test and evaluation Development

Training Training

Data Manufacturing and Refinement

Peculiar support equipment Operational

Common support equipment Operational

Operational/site activation Deployment

Industrial facilities Manufacturing

Initial spares and repair parts Operational

TABLE 8.2 Resource Categories for a Generic Air Vehicle

� Airframe

� Propulsion

� Air vehicle application software

� Air vehicle system software

� Communications/Identification

� Navigation/Guidance

� Central computer

� Fire control

� Data display and controls

� Survivability

� Reconnaissance

� Automatic flight control

� Central integrated checkout

� Antisubmarine warfare

� Armament

� Weapons delivery

� Auxiliary equipment

8.2 GENERIC VERSUS INSTANTIATED PHYSICAL ARCHITECTURES 255

or supporters of the system. Systems engineers should not forget or ignore this
element of the system’s physical architecture, as was done with the initial air
bag system that was described as a case study in Chapter 6. After the serious,
and often deadly, effects on children and small adults were noticed, a series of
procedures for the placement (or lack thereof) of children and small adults in
the front seat were released. Common practice in the development of a system is
to accommodate problem issues identified during qualification of the system
(see Chapter 10) by amending and expanding the procedures defining how the
system will be used. Procedures such as these represent the way in which the
system’s functionality moves from the system under development to the users.

Elevator Call
Announcement

Component

Destination
Control

Component

Door
Control

Component

Emergency
Component

Phone
Component

Car Control
Component

Passenger
Interface

Component

Cab
Component

Interior Door
Component

Ventilation
& Lighting

Component

Car Component
Shaft Structural

Component

Exit Component
& Controls

Floor Stop
Component

Leveling
Component

Shaft Switch
Component

Normal
Drive/Brake
Component

Emergency
Braking

Component

Drive/Brake
Component

Elevator
Car/Shaft

Component

Hardware
Component

Software
Component

Control
Component

Maintenance
& Self-Test
Component

Elevator System

FIGURE 8.2 Generic physical architecture from the elevator case study.

256 PHYSICAL ARCHITECTURE DEVELOPMENT

8.3 OVERVIEW OF PHYSICAL ARCHITECTURE DEVELOPMENT

The definition of the physical architecture, as described here, is done one level
of the tree at a time. Our approach here is a top-down process. There are many
systems engineers that have successfully used a bottom-up design process for
the physical part of the system (just as we described the bottom-up approach in
the previous chapter for the functional architecture). Experience and creativity
are critical for this part of the engineering process. While experience is a must;
do not underestimate the importance of creativity.

There are many possible decompositions of the process ‘‘Design
System Physical Architecture.’’ The one chosen here (Figure 8.3, taken from
Appendix B) emphasizes the concepts of generic and instantiated physical
architectures. A second justification of this decomposition is the belief that the
allocated architecture development is predicated on having a variety of
interesting physical architectures to match with the functional architecture.
Therefore, the primary product of this function for designing the physical
architecture is a reasonable number of interesting physical architectures that
can be combined with the functional architecture and evaluated to determine
their effectiveness in meeting the objectives established in the requirements.

The structure of the generic physical architecture is first selected while
working in parallel with the development of the functional architecture. As
discussed in Chapter 7 and elaborated on in Chapter 9, there are great
advantages in defining the internal interfaces of the system to have the
functional and physical architectures match; that is, enable a one-to-one and
onto allocation of functions to components. See Figure 8.4 to review the
distinctions between a relation and a function, and the additional restrictions
for a function that is one-to-one and onto. While there are many advantages to
a one-to-one and onto mapping of functions and components, this may not
always be possible and should not be forced.

First, a generic physical architecture must be developed. The generic
physical architecture provides common designators for physical resources in
a hierarchical decomposition that partitions the system into greater and greater
detail. Although this generic physical architecture has no substance in the sense
of specific physical items, this structure is still very important. Some instan-
tiated physical architectures can be eliminated from consideration just on the
basis of the division of the system into components. Therefore serious thought
and creativity should be devoted to this initial task.

The second function in the decomposition addresses the creation of a
morphological box to assist in generating a set of creative instantiated archi-
tectures to analyze during the development of the allocated architecture. A
morphological box is a matrix in which the columns (or rows) represent the
components in the generic physical architecture. The boxes in a given column (or
row) then represent alternate choices for fulfilling that generic component. Each
option should have well-defined performance (and cost) characteristics. Section 1
describes the morphological box in more detail and provides several examples.

8.3 OVERVIEW OF PHYSICAL ARCHITECTURE DEVELOPMENT 257

 U
SE

D
 A

T
:

C
O

N
T

E
X

T
:

N
O

D
E

:
T

IT
L

E
:

N
U

M
B

E
R

:

A
U

T
H

O
R

: D
en

ni
s

B
ue

de
PR

O
JE

C
T

: E
ng

in
ee

ri
ng

 D
es

ig
n

of
 a

 S
ys

te
m

N
O

T
E

S:
 1

 2
 3

 4
 5

 6
 7

 8
 9

 1
0

D
A

T
E

: 0
5/

24
/9

9
R

E
V

:
W

O
R

K
IN

G

D
R

A
F

T

R
E

C
O

M
M

E
N

D
E

D

PU
B

L
IC

A
T

IO
N

R
E

A
D

E
R

D
A

T
E

P.
 8

S
ys

te
m

-le
ve

l
O

pe
ra

tio
na

l
C

on
ce

pt

C
an

di
da

te
P

hy
si

ca
l

A
rc

hi
te

ct
ur

es

S
ys

te
m

-le
ve

l
P

hy
si

ca
l

A
rc

hi
te

ct
ur

e

S
ys

te
m

-le
ve

l
F

un
ct

io
na

l
A

rc
hi

te
ct

ur
e

C
an

di
da

te
G

en
er

ic
P

hy
si

ca
l

A
rc

hi
te

ct
ur

es

B
ra

in
st

or
m

 a
nd

S

el
ec

t a
 G

en
er

ic

P
hy

si
ca

l
A

rc
hi

te
ct

ur
e A
11

31

G
en

er
at

e
a

M
or

ph
ol

og
ic

al
 B

ox
fo

r
A

lte
rn

at
e

In
st

an
tia

te
d

P
hy

si
ca

l
A

rc
hi

te
ct

ur
e

A
11

32

S
el

ec
t

A
lte

rn
at

e
In

st
an

tia
te

d
P

hy
si

ca
l

A
rc

hi
te

ct
ur

e
A

11
33

G
en

er
ic

P
hy

si
ca

l
A

rc
hi

te
ct

ur
e

M
or

ph
ol

og
ic

al
B

ox

P
hy

si
ca

l
A

rc
hi

te
ct

ur
e

C
ha

ng
es

x

G
M

U
 S

ys
te

m
s

E
ng

in
ee

ri
ng

Pr
og

ra
m

D
es

ig
n

S
ys

te
m

 P
hy

si
ca

l A
rc

hi
te

ct
ur

e
A

11
3

S
ta

ke
ho

ld
er

s’
 &

S
ys

te
m

 R
eq

ui
re

m
en

ts
,

O
bj

ec
tiv

es
 H

ie
ra

rc
hy

,
B

ou
nd

ar
y

&
 Q

ua
lif

ic
at

io
n

S
ys

te
m

 R
eq

ui
re

m
en

ts

FI
G

U
R

E
8
.3

D
ev

el
o
p
m

en
t

p
ro

ce
ss

fo
r

th
e

p
h
ys

ic
al

ar
ch

it
ec

tu
re

.

258

The third function in this decomposition uses the morphological box to aid
in the selection of as many alternate instantiated physical architectures as are
needed to feed the process of selecting an allocated architecture. An alternative
instantiated physical architecture would be the selection of an option from
each of the generic components in the morphological box. Examples of the
morphological box are provided in the following sections.

The functional decomposition shown in Figure 8.3 suggests that the three
functions are performed in a serial fashion, which is true with the following
caveat: The changes to the physical architecture that are sent from the
development of the allocated architecture trigger the repetition of these three
functions. Each repetition could cause changes to the generic physical archi-
tecture, modifications to the morphological box due to the changed generic
architecture or other changes dictated by the allocated architecture, and a
reselection of alternate instantiated physical architectures.

8.4 CREATIVITY TECHNIQUES

Initially creating more choices than are useful to consider in a detailed analysis
process is wise. This generation of excess alternatives means there is a greater

Functions

f2
f3

f4

f1

f5

Components

c2

c3
c4

c1

c5

Relation for the allocation
of functions to components

Functions

f2
f3

f4

f1

f5

Components

c2

c3
c4

c1

c5

Function for the allocation
 of functions to components

Functions

f2
f3

f4

f1

f5

Components

c2

c3
c4

c1

c5

One-to-one and onto
function for the allocation

of functions to components

FIGURE 8.4 Need for a one-to-one and onto functional allocation of functions to
components.

8.4 CREATIVITY TECHNIQUES 259

chance that the best choices are being considered in the final analysis. There are
many possible creativity enhancing techniques that have been used by engineers
to develop new and interesting solutions to old and new problems. This section
begins by focusing on one technique, the morphological box, that has proven
useful a number of times. Then a larger review of techniques is provided.

8.4.1 Morphological Box

Originally proposed by Zwicky [1969] during World War II and then expanded
by Allen [1962], morphological analysis (more commonly known in some
disciplines as morphological box) divides a problem into segments and posits
several solutions for each segment. In the two-dimensional version, a table is
created with columns (or sometimes rows) pertaining to the generic compo-
nents of the physical architecture. Then the elements of each column are filled
with competing specific instantiations of each component. The instantiations in
a given column need not fit together; in fact, each column corresponds to a
section of a cafeteria (e.g., salads, vegetables, meat, deserts). A meal would then
consist of a selection from each section of the cafeteria. A system’s instantiated
physical architecture, analogously, is a selection of one box from each column
(generic component) of the morphological box. As part of the morphological
analysis, each instantiation (one from each column) will be based upon a subset
of the system’s objectives. For example, one subset of objectives might be low
cost; another, high-speed performance; and a third, high usability. Each of
these instantiations is, in fact, a theme for the design of the system.

Table 8.3 presents a morphological box (generic components and choices)
for a hammer. This morphological box contains five generic components of a
hammer: the length of the handle, the material that the handle is made of, the
size and surface of the head of the hammer used for striking, the weight or
density of the hammer head, and the angle associated with the head of the
hammer used for removing nails. Any hammer is one cell from each of the five
columns. For example, one hammer design is obtained by taking the top cell
of each column: 8-inch handle made of Fiberglass with a rubber grip using a
1 inch diameter flat steel head that weighs 12 ounces and has a steel claw that is
nearly perpendicular to the handle. There are 2� 5� 4� 4� 2=320 different
possible hammers defined in this table, assuming none of the combinations are
infeasible. Yet when you go to the hardware store, there may be only a dozen
choices. For real systems there are usually millions of possible combinations.
Yet many design teams only consider one or two in any detail, making it very
likely that they are missing several creative, high-quality designs. The big
advantage of the morphological box is that it forces the design team to
recognize that there are many possible solutions to the design problem. The
conversation about what design alternative best satisfies the requirements
follows naturally.

While the morphological box is a simple concept, there are a number of
subtle issues that need to be addressed. First and obviously, there should be at

260 PHYSICAL ARCHITECTURE DEVELOPMENT

least one column in the morphological box for each generic component in the
physical architecture. There are certainly situations in which one of the generic
components may have two or more columns associated with the generic
component; these would be the decomposed generic components of the higher
level component.

Second, there is no requirement that each generic component have the same
number of options. Clearly, there is value to having at least two choices for any
generic component; otherwise that particular generic component has been
fixed. Using some of the brainstorming or brainwriting techniques to be
discussed in Section 8.4.2 is common to develop additional alternatives (boxes)
for each generic component (column of the morphological box). There is great
advantage to generating a creative set of choices for any generic component,
even if some of the choices are never selected in the final set of alternate
instantiated physical architectures.

In addition, there are situations in which it is wise to permit more than one
choice from a generic component to be selected for a single instantiated
physical architecture. This possibility of selecting several choices in a single
generic component for a single instantiated physical architecture usually does
not make sense for a central component in the architecture. However, there are
often generic components associated with the ‘‘bells and whistles’’ of the
system. An example would be the list of peripherals that can be added to a
computer or an automobile. There is some efficiency to group all of these under
one generic component for the system rather than have a generic component
for each of the possible peripherals.

Figure 8.5 provides another example of a morphological box; this example
describes alternate designs for an automobile navigation support system. A

TABLE 8.3 Morphological Box for a Hammer

Handle
Size

Handle Material Striking
Element

Weight of
Hammer Head

Nail Removal
Element

8 inches Fiberglass with

rubber grip

1 inch diameter

flat steel

12 oz. Steel claw at

nearly a straight

angle

22 inches Graphite with

rubber grip

1 inch diameter

grooved

steel

16 oz. Steel claw at a 60

degree angle

with handle

Steel with rubber

grip

1.25 inch

diameter flat

steel

20 oz.

Steel I-beam

encased in

plastic with

rubber grip

1.25 inch

diameter

grooved

steel

24 oz.

Wood

8.4 CREATIVITY TECHNIQUES 261

number of automakers are providing such navigation support systems as
peripherals (or extras) now. In addition, a number of peripheral companies
are providing such navigation support systems that can be added to any
automobile. In general, these navigation support systems provide the driver
and passengers with information about where they are on the highway and how
to get where they want to go. However, there are extras that can be provided as
shown in the last column, ‘‘Other System Interfaces.’’ These extras include the
ability to have the car doors unlocked when the owner has locked him/herself
out, notify the police or emergency service if the air bag deploys, and activate
the lights and horn externally if the driver has lost the car in a parking lot.
Selecting more than one option in the second to last column is also possible;
this column represents the generic component associated with the user interface
for the navigation support system. The selection of multiple boxes is also
common for user interface generic components.

There is one major caution that must be provided in the development of a
morphological box. The system concept has to be narrowed down to some degree
before it is possible to define a single morphological box. For example, if the
system is a substantial computer system, a morphological box cannot be defined
before an architecture for the computer system has been selected. For example,
suppose the alternate computer system architectures were a client–server, a

Direction
Support

Localization Processor User I/O Other System
Interfaces

Map &
Database

None None Regular
Cell Phone

None

Map, Database,
Routing Algorithm

Direction
Sensor

Vehicle’s
Processor

Special
Cell Phone

Horn

Staffed Control
Center

Electro
Gyros

32-bit
Processor

4” LCD Lights

Automated
Control Center

GPS
Transponder

Portable
PC (486+)

6” LCD Car Door Locks

Full GPS
Support

 6” LCD &
Touch Screen

Emergency
Signal

Button &
Key Panel

Air Bag

Joy Stick

Control Knob

 Voice Output

Oldsmobile Guidestar

Acura Navigation System

BMW Navigation System

Cadillac’s OnStar

Lincoln’s RESCU

RETKI

FIGURE 8.5 Morphological box for automobile navigation support system.

262 PHYSICAL ARCHITECTURE DEVELOPMENT

mainframe, or a distributed processing architecture connected via several local
area networks (LANs). The generic components that are applicable to a client–
server architecture may not be consistent with those generic components for a
mainframe system or a distributed network. Therefore the design process should
narrow the computer system architecture down to a client–server or mainframe
before developing a morphological box.

Once a reasonable number of possible choices for each component of the
physical architecture have been identified, identifying infeasible combinations
may be wise. Friend and Hickling [1987] have defined a graphical representa-
tion to highlight pairwise infeasible choices across two generic components.
Each generic component is shown as a circular node in a graph. The specific
choices for a generic component are shown as pie-shaped wedges in the relevant
generic component’s node. An infeasible combination of choices from two
distinct generic components is shown as a line between those options.

Pairwise examples of infeasible combinations are shown in Figure 8.6 for the
morphological box of the hammer shown in Table 8.3. In this hypothetical
example the line segment from angled nail removal feature to 22-inch handle
denotes an infeasible combination; an angled nail removal claw cannot be
placed on a 22-inch handle because too much stress would be focused at the
intersection of the handle and hammer’s head. The second line segment shown
between the 22-inch handle and a wood handle eliminates the ability of the user

8 inches

22 inches

Angled

Straight

Fiberglass

Steel

Graphite

Steel
I-beam

Wood

1 inch
flat

1 inch
grooved

1.25 inch
grooved

1.25 inch
flat

Handle Material

Handle Length

Nail Removal
Feature

Striking Feature

24 Oz.

12 Oz.

16 Oz.

20 Oz.

Weight of Hammer Head

FIGURE 8.6 Pairwise infeasible combinations.

8.4 CREATIVITY TECHNIQUES 263

to apply too much force for the wood handle to absorb. These two line
segments reduce the total number of choices from 320 to 224; the 8-inch handle
still retains 160 possible combinations, but the 22-inch handle only has 64
possible combinations—any of the four striking surfaces with any of the four
weights with the one nail removal generic component with four of the five
possible handle material generic components.

8.4.2 Option Creation Techniques

VanGundy [1988] is an excellent source of brainstorming techniques and has
produced a typology of techniques involving brainwriting or brainstorming; see
Table 8.4. Brainstorming is the generation of ideas via verbal interaction.
Brainwriting is a silent, writing process. VanGundy claims:

Brainstorming, for example, is most useful when there is only a small group of

individuals, time is plentiful, status differences among group members are

minimal, and a need exists to verbally discuss ideas with others. Brainwriting,

on the other hand, is most useful for very large groups, when there is little time

available, status differences need to be equalized, and there is no need for verbal

interaction. In addition, brainwriting often will produce more ideas than brain-

storming, although the uniqueness and quality of these ideas might or might not

be superior to those produced by brainstorming. [VanGundy, 1988, p. 75].

A common characteristic, called deferred judgment, of brainstorming and
brainwriting exercises is that the individual or group operates in an evaluation-
free period where criticism and discussion in general is prohibited. The logic for
this freethinking period is that even the most preposterous idea may stimulate
the generation of a really superior idea. A second principle is that the more
ideas generated the better the chance of finding a high-quality solution. Several
techniques discussed below are analogy, people involved, attribute listing,
collective notebook, brainwriting game, and brainwriting pool.

Analogies are often used in systems engineering because building upon our
experiences with previous systems has a great deal of creative power. An
example of an analogy would be to use the 17 elements of the generic aircraft
in Table 8.2 to develop a physical architecture of an automobile, an air traffic
control system, or an elevator system. Using the physical architecture from a
system recently developed as an analogy for a new generation product is
another example of analogic reasoning. The use of analogies for generating
ideas is by far the most common, efficient, and highly recommended;
however, left unchecked analogic reasoning can produce the most disastrous
results.

Examining the system’s physical architecture in light of the stakeholders
(people involved) affected by the use and maintenance of the system can be
useful in defining the physical architecture for the operational phase. Remem-
ber though that the entire life cycle of the system must be addressed, so there

264 PHYSICAL ARCHITECTURE DEVELOPMENT

will be physical architectures for the manufacturing, deployment, and training
phases as well.

Attribute listing dates back to the 1930s and is based on the concept that
physical architectures can all be traced to modifications of previous architec-
tures. Once the requirements and objectives of the system have been developed
and a generic physical architecture has been created, the individual defines a
feasible (or nearly feasible) instantiation of the generic physical architecture.
Then without detailed evaluation, she systematically modifies the character-
istics of the instantiated physical architecture with key objectives of the system
in mind. For example, VanGundy provides the following example for a
hammer:

To develop a better hammer, for example, the following parts could be listed: (1)

straight, wooden, varnished handle; (2) metal head with round striking surface on

one end and a claw on the other; and (3) metal wedge in the top of the handle to

secure the head to the handle. Of these parts, the basic attributes of handle shape/

composition and the metal wedge could be selected for possible modification. The

handle could be constructed of fiberglass, wrapped with a shock-absorbing

TABLE 8.4 VanGundy’s Typology of Brainwriting and Brainstorming

Brainwriting and Brainstorming Categories Examples

Brainwriting I—an individual works alone to create a

list of ideas.

Analogy, Attribute Listing,

People Involved

Brainwriting II—a group of individuals separated

in space generates ideas separately and the ideas

are collected but not shared

Collective Notebook

Brainwriting III—a group of individuals separated

in space generates ideas separately, the ideas are

shared and additional ideas are generated

Delphi Method

Brainwriting IV—a group of individuals working in the

same room generates ideas separately and the ideas

are collected but not shared and no discussion takes

place

Nominal Group Technique

Brainwriting V—a group of individuals working in the

same room generates ideas separately; all of the ideas

are shared but none are discussed; additional ideas are

generated

Brainwriting Pool

Brainstorming I—a group of individuals generates ideas

via verbal discussion, no defined procedure is used

Unstructured Group

Discussion

Brainstorming II—a group of individuals generates

ideas via verbal discussion within the bounds of

pre-defined procedures

Classical Brainstorming

Brainwriting/Brainstorming I—a group of individuals

generates ideas via predefined written and verbal

procedures

Brainwriting Game

8.4 CREATIVITY TECHNIQUES 265

material, and shaped to better fit the human hand; the metal wedge could be

modified by replacing it with a synthetic, pressure-treated bonding. [VanGundy,

1988, p. 88]

Morphological analysis (sometimes called matrix analysis) results in a
morphological box, which is a systematic extension of attribute listing. This
topic was discussed in detail with examples above.

Haefele [1962] of the Proctor and Gamble Company developed the Collec-
tive Notebook. Each participant in this group-oriented technique keeps a
notebook of ideas over a relatively long time period to solve a specified
problem; Haefele suggested one month. Each participant is to add one idea
each day. At the end of idea collection period, each participant reviews her own
ideas and selects the best one; ideas needing more research or other good ideas
that may relate to other problems are annotated. A coordinator, who collects
this summary information and the notebooks, creates a detailed synopsis of the
ideas generated that can then be reviewed by the participants.

The brainwriting game uses competition among the participants to create the
most improbable solution in hopes that this competition will generate the best
solution. First, the design problem is presented to the group. Each participant
buys a specified number of blank, numbered cards. The participant places her
initials on her cards and then writes an idea that she hopes will win the prize for
the most improbable solution. All of the cards are then displayed to the entire
group. Participants then individually write more practical solutions based upon
concepts taken from the cards detailing improbable solutions. After the
practical solutions are collected, the group votes on the winner of the most
improbable solution. Finally, subgroups are formed that then work on similar,
practical solutions. Finally the group selects its best idea(s).

The brainwriting pool involves a group of five to eight people. The group
leader presents the design problem to the group and each individual begins
writing solutions on a piece of paper. As soon as each individual gets four
solutions documented, he places his paper in the middle of the table and selects
a paper from someone else. He then reviews the ideas on that paper and adds
new ideas triggered from reading the list. After placing another few ideas on
that paper, he exchanges it for another paper in the middle of the table. This
continues for 20 to 30minutes. The group then reviews the ideas.

In addition to the techniques summarized by VanGundy [1988], Altshuller
[Arciszewsti, 1985, Terninks et al., 1996] began the development of a theory of
inventive problem solving (TRIZ) for product development in Russia in 1946.
TRIZ is the result of the analysis of approximately 1.5 million patents from
across the world. The problem-solving methods employed in TRIZ include
Altshuller’s inventive principles, table for engineering contradiction elimina-
tion, standard techniques to eliminate conflicts, standard solutions to inventive
problems, and algorithm for inventive problem solving. This material is still
largely proprietary and is marketed by a number of consultants and seminar
leaders.

266 PHYSICAL ARCHITECTURE DEVELOPMENT

An important creativity concept with which to finish draws upon the
notions of value-focused thinking [Keeney, 1992], introduced in Chapter 6.
This approach is similar to the attribute listing method discussed above. The
individual selects one or more important key performance requirements and
defines an instantiated physical architecture or choices within a single generic
component. Then another single performance requirement or set of perfor-
mance requirements is selected and used to generate an instantiated architec-
ture or set of choices for a single generic component. After continuing this
process for a productive period of time, the results are critiqued and adapted to
feasible solutions.

8.5 GRAPHIC REPRESENTATIONS OF THE PHYSICAL ARCHITECTURE

There are many graphical representations of a physical architecture with little
standardization. The most common graphical format is called a block diagram.
Figure 8.7 illustrates a block diagram for the control system of an aircraft. Each
box inside the dotted line defining the control system represents a physical
component of the control system. The lines between the boxes indicate the flow
of electromechanical energy between the boxes. The boxes outside the dotted
line represent other components of the aircraft system. This block diagram
shows a decentralized controller structure in which there is a central controller
and an actuator controller for each device actuator. Note the feedback loops
inside the control component, as well as the feedback loop involving most of
the elements of the control component and the actuator devices that are part of
the aircraft but outside the aircraft control system.

There was no accepted convention for block diagrams prior to SysML,
which was introduced in Chapter 3. SysML contains two types of block
diagrams: block definition diagrams and internal block diagrams. The block
definition diagram (see Figure 3.14) shows the hierarchical decomposition
shown in Figure 8.1. The internal block diagram (see Fig. 3.16) presents the
information shown in the generic block diagram of Figure 8.7.

8.6 ISSUES IN PHYSICAL ARCHITECTURE DEVELOPMENT

The major issues in designing the physical architecture are (1) functional
performance, (2) availability and other ‘‘-ilities’’ as achieved through such
characteristics as fault tolerance, (3) growth potential and adaptability, and
(4) cost. Achieving sufficient functional performance via the development of the
physical architecture has been addressed initially in previous sections of this
chapter and will be finished in the next chapter during the development of the
allocated architecture. Similarly, most of the system-wide (or suitability) factors
described in Chapter 6 are often achieved by additional physical resources and
associated functionality. Ultimately many of these additional capabilities as

8.6 ISSUES IN PHYSICAL ARCHITECTURE DEVELOPMENT 267

well as cost are issues of trade offs. These trade offs need to be examined during
the evaluation of alternate allocated architectures. Achieving substantial fault
tolerance is nearly always important for a system. Finally, there are several
issues that impact the ability to grow or adapt a system to changes needed by
the stakeholders. The elusive issue of design flexibility is often discussed but
difficult to achieve in general. Flexibility is related to such topics as modularity,
complexity, and loose versus tight coupling.

Section 8.6.1 addresses the architectural concepts of centralization versus
decentralization and distribution of functions and components. Examples from
automated systems are used to illustrate these concepts. Section 8.6.2 discusses
some new ideas for design flexibility. Section 8.6.3 focuses on the design issues
of a physical architecture associated with increasing fault tolerance and
availability through redundancy of physical assets, software assets, informa-
tion, and time.

CASE STUDY: FBI FINGERPRINT IDENTIFICATION SYSTEM

Since the advent of modern information processing technology the
Federal Bureau of Investigation (FBI) has sought ways to improve and
perfect its fingerprint collection, identification, and archival systems. By
1993 the Bureau’s Integrated Automated Fingerprint Identification

Central
Controller

Crew
Command
Sensors

Aircraft
Device

Sensors

Actuator
Controller

Actuator
Controller

Actuator

Actuator

Aircraft
Devices

(e.g., flaps,
ailerons)

Crew
Command
Devices

(e.g.,
throttle,
pedals)

. .
 .

Aircraft Control Component

FIGURE 8.7 Block diagram of an aircraft control system.

268 PHYSICAL ARCHITECTURE DEVELOPMENT

System (IAFIS) consisted of three major interactive segments: the
Identification Tasking and Networking (ITN/FBI) segment, the Inter-
state Identification Index (III/FBI) segment, and the Automated Finger-
print Identification System (AFIS/FBI) Segment. In 1993 proposals were
solicited from industry to address the ITN/FBI segment.

Among the many challenges associated with developing a competitive
technical solution was the subset of requirements related to processing
the fingerprint images. Fingerprint images arrive at the FBI through
several means. The most common is the widely recognized set of
impressions made on a paper form known as a ten-print card. Since
the majority of cards comply with a standard set of dimensions, it is a
straightforward matter to determine the expected size of the binary image
file created when the cards are processed by a digital scanner; both the
front and the back sides are scanned.

The following discussion is concerned with the decompression of the
scanned card image, followed by its presentation to an expert fingerprint
analyst for classification and identification. The FBI’s request for
proposal (RFP) included a detailed specification for the segment and
all sub-elements including the ten-print processing subelement (TPS).
According to the RFP the TPS would consist of workstations organized
into workgroups. Each workgroup would thus be analogous to one of
the many FBI teams engaged in fingerprint analysis. Typically a team
consists of a supervisor and perhaps a dozen expert fingerprint analysts.
The supervisor’s role is to manage the classification and identification of
the numerous fingerprint card submissions that the FBI handles on a
daily basis. The specification also quantified specific processing require-
ments for the daily influx of ten-print cards, which at the time of the
RFP were given to be an average of 30,000 per day. For example, all
incoming cards were required to be scanned and converted to binary
data so that they could be distributed electronically to the finger print
analysts for subsequent processing. To minimize any impact to the
communications infrastructure, the specification required that the
images be compressed at a ratio of 10 to 1 prior to transmission over
the local area network.

Data concerning the processing response time demands on the
fingerprint analysts were also included within the RFP. Chief among
the critical task processing times are (1) the average time for the analyst to
perform a fingerprint image comparison (FIC), given as 60 seconds, and
(2) the time allowed for the display of the human-machine interface
screen, including fingerprint images, given as 1 second from the time of
the request. Thus the average processing time that a fingerprint analyst
requires to complete the task associated with an individual ten-print card
was taken to be 60 seconds. This meant that the component performing
the decompression function needed to be fast enough to sustain an input
queue of ready and available images for each fingerprint analyst.

8.6 ISSUES IN PHYSICAL ARCHITECTURE DEVELOPMENT 269

A second complicating fact was the decompression algorithm. At
the time the RFP was released, the most popular algorithm available
was based upon a high-quality wavelet scalar quantization (WSQ)
approach. The popularity was based on common knowledge among
the bidders that the National Institute of Science and Technology
(NIST) was about to revise the algorithm specification in preparation
for a formal certification. Public access to the algorithm specification
enabled the competing design teams of the ITN/FBI segment to bench-
mark an implementation of the WSQ algorithm in order to quantify
its processing requirements. In general the implementations were found
to be floating-point arithmetic intensive. As a result it was recognized
that such execution behavior is well suited to the latest family of
high-performance machines known as reduced instruction set compu-
ters (RISC). The specific implementation could be either a software
routine or a custom-fabricated large-scale integration (LSI) chip im-
peded into a math coprocessor card. See Figure 8.8 for a flowchart
illustrating the six decision options with an associated block diagram for
each option.

Based upon the data provided in the RFP, performance data collected
from benchmarks of competing decompression algorithms, and perfor-
mance data collected from the manufacturers of the computer hardware
proposed to host the algorithms, a trade study was conducted to
determine how to best implement the function. The particular study
described here analyzed six alternate allocations for decompressing the
fingerprint images:

a. Implement in software on the workstation within each work group
by increasing the TPS workstation processing capacity to enable all
decompressions to be performed locally on the individual analysts’
workstation.

b. Implement in software on the work group’s server by increasing the
TPS servers processing capacity to enable all or some decompres-
sion to be performed locally on the TPS server for a given work
group.

c. Implement in software by distributing the decompression among
under-utilized workstations and server processors enterprise-wide,
without having to increase the total number of processors or their
inherent processing capacity.

d. Implement in software by distributing the decompression among
under-utilized workstations and server processors on each local
network, without having to increase the total number of processors
or their inherent processing capacity.

e. Implement in hardware on the workstation by adding a WSQ co-
processor card in all TPS workstations to perform the decompres-
sions locally.

270 PHYSICAL ARCHITECTURE DEVELOPMENT

B
as

ic
 W

or
kg

ro
up

 S
er

ve
r

R
IS

C
/6

00
0

M
od

el
 5

70
25

6M
B

 R
A

M
2G

B
 D

A
S

D
S

P
E

C
in

t9
2

48
.4

S
P

E
C

fp
92

 9
7.

0

B
as

ic
 W

or
ks

ta
tio

n
R

IS
C

/6
00

0
M

od
el

 2
2W

32
M

B
 R

A
M

40
0M

B
 D

A
S

D
S

P
E

C
in

t9
2

20
.4

S
P

E
C

fp
92

 2
9.

1

E
th

er
ne

t L
A

N
 1

0
M

bp
s

L
oc

al
W

or
kg

ro
up

W
or

kf
lo

w

E
nh

an
ce

d
W

or
kg

ro
up

 S
er

ve
r

R
IS

C
/6

00
0

M
od

el
 9

70
B

51
2M

B
 R

A
M

5G
B

 D
A

S
D

S
P

E
C

in
t9

2
58

.8
S

P
E

C
fp

92
 1

08
.9

E
nh

an
ce

d
W

or
ks

ta
tio

n
R

IS
C

/6
00

0
M

od
el

 3
40

64
M

B
 R

A
M

2G
B

 D
A

S
D

S
P

E
C

in
t9

2
48

.1
S

P
E

C
fp

92
 8

3.
3

E
nt

er
pr

is
e

W
id

e
W

or
kf

lo
w

S
of

tw
ar

e
?

H
ar

dw
ar

e

A
llo

ca
te

A
lg

or
ith

m

S
er

ve
r

?
W

or
ks

ta
tio

n

B
as

ic
 W

or
ks

ta
tio

n
R

IS
C

/6
00

0
M

od
el

 2
2W

32
M

B
 R

A
M

40
0M

B
 D

A
S

D
S

P
E

C
in

t9
2

20
.4

S
P

E
C

fp
92

 2
9.

1

E
th

er
ne

t L
A

N
 -

 1
00

 M
bp

s

B
as

ic
 W

or
kg

ro
up

 S
er

ve
r

R
IS

C
/6

00
0

M
od

el
 5

70
25

6M
B

 R
A

M
2G

B
 D

A
S

D
S

P
E

C
in

t9
2

48
.4

S
P

E
C

fp
92

 9
7.

0

B
as

ic
 W

or
ks

ta
tio

n
R

IS
C

/6
00

0
M

od
el

 2
2W

32
M

B
 R

A
M

40
0M

B
 D

A
S

D
S

P
E

C
in

t9
2

20
.4

S
P

E
C

fp
92

 2
9.

1

E
th

er
ne

t L
A

N
 -

 1
00

 M
bp

s

E
nt

er
pr

is
e

W
id

e
W

or
kf

lo
w

E
th

er
ne

t L
A

N
 1

0
M

bp
s

B
as

ic
 W

or
kg

ro
up

 S
er

ve
r

R
IS

C
/6

00
0

M
od

el
 5

70
25

6M
B

 R
A

M
2G

B
 D

A
S

D
S

P
E

C
in

t9
2

48
.4

S
P

E
C

fp
92

 9
7.

0

E
nh

an
ce

d
W

or
ks

ta
tio

n
R

IS
C

/6
00

0
M

od
el

 3
40

64
M

B
 R

A
M

2G
B

 D
A

S
D

S
P

E
C

in
t9

2
48

.1
S

P
E

C
fp

92
 8

3.
3

L
oc

al
W

or
kg

ro
up

W
or

kf
lo

w

S
er

ve
r

?
W

or
ks

ta
tio

n

W
or

ks
ta

tio
n

O
nl

y

S
er

ve
r

w
/ A

ny
 W

or
ks

ta
tio

n

S
er

ve
r

w
/ L

oc
al

 W
or

ks
ta

tio
n

S
of

tw
ar

e
A

llo
ca

tio
n

E
nh

an
ce

d
W

or
kg

ro
up

 S
er

ve
r

R
IS

C
/6

00
0

M
od

el
 9

70
B

51
2M

B
 R

A
M

5G
B

 D
A

S
D

S
P

E
C

in
t9

2
58

.8
S

P
E

C
fp

92
 1

08
.9

B
as

ic
 W

or
ks

ta
tio

n
R

IS
C

/6
00

0
M

od
el

 2
2W

32
M

B
 R

A
M

40
0M

B
 D

A
S

D
S

P
E

C
in

t9
2

20
.4

S
P

E
C

fp
92

 2
9.

1

L
oc

al
W

or
kg

ro
up

W
or

kf
lo

w

H
ar

dw
ar

e
A

llo
ca

tio
n

C
us

to
m

 L
S

I C
hi

p
 O

n
C

o-
pr

oc
es

so
r

C
ar

d

B
as

ic
 W

or
kg

ro
up

 S
er

ve
r

R
IS

C
/6

00
0

M
od

el
 5

70
25

6M
B

 R
A

M
2G

B
 D

A
S

D
S

P
E

C
in

t9
2

48
.4

S
P

E
C

fp
92

 9
7.

0
F

D
D

I R
in

g

E
nh

an
ce

d
W

or
kg

ro
up

 S
er

ve
r

R
IS

C
/6

00
0

M
od

el
 9

70
B

51
2M

B
 R

A
M

5G
B

 D
A

S
D

S
P

E
C

in
t9

2
58

.8
S

P
E

C
fp

92
 1

08
.9

B
as

ic
 W

or
ks

ta
tio

n
R

IS
C

/6
00

0
M

od
el

 2
2W

32
M

B
 R

A
M

40
0M

B
 D

A
S

D
S

P
E

C
in

t9
2

20
.4

S
P

E
C

fp
92

 2
9.

1

E
th

er
ne

t L
A

N
 1

00
 M

bp
s

L
oc

al
W

or
kg

ro
up

W
or

kf
lo

w

S
er

ve
r

O
nl

y

W
or

ks
ta

tio
n

O
nl

y

S
er

ve
r

O
nl

y

E
th

er
ne

t L
A

N
 1

00
 M

bp
s

E
th

er
ne

t L
A

N
 1

00
 M

bp
s

FI
G

U
R

E
8
.8

Fl
o
w

ch
ar

t
o
f

al
te

rn
at

e
fu

n
ct

io
n
al

d
es

ig
n

al
lo

ca
ti

o
n

o
p
ti

o
n
s

w
it

h
as

so
ci

at
ed

b
lo

ck
d
ia

gr
am

s.

271

f. Implement in hardware on the server by adding a WSQ coprocessor
hardware card in all TPS servers to perform all or some of the
decompressions.

The bidder on the basis of a thoughtful process developed the set of six
alternatives in Figure 8.8.

Table 8.5 shows a morphological box that contains these six options,
as well as many other possibilities.

The first row shows the generic components that were part of this
segment, as shown in Figure 8.8. The second through fourth rows show
possible instantiations of the generic components. The six alternatives
defined for the trade study shown on the previous page are designated
with the letters a, b, c, d, e, and f at the bottom of each box in the matrix.

The result of producing this morphological box suggested some new
alternatives that would have been competitive with the six analyzed in the
trade study; these are shown as g and h in Table 8.5.

Provided by Tim Parker

8.6.1 Major Concepts for Physical Architectures

Nearly every physical architecture is either centralized or decentralized. A
centralized architecture uses a central location for the execution of the
transformation and control functions of the system. A decentralized architec-
ture has multiple, specific locations at which the same or similar transforma-
tional or control functions are performed. The block diagram for an aircraft
control system in Figure 8.7 shows a decentralized architecture; note that there
is a central controller, but the controllers for each of the aircraft’s actuated
devices have been decentralized. In the decentralized architecture shown in
Figure 8.7, the central controller manages the decentralized device controllers.
A centralized architecture would not have the individual device controllers;
rather, the centralized controller would perform all of the functions.

A distributed architecture is one in which there are two or more autonomous
processors connected by a communications interface and running a distributed
operating system [Coulouris et al., 1994; Shuey et al., 1997]. The distributed
operating system enables the processors to coordinate their actions and share
the system’s resources. The processors can perform the same functions,
depending upon the needs of the system. Processing control issues for a
distributed system are handling the redistribution of processing functions after
partial failures; managing moves, changes, and additions to the processing
activities; and synchronizing processing activities to meet performance and
efficiency objectives. An important distinguishing feature of a distributed
system architecture is that the users are unaware of the distribution of
processing.

272 PHYSICAL ARCHITECTURE DEVELOPMENT

T
A

B
LE

8
.5

M
o
rp

h
o
lo

gi
ca

l
B

o
x

fo
r

th
e

C
ar

d
Im

ag
e

D
ec

o
m

p
re

ss
io

n
C

o
m

p
o
n
en

t

W
o
rk

st
at

io
n

Se
rv

er
So

ft
w

ar
e

LS
I

C
h
ip

W
o
rk

fl
o
w

M
an

ag
em

en
t

C
o
m

m
u
n
ic

at
io

n
s

B
a
si
c
W
o
rk
st
a
ti
o
n
R
IS
C
/

6
0
0
0
M
o
d
el

2
2
W

3
2
M
B

R
A
M

4
0
0
M
B
D
A
S
D

S
P
E
C
in
t9
2
2
0
.4
S
P
E
C
fp
9
2

2
9
.1

(b
,
c,

e,
f)
(g
,
h
)

B
a
si
c
S
er
v
er

R
IS
C
/6
0
0
0

M
o
d
el

5
7
0
2
5
6
M
B
R
A
M

2
G
B
D
A
S
D

S
P
E
C
in
t9
2

4
8
.4

S
P
E
C
fp
9
2
9
7
.0

(a
,
c,

e)
(g
,
h
)

N
o
W
S
Q

A
lg
o
ri
th
m

(e
,
f)
(g
,
h
)

N
o
n
e
(a
,
b
,
c,

d
)

L
o
ca
l
W
o
rk
g
ro
u
p

W
o
rk
fl
o
w
(a
,
b
,

d
,
e,

f)
(g
)

E
th
er
n
et

L
A
N

(1
0
B
a
se
T
)—

1
0
M
b
p
s
(a
,
e)

E
n
h
a
n
ce
d
W
o
rk
st
a
ti
o
n

R
IS
C
/6
0
0
0
M
o
d
el

3
4
0

6
4
M
B
R
A
M

2
G
B
D
A
S
D

S
P
E
C
in
t9
2
4
8
.1
S
P
E
C
fp
9
2

8
3
.3

(a
,
d
)

E
n
h
a
n
ce
d
S
er
v
er

R
IS
C
/6
0
0
0

M
o
d
el
9
7
0
B
5
1
2
M
B
R
A
M

5
G
B
D
A
S
D

S
P
E
C
in
t9
2

5
8
.8
S
P
E
C
fp
9
2
1
0
8
.9
(b
,
d
,

f)

W
S
Q

A
lg
o
ri
th
m

(a
,
b
,
c,

d
)

W
S
Q

o
n
L
S
I

C
h
ip

(d
,
e)

(g
,

h
)

E
n
te
rp
ri
se

W
id
e

W
o
rk
fl
o
w

(c
)

(h
)

E
th
er
n
et

L
A
N

(1
0
0
B
a
se
T
)
–

1
0
0
M
b
p
s
(b
,
d
,

f)
(g
)

F
D
D
I
W
A
N
—

1
0
0
M
b
p
s
(c
)

(h
)

273

A distributed system can be either homogeneous or heterogeneous. The
earliest distributed systems were homogeneous, that is, comprised of identical
processors, running identical operating system and application software, and
connected via a single communications network. Users on a homogeneous
distributed system view the system as their processor but obtain the benefits of
being able to share data with each other over wide geographic regions.
Eventually some processors become much busier than others and the issue of
load sharing arises; load sharing distributes computational tasks from one
processor to another. Note load sharing is the reallocation of functions to
different resources in the physical architecture and is therefore an issue in the
allocated architecture. Load sharing causes users to access and share multiple
processors and provides increased response times in many cases. Finding the
best approach to load sharing is quite complex.

Heterogeneous distributed systems have two or more types of processors
comprising the processor network, plus operating and application software and
one or more communications networks connecting the processors. The Internet
is the most common example of a heterogeneous distributed system. Specially
designed, heterogeneous distributed systems are, or will, enable medical
support in hospitals by both specialists and generalists, financial transactions,
fingerprint analysis by both experts and automated assistants, review of tax
records by both experts and automated assistants, and analysis of data
collected by satellites by a wide variety of researchers. Each architecture shown
in Figure 8.8 for the FBI fingerprint identification system case study is a
heterogeneous network involving two types of processors, clients and servers.

The major reasons that a distributed processing architecture is attractive in
designing systems are transparency, openness, scalability, resource allocation,
concurrency, and fault tolerance. Transparency means that the users view the
distributed system as a complete system, without any knowledge of how the
hardware and software components are performing. An open architecture is one
for which the hardware and software interfaces are sufficiently well defined so
that additional resources can be added to the system with little or no
adjustment. Sealability means that multiple-sized versions of the system are
available. Resource sharing exists when more than one hardware and software
module can be used to execute the same task with no human intervention. A
concurrent architecture is one in which multiple tasks are being executed
simultaneously. A single processor can perform concurrent operations by
interleaving the operations of multiple tasks; however, multiple, distributed
processors can clearly perform concurrent operations without any direct
knowledge of what the other processors are doing. Finally, fault tolerance is
achieved if the distributed system can adjust its operations when one of the
hardware or software elements fails. Details for achieving fault tolerance are
discussed in Section 8.6.2.

A client–server architecture is a software architecture that is super-
imposed on a distributed system to facilitate processing and management of
the system. The client–server architecture distinguishes between client processes

274 PHYSICAL ARCHITECTURE DEVELOPMENT

(requestors) and server processes (task completors). Each distributed processor
is performing its assigned task; when one processor needs support from another
processor, the processor needing support becomes a client and issues a request
across the network. The processor that accepts the request becomes the server,
responds that it will complete the request, and uses both hardware and software
resources to complete the task and send the result to the client. Note this server
may have just issued a client request of its own and may be waiting for a
response from some other processor. Servers may be set up for database, file,
print, fax, mail, communication, and imaging operations. This client–server
architecture will be discussed in more detail in Chapter 10.

8.6.2 Design Flexibility

Many engineers talk and write about design flexibility, modularity, loose
coupling, complexity and other such topics, but it is usually quite difficult to
find nuggets that prove useful in the real world. This section will explore some
of these ideas.

In Chapter 6 we talked about how much change occurs during the design
process and how this change makes success elusive. In addition, most systems
are designed to last many years or even decades. The mark of a long-lived
system is one that has been upgraded successfully many times. These many
upgrades are only possible if the system’s architecture has provided an
adaptable platform for such upgrades. The Sidewinder missile of the U.S.
Navy and Microsoft’s Windows NT operating system are two examples of
architectures have supported dramatic changes over many upgrades, such that
the original design is no longer present but the ‘‘architecture’’ remains. So in
addition to working hard to keep track of the changes that are occurring in the
requirements, we can also design our systems to be more ‘‘changeable’’ in the
future.

Fricke and Schulz [2005] address this problem by defining four aspects of
changeability: flexibility, agility, robustness, and adaptability.

� ‘‘Robustness characterizes a systems ability to be insensitive towards
changing environments. Robust systems deliver their intended function-
ality under varying operating conditions without being changed (see
Taguchi [1993] and Clausing [1994]). That is, no changes from external to
be implemented into such systems to cope with changing environments.

� Flexibility represents the property of a system to be changed easily.
Changes from external have to be implemented to cope with changing
environments.

� Agility characterizes a system’s ability to be changed rapidly. Changes from
external have to be implemented to cope with changing environments.

� Adaptability characterizes a system’s ability to adapt itself towards chan-
ging environments. Adaptable systems deliver their intended functionality

8.6 ISSUES IN PHYSICAL ARCHITECTURE DEVELOPMENT 275

under varying operating conditions through changing themselves. That is
no changes from external have to be implemented into such systems to
cope with changing environments.’’

Some examples of each of these should help make the points emphasized by
Fricke and Schulz. An all-terrain automobile such as a jeep might be an
example of a robust vehicle; it can travel reasonably well on many different
surfaces. If this all-terrain vehicle can also have a cloth top that can removed
and stored, this adds to its robustness. A flexible system is one that can
interface easily with many other types of systems, each of which might be
changing. For example, laptop computers with many USB ports in the 2007
time frame can interact with nearly all printers, projectors, and control devices.
The peripherals or other systems that can plug into the USB ports still have to
be changed as the environment changes, but the core computer does not need to
change for these reasons. Flexibility is important for future upgrades. An agile
system is designed to be changed rapidly. Here a race car comes to mind. Race
cars have to be modified dramatically to run well on different race tracks from
one week to the next. A great deal of money is spent on the design to facilitate
these rapid changes. Adaptable man-made systems are being designed but with
some limitations. Microsoft has designed its operating and office products to
learn and adapt to different users so as to facilitate the performance of these
different users. While this has been the goal at Microsoft, many feel (including
this author) that their efforts are far from successful.

Fricke and Schulz [2005] describe three basic design principles that support
all four types of design for changeability and six extending design principles,
each of which supports a subset of the types of design for changeability. The
three basic principles are ideality/simplicity, independence, and modularity/
encapsulation. The six extending principles are integrability, autonomy, scal-
ability, non-hierarchical integration, decentralization, and redundancy. Aspects
of decentralization were discussed above. This next section addresses redun-
dancy for fault tolerance, a form of adaptability.

8.6.3 Use of Redundancy to Achieve Fault Tolerance

Fault tolerance was discussed in Chapter 7 from the perspective of functions
that need to be performed to detect errors, confine the damage, recover from
the damage, isolate the damage, and report the problem. Design issues
associated with the physical architecture are just as important in achieving
fault tolerance. A primary source of high availability and fault tolerance is
redundancy. Often hardware redundancy receives most of the attention.
However, Johnson [1989] identified four elements of redundancy: hardware,
software, information, and time. Hardware redundancy uses extra hardware to
enable the detection of errors as well as to provide additional operational
hardware components after errors have occurred. This hardware redundancy
can be implemented in passive, active, and hybrid forms.

276 PHYSICAL ARCHITECTURE DEVELOPMENT

Passive hardware redundancy masks or hides the occurrence of errors rather
than detecting them; recovery is achieved by having extra hardware available
when needed. The rest of the system and its operators are commonly not even
aware that an error has occurred. This approach only works as long as there are
sufficient hardware replicas to continue to mask errors. The most common
passive implementation is called triple modular redundancy (TMR) and relies on
a majority voting scheme to mask an error in one of the three hardware units.
Figure 8.9 (top left) shows TMR; unfortunately the single ‘‘voter’’ element is a
single point of failure in this system. Therefore TMR is often implemented as
triplicated TMR (Fig. 8.9 bottom right). Triplicated TMR implements three
voters and produces three versions of the output, which are usually sent to
another module that has been implemented as triplicated TMR. Naturally, there
is nothing magical about three; N-modular redundancy (NMR) is the general-
ization of TMR. TMR can mask a single error; 5-MR can mask two errors, etc.

Voting is a common conflict resolution technique used inside a computer, as
well as with groups of people. However, implementing voting inside a system
has some unexpected difficulties. Issues in voting implementation are establish-
ing the time at which the computation was done, the precision of numbers
achievable in a digital computer, and the need to produce a single answer
eventually. Timing of the computations is critical because the hardware and
software components producing inputs to the voter may be performing
repetitive computations on a data stream and be out of synchronization. For
repetitive operations there must be some synchronization mechanism involved
to ensure that the vote is being taken on computations from the same samples
of data stream of inputs.

The precision issue addresses the concern that there is some imprecision in
numerical operations involving digital equipment. Quantization of a number

Component 1

Component 2

Component 3

Voter

Input 1

Input 2

Input 3

Output

Component 1

Component 2

Component 3

Voter

Input 1

Input 2

Input 3

Output 2

Triple Modular Redundancy (TMR)

Triplicated TMR

Voter Output 3

Voter Output 1

FIGURE 8.9 TMR and triplicated TMR (after Johnson [1989]).

8.6 ISSUES IN PHYSICAL ARCHITECTURE DEVELOPMENT 277

on a digital computer can produce several different valid results. As a result
the voter may see three different outputs from the three components, but the
outputs are the result of normal processing operations. In many cases the
majority voting scheme is replaced with either a selection of the median value or
truncation of the numerical values to some predefined level of significant digits.

The last issue, the production of a single answer, requires that a single point
of failure be introduced. When the final result (e.g., bank account balance or
control signal to the rudder) has to be delivered by the system in question, this
final answer is determined on a single processor.

Finally, voting for passive redundancy can be achieved via hardware or
software. A hardware implementation is faster but usually requires more cost,
space, power, and weight. A software implementation (see Figure 8.10)
provides greater flexibility for change but can also require additional cost,
space, power, and weight in the form of processors if voting is a major part of
the system’s redundancy, which is often the case.

Active hardware redundancy attempts to detect errors, confine damage,
recover from the errors, and isolate and report the fault, as described in
Chapter 7. The basic building block for active hardware redundancy is called
duplication with comparison; see Figure 8.11 for a hardware implementation.
Two identical units are used to compute the same output for the same set of
inputs; these outputs are compared in a ‘‘comparator.’’ If the outputs disagree
by a predefined amount, an error is declared. (Note the issues of synchroniza-
tion and precision also apply here.) Once an error is declared, functionality to
confine the damage, recover from the errors, and isolate the reports is activated.

Hot and cold standby sparing are different than duplication with comparison
and are the most common approaches to active redundancy; see Figure 8.12. In
hot standby sparing multiple replicas of a component are performing identical
functions; only one of them is providing outputs, but all are ready to take over
with no delay. Error detection in standby sparing is not done by comparing
outputs from redundant components, but by examining the output for known
errors or monitoring the component for inactivity. A watchdog timer is an

Two-port
Memory

Two-port
Memory

Two-port
Memory

Two-port
Memory

Two-port
Memory

Two-port
Memory

Input 1

Input 2

Input 3

Sampler

Sampler

Sampler

Processor

Processor

Processor

FIGURE 8.10 Software implementation of voting for triplicated TMR (after Johnson
[1989]).

278 PHYSICAL ARCHITECTURE DEVELOPMENT

example of this latter approach; a watchdog timer declares a fault if it is not
continuously reset by the component with which it is associated.

Cold standby sparing maintains the component replicas in a nonoperational
mode until needed. This is useful for applications where short disruptions are
acceptable or long life is key, for example, spacecraft operations. For real-time
applications, hot standby sparing is critical to success but increases power
consumption and decreases the life of the system. Standby sparing is most
commonly used by providing multiple, excess processors, any of which can be
used to perform necessary system functions. When one processor fails, a
controller no longer assigns tasks to that processor, with the slack being
absorbed by the remaining processors.

The final example of active hardware redundancy, pair-and-a-spare,
combines the features of duplication with comparison and standby sparing.
Figure 8.13 shows a comparison (far right) of the outputs of two active, identical
components to detect an error. If the comparison yields a disagreement, the
‘‘N to 2’’ switch is directed to select alternate components for conducting the
comparison. Note the error detection logic from standby sparing; is also present.

Component 1

Comparator

Component 2

Input

Output

Agree/
Disagree

FIGURE 8.11 Hardware duplication with comparison (after Johnson [1989]).

Component 1

Component 2

Input Output

Component N

Error
Detection

Error
Detection

Error
Detection

~

~

. .
 .

. .
 .

N to 1
Switch

FIGURE 8.12 Standby sparing with N-1 replicas (after Johnson [1989]).

8.6 ISSUES IN PHYSICAL ARCHITECTURE DEVELOPMENT 279

Examples of hybrid hardware redundancy are the combination of N-modular
redundancy with spares, and the triple-duplex architecture, which combines
TMR with duplication with comparison. Critical computation systems usually
use passive or hybrid redundancy. Systems that have requirements for long life
and high availability without critical computations employ active redundancy.
Active redundancy is usually less costly; hybrid redundancy is the most costly.

Software redundancy is a second means for detecting and recovering from
errors. N-version software redundancy is a seldom-used approach to provide
multiple operational software components in the event of a software failure.
Each version is programmed by separate groups of programmers, assuming
that while each group may make mistakes, no two will make the same mistake.
More common forms of software redundancy are consistency and capability
checks; both can be used for error detection in standby sparing. Consistency
checks compare the output of a component with known characteristics of that
output, for example, minimum and maximum values. Capability checks are
software designed to run periodic hardware tasks with known answers.

Information redundancy is achieved by adding extra bits of information to
enable error detections using special codes [Johnson, 1989]. Information
redundancy is useful to catch system-induced errors rather than component
faults; however, system-induced errors can be indicative of component faults if
the errors occur with sufficient frequency. Information redundancy is a very
rich area, having many alternate approaches. Information redundancy is one
form of error detection that can be used for standby sparing; see Figure 8.12.

Time redundancy can be used to replace hardware and software in non-real-
time systems to achieve error detection. When extra processing time is
available, computations can be performedmultiple times with a single hardware
and software combination and compared. If discrepancies exist, an error has
been detected. This approach is also used for error detection in standby systems

Component 1

Component 2

Input

Output

Error
Detection

Error
Detection

Error
Detection

Component N

~
~

. .
 .

. .
 .

N to 2
Switch

Compare

Agree/
Disagree

FIGURE 8.13 Pair-and-a-spare active hardware redundancy (after Johnson [1989]).

280 PHYSICAL ARCHITECTURE DEVELOPMENT

and is quite useful in distinguishing between transient and permanent errors.
Time redundancy assumes that additional time exists for functional perfor-
mance to enable the needed error detection and recovery. On the plus side, time
redundancy can save significantly on hardware and software, reducing cost,
weight, power, and other key suitability issues.

8.7 SUMMARY

The focus of this chapter has been the resources that comprise the system, called
the physical architecture. The system is first segmented into its top-level compo-
nents; the segmentation progresses down to the configuration items (CIs), or hard-
ware and software elements, facilities, people, procedures, and user’s manuals.

The physical architecture can be either generic or instantiated; the generic
physical architecture is an abstract separation of the system’s resources into
components before any key performance decisions are made. The instantiated
physical architecture specifies the performance characteristics of each element
of the generic physical architecture to the degree needed for performance
modeling of the system.

Creativity techniques are important to aid the generation of alternate,
instantiated physical architectures. The morphological box was described in
detail and illustrated as an effective technique for gathering creative ideas and
increasing the chances of combining these creative ideas into a sound,
instantiated physical architecture. The morphological box is defined by the
generic physical architecture and then provides slots for alternate ideas for
instantiated physical components of each segment.

Representing the physical architecture using a block diagram was presented
in this chapter. Block diagrams are completely non-standardized representa-
tions of the system’s components, showing the major flows of electromecha-
nical energy between the components.

Finally, key concepts, such as centralized and decentralized and distributed
and client–server architectures were presented. The decentralization of trans-
formation and control functions and the distribution of functional and physical
elements of the architecture have become the norm in most system’s architec-
tures. These concepts were defined and illustrated.

Redundancy in hardware, software, information, and time was presented
since achieving fault tolerance is often a critical design issue that the engineer of
the system must address. Hardware redundancy is the most commonly
discussed and implemented approach to achieving fault tolerance with the
physical architecture. Software redundancy is almost always too expensive to
develop. Information redundancy, adding extra bits to data elements for the
purpose of checking the meaningfulness of data elements later, is used
extensively on communications interfaces that become part of the physical
architecture. Utilizing unused data processing time to repeat computations,
time redundancy, is not a common approach.

8.7 SUMMARY 281

CASE STUDY: COMMERCIAL AIRCRAFT CRASH AT SIOUX CITY,
IOWA

On July 19, 1989, United 232 (a DC-10 aircraft) crashed into a corn field
next to the Sioux City airport in Iowa while trying to make an emergency
landing after losing one of three engines. In all, 110 passengers and one
flight attendant were killed during this emergency landing; 185 people
survived the accident, some without a scratch.

Engine failure is the most commonly trained maneuver in simulators.
The DC-10 has three engines; one on each wing and one on top of the
fuselage in the vertical tail (or horizontal stabilizer). United 232 lost the
engine on top of the fuselage due to the loss of a fan disk; the fan disk
separated from the engine and crashed through the tail. Pilots fought
through the engine loss by porpoising (rotating the thrust levels) the two
remaining engines to land in Sioux City. However, the descent rate of the
landing was too great; the aircraft caught fire upon landing, tumbled, and
broke apart in corn and soybean fields.

The fan disk, about 300 pounds of titanium, on the number two engine
was missing; it had shattered into pieces and crashed through a chamber
designed to contain such a break-up. There are three independent
hydraulic systems on the DC-10 aircraft; a unique engine powers each
hydraulic system. The hydraulic system on an aircraft provides the
forcing function for the aircraft’s stabilization systems: the ailerons on
the wings that permit the aircraft to bank right and left, the rudder that
allows the aircraft to turn right and left, the elevators on the tail that
cause the aircraft’s nose to rotate up or down, and the flaps and slots on
the wings that permit the aircraft to change the amount of lift generated
by the wings. Losing engine number two should have only caused the loss
of one of the three hydraulic systems. However, the three independent
hydraulic systems converge in the tail at the exactly the location that the
fan disk ripped out, the single point of failure for all three hydraulic
systems.

Experts believe there was a preexisting fracture on the fan disk.
Ultrasonic sensors are used to detect fractures during production.
However, these sensors do not provide good results when the fracture
is near the surface. The National Transportation Safety Board (NTSB)
investigators concluded that the fracture had been there since the fan disk
was built. The fracture would have grown with use; the maintenance crew
was blamed for not finding the fracture during routine maintenance
activities. Nonetheless, this does not dismiss the design flaw of a single
point of failure for what were considered to be three redundant hydraulic
systems [Magnuson, 1989; Birnbaum, 1989].

282 PHYSICAL ARCHITECTURE DEVELOPMENT

PROBLEMS

8.1 Create a generic physical architecture for the ATM problem in Chapters
6 and 7. Create a morphological box for your generic physical archi-
tecture of the ATM. Identify three instantiated physical architectures
based upon the morphological box.

8.2 Create a generic physical architecture for the OnStar system in Chapters
6 and 7. Create a morphological box for your generic physical archi-
tecture of OnStar. Identify three instantiated physical architectures
based upon the morphological box.

8.3 Create a generic physical architecture for a personal computer. Create a
morphological box for your generic physical architecture of a personal
computer. Identify three instantiated physical architectures based upon
the morphological box.

8.4 Create a generic physical architecture for a stereo system. Create a
morphological box for your generic physical architecture of a stereo
system. Identify three instantiated physical architectures based upon the
morphological box.

8.5 Create a generic physical architecture for the development system of an
air bag system. Create a morphological box for your generic physical
architecture of the development system. Identify three instantiated
physical architectures based upon the morphological box.

8.6 Create a generic physical architecture for the manufacturing system of
an air bag system. Create a morphological box for your generic physical
architecture of the manufacturing system. Identify three instantiated
physical architectures based upon the morphological box.

8.7 Using the information in Figure 8.7 create a block definition diagram
and an internal block diagram for the ‘‘Aircraft Control Component,’’
which is inside the dotted lines of the figure. Be sure to use the semantics
and syntax of SysML. Note: You will have to ignore any arcs coming
from or going to components outside the dotted line.

8.8 You are on the elevator design team and have just convinced the team
that the block decomposition at the subsystem level (Figure 3.14) is
incorrect. You have convinced the team to add a communications bus
so that the communications between the subsystems can be more
efficiently routed through the communication bus. Modify the block
definition diagram and internal block diagrams shown in Figures 3.14
and 3.16, respectively, for the elevator subsystems to show this design
change. Consider the communications bus to be a new component or
subsystem.

PROBLEMS 283

