Chapter 9

Allocated Architecture
Development

9.1 INTRODUCTION

The development process for the allocated architecture is the activity during
which the entire design comes together. The allocated architecture integrates
the requirements decomposition with the functional and physical architectures.
The process of developing the allocated architecture provides the raw materials
for the definition of the system’s external and internal interfaces and is the only
activity in the design process that contains the material needed to model the
system’s performance and enable trade-off decisions. The reader should not
infer from this discussion that the requirements development is started and
finished, followed by the functional architecture, followed by the physical
architecture, followed by the allocated architecture. Rather, the design process
is like peeling an onion; each of these activities in the design process should be
completed at a high level of abstraction (low level of detail), culminating in an
allocated architecture at this high level of abstraction for a set of subsystems
that comprise the system. Then the entire process is repeated at a lower level of
abstraction (greater detail) for the next tier of components (peel of the onion),
consistent with the Vee model discussed in Chapter 1. This repetition at lower
and lower levels of abstraction (greater and greater detail) is continued as long
as useful to the design process. As details determine problems with the design,
decisions are reviewed and changes are implemented at the higher levels of
abstraction as needed.

The Engineering Design of Systems: Models and Methods, Second Edition. By Dennis M. Buede
Copyright © 2009 John Wiley & Sons, Inc.

284

9.2 OVERVIEW 285

This chapter describes the activities involved in developing an allocated
architecture in detail: allocate functions to subsystems; trace non-input/output
requirements and derive requirements; define and analyze functional activation
and control structure; conduct performance and risk analysis; document
architectures and obtain approval; and document subsystem specifications.

The methods introduced in this chapter match the functions that comprise the
development of the allocated architecture. Various methods are discussed for
allocating functions of the system in question to subsystems and components of
the system. The derivation of input/output, system-wide and techno-
logy, trade-off, and qualification requirements is discussed as a key method
for providing the material to complete the component specification. Three
methods for flowing down system-wide and technology requirements that have
been traced to the system are described. Models for defining and analyzing
functional activation and control structures are discussed in Chapter 12 and are
therefore not presented in this chapter. However, critical system-wide issues
associated with functional activation and control are discussed here. A norma-
tive model for conducting trade studies and risk analyses is presented in Chapter
13. Examples of common trade studies and risk analyses are discussed and
illustrated in this chapter. No new models are introduced in this chapter.

The exit criterion for finishing the allocated architecture is the acceptance of
the design by the stakeholders. The acceptance of the design by the stake-
holders should involve a detailed understanding that the requirements devel-
opment process has met the major characteristics of the requirements, as
defined in Chapter 6: thorough understanding of how the allocated architec-
tures of the systems in each life-cycle phase will meet the requirements as
defined, belief that the design trades have accurately reflected the trade-off
requirements, and agreement that the test or qualification systems in each phase
of the life cycle are adequate for qualification requirements as defined.

9.2 OVERVIEW

The allocated architecture provides a complete description of the system design,
including the functional architecture allocated to the physical architecture,
derived input/output, technology and system-wide, trade off, and qualification
requirements for each component, an interface architecture that has been
integrated as one of the components, and complete documentation of the
design and major design decisions.

There are five major activities associated with the development of the
allocated architecture:

o Allocate functions and system-wide requirements to physical subsystems
o Allocate functions to components

e Trace system-wide requirements to system and derive component-wide
requirements

286 ALLOCATED ARCHITECTURE DEVELOPMENT

e Define and analyze functional activation and control structure
e Conduct performance and risk analysis

e Document architectures and obtain approval

e Document subsystem specifications

Figure 9.1 shows these five functions in an IDEF0 (Integrated Definition for
Function Modeling) diagram for developing the allocated architecture; see
Appendix B for the full model. Note that Sections 9.3 and 9.4 address the two
subfunctions under the first function (these were combined to make the
diagram easier to read). As can be seen by the flow of information among
these activities, substantial interaction and feedback is required among the first
four to make sure the design works; this feedback and control was discussed in
Chapter 7. However, viewing the development of the allocated architecture in
isolation would be inappropriate. The developments of the three architectures
(functional, physical, and allocated), which we have been discussing, all have to
proceed in parallel because insight or changes in one have repercussions in the
others. Figure 9.2 puts the allocated architecture development in context with
the other architectures and requirements development.

As discussed in the introduction, the design process proceeds through the
steps shown in Figure 9.2 several times, at decreasing levels of abstraction. The
more complex the system’s functionality and tightly coupled the system’s
components are, the more important is the repetition of the design process at
decreasing levels of abstraction (increasing detail). Initially, the design process
establishes functional and physical decompositions, which are united to form
the allocated architecture. The allocated architecture divides the design
problem into chunks, primarily along the lines of the physical architecture,
namely the system’s components. Naturally, these design decisions should not
be made prematurely; there should be adequate confidence that little or no
modifications will be needed. Yet, as the design process evolves through
additional repetitions of the activities shown in Figure 9.2, the more detailed
simulation models and trade studies may provide justification for modifying
earlier design decisions.

The primary benefit of making major design decisions early using models
and trade studies built at a high level of abstraction is that these initial decisions
are aimed at dividing the design problem into manageable chunks that can
proceed concurrently with a reasonable chance of success. Dividing the
system’s design problem into completely independent chunks is not possible.
To accommodate this interaction there must be design interfaces just as there
are system interfaces. These design interfaces are part of the development
system that is being completed concurrently with the design of the operational
system. It is critical that the development system provide the time to review and
adjust the design chunks; this time can only be provided if the design process
begins at a high level of abstraction. Some engineers argue that this initial peel
of the onion should be completed within weeks (6-12) after having written a

‘2Injo9liydle pajedo||e ay} mc_QO—w>®U jo CO:ﬁcmmm‘_Q@_ 043dl L6 T™INOH
6°d AEANN] 2uMpajyolY pajeoolly walshs dojered | PIV qqoN
Sjuressuo) ® SyLLY
BENIBE]sle)
‘SUOISSI suoneoyoads
‘seuepunog €| waishsang
‘sjuswalinbay juswnooQg uoleluawnooQg
ubiseqg $2IN}0B)YIIY waishs
walsAsgng |onel-walsAg uoneslend
s,walshAs
2IN}0a1YdIY M VLY
paredo|ly 4 sosAjeuy 21nv8lyaIy
Asid ® Qoela|
aouewlopad
sebueyo < onpuoy crLIY 1dsouo)
21n}08)YoIY
sunsey ainonig [euoesado
uoneooly |one|-weishks
LY sisAleuy 1043u0) weyshsang
juswindo(|04ju0) ¥ UOIBAIIOY 0} uonoun4
9oepIaU| WalsAs |leuonoung
e vl noicy pecads B I AR
quawnoog R ——— urelqo |enel-waisAs ® duljeg swajshsang
sains)yoly ¢ aAReuISlY [eaisAyd o} sainjoslIyaIY
ubiseq welsAg :
‘sishjeuy yst juswnooQ sjuswaunbay (¢ [eaisAyd
1SABUY tSId apIM-WwalsAS sjepipuBR)
Q suoloun4
suoisiney
ue|d 1se 81ed0||y
ooue)deooy pue peisabing [y
‘lo1u0D doeUA| \ 9
‘suopeoyioads NS
ay} ul saouedalosig _ O
J
syuswalinbay waeysAg
np Aepunog
aInjoa)yoIy ‘AyoselsiH seAnoalqo
|leuonouny ‘sjuswalinbay welsAg
|oAs|-wesAs R Slepjoyaners
o NOLLVOI'TENd | x 01 68L9S+H €T I SALON wezord
] On AAANHNNODEY Sunesurdug
o LAVIa AT wSAS © Jo usisaq Sunoowidug 1DAr0Ud | SWOISAS NIND
*LXHINOD HLVAYHavay DONITIOM 66/¢7/S0 HLVA apang SWUd(YOHLNY 1LV adsn

287

"SONIANDE UBISOP [9AD]-WRISAS Z°6 TUNDIA

SONIANDY UOISI(] [QA[-WAISAS ULIOJID]

sd ”Mm_mEDZ_ “HTLLL| v HAON
sebuey) N me.Em__:cmm o} sabueyp
weishg P 2INjJ0BNYDLY POYeso||y
uoeoEny
oty [
uolfejuswinooq wolshs |«)
waysks UoeoeNnd f<— sobuey
uolreoien; -
i .w_ o} dojeneq SoBUEI5 sebueyn JuswaJinbay
SWeISAS aINjo8)IYoIY SINIOSHDIY INOBYUYdIY
aoepBU| soesl| Jeuonouny
Shv < ,(N
2INjBNYLY
s0ByeI| < sebueyn sabueyd
dojeneq N 2IN108YYoIY INjOBYYdIY
feaisAyd ~"~
SjuleLSUOD B iy
saAndalqo syuswalinbay b 2ImoeNYaIY N <’
‘SUOISSI woayshs pejeoolly N\ @nosnyoly ~
‘ . pereoso|y /
sauepunog wershs h SsaINBNYLY
‘sjuswialinbay Ve dojeneq AI(Q eLiv [eaisAud
ubisaq —e anoepyory [< m«M__u__wmww
wajshsqng saINoBNYILY -
Juswinooq [03U0D JeosAud _mo_m>Mn_ 1deouon
ooepa)U| WaISAS sepipUen WalIsAS 2y jeuonesedo
‘Inoelyoly :] ubisaq aINpBIYOIY [onal-wielshs
pajeoo]ly y <
‘uswinooq A e [BUOROUNS
ubisaq walsAs ainospyaly washs <
‘sisAjeuy sisig [euonoun dojeneq ¢ Sjuow
L ' ' |onsl-waishs Y HHY < -alnbay
AN - p —e——wa|qoid | 0} sabueyn
sjuewalinbey welsAg uoneoyieNd ubisaq < £
8IMosHYdIY » Aepunog ‘Ayoressiy e ehe
sjuswnooq [eoisAld —_¢ SaAalqQ ‘siuswalinbay [one Jomon
sjuewainbey IoAOL-WISAS weshs B siaployReIS weshs sebuey)
weshs » % b suyed uBisaq
sjuswalinbe :
SiapjoyaxeIS wosks 8 Y
S1aploysyels siepjoyaxels Jo sinduj
O NOILYOITENd | x 0T 6 8L9¢ ¥ ¢TI SHLON wiersolq
O AIANTNINODHY Suuoouisug
- LAVIa AT woysAS ® Jo uSiso(SureouSuyg (IOFf0Yd | SWASAS NND
:IXZINOD| HLVA J4avad DONIIOM 66/¥7/S0 HLVA opang smuuag MOHLNV <LV @dsn

288

9.3 ALLOCATE FUNCTIONS TO COMPONENTS 289

proposal and been awarded a contract. If the design segmentation is not
finalized until each component has been decomposed into several levels of
detail, there will be no time to adjust this design decision if the division of the
system into components is found to be flawed. There is even less chance that the
flaws will be found if too many details are analyzed too quickly.

Distinguishing between good decisions and good outcomes is important. If
we were in complete control of our environment, then decisions and the
outcomes associated with the decisions could be equated. However, as
discussed in detail in Chapter 13, decisions must be made in the face of
uncertainty with incomplete information and inadequate control of the out-
comes. Therefore, saying that a decision was good or bad because the outcomes
associated with that decision were good or bad, respectively, is illogical. A
decision can be considered good if the people with the best knowledge and
largest stake in the decision were involved in the decision, and these people did
discuss the relevant alternatives, values, and facts with clarity.

As an example, Ford Motor Company designed and introduced the Edsel in
1957. The Edsel had a large, elongated ““0” built into the middle of the grill at
the front of the car that caused many people to react negatively on an artistic
basis. The Edsel was a complete failure at least partially because the automobile
industry was in a recession in 1957 and 1958. Were the design decisions
associated with the Edsel bad? It is not possible to tell without knowing more
about what design decisions were made and how the design process was carried
out. Seven years after the Edsel’s introduction, Ford Motor Company
introduced the Mustang, which has been a fantastically successful car and
has achieved classic status. Were the design decisions associated with the
Mustang good? Again, it is not possible to tell without knowing more about
them. With time it is much easier to tell whether the outcomes associated with a
decision are good or bad, but it becomes more and more difficult to tell whether
the decisions that were made were good or bad, especially if those decisions are
not documented.

9.3 ALLOCATE FUNCTIONS TO COMPONENTS

After the definition of the functional and physical architectures, the systems
engineering team must assign functions from the functional hierarchy to the
subsystems and components in the physical architecture. When this is done, the
first step in defining the allocated architecture is completed. This allocation of
functions to components is often the most crucial design decision made by the
engineers of the system. Engineers prefer to allocate processing tasks to
software if there will be a future need to update the processing algorithms.
However, if speed of processing is critical, hardware can perform the computa-
tions much faster. Computer manufacturers experiment with moving some
processing tasks from hardware to software, but often find that the speed of
processing suffers too much and revert to designing hardware for the

290 ALLOCATED ARCHITECTURE DEVELOPMENT

processing tasks. Similar issues arise when considering the decision of allocat-
ing a function to people within the system or a combination of hardware and
software. This allocation decision is discussed in more detail later.

Figure 9.3 expands upon Figure 9.4 for the allocation of the system’s
functions to subsystems and components. Clearly allowing the allocation
decision to be represented as a mathematical relation, and not a function, as
shown in the top left of Figure 9.3 is inadequate; there will be some functions
that are not allocated to any component and some functions that are being
processed by two or more components. Forcing the allocation of functions to
components to be represented as a mathematical function, as shown in the top
right of Figure 9.3, solves these problems. However, there may be some
components with no functions to perform; these components should either be
dropped from the system or the engineers should revisit their functional
architecture to ensure that the functional architecture is complete. There is
also the possibility that some functions will be performed by the same
component; there is nothing wrong with this because the functions can be
aggregated into a single function. If as expected all of the components are

Functions Components Functions Components

7
N

Relation for the allocation Function for the allocation
of functions to components of functions to components
Functions Components Functions Components

Onto, but not one-to-one One-to-one and onto
function for the allocation function for the allocation
of functions to components of functions to components

FIGURE 9.3 Mathematical relations and functions for the allocation of engineering
functions to components.

9.3 ALLOCATE FUNCTIONS TO COMPONENTS 291

Objectives for
Functional Allocation
[

|
[[]

Timing on Error Rates Suitability Costs

Key Tasks on Key Tasks Issues
Task1 | Task1 | MTBF | HManufacturing]|
Task2 | Task2 | MTTR | 1| Operational |

FIGURE 9.4 Sample objectives hierarchy for functional allocation.

needed, the allocation of functions to components will be onto, as shown in the
bottom left of Figure 9.3. An onto functional allocation is one-to-one when the
number of functions and components is the same, as shown in the bottom right
of Figure 9.3.

Note that the mapping of functions to components was picked consciously,
rather than the mapping of components to functions. Allowing two compo-
nents to be mapped to the same function is consistent with the definition of a
mathematical function but should be avoided by the engineers of a system.
When two components are performing the same function, it will not be possible
to segment the responsibilities of the components until the functional and
physical architectures are examined in greater detail; this defeats the purpose of
iterating through the engineering process as suggested by the Vee model and
most engineers of systems.

9.3.1 Define the Allocation Problem

For any single physical architecture and the associated functional architecture,
there are many possible allocated architectures that could be defined. The basis
on which this allocation is done could be formulated as a multi-objective
optimization problem:

1. Maximize the fundamental objective (must be based upon analysis using
the fundamental objectives hierarchy). Note that besides common opera-
tional performance parameters there are often other elements of the
fundamental objectives concerning performance in other phases of the life
cycle (for example, maintenance, deployment, and refinement) about
which to be concerned.

2. Minimize the number and complexity of interfaces. This is often called
modularization, which is nearly synonymous with maximizing the ability
to encapsulate the functions inside the physical entities of the system. By
encapsulation we mean the ability to hide the implementation details of

292 ALLOCATED ARCHITECTURE DEVELOPMENT

performing the entity’s functions from the remaining parts of the system.
Essentially, the remainder of the system should only need to know the
outputs of each entity, not how those outputs are produced. Software
engineers call this information hiding. The concepts of modularity and
information hiding are also highly related to the concept of coupling.
Many systems and software engineers distinguish between tight and loose
coupling. Loose coupling decreases complexity, enables flexibility, but
often degrades performance. Wikipedia has a nice description of the
many types of coupling found in systems.

3. Maximize early critical testing opportunities so as to give engineers a
chance to find and fix problems. This is often considered risk minimiza-
tion. Opposing criteria may minimize risks:

a. Equalizing risks (difficult requirements) across the physical architec-
ture or

b. Localizing risks in a single element of the physical architecture (the
opposite of equalizing risks)

9.3.2 Approaches for Solving the Allocation Problem

In the 1950s and 1960s the major trade offs addressed by engineers consisted of
choosing between the human in the system and the system’s combined
hardware and software resources for performing certain critical functions. In
the 30 to 40 years since systems engineers first grappled with these decisions,
systems engineers are still using heuristics to resolve these decisions. The
engineering and psychology communities believe that there are certain func-
tions that humans perform better than machines, at least in many situations;
there is not complete agreement about what these functions are, for example,
pattern recognition functions, improvisation, and adaptation. Similarly, hard-
ware and software combined clearly outperform humans in tasks that require
responding quickly to control signals, performing repetitive tasks, and per-
forming many different activities at once. Paul Fitts [1951] was the first to try to
systematize these allocation issues by producing what has come to be known as
a “Fitts’ list” and later known as ““Men are better at— machines are better at”
or “MABA —MABA.” Fitts’ first list is shown in Table 9.1.

Sheridan and Verplanck [1978] developed a taxonomy of 10 possible
distribution strategies for allocating the functional responsibility of control
between the human and the computational resources of the system. These
allocation strategies range from having the human be the planner, scheduler,
optimizer, and the like, to taking the human out of the system’s functions
completely; see Table 9.2. For example, the first distribution in the table
puts the entire cognitive load on the human, which reflects automation in the
1960s and 1970s, such as machine tools. Entries 5 and 6 reflect the computer
developing suggestions for actions but letting the human have approval or
intervention capability; this reflects much of the automation in military systems

9.3 ALLOCATE FUNCTIONS TO COMPONENTS 293

TABLE 9.1 Original Fitts List from 1951

Humans appear to surpass present-day Present-day machines appear to surpass
machines with respect to the following: humans with respect to the following:
1. Ability to detect small amounts of 1. Ability to respond quickly to control
visual or acoustic energy. signals, and to apply great force
2. Ability to perceive patterns of light smoothly and precisely.
or sound. 2. Ability to perform repetitive, routine
3. Ability to improvise and use flexible tasks.
procedures. 3. Ability to store information briefly and
4. Ability to store very large amounts of then to erase it completely.
information for long periods and to 4. Ability to reason deductively, including
recall relevant facts at the appropriate computational ability.
time. 5. Ability to handle highly complex
5. Ability to reason inductively. operations, i.e., to do many different
6. Ability to exercise judgment. things at once.

today. Entries 7 through 9 reflect the status quo in autopilots for aircraft and
trains.

Now that computer-based systems and embedded computer systems are
much more sophisticated and prevalent, the most critical functional allocation
decision facing systems engineers often relates to the allocation of a function

TABLE 9.2 A Taxonomy of the Distribution of Responsibility between Human
and Computer

1. Human does all planning, scheduling, optimizing, etc., and turns task over to
computer merely for deterministic execution.

2. Computer provides options, but the human chooses between them, plans the
operations, and then turns task over to computer for execution.

3. Computer helps to determine options, and suggests one for use, which human may
or may not accept before turning task over to computer for execution.

4. Computer selects option and plans action, which human may or may not approve,
computer can reuse options suggested by human.

5. Computer selects action and carries it out if human approves.

6. Computer selects options, plans and actions and displays them in time for human to
intervene, and then carries them out in default if there is no human input.

7. Computer does entire task and informs human of what it has done.
8. Computer does entire task and informs human only if requested.
9. Computer does entire task and informs human if it believes the latter needs to know.

10. Computer performs entire task autonomously, ignoring the human supervisor who
must completely trust the computer in all aspects of decision-making.

294 ALLOCATED ARCHITECTURE DEVELOPMENT

between hardware and software. Allocating a function to hardware has the
benefit of reduced development cost and faster processing and response time.
The advantages of allocating to software are the flexibility to modify the
function in the future as design problems are found or new algorithms prove
superior in terms of timing, quality, or quantity measures.

Price [1985] developed the principles (Table 9.3) for functional allocation
that are primarily related to allocating functions between humans and
machines, but which, when generalized, relate to all functional allocation
decisions. Principles 2 and 4 emphasize the creative nature of design that was
emphasized in Chapter 8 on physical architectures; this creativity applies
equally to the functional architecture and the allocated architecture. Principle
3 supports the use of decision analysis (see Chapter 13) for systematizing the
decision process.

Capturing requirements for the refinement phase of the system’s life cycle is
the point of principle 5. The Vee model of the systems engineering process is
compatible with principle 7. The process model for the allocated architecture,
shown in Figure 9.1, supports principle 9.

TABLE 9.3 Price’s Functional Allocation Principles

1. Allocation is part of design— allocation is one part of a larger process.

2. Allocation is invention — there is no formula for allocation, imagination is crucial
to the success of the process.

3. Allocation can be systematized — the inclusion of imagination and invention does
not preclude formalizing allocation as a rational decision process, combining
invention and systematization yields a superior result.

4. Make use of analogous technologies building upon allocation decisions and their
resulting successes and failures expands our allocation expertise.

5. Consider future technology — allocation decisions cannot be based on what exists
now, but must address expected advances of technology.

6. Consider human optimization (realistic system implementation)—allocation cannot
be based upon idealistic expectations of how the system will be realized, but should
be based upon the likely capabilities of the system in its environment.

7. Use cycles of hypothesis and test—like any other part of system design, we are not
smart enough to do it right the first time, so build in stages of and time for iteration.

8. Provide interaction — there are three design decisions that cannot be completely
separated. The engineering decision of what the physical resources of the system are,
the functional allocation of which functions will be performed by each system
resource, and the detailed design decision that implements the allocation. There
must be interaction amongst these decisions during the design process.

9. Provide iteration and decomposition —do not make the allocation final too quickly.

10. Develop tools of cognitive analysis. (human — machine allocation only).

11. Assure interdisciplinary communication — involve experts from all relevant fields in
the allocation process.

9.3 ALLOCATE FUNCTIONS TO COMPONENTS 295

The essence of Price’s principles is that the allocation of functions to
elements of the physical architecture involves conflicting objectives. Making
this selection even more difficult is the fact that the systems engineering team
has to evaluate objectives in more than one time span, for example, short-term
performance versus future performance after possible upgrades have been
completed. For these types of allocation decisions the decision analysis
approach covered in Chapter 13 is recommended. The core of this approach
is the use of an appropriate part of the objectives hierarchy that contains all of
the key performance requirements and their stakeholder trade offs. Figure 9.4
illustrates such an objectives hierarchy for a hypothetical decision.

Another perspective on this allocation problem involves the use of design
structure matrices. See Browning [2001] for more information design structure
matrices. The design structure matrix (DSM) is meant to capture interactions
of all sorts between functions so that intelligent combinations of functions into
components can be derived. This is a bottom-up approach to the allocation
problem, while we have previously been talking about this task as if it could
only be approached from a top-down perspective. As discussed in the func-
tional architecture chapter, there are many systems engineers who prefer the
bottom-up approach.

As an example of a DSM application consider the creation of a development
system architecture for the small block V-8 engine at General Motors
[Eppinger, 1997]. This engine effort called 90% of the parts to be redesigned
and 80% of the manufacturing equipment to be redesigned. As a result 22
product development teams (PDTs) were created, as shown in Figure 9.5. In an
effort to determine the best way to organize the concurrent efforts of these
PDTs, the interactions among the teams was documented and categorized as
monthly, weekly, or daily. The matrix in Figure 9.5 is an example of a DSM.
The three sized dots represent these three levels of interaction. Note the DSM is
not symmetric because the rows represent where the input to a team are coming
from while the columns represent which teams are receiving a given team’s
outputs. So the second column of the first row indicates which kind of
interaction is needed for an input to the DPT A from DPT B. This is the
opposite representation of an N2 diagram.

The main analytic concept behind DSMs is that the information in the
matrix provides a clue as to how to rearrange the rows and columns so that
clusters form along the diagonal of the reorganized matrix. These algorithms
date back to the 1970s. Figure 9.6 shows such a rearranged matrix with four
clusters along the diagonal for four aggregations of the DPTs that should prove
very useful. Note the last DPT is the assembly DPT; it interacts with so many
DPTs that it does not belong to any aggregate team.

So far the functional allocation decision process has been addressed as if the
decisions had to be made during the design process and could only be modified
during system upgrades. However, the computational resources that are now
available for insertion into systems permit the design to include the real-time
reallocation of functions to predefined resources. Typically this reallocation is

296 ALLOCATED ARCHITECTURE DEVELOPMENT

A|B|C|D|E|F|[G|H|I|J[K|L|M[N|O|P|Q|R|S|T|U|V
Engine Block| A[Ale|e/e| /el - |lelele@| |- N
Cylinder Heads| B|e|B| @ . PY ole|o| - ofe]. . .|l®
Camshaft/ValveTrain| C|e|@|C]| « . o o . o|e
Pistons| D|e|@|e|D|e| e « oo, . °
Connecting Rods| E|e]| « olEle o . .
Crankshaft| F|e|e| - |@|@|F|®|°| @] « °f. .
Flywheel| G| « o|G . oo
Accesory Drive| Hl o | @] - ° Hl .| @|@®|e|e|e o|@| |||
Lubrication| | |e|<|®|®]||®|]| I]- . . °lg
Water Pump/Cooling| J|e|e]|]| e o|o|J|e ol o o|e
Intake Manifold| K|* |e] * o|-[o|K|lo|@|°]° o(of[°|° °
Exhaust| L].|e® . .|lo|L|lo| |@]° ofef.]e
EGR.[M|-.]|e . clo|olM ofofe e |le|e]|e®
Air Cleaner| N . ° o N|e|-|@®

AlLR.[O]-|° ° o|o|l@|e]|e|O . o[e
Fuel System| P ° . .le el o[P]e] ofe
Throttle Body| Q ° . ole ole|-|e[Qle|-|® .

EVAP| R o o|@|R o
Ignition| S|e|e|e]| * o(e@|e|-|-[e|@|" o Sle|e|e
ECM.| T|«]|of- ol o|e|lo|@|[0]| e olo|e|o|o|T|e]| e
Electrical System| U |@| «| o] « c|lo|efe|e]e|o@f- . .|le|le|U|e®
Engine Assembly| V]e|e[*|e[°*|e®|/°[°|@® o|°° °lo|°|-|@o|°|o]|V
@ Daily interactions e Weekly interactions « Monthly interactions

FIGURE 9.5 Interactions among PDTs for the small V-8 Engine Project at General
Motors (after Eppinger [1997]).

between human and computer (hardware and software), or between one
hardware resource and another, each running the same set of software.
Examples of this dynamic reallocation include distributed processing architec-
tures, parallel processing architectures, flexible manufacturing systems, and
sophisticated command and control systems. This material is beyond the scope
of this book; the interested reader is referred to Chu and Tan [1987], Gobinath
and Gupta [1990], Levis et al. [1994], and Perdu and Levis [1993]. Jackson
[2007] makes a strong case for an adaptive allocation of functions to
components in order to develop more adaptive and resilient systems.

9.3.3 Finishing the Allocation Problem

Part of the critical documentation that is part of systems engineering is
capturing the allocation of functions to the system and the system’s compo-
nents. Every bottom-level function in the functional decomposition should be
allocated to one component of the physical architecture, or physical decom-
position, as discussed in Figure 9.3. This physical decomposition begins with
the system as the root of the tree. The top-level system function, or root of the

9.3 ALLOCATE FUNCTIONS TO COMPONENTS 297

Q|L|M[R|S|T|U

[9)
e |0
e|m
|-
®|w
®i0
o |
| R

o
e|lx

=2

(@]
®
)

Engine Block
Crankshaft
Flywheel

Pistons
Connecting Rods
Lubrication
Cylinder Heads
Camshaft/Valve Train
Water Pump/Cooling
Intake Manifold
Fuel System
Accesory Drive
Air Cleaner
A.lLR.

Throttle Body
Exhaust

E.G.R.

EVAP

Ignition

E.C.M.

Electrical System
Engine Assembly

. ole |-
o

el@|o|®|T|®@|mM

ele|@®|T
.

elO|@]|e
Q- |@|c[c|®]

cjl0j0|®O(@|c|@®@ | |®|>D>
°
.

Ol |0e|@| @]

@ | X|[e]|°|®

.
ojoj@|e|cj@(@|c|/@|0o|e|e|<

c|®@|T|® |-
°|0 |0 |T|e0®|O®
c @ |o|=|@®]|°

.

o|@|o|o|- @|0o|® |®|® |-

,_
Zle|e|-
e le

o|lo|o e

o | |@ |
=

<[c|-H|n|D|=|r|O|0|Z2|x|[0|R|~|[O|w|—|m|O|D|M|>
)
[]

o(®|-|O®

o|loe | |@®

O (e(@|@ |-
[]

o0 »n

ol@|Hl@|c|@ |0 |@® |
A

c

<|®|e|®

® Daily interactions e Weekly interactions + Monthly interactions

FIGURE 9.6 Reorganized DSM with four Aggregate teams (after Eppinger, 1997).

functional decomposition, is allocated to the system. The functions at the first
level of functional decomposition are then allocated to one component on the
first level of the physical decomposition. This allocation of the first level of
functions may be the level of detail achieved in the first iteration through the
engineering of the system (or first peel of the onion). In IDEFO this allocation
of functions to components is shown by adding the components as mechanisms
to the functional architecture, thus creating a representation of the allocated
architecture. See Figure 9.7 for an example of this depiction using IDEFO (and
the IDEF0 model in the elevator case study that can be downloaded from
http://www.vitechcorp.com; see the section called allocated architecture).
CORE utilizes an entity—relationship diagram (see Chapter 12) to show the
allocation of functions to the system and the system’s components. (CORE’s
System Description Document for the elevator case study shows the results of
this allocation process.) Each iteration through the engineering of the system
process adds another layer of bottom-level functions and components to the
functional and physical architectures, respectively. Each bottom-level function
will then be allocated to one component.

To obtain an executable model of the allocated architecture, later discus-
sions will make it clear that the only allocation of functions to components
that matters is the allocation of functions at the bottom of the functional

"043@] 8uisn syusuodwod o) suonouny Sunedo[ly £'6 IANDI4

€d NEENA z_ SHOIAYAS YOLVATTA AAIAO¥d grqyy H_ OV adoN
yusuodwo) wa)sAg Jojens|g
201018 ' oUBUSIUIRI 1 jusuodwo)
4 { ~ 1wauoduiog S Jusuodwon meocwmmwu
s1eQ Iojers|3 |013U0Q) I0}eAd|] .Tu\
sauenp ~
o_ﬁo%m_olm o siredey %
>N sise ‘@0INIOS
sobessa\ snieig ONIDIAHAS B & suonounye N)
» onsoubeiq ¢ JONVNILNIVIN " posusg Jamod
~— 3AILO3443 Ry ou109(3
379VN3 0
r v
Anunpoddo sonslsioeIRy)
ux3/Au3 < 1obuassed
a3 SHOO14
N3IamL3g osuodsey
jusuluolinuz 4 SHIONISSVd uonEDIUNWWOD
19busssed T
IAON Jomog Kousbiowz B
| ev
sie) 2111087 —S ™ lamod o1308|3
woporg () 1078A0|T 10} sHvo € meed
uoneinbyuo) B uomsod swewubissy (4o 1vA3T3
neinb 101eA8|3
JOITER ? TOHLNOD
O} uonEBdlIPON
Aresodwe | sjonuo) sisenbay
uoneinBiyuo) Jebuessed { [y &
PoROA | yiovaaaad [¢
Joddng N~
fousbiows @ 3AIn0Hd
l
® S1S3INO3Y |/
HIONISSVd
uonedIUNWWOY 14300V
Rousbiawsg * Q »
uoljewJoyu| juswiuolaug obessapy
SNJe}S B PoansIoay Buipiing 3 suieed 6esn yoddns Anug dd Kouslewz
sem 1senboy 1eU) seubis wiely pajoedx3 g B 9oipg HOAANS IX3 8 Loddng
swbpe|mouNdy ‘yoddng uoneinbyuog loyens|3 3 Joold Kousbiawg
[eanjonig 1018A913 PRYIPON oy jsenbey 404 1SeNbaY 104 1s0nboy
NOLLVOITENd 01 68L9CS#H €T SALON
|| AEANANINODEY amn
1AVdd | x AT Apmg ase) 101eAd[g LDH[O¥Ud | UOSEIN 951090
JIXAINOD| HLVA YAvEd ONIIOM 66/¥7/S0 HLVA apang SR MOHLNV JLv adsn

298

9.4 TRACE NON-INPUT/OUTPUT REQUIREMENTS AND DERIVE REQUIREMENTS 299

architecture to components at the bottom of the physical architecture. How-
ever, it is highly recommended that an executable model be created of the
allocated architecture at several stages in the engineering of the system.
Therefore, it is highly valuable to have a running record of the allocation of
functions to components, so that this executable model is available at any level
of abstraction needed.

As discussed in Chapters 6 and 7, there are tremendous benefits obtained by
having the functional decomposition match the physical decomposition on a
one-to-one basis. That is, for each function in the first level of the functional
decomposition, there is one and only one component to which to allocate the
function. In addition, every component must be allocated to one and only one
function. This one-to-one mapping of functions to components must continue
to the second and all subsequent levels of both the functional and physical
architectures. (Note this definition of a one-to-one allocation of functions to
components is consistent with the definition of a one-to-one function in
Chapter 4.) Such a convenient mapping of functions and components can
only occur if the functional and physical architectures are developed in concert
with each other. The benefit of this one-to-one mapping is the ease with which
input and output items can be allocated to external and internal interfaces. The
true value of this matching will be covered in the next chapter.

9.4 TRACE NON-INPUT/OUTPUT REQUIREMENTS
AND DERIVE REQUIREMENTS

In Chapter 7 on the functional architecture, the discussion of tracing require-
ments addressed the input/output requirements. These input/output require-
ments were traced to specific functions in the functional architecture. When the
functions were allocated to the components as described above, these input/
output requirements were associated with components. There remain several
issues though to complete the derivation of requirements for each component in
the allocated architecture: deriving additional input/output requirements for
each function based upon internal items that the architecture needs, tracing
system-wide and technology requirements to the system and deriving appro-
priate component-wide and technology requirements for each of the compo-
nents, tracing trade-off requirements to the system and deriving trade-off
requirements that are appropriate for each component, and tracing test
requirements to the system, followed by the derivation of test requirements
for each component.

9.4.1 Derive Internal Input/Output Requirements

Deriving input/output requirements based internal items that the system must
create and use is not a difficult process if a graphical model (e.g., IDEF0, data
flow diagram, or N? chart) of the functional and allocated architectures exists.

300 ALLOCATED ARCHITECTURE DEVELOPMENT

Once the functions have been allocated to the components, derived input/
output requirements can be created based upon internal items (inputs and
outputs) appearing in the functional architecture. Figure 9.7 shows the
allocated architecture for the elevator case study that can be downloaded.
There are five internal items that are created by one function and consumed by
another function at this first level of the allocated architecture: digitized
passenger requests, assignments for elevator cars, elevator position and direc-
tion, sensed malfunctions, and temporary modification to elevator configura-
tion. A derived input and output requirement would have to be created for each
of these items. Each of these derived input and output requirements would be
traced to both the item and the functions responsible for consuming and
creating the item, respectively. For example, Figure 9.7 shows that “Digitized
Passenger Requests” is an internal item produced by the first top-level
subfunction and sent to the second top-level subfunction. For this one internal
item two derived requirements would be created:

The elevator system shall produce digitized passenger requests.
The elevator system shall consume digitized passenger requests.

Each of these derived requirements would be traced to the item ““Digitized
Passenger Requests”; the first derived requirement would be traced to the
function ““Accept Passenger Requests & Provide Feedback™ while the second
derived requirement would be traced to the function “Control Elevator Cars.”
Additional performance requirements for “Digitized Passenger Requests”
would be created if appropriate.

9.4.2 Trace System-Wide Requirements and Derive
Subsystem-Wide Requirements

Tracing the system-wide and technology requirements to the system is a very
easy process. Almost all of these requirements will be traced to the system;
although it is possible that some of these requirements should be traced to
specific components that comprise the system. The most common example of
this is a technology requirement such as “the system shall employ ‘abc’
technology.” A technology requirement that can be traced to a subset of the
components of the system should be.

However, the difficult portion of this task is the derivation of new require-
ments for the components based upon the system-wide requirements traced to
the system. For example, there may be a cost requirement that says, “The
system shall cost $1000 or less to use per month during its operation.” How do
we allocate, or “flowdown,” this requirement among the components of the
system?

Grady [1993] identifies three techniques that are used for flowdown:
apportionment, equivalence, and synthesis. Apportionment spreads a system-
level requirement among the system’s components of the system, maintaining

9.4 TRACE NON-INPUT/OUTPUT REQUIREMENTS AND DERIVE REQUIREMENTS 301

the same units. Apportionment is appropriate for cost requirements; the
system-level cost requirement is divided or apportioned out to the system’s
components, not necessarily in equal increments. Keeping a margin, 5 to 10%,
in reserve as a risk mitigation strategy is not uncommon. For example, if the
operating cost for the system is to be $1000 or less as suggested above for the
elevator, the four components of the elevator shown in Figure 9.5 may be
apportioned operating cost requirements of $40, $60, $800, and $50, respec-
tively, with $50 held as risk mitigation.

Other examples for which apportionment is used are reliability, availability,
and durability. In fact, the suitability (or quality or “-ilities’’) requirements are
commonly apportioned from the system to the components. Note that it is not
required that the apportioned values sum to the system-level requirement, as is
the case of cost when the margin is included. If the system’s components work in
series, the component values for reliability will be larger than the system
reliability. For the elevator case study the minimum threshold for reliability is
0.9, with a design goal of 0.99. The four components identified in Figure 9.5 all
have to be operational for the elevator to be operational; so they are working in
series. The apportioned reliability thresholds for these components may then be
0.96, 0.995, 0.96, and 0.99; the product of these four numbers is 0.91, which
provides a margin of a bit less than 0.01 for risk mitigation. Similarly, there
would be design goals apportioned to the four components of 0.996, 0.9995,
0.996, and 0.999, respectively. An example of a derived reliability requirement is:

The elevator component, Passenger Interface, shall have a reliability of 0.96 or
greater. The design goal is 0.996.

Equivalence is a simple flowdown technique that causes the component
requirement to be the same as the system requirement. An example of a
requirement to which equivalence is appropriate is “the system shall be olive
green in color.” Requirements for which equivalence is appropriate for flow-
down are almost always constraints.

The more complicated technique for flowdown is synthesis. Synthesis
addresses those situations in which the system-level requirement is comprised
of complex contributions from the components, causing the component
requirements that are flowed down from the system to be based upon some
analytic model. The system-level requirement will have significantly different
units than the derived, component requirement has. In this case an analytic or
simulation model must be developed and analyzed to determine how to take the
system-wide requirement and derive component requirements. In fact, this
approach is most often used to derive requirements associated with outputs or
inputs of the system, such as accuracy, range, or thrust. For the elevator case
study, there is an output requirement relating to the average time between the
passenger making a request and being delivered to the requested floor. This
system-level requirement would be flowed-down via synthesis to all four
components shown in Figure 9.7.

302 ALLOCATED ARCHITECTURE DEVELOPMENT

9.4.3 Trace Trade-Off Requirements and Derive Subsystem
Trade-Off Requirements

Deriving trade-off requirements that are appropriate for each subsystem follows
tracing the system’s trade-off requirements to the system. This derivation is based
upon the system-wide trade-off requirements. This step is the third element of
requirements derivation that is part of finishing the allocated architecture.

The trade-off requirements developed for the system all address trade offs
for cost, for schedule and performance, and for cost with schedule and
performance; tracing all of these requirements to the system is therefore
appropriate. Each of these trade-off requirements is related to an individual
input, output, or system-wide requirement. Based upon the derivation of
requirements for each of these input/output or system-wide requirements, it
is straightforward to develop an objectives hierarchy for each component, as
shown in Figure 9.8. Generally every element of the system’s objectives
hierarchy that is related to a system-wide requirement will also become part
of the objectives hierarchy for each component; cost, schedule, and suitability
requirements are generally flowed down to every component, as discussed
above. Similarly, it is inappropriate to create a component-wide requirement
when there is no system-wide requirement from which the component-wide
requirement can be derived.

Before moving on to input/output requirements, the derivation of ranges for
each system-wide requirement, the associated value curve over the derived
range, and the weight to be assigned to that range must also be addressed. First,
the two extremes of the value range must be flowed down from the system to
each component. This should have been done as part of the flowdown process
described above.

The value curve assigned to this derived requirement should ideally have the
same shape as that for the system-wide requirement. However, an example using
reliability can be shown as a counterexample for successfully communicating a
consistent value function from the trade-off requirements at the system level to
the trade-off requirements across the components. Reliability is chosen here
because the system’s reliability is known to be a nonlinear function of the
reliabilities of the components of the system. Suppose the value function for the
system’s reliability was defined by an exponential function exhibiting decreasing
returns to scale. Decreasing returns to scale indicates that unit improvements in
the reliability near the threshold of minimum acceptability would have much
greater value to the stakeholders than unit improvements near the design goal.
This concept of decreasing returns to scale is common in the economics and
decision analysis literature; see Chapter 13 for more details. Suppose the
minimum acceptable system reliability is 0.9 and the design goal is 0.99. There
are two components acting in series that comprise the system. Each of these
components is given a threshold of minimum acceptable reliability equal to the
square root of 0.9 (or 0.95) and a design goal of the square root of 0.99 (or 0.995).
The value curve for the system reliability and the reliability of each component is

GO=IM'SIYE-9

Y11 [euonessdo

so=mskoz-st
481N feuopeiado

SE'0 = M ‘saAR03lq0
Auiqejreny
Z0=1M"WOEg0-L0
10113 BulieneT 10014
S0 =IM'ESWG'L - g
aBUBYD U800y WXEN
€0=IMZSWSTL-G'L
UOIEIBI800Y W XN

0€°0 = IM ‘seAoelqo
Aureno eply

SE°0 =M '09S 09 - 06
owi| ysues) obeiany

"Apnis 9sed I0JeAd[AU} 4O} SaIYD.IeIIY S9ANDR[qO paALa(

8°6 IANDH

SO=m L2
LW FUoteidg

[so=msui-z

0= 'sh0E-02 HLLW feuonesado

SELN feuoneIRd0
S0=IM'sih0Z-gk
50 9w 66 56

8L feuoneiado
§9°0 = IM ‘seAoela0
apon beiodus. jo ssousanco| ey

0= 015 - 058

580 = 1M ‘sennosla0
SE0=IM'0eSE -G
oL esuodsey JuewuBISsy

lowi esuodsey uone:
60 =1M ‘seadelao L0 =1M ‘01$ - 05

S1'0 = 1M ‘098 £0° - SO
7 eoueuLopd [euoeiadD 51500 Bunesado AW

W senoelqo 7 1'0=1M 018 - 08§
BouBWIONed [euoneledQ 1800 Bunesado Ayiuopy
i _ _ i ﬁcwcanoo ,EEJOB.«>@D _en
60 =M ‘SOAIRIG0 10 = 1M ‘009§ - 0088 SoeSia0 [euoteedo
QouBULIOpad [BUOKEISdD | |S1S00 Bunesad Auuop 01N B o0epieu] JebusssEd JO
@oueuajuiep
sieD J0jens)3 :

san03lqO [UONEIRAO

sien

jusauodwo)

lojens|g

senp8lqo [euonesado

jwsuodwo)
|Jo4puo)
Jojend|g

juauodwo)
ERLTTENT]
J1abuassed

- sy wo pasu
anen onen oneA onen
s s
sp spoLiad uonesojEosy
*ead-uoN oo wnwpxew | [emusossd wiss sBesony

— oneA aneA

Anjenp opiy TE_Fm _Es__ Bupesado __Ewsa_c_gwu_
T

ssauaAoay3 |euonesado

wajsAs Jojeas|3 jo

S9A1}93[qQ |elUsWeEpuUNy

303

304 ALLOCATED ARCHITECTURE DEVELOPMENT

assumed to have the same form, (1 — e~ *("~"mn)) /(1 — ¢=*U'mx="min)) 'that the value
curve for system reliability had. The parameter, o, determines the shape of the
curve. When o equals 1.0, the curve is linear. The greater o is above 1.0, the
greater the bow in the curve and the greater are the decreasing returns to scale.
Figure 9.9 shows the value curve for system reliability on the left for values of
from 30 to 1.

The right-hand graphs in Figure 9.9 show the value for system reliability as a
function of the reliability for the first component, X, when the system reliability is
held constant at 0.9439. In each of the graphs on the right the value is computed
by the weighted average of the values for the reliabilities of the two components:

Value = 0.5 v(reliability of component X) + 0.5 v(reliability of component Y)

The weights for the two components are assumed equal since the distance
from threshold to goal is the same for both. As can be seen in Figure 9.9, the
value for the reliabilities of the two components is not constant over the range
of values for the reliability of the first component, even though the reliability of
the system is being held constant. The numbers to the far right of Figure 9.9
show the value for the system’s reliability when the system’s reliability is held
constant at 0.9439; the values in the right-hand graphs are also not equal to
these numbers except for the case of the linear value curves. This suggests that
only linear value curves should be used for trade-off requirements.

The final issue in deriving trade-off requirements for each component
concerns those trade-off requirements that address quality, quantity, or time-
liness of the system’s inputs or outputs. Each of these input and output
requirements will already have been traced to a function that was allocated to
a component. Therefore each trade-off requirement for an input or output can
already be associated with one component, assuming the allocation mapping of
the input/output requirement to functions was one-to-one. A complicating issue,
however, is that there may be good reasons to create a trade-off requirement for
an input or output requirement that was derived on the basis of the need for an
internal item produced and consumed by the functional architecture. An
example of this in Figure 9.7 is the “Digitized Passenger Requests” for the first
sub-function. This internal item is related to the elevator objective of “Waiting
Time” shown in Figure 9.8. Such a trade-off requirement must be traceable to a
performance aspect of a stakeholders’ input/output requirement; nonetheless, it
is the only case when the objectives hierarchy will have an element that is not
identical to an element of the system’s objectives hierarchy.

9.4.4 Trace Qualification Requirements and Derive Subsystem
Qualification Requirements

The final element of completing the requirements development for each
individual component is tracing the qualification requirements to the system
and then deriving qualification requirements for each component. Recall that

9.5 DEFINE AND ANALYZE FUNCTIONAL ACTIVATION AND CONTROL STRUCTURE 305

1
08 sl R e Value for System
Coefficient , | el FEos1e * Reliability of
of Exponential 3 ., ’/ 5803 0.9439
Value Function o2 8 o7
0 - s 0
0.85 0.9 0.95 1 0.94 0.96 0.98 1
30 System Reliability Reliability of Component X 0.78
1
£ 07
0.8 /‘ g£_06 ‘/74‘\
® / 2205
506 v #% 04
S 04 Vi ss g,g
S 0.
0.2 g [
¢). > o0 94 0.96 0.98 1
0.85 0.9 0.95 1 . - .
20 System Reliability Reliability of Component X 070
1
£ 07
0.8 e 25061 L aeeeteey |
8 06 Pl FE 051 7 M
2" / @3 04
S 04 SE 03
X 28 02
0.2 — 3 of
0 S 0
0.85 0.9 0.95 1 0.94 0.96 0.98 1
10 System Reliability Reliability of Component X 0.60
1
£ 07
0.8 / 2 .06
® 06 /’/' 2S£ 05
% . /' Q'_a 0.4
S 04 S8 03
0.2 d g 02
5 ¥ 2 0.(1)
>
1 0.85 0.9 0.95 1 0.94 0.96 0.98 1 0.50

System Reliability Reliability of Component X

FIGURE 9.9 Sensitivity of value for system reliability trade offs to derived trade offs for
component reliabilities.

the four categories of qualification requirements are observance, verification
plan, validation plan, and acceptance plan. These last two categories only apply
to the system. Therefore, after all qualification requirements have been traced to
the system, derived requirements for the components are developed only from
the first two categories (observance and verification). This derivation process is
quite straightforward; observance requirements relate to specific input/output
and system-wide and technology requirements. Therefore, deriving observance
requirements follows the derivation process of input/output and system-wide
and technology requirements. Deriving a verification plan for each component
should be relatively straightforward, given the verification for the system.

9.5 DEFINE AND ANALYZE FUNCTIONAL ACTIVATION
AND CONTROL STRUCTURE

When discussing IDEFO0 (Chapter 3) and functional decomposition (Chapter 7)
the need for activation and termination criteria was mentioned. That is, there

306 ALLOCATED ARCHITECTURE DEVELOPMENT

are criteria that need to be established for each function; these criteria
determine what set of inputs (and associated values) will activate the function
and what set of outputs (and associated values) are sufficient to terminate the
function. The bottom-level functions in the functional architecture must have
their activation and termination criteria completely specified. The intermediate-
and top-level functions are aggregates of the bottom-level functions and as such
are for modeling purposes only; intermediate- and top-level functions do not
have or need activation and termination criteria. However, recall the previous
discussions of peeling the onion and the fact that the bottom-level functions of
an early peel of the onion become intermediate-level functions during later
peels of the onion.

In addition to the activation and termination of a function, the conditions
under which one function precedes or follows another function’s processing
must be clearly defined. Examples of approaches to defining such precedence
conditions can be found in Chapter 12 under behavioral modeling. Most of
these behavioral modeling methods allow the dynamics of the system to be
explored by providing an executable model of the system’s functions. These
executable models are either discrete-time or discrete-event simulations when
implemented on a computer. The reader is referred to Chapter 12 for more
detailed discussions on this subject.

Before discussing the dynamic issues associated with the performance of a
system, the balancing or aligning [Yourdon, 1989; Schmekel and Wingard,
1993] of multiple models of a system should be addressed. At this point the
functional architecture contains a data model and a process model of the
system in question. The generation of activation and termination conditions for
each function plus the control structure associated with the concurrent or
asynchronous behavior of functions with respect to each other is contained in
the behavioral model of the system. Yet each of these models contains
overlapping data elements: Inputs and outputs are in all three models, and
functions are in the process and behavior models. These models better be
consistent and coherent representations of each other or their results will be
worthless to the engineers of the system; in essence, the engineers will have
modeled several different systems while thinking they were addressing only one
system. Schmekel and Wingard [1993] present the most complete treatment of
this topic known to the author.

There are several benefits of executable models. First, the design can be
explored to find major design flaws that are manifested as deadlocks, livelocks,
starvation, surge or race conditions, or oscillatory conditions. The second
major benefit is to permit the systems engineering team to assess the degree to
which the design meets various timing and throughput requirements.

Deadlock, livelock, starvation, surge (race), and oscillation are dynamic
characteristics that are not desired in dynamic, time-varying systems. Deadlock
is an undesired state of the system in which activity ceases and throughput is
nonexistent. Deadlock can occur for two reasons: contention over resources
and waiting for a communication [Levi and Agrawala, 1994]. Contention over

9.5 DEFINE AND ANALYZE FUNCTIONAL ACTIVATION AND CONTROL STRUCTURE 307

resources occurs when each of several components requires the same resource
for a task, but none of the components is willing to free the resources it has
accumulated. As a result activity stops while the components wait for addi-
tional resources to complete their assigned tasks. Waiting for a communication
occurs when various components are attempting to synchronize their actions or
verify their status; in either case each component enters a state called ““wait for
communication,” but the communication never arrives because the compo-
nents are in a strongly connected wait state.

Deadlock associated with resources is often described using the ‘“‘dining
philosophers™ problem. There are five philosophers sitting around a circular
table preparing to eat spaghetti. There are five forks, one between each of the
adjacent philosophers. Before eating the spaghetti each philosopher requires
two forks to move the spaghetti from the bowl in the middle of the table onto
her/his plate. If each philosopher grabs (and locks) the fork on the left, no
philosopher will be able to eat; this is deadlock. The solution requires the
creation of a conditional locking mechanism on the forks by the philosophers
that ensures that each philosopher obtains both forks for a limited time to
move the spaghetti to her/his plate. After completing this initial task, each
philosopher then releases both forks for a period of time. Once each philoso-
pher has spaghetti on her/his plate, then only one resource is required by each
and all five philosophers can eat simultaneously.

Graph theory is often used to depict the resource sharing problem with
what is called a “wait-for-resource” graph. Define each component as a node.
Define the relation R to be “‘awaits a resource possessed by.” Figure 9.10
shows a system with four components in which there is a potential deadlock
involving the first three components. Mathematically, it can be shown that
any system having a wait-for resource graph with a cycle can become
deadlocked if several other conditions apply [Levi and Agrawala, 1994]. If
there are many components and the wait-for-resource graph is complex, the
existence of a cycle may not be obvious by inspection. Typical solutions to
eliminating or reducing the chance of deadlock due to resource contention are
to oversize buffers and resource pools, reduce the concurrency of operations,
add delays, institute a manual or automated deadlock detection and recovery
process, and allow preemption of locked resources. Ferrarini and Maroni
[1997] define three generic categories of options: avoidance, prevention, and
recovery.

FIGURE 9.10 Wait-for-resource graph depicting deadlock.

308 ALLOCATED ARCHITECTURE DEVELOPMENT

A “‘wait-for-communication” graph can be used to examine the possibility of
deadlock due to communication. In this case a cycle (with other conditions) is not
sufficient to guarantee deadlock; a strongly connected, cyclic graph is necessary.
Deadlocks have been studied in communication systems [Duato et al., 1997] for a
long time and procedures have been embedded into most communications
protocols to break communication deadlocks when they occur.

Livelock is a dynamic condition with the same result as deadlock but for a
different reason. In deadlock the system (or part of the system) halts activity
because various activities are holding or utilizing resources needed by other
activities. In /ivelock the resources are being routed in cycles (oscillating) while
waiting for the proper allocation of resources to enable the completion of
necessary activities; unfortunately this proper allocation of resources is never
achieved and the system cycles continuously, never reaching the desired
outputs. In communication networks livelock can only occur when information
packets are permitted to traverse paths that are not minimal.

Starvation occurs when a function needs a particular resource for execution,
but the resource is always allocated to other functions due to a poorly designed
resource assignment algorithm. This condition is one that can be found with
little trouble as long as a reasonable effort is made to model the dynamics of the
system. However, it can easily be overlooked if no effort is devoted to examine
the system’s dynamic properties.

The dynamic condition called surge or race occurs in relatively uncontrolled
systems when components are competing with each other to perform a task. A
common example is found in older elevator systems during nonpeak times; a
potential passenger pushes the up button and observes that all of the stationary
elevator cars are converging on her floor. She gets into one of the elevator cars.
The next passenger now pushes the down button and the remaining elevator
cars surge to that passenger. The surge condition is a waste of resources while it
is occurring and can leave the system in an undesirable state for future tasks; all
of the elevator cars but one will end up waiting at the same floor for future
passengers.

These negative dynamic conditions can be designed into a system inadver-
tently without the engineers’ knowledge unless the designers undertake a
detailed study of their design. Discrete-event simulations involving Petri nets,
queueing theory, behavior diagrams, or extended function flow block diagrams
are needed to investigate the design of the system via mathematics and
simulation and to understand the degree and extent of such negative behaviors.
Naturally, if negative behaviors exist, design changes can be examined to
eliminate or minimize them.

9.6 CONDUCT PERFORMANCE AND RISK ANALYSES

A wide range of quantitative analyses is commonly performed during the
system development process that fits within the categories of performance,

9.6 CONDUCT PERFORMANCE AND RISK ANALYSES 309

trade-off, and risk analyses. The parametric diagrams of SysML can be used to
design and document these analyses. In fact, these analyses can be considered a
system in their own right.

Risk analyses are often completed at the beginning of the development
process to examine the major design options under consideration. For example,
at the earliest stage of development the systems engineering team should
consider a range of divergent concepts. A risk analysis examines the ability
of the divergent concepts to perform up to the needed level of performance
across a wide range of operational scenarios. At this time there remains
substantial uncertainty about the stakeholders’ needs, the state of technology
under consideration, and the details of the allocated architecture. The relative
costs and schedule implications of the various concepts also have to be taken
into account. This is where the stakeholders have to debate how much money
and time they are willing to pay for increased performance in selected
operational scenarios. Addressing uncertainty and multiple objectives in these
early risk analyses is critical; see Chapter 13.

Performance analyses are for the purpose of discovering the range of
performance that can be expected from a specific design or a set of designs
that are quite similar. The performance parameter in question can be associated
with an output of the system or with a system-wide metric; in either case there is
almost always a related objective in the objectives hierarchy and an associated
performance requirement. These performance analyses usually take the shape
of engineering models and simulation models. The simulation models may be
deterministic or stochastic, depending on the issue involved and experience
level of the design team with the technology.

Common system-wide performance analyses address operational feasibility
issues such as reliability, availability, maintainability, usability, supportability,
durability, and affordability. Similarly, performance analyses are conducted to
address concurrent engineering issues related to the impact of the operational
system design on the manufacturing, deployment, training, and disposal
systems. Blanchard and Fabrycky [1998] provide detailed discussions of
many of these topics: design for reliability, for maintainability, for usability,
for supportability, for producibility and disposability, and for affordability.
References for detailed analysis of cost, reliability, maintainability, and avail-
ability include Blanchard and Fabrycky [1998], Frankel [1988], Pages and
Gondran [1986], Pohl [2007], Pohl and Nachtmann [2007], and Sage [1992].

Some organizations have dictated that the system be designed to cost; that is,
there is a cost constraint, and the engineering design team has to guarantee that
the system will meet this cost constraint. Design-to-cost works best by
designing a reduced-capability system with various optional features that can
be added if the cost estimates are low.

A trade study focuses on finding ways to improve the system’s performance
on some highly important objective while maintaining the system’s capability in
other objectives. Trade studies are focused on comparing a range of design
options from the perspective of the objectives associated with the system’s

310 ALLOCATED ARCHITECTURE DEVELOPMENT

performance and cost. For example, aircraft manufacturers always do trade
studies focused on the aircraft’s weight, while maintaining the system’s cost,
safety, and so forth. Similarly, safety, reliability, and cost are among the many
other objectives that are commonly the focus of a trade study.

9.7 DOCUMENT ARCHITECTURES AND OBTAIN APPROVAL

Documenting the system design completely is important. Not only should the
key elements of the requirements process (operational concept, external systems
diagram, objectives hierarchy, and requirements), and the three architectures
(functional, physical, and allocated) be documented, but also the audit trail for
how the results were obtained and why they are what they are. In every system
development activity there are many occasions during the life of the system
when engineers will want to find out why a particular part of the design is the
way it is. This curiosity usually arises because the engineers want to change the
design and need to understand the original rationale for the current configura-
tion; there may have been some issues that the current engineers have not
thought of that would keep them from making the change they are contemplat-
ing. Unfortunately, it is rare to talk to an engineer who went looking for design
rationale on any type of a system and was successful. The design decisions that
are made intuitively and on the spur of the moment (often without even
realizing that a key decision is being made) are seldom documented. The design
decisions that are made consciously with an explicit analytical approach, such
as decision analysis (see Chapter 13), will be very well documented as long as
the analysis material is archived properly.

Obtaining approval of the system’s design, or allocated architecture,
typically requires long meetings with many members of the engineering team
and representatives of the stakeholders. A number of key design decisions are
revisited, arguing for the value of the systematic development and archiving of
the rationale for these decisions. Once the system’s allocated architecture is
approved, it is quite simple to develop a specification for each subsystem with
the information that is available.

9.8 DOCUMENT SUBSYSTEM SPECIFICATIONS

At this point the system design is complete and each major subsystem of the
system can be documented in terms of its own operational concept, external
component diagram, objectives hierarchy, and requirements document. The
requirements document for each component, commonly called a specification
(or spec for short) includes input/output, technology and subsystem-wide,
trade-off, and qualification requirements.

Shortly after the subsystem design activities are initiated, a preliminary
design review should be held with the stakeholders to obtain their input and
approval for proceeding further with the subsystem design.

9.9 SUMMARY 311
9.9 SUMMARY

The allocated architecture combines the physical and functional architectures
so as to meet the stakeholders’ requirements and related derived requirements.
This combination of the physical and functional architectures requires the
allocation of functions to physical resources; at this point the system’s design
can be simulated and analyzed in terms of the stakeholders’ requirements and
operational concept of the stakeholders. As the physical and functional
architectures are integrated, the interfaces of the system (both external and
internal) can also be defined and designed.

The processes that comprise the development of the allocated architecture
are the allocation of functions to components, the tracing of system-wide
requirements to the system, the derivation of requirements, the definition and
analysis of functional activation and control structures, the conduct of
performance and risk analyses, documenting the allocated architecture, and
documenting the specifications.

The allocation of functions to physical resources was addressed in terms of
the appropriate objectives for this major decision. From a historical perspective
the most difficult allocation decision is machine versus human. The allocation
between hardware and software is also discussed. Ultimately, this allocation
process requires trade offs between fast and accurate performance of tasks
versus ability to upgrade and change the processes for performing the tasks. As
such, decision analysis (see Chapter 13) should be used to evaluate alternate
allocation options in terms of the objectives of the stakeholders.

To complete the component specifications additional requirements (input/
output, system-wide and technology, trade-off, and qualification) must be
derived from those that are already available. Examples of these derivations are
provided. Three methods for flowing down requirements that were initially
traced to the system are also described.

Critical system-wide issues associated with functional activation and control
are discussed here. These issues include deadlock, livelock, starvation, and
surge (or racing) of the system.

Decision analysis is discussed as a normative model for conducting risk
analyses, performance analyses, and trade studies. An illustration of a risk
analysis was provided.

The design process has been likened to peeling an onion throughout this
book. The development of the allocated architecture should proceed as though
an onion were being peeled. The first allocated architecture developed should
be for the subsystems of the system at a high level of abstraction (low level of
detail). Then the entire process is repeated at a lower level of abstraction
(greater detail) for the components of the subsystems, consistent with the Vee
model discussed in Chapter 1. This repetition at lower and lower levels of
abstraction yields allocated architectures at higher and higher levels of detail.
The advantage of this approach is that as each new peeling begins the engineers
for each component can work their design processes in relative seclusion from

312 ALLOCATED ARCHITECTURE DEVELOPMENT

the engineers for other components. Each group of engineers has interfaces
between their components and other components and the external systems that
have been defined at an appropriate level of detail, yielding a coherent set of
requirements with which to work. The work of these several teams of engineers
will need to be integrated and coordinated at the newest level of detail before
the allocated architecture can be complete for this more detailed level of
abstraction.

CASE STUDY: WIDE AREA AUGMENTATION SYSTEM OF THE
FEDERAL AVIATION ADMINISTRATION (FAA)*
* PROVIDED BY TIM PARKER

The objective of the U.S. FAA Wide-Area Augmentation System
(WAAS) is to provide a navigation aid, for use by commercial and
general aviation that is derived from the global positioning system (GPS)
standard positioning service (SPS). (GPS employs a constellation of
24 satellites, each of which continually broadcasts its position at the
time of broadcast.) The GPS satellites provide the radio frequency
equivalent of a navigator’s optical star fix. However, the accuracy and
integrity of the SPS broadcast is not the ultra-high quality that the FAA
requires to ensure the safety of civilian aircraft passengers and operators.
Therefore WAAS determines the position of the GPS satellites more
precisely than the SPS, and broadcasts “‘corrections” in real-time.

To validate the competing designs the FAA required each bidder to
develop a special analysis tool known as a service volume model. The
goal being that specific aspects of the performance of a given system
design could be easily synthesized and simulated using computers. The
results of the simulations are then useful for understanding the effects of
flowing down certain performance allocations as requirements on lower
tier system components such as the placement and number of ground
monitoring antennas used for observing the GPS satellites. Because the
simulation is capable of representing the dynamic nature of the spacecraft
orbits, the tool can analyze the effects of outages resulting from
individual or combinations of component failures (i.e., satellites and
antenna monitor sites). In the case of this particular procurement the
FAA included a task in the statement of work that described the use of
the simulation tool for determining the exact number and location of the
monitoring antennas.

The top-level requirements, that the WAAS simulation helps to
explore, are the selection and geographic location of the ground monitor
sites used to observe the GPS satellites, the number and location of
geostationary satellites used to broadcast the corrections, and the cover-
age area or service volume where the WAAS service is available for use.

9.9 SUMMARY 313

Additionally, the simulation accounts for certain a priori aspects of the
models used to represent the effect on system performance from such
phenomena as pseudo-range measurement error due to receiver noise,
signal propagation delay due to the ionosphere, satellite clock estimation
error, and satellite clock dither prediction error, that is, selective avail-
ability [Braasch, 1990; Kee et al., 1991]. The flowdown to the components
is quite involved since there is a dynamic relationship among the number
and geographic location of the monitor sites, the UPS satellites and the a
priori characteristics of the systems algorithm. Suffice it to say that an
acceptable result based upon specific a priori assumptions could flow to
several components, the allowable receiver noise at the ground monitor
site, the location and number of ground monitor sites (i.e., ground
monitor site geometry), the number and location of the geostationary
satellites for broadcasting the corrections, and the resulting coverage area
or expected service volume, which is a function of both the geosatellite
antenna pattern (i.e., foot print) on the surface of Earth as well as the
geometry of the ground monitor sites.

To support the precision approach phase of aircraft flight operations,
WAAS must deliver data to the user in the form of corrections for each
UPS satellite’s position and clock. This data, when applied to determine
the position of a given user, should yield an answer that is accurate to
better than 7.6 meters (in both the vertical and horizontal dimensions)
99.9% of the time throughout the coverage area.

A simple way to recognize how this relates to the problem of
determining the number and placement of the monitor sites is to first
understand that the problem that WAAS solves is essentially the naviga-
tion satellite user’s problem inverted. By this we mean that normally the
user of the GPS is concerned with tracking at least four satellites whose
spatial relationship to each other and to the user, represented by a unit
less value known as geometric dilution of precision (GDOP), satisfies the
expression GDOP < 7. Visualize this relationship as an inverted pyramid
with the user at the apex and each of the four vertices of the base
representing a GPS satellite. Simultaneously solving the equations for the
range measurement between the user and each of the observed UPS
satellites yields the user’s position.

Now recall that the problem that WAAS must solve is to correct the
broadcast position and clock of each observed GPS satellite based upon
the precisely known location of a set of ground monitor stations. Imagine
the ground monitor sites as independent observers of the UPS satellites
sharing a universal clock. For a given satellite’s position, the ground
monitor stations become the vertices of the base of a polyhedron whose
vertex is represented by an observed GPS satellite. The spatial relation
between the monitor stations and the satellites is analogous to the
relation between the user and the satellites. Through the use of a
continuous Kalman filter the WAAS arrives at an ensemble solution

314 ALLOCATED ARCHITECTURE DEVELOPMENT

for each satellite that is observed by its network of ground monitor
stations.

The top-level physical architecture for WAAS allows for up to 70
monitor sites to be constructed and networked into four master control
sites. As might be expected with any complex system of this nature, the
nonrecurring engineering costs are daunting and every effort is made to
reduce them. Naturally the FAA would not build all 70 ground sites and
then determine if fewer could be used. Instead the simulation tool is
utilized to predict the system performance when specific combinations of
components are synthesized together as a working system. Early results
published by Lockheed Martin Federal Systems (LMFS) (prior to
acquisition by Lockheed, LMFS was originally the Federal Systems
Division of IBM) indicated that based upon their simulation results a far
smaller number of ground antennas would be necessary. The analysis
used the LMFS Service Volume Model (SVM), a high-fidelity covariance-
based simulation tool used to determine user obtainable navigation
accuracy and service availability.

In addition to these analysis results LMFS undertook the development
and fielding of a Wide-Area Differential Global Navigation Satellite
System (GNSS) Testbed; see Figure 9.11 for the physical architecture
block diagram. The purpose of the testbed, like the simulation, was to
further develop knowledge about the allocated architecture and confirm
the performance of the algorithms being considered for use on WAAS. A
critical activity during the testbed’s life cycle was its deployment into an
operational environment. For this task the SVM simulation tool was used
to determine optimal locations for the GPS receivers and ground
antennas.

The top-level system objectives to be optimized for the testbed are
easily expressed as: (1) minimize user range error, (2) maximize the area
of geographic coverage where the user range error is 7.6 meters or less,
99.9% of the time, and (3) minimize the cost (i.e., deployment and
operational). The first two components require the use of the simulation
while the third component is treated as a simple linear projection of the
costs incurred from acquiring the testbed equipment, leasing test labora-
tory space, and paying periodic operational expenses (i.e., telephone,
electrical, technical personnel, and miscellaneous). The results of the
simulation were combined with cost data for the prospective sites and
evaluated using a simple multiattribute value analysis technique, which
considered the top-level system objectives. Note that the deployment
costs were determined to be roughly equal and for purposes of the
analysis were considered to be equal among each set.

Many preliminary studies were undertaken to identify candidate
locations for the ground monitor sites. Typically these were in
the eastern half of the United States and within close distances to
one another to minimize travel time for deployment and maintenance.

"Pagisal SSND J40j weldelp ainjda)ydle [edIsAyd

UONE)S JONUOI IS Aleuoneis
(synsey paqise | wyiioh|y

SdD [enudIsyiq ealy apim
sAe(dsiq Ajjeoiydeln)
UOIBISHIONN Bloway

euusLY SdD

an ‘Bingsseyen w

NV
Buu-uaxo]

yoey Wapo

E
asva 0000

dn-eip 6000
woepo

W

[}
o
o

0000
Wopon
Q000
WopO
0000

uoneISYIOM 8ouewIOpNad YBiH

an ‘Bingsiayyen - pegise L
SdD [enuBIBlIq BOIB-OPIN WRISAS BYjeles uonebineN [eqojD

LL'6 3MNDI4

uoljels J0JUo|\ punoly

BUUBIUY SdH

Vd ‘uojuelos M

BUUBIUY SO

AN ‘0BamO M

aul|

auoydaje} HO ‘uonty M
dn-jeip

BUUBIUY SO

BUUBIUY SdD
7
auoyda|a} .
dn-jeip VO ‘Bluepy
aul|
auoyds|a}

dn-jeip
Uole||ojsuo) ajjjeles Sdo

soidan ' o)
- ,_M,&/ @)
‘,‘er/ . D

315

316 ALLOCATED ARCHITECTURE DEVELOPMENT

Of the many possible sites, several were conveniently collocated with an
existing company facility. The site combinations were evaluated to-
gether, as a location set. Different sets, or combinations of the sites, were
evaluated using the SVM to determine if there would be a significant
effect on the expected GNSS testbed performance. The multiattribute
value analysis of the combined simulation and cost results is summarized
in Table 9.4. The table contains error values representing the SVM
prediction for average vertical position accuracy (VPA) and average
horizontal position accuracy (HPA) as well as the average user error,
where user error is defined as the root-sum-square of VPA and HPA.
Coverage represents the percent of evaluated grid points where the
predicted accuracy at each point is less than the required threshold value
of 7.6 meters.

Coverage for sets 2 and 3 were significantly worse than sets 1 and 4,
providing justification to eliminate sets 2 and 3 from consideration.
Although set 4 meets the objectives of maximum coverage and minimum
user error, the high operational cost of set 4 due to the usage of non-
company property makes set 4 look inferior to set 1. Set 1 was preferred
because it offered a reasonable geometry for determining wide-area
corrections, had good coverage, and offered a smaller operational cost
even though the average user error was the worst. The average user errors
were all so close to each other that this objective was not very meaningful
in discriminating among the alternatives.

TABLE 9.4 SVM Site Location Analysis Summary

Set VPAA HPA User Coverage Monthly Sites

Error Operational

Cost

1 7.013 7.358 5.082 84% 100 O, G, Ak, At
2 6.871 7.219 4.983 36% 125 0O, G, Ak, N
3 6.837 7.187 4.960 36% 105 O, G, Ak, S
4 6.829 7.1 4.953 84% 130 O, N, Ak, S
Site Key Location
Ak Akron, OH
At Atlanta, GA
G Gaithersburg, MD
N Norfolk, VA
O Owego, NY
S

Scranton, PA

PROBLEMS 317

PROBLEMS

9.1 For the ATM system:

1.
ii.

iii.

1v.

Allocate your functions to one or more of ATM’s components.
Trace your system-wide and technology requirements to the ATM
system or one or more of its components.

Derive component-wide requirements for each system-wide require-
ment and allocate the appropriate derived requirements to your
components.

Print a System Description Document for ATM.

9.2 For the OnStar system:

1.
il.

1ii.

1v.

Allocate your functions to one or more of OnStar’s components.
Trace your system-wide and technology requirements to the OnStar
system or one or more of its components.

Derive component-wide requirements for each system-wide require-
ment and allocate the appropriate derived requirements to your
components.

Print a System Description Document for OnStar.

9.3 For the development system for an air bag system:

1.

ii.

iii.

iv.

Allocate your functions to one or more of the development system’s
components.

Trace your system-wide and technology requirements to the develop-
ment system or one or more of its components.

Derive component-wide requirements for each system-wide require-
ment and allocate the appropriate derived requirements to your
components.

Print a System Description Document for the development system.

9.4 For the development system for an air bag system:

1.

iii.

iv.

Allocate your functions to one or more of the manufacturing system’s
components.

. Trace your system-wide and technology requirements to the manu-

facturing system or one or more of its components.

Derive component-wide requirements for each system-wide requirement
and allocate the appropriate derived requirements to your components.
Print a System Description Document for the manufacturing system.

9.5 A system that is available 90% of the time is said to have one “9” of
availability. Of the 365 days in a year, such a system would be “down”
about 36 days and 12 hours.

. A system that is available 99% of the time has two “9’s”’. How many
days and hours per year is this system “down’?

318

ii.

1ii.

1v.

Vi.

ALLOCATED ARCHITECTURE DEVELOPMENT

How many days, hours, and minutes is a system with three ““9’s” of
availability down?

How many hours, minutes, and seconds is a system with four ““9’s” of
availability down?

How many minutes and seconds is a system with five “9’s” of
availability down?

How many minutes and seconds is a system with six “9’s” of
availability down?

Where does the general class of personal computers fall in this
spectrum of availability? Where do you think the air control system
of the Federal Aviation Administration for a country should fall in
this spectrum? Where does the telephone system fall? Where does your
Internet provider fall?

