
Chapter 10

Interface Design

10.1 INTRODUCTION

Interfaces are common failure points on systems. An interface is a connection
resource for hooking to another system’s interface (an external interface) or for
hooking one system’s component to another (an internal interface). The
systems engineer’s design problem includes identifying the interfaces, both
external and internal, and allocating items (inputs and outputs) to the defined
interfaces. Once these tasks are completed, the requirements for each interface
must be derived from existing system-level requirements. Finally, alternative
interface architecture alternatives must be examined, including the needed
functions and the most cost-effective alternative chosen.

The interface requirements must address total system performance, the
fidelity of the interface, and any system requirements meant to constrain
interface design. Typical system performance requirements of concern in
designing the interfaces are system throughput and response time. The fidelity
of an interface is determined by the integrity of the items being transported, the
guaranteed delivery of the items, and failure detection and recovery within the
interface. In other words the interface should not change the items during
the transmission process, should eventually deliver every item placed on the
interface (and not create any items), and should detect faults early and recover
gracefully (a hard but important word to define).

Section 10.2 discusses the process for developing the interface designs of the
system. Generic architectures, introduced in Section 10.3, can be used as the
architectural concept for any given interface. These generic architectures come
from communication and computer systems. Section 10.4 discusses the im-
portant issue of standards, a major support in the definition and design of
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interfaces. Sections 10.5 and 10.6 address two major standards, one for
communications systems and one for software architectures. The open systems
interconnection (OSI) reference model serves as the basis for many standards
related to telecommunications and computer networks. This reference model
provides a rich basis for viewing interfaces. The common object request broker
architecture (CORBA) is an industry standard for software systems integration.
Section 10.7 addresses the design of an interface.

The generic interface architectures described in this chapter include message
passing, shared memory, and network. Each of these architectures is described,
followed by a discussion of strengths and weaknesses.

The OSI reference model and CORBA are introduced as well-conceived
architectures for common interfaces. The discussion in this chapter is focused
on the functions performed in these architectures so that the engineer of a
system has samples of functions to draw from for designing any type of
interface.

The exit criterion for completing the design of the system’s interfaces is
acceptance by the engineer responsible for the allocated architecture that the
interface is consistent with the system’s components and configuration items
(CIs) as well as the performance objectives and requirements of the system.

10.2 OVERVIEW TO INTERFACE DEVELOPMENT

An interface is a connection for hooking to another system (an external
interface) or for hooking one system component to another (an internal
interface). The interface of a system contains both a logical element and a
physical element (or link) that are responsible for carrying items (electro-
mechanical energy or information) from one component or system to another.
The interface must ensure that the item is delivered on time and in the same
form as the item was received.

The development of the interface architecture is quite similar to the develop-
ment of the allocated architecture of a system, as shown in Figure 10.1. [See
Appendix B for the entire IDEF0 (Integrated Definition for Function Modeling)
model for engineering a system.] The functions of defining requirements as well
as the functional, physical, and allocated architectures are present. The only new
function is the evaluation and selection of a high-level interface architecture;
Section 10.3 defines and discusses the three major alternate interface architec-
tures in use today in communication and computer systems. This high-level
architecture for the interface is analogous to the concept selection for the system
design. Before proceeding very far in the development of a system, high-level
concepts, each having a different operational concept, are posited and evaluated.

This decomposition of functions for developing an interface architecture
assumes that the functional process will be revisited several times in whole or in
part. As interface changes arrive from the process responsible for the system’s
allocated architecture, the relevant functions for developing the interface
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architecture are triggered and set the whole process in motion to develop a
revised interface architecture.

10.3 INTERFACE ARCHITECTURES

Most interfaces are communication systems or analogies of communication
systems (e.g., a conveyer belt). The principal communications architectures are
message passing, shared memory, and networks. An every day example of each
of these architectures follows:

Message Passing: mail delivery that predictably occurs once or twice a day
and allows those receiving the mail to turn their attention to the mail
immediately or wait until a more opportune time and permits messages of
substantial volume.

Shared Memory: a meeting or conference in which only one person speaks at
a time and conveys relatively compact messages; all can hear what is said
but yet are restrained from other productive work during the meeting.

Network: a telephone conversation that can involve messages of widely
varying lengths and can be instigated at almost any time.

10.3.1 Message Passing Architectures

The message passing architecture is used to allow the predictable exchange of
information. The message passing architecture is commonly found as an
internal interface in systems since the systems engineers have the information
to determine whether the message is predictable. A message passing architec-
ture can also be found as an external interface among a number of systems that
have consistent message traffic.

The physical architecture for message passing typically currently involves up
to 32 nodes on a linear, bus topology connecting the nodes. Included in the
architecture are the bus interchange unit, transceivers for the nodes, and signal
lines.

The message that is transmitted over the bus consists of a protocol and data
segments. The protocol segment includes any information needed by the bus
interchange unit to deliver the message; typically this is information about the
size of the message and address of the node to receive the message.

For each transmitted message the following communication process must be
completed:

1. One node must win control of the communication channel by a priority
scheme implemented by the system.

2. The winning node becomes the master and sends a protocol segment to
the intended receiving node(s), called the slave(s).
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3. The slave node(s) notifies the master that the protocol segment was
successfully received.

4. The master sends (or receives) the data segment to (from) the slave(s).

5. The slave(s) notifies the master that the data segment transfer is complete.

6. The master surrenders control of the communication channel.

The most common application of message passing is for systems that can define
a predictable message transmission schedule upon initialization. Update rates
for messages are on the order of 0.01 to 1 second. Other types of message
passing can occur (such as asynchronous communication that can be predicted
statistically but not predefined) but the message passing architecture is not
preferred if these types of messages are substantial portions of the traffic.

10.3.2 Shared Memory Architectures

Asynchronous communication requests of a byte to a few words in size that can
be defined statistically are ideal for shared memory architectures. The shared
memory architecture is a fast access storage device, typically a memory device,
which is the interface among processors. The shared memory and interacting
processors can either be part of the same hardware component or interface via
global memory. Statistical predictions of message traffic are usually possible
when message updates are within several clock cycles (e.g., nanoseconds).

The communication model for shared memory is:

1. A processor generates a read or write request for another address in
shared memory.

2. The current owner of this variable is notified of the request.

3. The cache memory of the current owner is dumped to local memory.

4. The global variables of the current owner are dumped to shared memory.

5. The read or write request of the processor is completed with a data transfer.

Performance of shared memory systems can be degraded substantially if a
requesting processor needs information that is not in the cache memory of the
shared memory interface. In this case all activity is blocked until the shared
memory can retrieve the variables needed. Shared memory works best in highly
parallel software applications in which the global data of each application must
be accessed frequently by the application and infrequently or never by the other
applications.

10.3.3 Network Architectures

Networks have become commonplace in the workplace with the local area
network (LAN) products. In many ways the network architecture is a
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distributed collection of shared memory systems, in which each shared memory
system has the ability to tap into the shared memory of the other systems on the
network. The best analogy for communication is to a file server with access to
slow storage devices; in this case the communication of information is via a
statistical block transfer process.

The transfer of information typically takes milliseconds to minutes, depend-
ing upon the size of data set, and includes relatively large blocks of data. The
main difference between the network and the message passing architecture is
that a network provides demand-based service while message passing primarily
uses scheduled transfers. Networks can service hundreds of nodes, while
message passing is currently limited to 32 or fewer.

A network system typically includes the communication hardware and a
software package, typically called a network operating system. There are many
such commercial network operating systems. The software provides various
priority-based queueing models, often with separate transmit and receive
queues. The network provides extensive fault checking and does not suffer
from the failure modes of message passing architectures.
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There are many network architectures available. Five of the most common
are shown in Figure 10.2. The pipeline architecture is a serial linkage of
components that is most appropriate when the components only need to
communicate with their neighbor in the network. The bus architecture is the
most general; each component places its information on the bus, and the bus
distributes the information to the appropriate sources. The bus architecture is
most appropriate for a large number of components. The spoke architecture
isolates one component as the central processor that manages the communica-
tion process. The ring architecture is one of the most common architectures in
office settings. The mesh architecture is an irregular connection of components
that provides sufficient redundancy (pathways between any two nodes) for the
system under consideration while stopping short of full interconnection. Duato
et al. [1997] provides many examples of interconnection networks used within
parallel computation devices and telephony systems.

10.4 STANDARDS

Standards help ensure that an interface will enable the connection of two
components. Each component is required to meet a given standard, and the
interface is designed to meet the same standard. As long as the performance
associated with the interface and the associated standard are satisfactory, the
design will be successful.

Standards have different levels of formality: formal, de jure, and de facto.
Formal standards are negotiated and promulgated by accredited standards
bodies, such as the International Organization for Standards (ISO), Interna-
tional Telecommunications Union (ITU), and the American National Standards
Institute (ANSI). Professional societies also develop and promulgate standards.
Examples of such professional societies are the Institute of Electrical and
Electronic Engineers (IEEE) and the Electronics Industry of America (EIA).

Legal authorities mandate de jure standards. For example, the IDEF0
standard is a federal information processing standard (FIPS) that was created
by the National Institute of Standards and Technology (NIST) of the U.S.
government.

De facto standards come into existence without any formal process. Popular
usage creates de facto standards. X Windows and the Windows operating
system are examples of de facto standards.

The benefits normally attributed to using standards are interchangeability,
interoperability, portability, reduced cost and risk, and increased life cycle.
Interchangeability is the ability to interchange components with different
performance and cost characteristics. In this way creating multiple versions
of a system in which one or more components are interchanged is possible
because the adoption of these standards makes the interchange possible. Most
computer manufacturers have adopted sufficient standards so that they create
multiple versions of a specific design with varying central processing unit (CPU)
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performance speeds, varying amounts of random-access memory (RAM), and
varying size hard discs for storage.

Interoperability benefits of adopting standards accrue because the system
can now operate with a wider variety of external systems, systems that have also
adopted the same conventions. For example, computer manufacturers that
adopt the standard parallel and serial interfaces can be interfaced with a wide
variety of peripherals such as printers. The benefits for most systems to be
interoperable with other systems are so great when standards exist that it is
difficult for system designers to deviate from such standards. The answer for
such deviations is limited performance by an aging technology. Predicting if
and when a new technology will provide enough increased performance or
decreased cost to justify changing a standard is often difficult.

Portability is a benefit for systems that operate on another system. Software
systems obtain portability by adopting the standards necessary to run on
multiple platforms with varying hardware or operating systems. Systems that
require power obtain portability by having a power unit that permits power to
be obtained from a standard wall socket. Systems like my laptop computer that
require direct current (dc) current still need the portability to operate using
power from alternating current (ac) sources and include a power unit that
converts ac to dc power.

Adopting certain standards allows a system designer to buy modules that
provide the needed performance characteristics at reduced cost. Standards
promote competition among vendors, competition that provides reduced cost
and reduced risk for equivalent performance.

An increased life cycle for the system is possible when long-lived standards
are adopted. The system can use the interoperability of its components to
upgrade its capabilities as new technologies come along, as long as these new
technologies adopt the standards. Typically the new technologies provide
downward compatibility in the sense that the older products can be replaced
by the new, but not vice versa.

10.5 OPEN SYSTEMS INTERCONNECTION ARCHITECTURE

In 1977 the ISO approved the initiation of work on a standard for the
interconnection of computers comprised of different architectures and tech-
nologies [MacKinnon et al., 1990]. The first meeting, involving 40 experts, was
held in March 1978. At the time a number of proprietary communications
architectures were available (e.g., Digital Network Architecture (DNA) of
Digital Equipment Corporation, Distributed Systems Architecture of Honey-
well, and Systems Network Architecture (SNA) of IBM). In 1983 the ISO and
the International Telephone and Telegraph Consultative Committee (CCITT)
of the ITU approved the reference model for OSI [Schwartz, 1987]. This
reference model defines a seven-layer architecture for network-based commu-
nication between end-user nodes in a telecommunications network. The OS} is
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a set of internationally accepted standards that revolve around this reference
model; these standards were developed in international forums and have been
accepted on an international basis for this reason. The OS} is also a set of
products that conform to these standards.

The OSI reference model contains seven layers: physical, data link, network,
transport, session, presentation, and application. The first four layers are known
as the lower network layers. The last three layers are known as the higher layers;
these higher layers plus the first four layers must be present in each end user or
host node. On the other hand, intermediate nodes in the communications
architecture must only possess the first three layers. Figure 10.3 presents a
common representation of communication between two hosts using a commu-
nications network, such as a LAN or the Internet. Data is being transferred from
an application on the left host node through the physical media and an
intermediate node in the communications network to the host node on the right.
The number of intermediate hosts depends not only on the communication
network but on the route selected through that communication network. In the
communication network at the top of Figure 10.3 at least two intermediate nodes
would be involved in communication between the two hosts shown; it is possible
that all five nodes would be involved.

Some of the key definitions associated with OSI are [MacKinnon et al.,
1990]:

System: an autonomous whole capable of performing information proces-
sing or information transfer.
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Open System: a system than can create, transmit, receive and act upon OSI
messages.

Interconnection: ability to satisfy four types of activity—movement of
digitized data over physical transmission media in a reliable manner;
organization and control of the paths between those open systems that
are the sources and destinations of information; exchange of commands
and data to manage the cooperation of the systems that desire to
interwork to achieve a specified purpose; and provision of a variety of
services and facilities that directly support the user applications.

Service Provider: the subsystem formed by a layer and all layers below it.
This subsystem only serves the layer above it. So the service provider
formed by the transport layer includes the network, data link, and
physical layers and serves the session layer.

Protocol: a complex multipart message that is passed between systems.

Protocol control information (P-N): information that is added at layer N to
the front of a message received from the (N+1) layer above; this
information is used to control the transmission of the message among
entities in layer N.

Protocol data unit (N-PDU): the message at layer N that contains the message
from layer N 4-1 plus the protocol-control-information for layer N.

Interface control information (I-N): information that is added at layer N to
the front (and possibly the end) of the protocol-data-unit of layer N to be
sent to layer N�1.

Interface data unit (N-IDU): the message at layer N that contains the
interface control information plus the protocol data unit of layer N and
that will be sent to layer N�1 for transmission on the N�1 service
provider.

Service access point [(N)-SAP]: the point of interaction between layers
N+1 and N; the point at which I-N is added to the front (and possibly
end) of the N+1-PDU being sent from layer N+1.

Application: a set of distributed tasks that satisfy some real-world informa-
tion processing requirement.

Application entity (AE): the portion of an application that is responsible for
interconnecting via OSI.

Presentation entity (PE): the presentation protocol functionality within an
open system that transforms data syntax so that the data can be
transferred properly.

(N)-entity: the functionality within layer N that adds P-N as one of its
functions.

Subnetwork: a real communication network.

First, note the narrowness of the definition of system chosen in this domain.
Second, the multilayered model of a communication system both enables an
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orderly development of standard products and creates a significant overhead
for communicating information.

Figure 10.4 illustrates the process of moving data from one application to
another over an OSI-compliant network and the overhead associated with that
movement. The adding and stripping of information at each of the seven levels
is necessary to make this movement happen but increases the data size. As data
enters the OSI-compliant product at the application service access point [(7)-
SAP], nI-7 information is added to the front end of the data. This augmented
data is then received at an (AE), where P-7 information is added to the front
end, forming the 7-PDU. An imaginary transfer of the 7-PDU takes place on
the presentation service provider (indicated by the dashed horizontal line in the
application layer). In reality the 7-PDU is sent to the Presentation layer where
1-6 is added at the (6)-SAP and P-7 is added at the PE, forming the 6-PDU.
This process continues through the first layer where the 1-PDU is actually
placed on the physical media and transferred to the correct host. The process is
repeated in reverse with the protocol and interface-control-information being
stripped at successively higher layers until the original data is delivered to the
application on the second host.

Table 10.1 provides a short description and the key functions of each layer
[Levi and Agrawala, 1994; MacKinnon et al., 1990; Schwartz, 1987]. Each
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TABLE 10.1 Summary of OSI Reference Model

Layer Description of Layer Layer Functions

(7) Application Provides necessary

communications between the

end user’s application

processes and the

application-entity. The

application-entity is the key

operator of this layer. The

two primary modes of

communication are

connection and

connectionless. (The

following discussion in this

table addresses the

connection mode.)

. Establish connection (receive

request, send indication,

receive response, send

confirmation)

. Transfer data (receive

request, send indication,

receive data, initialize data,

associate data, send data)

. Release connection (receive

request, send indication)

(6) Presentation Defines data syntax for

communication between

application-entities and

maintains transparency to the

hosts. The presentation-entity

is the key operator of this

layer.

. Establish connection

. Transfer data (receive

request, send indication,

negotiate syntax, receive

data, transform syntax, send

data)

. Release connection

(5) Session Provides connection control for

the hosts by enabling

presentation-entities to

organize the exchange of data

in either full or half-duplex

mode.

. Establish connection

. Transfer data

. Establish synchronization

points

. Manage activity

. Release connection

. Report exceptional

conditions

(4) Transport Establishes transparent and

reliable end-to-end

transmission of data between

host nodes.

. Establish connection

. Transfer data

. Provide error detection and

recovery

. Release connection

(3) Network Determines the establishment

of connection without

concern for the type of sub-

network and handles routing.

Represents the interface

between the communications

carriers (layers 1-3) and the

computer manufacturers

(layers 4-7).

. Establish connection

. Transfer data

. Perform multiplexing

. Provide error control

. Provide sequencing and flow

control

. Release connection

(Continued)
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layer, except the first, is responsible for establishing a connection on the service
provider below it, transferring the data to and from that service provider, and
releasing the connection when finished or required. In addition, the layers
conduct functions such as reporting exceptional conditions, providing error
control, negotiating quality of service, and providing flow control.

While the OSI reference model has received a lot of attention as a standard,
the world of products that incorporate communications systems has largely
passed OSI by in favor of the de jure standard codified by the military:
Transport Control Protocol/Internet Protocol (TCP/IP). This de jure standard
has three layers above the physical layer: the network layer for which the LP is
defined, the transport layer for which the TCP is defined, and the upper layers,
which employ a variety of protocols.

10.6 COMMON OBJECT REQUEST BROKER ARCHITECTURE

From the inception of software applications, one of the most difficult problems
for users is the communication of information among software applications
developed by different organizations or programmers. Most software applica-
tions were designed to be a closed system, often involving proprietary code,
algorithms, and interfaces. On occasion, several software applications were
integrated vertically to address the problems in a single market. The Object
Management Group (OMG) began operations in 1989 in response to this

TABLE 10.1. Continued

Layer Description of Layer Layer Functions

(2) Data Link Establishes reliable

transmission on the physical

layer.

. Establish connection

. Negotiate quality of service

(QOS)

. Transfer data

. Provide flow control

. Reset connection

. Release connection

(1) Physical Defines how the physical

network is accessed in order

to provide bit transparent

transmission on the physical

media. Supports synchronous

and asynchronous

transmission; duplex, half-

duplex, and simplex modes;

and point-to-point and multi-

point topologies.

. Determine presence of

signaling pulses.

. Determine timing of signaling

pulses
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problem. The result is the common object request broker architecture
(CORBA) as a standard that would permit programmers to integrate software
modules resident on the same network by treating each application as an
object. The CORBA standard was developed via a set of request for proposals
developed by the OMG and subsequent development contracts issued to
corporations such as Digital, HP, HyperDesk, and Sun.

The CORBA standard is actually all three standard types: formal, de jure,
and de facto. Part of CORBA, the interface definition language (IDL), is a
formal standard that has been adopted by the ISO and the European Computer
Manufacturers Association (ECMA). The CORBA is a de jure standard in the
United States and among several contractors and a de facto standard elsewhere
in the world. The OMG and X/Open jointly publish CORBA.

The CORBA standard treats software applications as objects, and as such,
sits at the application level of OSI’s seven-layer architecture. See Figure 10.3.
The CORBA is based on a client–server model for distributed computing. The
IDL, a formal standard, is a universal notation for software interfaces defining
a boundary between the client code (requests for services) and the software
objects that implement those services. These software objects may be written to
the standards defined by CORBA or may be legacy software that is ‘‘wrapped’’
by additional code that does adhere to CORBA standards. The IDL is both
platform and language independent and has not changed significantly since first
defined in 1991. In fact, IDL must remain stable or the associated standards
inherent in CORBA will be broken. The IDL standard defines what is exposed
in the interface between the service and its client(s); any other details and
relationships are forbidden. For details on the IDL see Mowbray and Ruh
[1997] or Mowbray and Zahavi [1995].

Although IDL is the key to making CORBA work from both a software
development and architecture perspective, there are four additional categories
of objects that comprise the CORBA architecture and are more important to
this discussion of interfaces: the object request broker, CORBAservices,
CORBAfacilities, and CORBAdomains.

The first object category is the object request broker (ORB), which is the
core of CORBA and is an analogy to a bus network. The ORB is the interface
between the client (software package requesting a service of another package)
and the server (software package performing the service requested). So, in fact,
the ORB can be viewed (Fig. 10.5) as a bus architecture that operates in the
application layer of the OSI network communication model. The main role of
the ORB is to standardize access between software applications, enabling
CORBA to hide the programming, platform, and location peculiarities of client
and server software objects. Each software object registers its interface
characteristics with the ORB. The ORB receives all requests for service by
another software application and knows which application to task with the
request, where that application is, and how the request has to be translated so
that the application will understand the request. The ORB requires that each
software application be written in accordance with CORBA standards as
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defined by the IDL or wrapped in a software application (wrapper) that adheres
to IDL and interfaces with the non-IDL software application. This bus
architecture is the reason that CORBA can be efficient in interfacing software
applications. Without an ORB-like network each application must be able to
interface with every other application; if there were N applications and a new
one is added, the new application must have N new interfaces developed. With
CORBA each new application requires either an IDL wrapper to connect it to
the ORB or the adherence to the IDL architecture.

Parts of the ORB are exposed to the applications (clients and servers), as
shown in Figure 10.6. The dynamic invocation, the ORB interface, and the
dynamic skeleton are defined as part of the CORBA specification and provided
by all ORB environments. The ORB interface contains several general purpose
methods.

The dynamic invocation interface allows the client to request a service
without requiring that precompiled stubs be part of the ORB. Dynamic

Object Request Broker

Application

Presentation

Session

Transport

Network

Data Link

Physical

ServerClient

Request
Response

FIGURE 10.5 CORBA overlaid on OSI seven-layer model.

Object Request Broker (ORB)
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Interface 
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FIGURE 10.6 ORB interactions with clients and servers.
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invocation means that interface-related information about the server is
acquired at the time of the invocation, providing great freedom and flexibility.
The dynamic skeleton associated with the server’s interaction with the ORB
provides a dynamic bundling of the information in the request from the client
into input parameters for the server and a dynamic bundling of the results
obtained by the server for return to the client. The combination of dynamic
invocation and dynamic skeletons enable users to create implementations of
objects that form a gateway to often-used applications such as word processing
and databases.

Static invocations (sometimes called stubs) and static skeletons are also
available as extensions of the ORB. A static invocation is precompiled on the
basis of the IDL interface of the client to the ORB and requires that the client
have knowledge of server’s characteristics before the request is made. As
additional objects (software applications) are added to the ORB, a client
relying on static invocation will have to be updated in order to access the new
applications. A client using dynamic invocation will be able to learn the needed
information from the interface repository while building the request. Interest-
ingly CORBA is constructed so that the server is unaware of the nature (static
versus dynamic) of the invocation. (The word ‘‘common’’ was added to
CORBA when the decision was made to implement both static and dynamic
invocations.) The static skeleton is analogous to the static invocation but on the
server side. Static invocations and skeletons have the benefits of being easier to
program, performing faster (dynamic invocations can be up to 40 times slower
than static invocations [Orfali et al., 1997, p. 71], more robust, and easier to
understand.

The final part of the ORB that interacts with servers is the object adapter.
The major function of the object adapter is to define how an object is activated.
One software application that can satisfy many types of requests could use a
different object adapter for each request type. The CORBA standard requires
that a basic object adapter be available in every ORB; this basic object adapter
is sufficient for most applications. The basic object adapter performs the
following functions: installation and registration of an object implementation
(implementation repository), generation and interpretation of object references,
activating and deactivating object implementations, invoking methods and
passing method parameters.

CORBAservices include the types of services that are part of operating
systems and are globally applicable. These services are packaged as objects with
IDL interfaces and are augmentations of the ORB. Table 10.2 describes the
services that currently comprise the ORB-object service (ORBOS) architecture.
Additional services are planned for the future. These services enhance the
effectiveness, efficiency, and security of the ORB and were proposed by
platform and ORB vendors. Each service is implemented as an object so that
it can be used by any application.

CORBAfacilities are objects that provide services to application objects and
are keyed to interoperability issues of the applications. The initial architecture
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TABLE 10.2 Services in the ORBOS Architecture

ORBOS Segment Service Description of Service

Information

Management

Services

Properties Associates named values or properties

with an object.

Relationship Creates and provides mechanisms to

traverse dynamic links between objects.

Query Provides a superset of the structured

query language (SQL) queries, based on

SQL3.

Externalization Processes data structures and object states

into flat representations so that the

information can be transmitted in and

out of objects as a stream.

Persistent Object Provides a protocol for a persistent object

to store its state in an object database,

relational database, or file.

Collection Generically creates and manipulates

common collections of objects.

Task Management

Services

Events Passes event information among sources

and consumers; information can be

multicast to registered objects.

Concurrency Provides a lock management structure

based on either transactions or threads;

includes read, write, upgrade, intention

read, and intention write locks.

Transactions Enables the manipulation of the state of

multiple objects for flat and nested

manipulations.

System

Management

Services

Naming Enables objects to locate other objects by

name, and to bind and resolve to

directories, analogous to the ‘‘white

pages of the phone book.’’

Lifecycle Enables the creation, copying, moving and

deleting of objects on the ORB.

Licensing Allocates objects based upon the number

of licenses obtained from the publisher.

Trader Enables objects to publicize their services

and bid for jobs; analogous to the

‘‘Yellow Pages.’’

Infrastructure

Services and

Elements

Time Synchronizes time in a distributed object

environment.

Security Supports authentication, access control

lists, confidentiality and non-

repudiation; manages the delegation of

credentials between objects.

Messaging Enables asynchronous invocations on the

ORB.
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for CORBAfacilities is divided into user interface management, information
management, system management, and task management. Note these are the
same elements as CORBAservices except that user interface management in
CORBAfacilities replaces infrastructure services and elements in CORBAser-
vices. The applications in CORBAfacilities are likely to change the way the user
views computing and to enable the ORB to distribute the computing associated
with a user’s need across the platforms associated with the ORB in the most
efficient manner.

CORBAdomains is the final category of the CORBA. This category is still
under development and will facilitate vertical application development in
domains such as banking, manufacturing, multimedia conferences, telecom-
munications, and medicine.

CORBA is not unique in its efforts to enable integration of software
applications for users. Other attempts to integrate applications are the distrib-
uted computing environment (DCE) of the Open Software Foundation (OSF)
and Microsoft’s distributed component object model (DCOM). In fact, these
three approaches compete with and complement each other. The remote method
invocation of JAVA is also related to these three approaches. See Mowbray and
Ruh [1997] for a comparison of these approaches.

10.7 INTERFACE DESIGN PROCESS

Interface design is central to the success of the systems engineering process. By
determining what the system’s components are and allocating functions to
these components in the process of defining the allocated architecture. En-
gineers of the system identify those items (inputs and outputs) that pass
between components. The transportation of these items must be allocated to
some physical entity; additional low-level functions must be defined that make
the transition across this transportation entity possible. The IDEF0 diagram in
Figure 10.1 shows the design process of the system-level interfaces. As discussed
earlier, this design process has all of the elements of the system’s design process.

Design of the interface must pay special attention to the system performance
issues associated with the interfaces outputs. Concerns about the timeliness,
accuracy, and reliability of the outputs of the interface need to be considered
carefully. The fidelity of the interface is defined as the insurance of the integrity
and delivery of items being transferred; that is, the item being sent is the same as
the item being delivered, and the item is delivered in a reasonable amount of
time. Clearly the interface needs to be sized to handle some determinable
quantity of items. Finally, there must usually be extensive failure detection and
recovery algorithms to address the integrity and delivery of items.

The design process for an interface includes the steps shown in Figure 10.7.
First, defining the components to be addressed, the items that are transferred
between them, and any interfaces that have already been specified should
bound the interface design problem. Next, we must identify those items that are
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to be included in the interface for which we are concerned. Before getting into
the design, we must derive the requirements for this interface from the current
requirements specification. Included in these requirements are the performance,
cost, and trade-off requirement that will be instrumental in selecting the
interface.

The design steps are to choose an interface architecture (e.g., shared
memory, message passing, bus network); define specific trial interface alter-
natives (e.g., various bus network alternatives); evaluate these alternatives
against the requirements, specifically the performance, cost, and trade-off
requirements; and finally choose a specific interface alternative.

Once the interface has been chosen, the behavior of the interface must be
detailed and added to the functional architecture. Next, functional behavior is
allocated to the existing components and the new interface. Finally, the
performance of the segment containing the components and interface must
be evaluated, and critical fault detection and recovery behavior must be added
to the functional architecture and then allocated to the components and
interface.

Figure 10.8 provides a sample result of the above interface design for an
elevator. The interface is an external one between the elevator and the building
for the purpose of transferring emergency communications between passengers
in the elevator and appropriate emergency response unit (e.g., police). In
this case a standard interface item, a commercial telephone system, is chosen,

• Define Interface Requirements  
• Identify the Items to Be Transported by the Interface 
• Define the Operational Concept 
• Bound the Problem with an External Systems Diagram 
• Define the Objectives Hierarchy 
• Write the Requirements 

• Select a High-Level Interface Architecture  
• Identify Several Candidate Architectures 
• Define Trial Interfaces for Each Candidate 
• Evaluate Alternatives against Requirements 
• Choose High-Level Interface Architecture 

• Develop Functional Interface Architecture  
• Specify Functional Decomposition 
• Add Inputs and Outputs 
• Add Fault Detection and Recovery Functions 

• Develop Physical Interface Architecture  
• Identify Candidates based upon High-Level Architecture 
• Eliminate Infeasible Candidates 

• Develop Allocated Interface Architecture  
• Allocate Functions to Components of the Interface 
• Analyze Behavior and Performance of Alternatives 
• Select Alternative 
• Document Design and Obtain Approval 

FIGURE 10.7 Interface design process.
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making most of the interface design process unnecessary. Commercial stan-
dards are often chosen as interfaces for this reason.

10.8 SUMMARY

Interfaces are the primary responsibility of the systems engineer and are the
most common failure point on systems. Designing the interfaces of a system
begins with identifying the interfaces, both external and internal, and allocating
items (inputs and outputs) to the defined interfaces. Next the requirements for
each interface must be derived from existing system-level requirements. As part
of the system’s requirements, interface requirements will be derived that define
the performance and fidelity of the interface. System throughput and response
time are the common performance issues that are relevant to designing the
interfaces. The fidelity of an interface means ensuring the quality of the items
being carried.

As part of the design process alternative interface architecture options must
be examined and the most cost-effective chosen. These alternatives can be
based on message passing, shared memory, or network architectures, depend-
ing upon the characteristics of the items being transported and the performance
issues associated with the system.

Standards play a major role in the design or selection of an interface. If a
standard can be selected as an interface, then the design information that needs
to be communicated in any component or CI specification is readily available

• Define Interface Requirements  
• Identify the Items to Be Transported: Emergency Communications from the Elevator to the 

Building (and onto the emergency response team) 
• Define the Operational Concept: Passenger encounters emergency and requests ability to make 

emergency known to emergency response team; Elevator provides resource for passenger to use; 
Passenger communicates  

• Bound the Problem with an External Systems Diagram: (skipped) 
• Define the Objectives Hierarchy: Objectives are (1) availability of interface, (2) fidelity of the 

communicated message, (3) operational cost (monthly) and (4) deployment cost. 
• Write the Requirements: (skipped) 

• Select a High-Level Interface Architecture 
• Identify Several Candidate Architectures: (1) Telephone connection to building, (2) Dedicated 

communication system network to emergency response team 
• Define Trial Interfaces for Each Candidate (skipped) 
• Evaluate Alternatives against Requirements: Dedicated network is too expensive to install 
• Choose High-Level Interface Architecture: Telephone connection is chosen 

• Develop Functional Interface Architecture: Not needed because interface is standard 
• Develop Physical Interface Architecture  Not needed because interface is standard 
• Develop Allocated Interface Architecture  Not needed because interface is standard 

FIGURE 10.8 Sample interface design between elevator and the building housing the
elevator.
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and probably well understood. Standards can be formal (adopted by a
recognized standards-setting body), de jure (mandated by legal authorities),
and de facto (adopted via popular usage by many commercial concerns).

Two major standards, the open systems interconnection (OSI) reference
model and the common object request broker architecture (CORBA) were
presented in this chapter. These two standards demonstrate the complexity
associated with most significant interfaces in terms of design issues and
functionality.

CASE STUDY: PATHFINDER COMMUNICATIONS FAILURE

The Pathfinder system that was deployed to the surface of Mars for a
landing on July 4, 1997 was truly a success in many ways. Unique system
design features included a landing on air bags and the small but effective
Sojourner rover.

However, a few days into the mission operators on the ground noticed
that infrequent total system resets were occurring that were causing the
loss of data. The Pathfinder’s information system contained an interface
described as a ‘‘bus or shared memory area’’ [Jones, 1997]. A priority
system had been established for giving various system activities access to
this interface. A bus management task had high priority and ran
frequently to accept specific data elements into the shared memory area
and then distribute them to their proper locations. A task for gathering
and publishing meteorological data had low priority. A particular,
lengthy communications activity employed by the spacecraft had a
medium priority. Mutual exclusion locks were employed to give an
activity access to the interface. A mutual exclusion (mutex) lock is given
to an activity and grants that activity control of the communications
interface until it releases control back to the interface. VxWorks is the
commercial package used on Pathfinder to handle these scheduling
activities on the interface. Wilner [1997] described the problem causing
the system resets and the process used to diagnose and fix this problem.

The meteorological data gathering activity was an infrequent user of
the communications interface and involved the publishing of a substan-
tial amount of data. This data was so voluminous that the meteorological
data activity would have to obtain and release mutexes several times
before it was finished. The meteorological activity was broken into short
enough segments that the high-priority bus management task could
gain control for its important functions during the meteorological
activity. However, the long running, medium-priority communications
activity would infrequently interrupt the meteorological activity during
one of its pauses and gain control of the interface. The durations of this
medium priority communications task and the previous segments of the
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meteorological task were sufficiently long to invoke a watchdog timer
that was employed to ensure that the high-priority bus management task
was executing appropriately. In these rare cases the watchdog timer
would invoke a total system reset as a hedge against the system being in a
deadlock or failure mode. Whenever the reset occurred, the data in the
interface would be lost.

Fortunately, VxWorks had a feature for recording a total trace of
system events. Jet Propulsion Lab (JPL) engineers ran the Pathfinder
replica on Earth in their lab until the reset situation was replicated. They
found that VxWorks had been programmed to run without a feature
called priority inheritance. Enabling this priority inheritance feature
would solve this problem by keeping the medium-priority communica-
tions task from slipping into the middle of the meteorological publishing
task. The JPL engineers uploaded a short C program that enabled the
priority inheritance feature. Pathfinder experienced no more system resets
or loss of data.

PROBLEMS

10.1 Develop a functional, physical, and allocated architecture for an OSI-
compliant communication system using the material presented in this
chapter for the OSI reference model. Note the physical architecture of
the communication system will include the physical communication
network as well as the layers of the OSI reference model.

10.2 Develop a functional, physical, and operational model for a CORBA-
compliant software system. Use a physical architecture comprised of the
IDL, ORB, CORBAservices, CORBAfacilities, and CORBAdomains.

10.3 Select several items for your OnStar project from previous chapters
and design an interface for those items.

10.4 Select several items for your ATM project from previous chapters and
design an interface for those items.
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