
Chapter 11

Integration and Qualification

11.1 INTRODUCTION

Integration is the process of assembling the system from its components, which
must be assembled from their configuration items (CIs). Qualification is the
process of verifying and validating the system design and then obtaining the
stakeholders’ acceptance of the design. Recall that verification is the determi-
nation that the system was built right while validation determines that the
right system was built. Both of these activities are conducted by the systems
engineering team as part of the development process, primarily during
integration. Validation has critical early elements (conceptual, design require-
ments, and validity) that are completed during the design phase. The system
that is used to qualify the system being designed must be built for that purpose.
So while the operational system is being designed, the qualification system for
the operational system is also being designed and integrated. The operational
phase for this qualification system is during integration and qualification.
Also keep in mind that other systems are being developed concurrently
with the operational system, namely, some or all of the manufacturing,
deployment, training, refinement, and retirement systems. Each of these also
has a qualification system.

The terms testing and qualification are used interchangeably in parts of this
chapter. The word testing is associated with the key words of acceptance,
validation, and verification by most systems engineers. However, the process of
acceptance, validation, and verification comprise what is being called qualifica-
tion in this chapter. The confusing usage arises when an instrumented test is
mentioned as one of four methods that comprise qualification (testing), and the
other three methods do not contain the word test: inspection, demonstration,
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and analysis and simulation. In fact, these three methods are forms of test.
The word qualification is used in this chapter as often as possible to mean the
process that comprises acceptance, validation, and verification testing. The
word testing will be used with these three terms but is meant to be associated
with the methods used in the qualification process during integration.

This chapter begins by providing a detailed definition of the elements of
qualification: acceptance testing, validation, and verification. Section 11.3
discusses the concept of integration since qualification takes place as integration
is progressing; alternate processes for integration are discussed in Section 11.4.
Then qualification is described in detail, beginning with planning and proceeding
to a detailed discussion of qualification methods. Special topics in acceptance
testing are described in Section 11.7.

The exit criterion for integration and qualification is acceptance of the design
by the stakeholders. This is often done conditionally, that is, with the provision
that certain system elements be revised to enable greater cost-effectiveness
during operation.

11.2 DISTINCTIONS AMONG ACCEPTANCE, VALIDATION
AND VERIFICATION TESTING

In Chapter 1 the concepts of verification, validation, and acceptance were
introduced. (Grady [1997] provides additional detail on the distinctions being
discussed here.) Acceptance is a stakeholder function for agreeing that the
designed system, as tested or otherwise evaluated by the stakeholders, is
acceptable. As such acceptance is driven by the stakeholders, with the knowl-
edge of the results of validation and verification activities that have preceded it.
See Figure 11.1.

Validation is the process of determining that the systems engineering process
has produced the right system, based upon the needs expressed by the
stakeholder. Validation is carried out by the systems engineers, based upon
what they believe the stakeholders’ needs to be. The most reliable and early
statement of the stakeholders’ needs is the operational concept. Therefore
operational validity is the matching of the capabilities of the designed system to
the operational concept; this naturally occurs late in the integration phase after
the designed system has been verified. However, conceptual validity, require-
ments validity, and design validity are important aspects of validity and need to
be addressed early in the design phase. Conceptual, requirements, and design
validity are called early validation, the determination that the right problem is
being defined at the current level of abstraction, given the validity of the
problem definition at a higher level of abstraction.

Conceptual validity is the correspondence between the stakeholders’ needs
and the operational concept. Conceptual validity needs to be established at the
outset of the design process via interactions among the systems engineers and
the stakeholders; however, the systems engineer cannot assume that once
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established there is no more work to be done. Stakeholders’ needs change and
the operational concept must change with those needs. Note operational
validity only makes sense if conceptual validity has been established. If both
conceptual and operational validity are solid, then the stakeholders’ acceptance
should be nearly guaranteed.

Requirements validity is the correspondence between the operational concept
and the stakeholders’ requirements. In requirements validity the operational
concept is assumed to be an accurate reflection of the stakeholders’ needs; the
validation occurs by establishing that the stakeholders’ requirements have
neither introduced new issues nor left issues out of the operational concept,
thus causing the design of a different system than envisioned in the operational
concept. But recall that the operational concept and stakeholders’ requirements
should be stated in design independent terms, making this task of requirements
validity quite difficult. Elements of requirements validity are ensuring there are
input/output requirements for all of the inputs and outputs in the operational
concept; that every objective in the objectives hierarchy has a performance
requirement in the StkhldrsRD; that every external interface to the system
has been considered for an external interface requirement; and so forth.
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The external systems diagram and objectives hierarchy (discussed in Chapter 6)
are key tools for establishing this requirements validity. In addition, inter-
mediate products such as a data model that relates the inputs to and outputs
from the system in the operational concept to the aggregate inputs and outputs
of the system in the external systems diagram can and should be developed to
support requirements validation. At a higher level of abstraction, the systems
engineers should be asking ‘‘Can we get something we do not want even though
these requirements stating our needs are met?’’ In addition they should ask
‘‘Can we get what we want (the problem solved) without getting what we have
asked for in the requirements?’’ If either of these questions can be answered
positively, there is more work to do on the requirements.

Design validity assumes that the Stakeholders’ Requirements Document
(StkhldrsRD) is a valid statement of the stakeholders’ needs and addresses the
congruence between the StkhldrsRD and the derived requirements. The derived
requirements begin with the Systems Requirements Document (SysRD), evolve
to subsystem and component specifications, and culminate in CI specifications.
In Chapter 9 three techniques for flowdown or derivation of requirements were
discussed: apportionment, equivalence, and synthesis. Establishing design
validity for apportionment and equivalence is straightforward. Design valida-
tion when synthesis is involved, on the other hand, requires establishing the
validity of the models used to complete flowdown via synthesis. These models
are used to transform requirements on one or more variables to requirements
on parameters that have a functional relationship with these variables. A
common cause for failure in this synthesis process is that the models being used
were valid in previous engineering efforts but are not valid for the current
system; yet the validity of the models from previous developments of similar
systems is assumed to pertain to the current development. Petroski [1994]
provides extensive evidence of such failures in structural design engineering;
failures of bridges are highlighted in particular. The designers forgot the lessons
of past failure modes and built bridges that were extrapolations of previous
efforts: Extrapolations that were not justified based upon modeling assump-
tions that were not examined in sufficient detail.

Conceptual requirements and design validity are the province of the
systems engineering team and must be undertaken very seriously to ensure
that the requirements development process does not redefine the problem being
solved. There are two chains that must be strong; see Figure 11.2. The first
chain consists of conceptual validity, operational validity, and acceptance
testing. Requirements validity, design validity, verification, and operational
validity comprise the second chain. Each of these chains is only as strong as the
weakest link.

Verification is the matching of CIs, components, subsystems, and the system
to their corresponding requirements to ensure that each has been built right.
This process of design verification is also carried out by the systems engineering
team to ensure that the design problem defined in conjunction with the
stakeholders is being solved appropriately. In order for verification to be
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successful, the originating and derived requirements must be testable; that is,
the requirements must be single statements that are unambiguous, under-
standable, and verifiable (see Chapter 6).

Verification begins in the design phase with the definition of the derived
requirements and becomes the focus of activity early in the integration phase
when the systems engineers can match the derived requirements to the
capabilities of the CIs and the components. However, the design of the test
system to achieve this verification must occur in the design phase of the system.

It is a misconception to picture verification as beginning and ending before
validation, which begins and ends before acceptance testing. In fact, as can be
seen in Figure 11.1, validation has to begin with the definition of requirements
to ensure that there is conceptual validity between the operational concept and
the stakeholders’ needs. Requirements validity also begins almost immediately
to address the congruence between the stakeholders’ requirements and the
operational concept. Finally, design validity addresses the consistency and
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congruence between stakeholders’ requirements and derived requirements. For
example, does every input and output to the system have at least one
requirement associated with it? Does the system have all of the system-wide
requirements it should have? Before operational validation can begin, design of
a qualification system must occur. The IDEFO (Integrated Definition for
Function Modeling) representation in Figure 11.3 of early validation, verifica-
tion, operational validation, and acceptance testing suggests the most likely
sequential ordering. In practice, though, there is substantial concurrency
involving these processes, making the results even more difficult to get right.

Finally, in order for the acceptance test to be successful, there must be clear
agreement between the acceptance thresholds and the early design documents
of the operational concept and stakeholders’ requirements. Therefore, design of
the acceptance test must begin early enough to enable both conceptual and
design validity.

Successful integration relies critically on the complete and consistent
development of stakeholders’ requirements, the proper flowdown of stake-
holders’ requirements into derived requirements and tracing of requirements to
functions and components/CIs, and the analysis of system performance and
cost in light of the stakeholders’ fundamental objectives. These are design
activities associated with the system. The development of test requirements,
including the verification, validation, and acceptance test plans, initializes
integration and helps formalize the design process.

11.3 OVERVIEW OF INTEGRATION

Textbook integration is a bottom-up process (see the top half of Figure 11.4)
that combines multiple CIs into components, and multiple components into
subsystems, and multiple subsystems into the system. At each level of integra-
tion the appropriate interfaces and models of the external systems, compo-
nents, and CIs must exist for this subset of the system. These interfaces and
models are stimulated by defined sets of inputs and tested to determine if
the appropriate outputs are obtained. In addition, the physical combination of
the CIs, components, or subsystems is examined to determine that the fit
of these system elements is acceptable. This is not to say that integration can
only be bottom up and must wait for the last available CI before proceeding
to the component level. In fact, design stubs (shells or model replicas) for
specific CIs, components, or even subsystems can be developed as part of the
integration process to reduce risk, speed up integration, and enhance the testing
effort. Alternate integration processes are discussed later.

Figures 11.4, 11.5 and 11.6 show three different representations of the major
integration functions. The bottom half of Figure 11.4 shows this information as
an IDEFO diagram with the functions and flow of data among the functions;
the major functions are (1) inspect and test the CI (component or subsystem),
(2) identify and fix any correctable deficiencies found in the first function, (3)
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assess the impact of any uncorrectable deficiencies found in the first function,
(4) redesign the CI (component or subsystem) to address unacceptable impacts
of any uncorrectable deficiencies as identified in the third function, (5) modify
the baseline of the design to account for any fixes (function 2) or acceptable
impacts (requirements changes from function 3), and (6) integrate with the
next CI (component or subsystem) and repeat until all CIs (components or

Design
Changes

Conduct 
Early 

Validation
A21

Conduct
Integration &
Verification 

A22

Conduct
Validation 

A23

"Built-to"
Configuration
Items & Pre-
Production
Prototypes

System
Integration

Phase
Documentation

System Design
Phase

Documentation  

Qualification Procedures,
Activities, & Models

Conduct
Acceptance

Testing 
A24

"Built-to"
CIs

Pre-Production
Prototypes

Acceptance
Testing
Document

Validation
Document

Verification
Document

Early
Validation
Document 

Early
Validation
Changes

Verification
Changes

Validation
Changes

Acceptance
Changes

Operational
Concept

Acceptance
Criteria &
Thresholds

Verification
Data

Validation
Data

Operational
System    

Acceptance
or Rejection

Inputs of StakeholdersOperational Concept,
Stakeholders’ Requirements,
Derived Requirements

Derived  &
Stakeholders’
Requirements

Perform
Design

Activities 

A1

Perform
Qualification
& Integration

Activities 

A2

System Design
Phase
Documentation

Design
Changes

System
Integration
Phase
Documentation

"Built-to"
Configuration
Items & Pre-
Production
Prototypes

Inputs of Stakeholders

System Design &
Integration

Documentation

Qualification
System Design

 Documentation
Qualification Procedures,
Activities, & Models

Qualification
System Design
Documentation

Operational
System

Qualification
System

FIGURE 11.3 Bottom-up integration process.

11.3 OVERVIEW OF INTEGRATION 347



subsystems) have been integrated. Figure 11.4 addresses component integration
but has the identical structure for the higher level integration at the subsystem
and system levels.

Figure 11.5 shows logic structure of integration at the subsystem level, that
is, integrating every subsystem of the system until all subsystems have been
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integrated. First a selected subsystem is inspected and tested to determine if it
meets the requirements defined in the specification for that subsystem; this is
verification. If the subsystem is not deficient, the next subsystem begins the
verification process. If the subsystem is deficient, modifications and fixes are
made if possible, and the design baseline is modified accordingly. However, if
there are remaining deficiencies, the impact of these deficiencies must be
assessed. If the deficiencies are acceptable, no redesign is necessary and the
requirements baseline is modified. However, if the deficiencies are unaccepta-
ble, the subsystem must be redesigned, usually at great cost and delay in time. If
any changes are made at all, the subsystem must be retested (called regression
testing) in case any new problems were introduced.

These six functions cannot flow in serial sequence. In fact, some functions
may not be executed at all. If there are no deficiencies, functions 2 through 5 are
never executed. If all deficiencies are correctable, functions 3 and 4 are not
executed. Figure 11.6 shows the control structure needed to make these
function work as a function flow block diagram (FFBD). (The details of
reading FFBDs can be found in Chapter 12.) Figure 11.6 shows the functions at
the subsystem level of integration, but again this structure applies equally at the
component and system levels.

11.4 ALTERNATE INTEGRATION PROCESSES

As discussed earlier bottom-up integration is commonly discussed in textbooks
as the desired approach. In fact, in Chapter 1 the Vee model of systems
engineering represented the bottom-up integration process as the appropriate
one. However, there are alternate integration processes (described in Table 11.1)
that are appropriate to systems engineering; these alternate approaches have
been investigated and described by the software engineering community [Perry,
1988]. The top-down integration process was commonly used in software
engineering as part of top-down software design and development. The most
commonly used integration process in the software industry [Perry, 1988] is ‘‘big
bang’’ integration, in which CIs are combined as they become available and have
completed testing.

Top-down integration begins by examining the top-level core of the system,
is followed by adding major components to this core and testing, and ends by
adding the individual CIs to the cores of the components and testing. Top-
down integration is very difficult to accomplish for systems with hardware,
people, and facilities that are designed from scratch. It is difficult to define a
system core that is hardware, people, and facilities unless a large part of the
system already exists, commonly referred to as ‘‘commercial off-the-shelf’’
(COTS) components or CIs. However, as more and more new systems are made
up of larger and larger amounts of COTS components, top-down integration
has greater usefulness in systems engineering.
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TABLE 11.1 Principal Integration Processes

Top-Down � Integration begins with a major or top-level module.

� All modules are called from the top-level module are simulated by

‘‘stubs’’ (shell or model replica).

� Once the top-level module is qualified, actual modules replace the stubs

until the entire system has been qualified.

� This is most useful for systems using large amounts of COTS

components.

Phase Integration: Integration is done from the top down to the lowest

level; one peel of the onion at a time.

Incremental Integration: Integration is done for a specific module from top

to bottom; one slice of the system at a time.

Advantage:

Early demonstration of the system is allowed.

Representation of the test cases is easier.

This is more productive if major flaws occur toward the top of the

system.

Disadvantage:

Stubs have to be developed.

Representation of test cases in the stubs may be difficult.

Observation of test output may be artificial and difficult.

This requires a hierarchical system architecture.

Bottom-Up � Integration begins with the elementary pieces (or CIs) that comprise the

system.

� After each CI is tested, components comprising multiple CIs are tested.

� This process continues until the entire system is assembled and

tested.

� This is the traditional systems engineering integration approach.

Phase Integration: At any point in the integration, all of the subsystems

are at the same stage of integration testing.

Incremental Integration: Integration proceeds one slice of the system at a

time.

Advantage:

It is easier to detect flaws in the tiniest pieces of the system.

Test conditions are easier to create.

Observation of the test results is easier.

Disadvantage:

‘‘Scaffold’’ systems must be produced to support the pieces as they are

integrated.

System’s control structure cannot be tested until the end.

Major errors in the system design are typically not caught until the end.

System does not exist until the last integration test is completed.

This requires a hierarchical system architecture.

Big Bang � Untested CIs are assembled and the combination is tested.

� This is a commonly used and maligned approach.

(Continued)
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Both the bottom-up and top-down integration processes can proceed for the
entire system by adding or peeling a layer of the system as one would an onion;
this is referred to as phase integration. For bottom-up integration this means
that all of the CIs are integrated into their respective components before
any components are integrated. However, it is commonly counterproductive
from schedule and cost perspectives to delay the integration of some of the
components until all of the CIs are ready.

At the other extreme is incremental integration in which one subsystem at a
time is integrated from the CIs up through its components before the
integration of any other subsystem is begun. Just as phase integration is
impractical, so to is pure incremental integration. A major element of test
planning is the creation of a realistic schedule for when each CI will be ready so
that integration can proceed at an orderly pace and test system devices and
models can be ready when needed. This typically involves a mixture of phase
and incremental integration.

Finally, big-bang integration is a relatively undisciplined, but much used,
approach to integration. At the worst extreme this approach begins assembling
CIs as they become available and undertakes testing as an afterthought. Since
there is no serious planning for testing sequences, fault detection and fault
localization and diagnosis become very difficult. At its best this approach
combines bottom-up and top-down integration in a disciplined and rigorous
manner. When done well, this approach often takes more planning and
development of test rigs but can be accomplished more quickly.

Another major element of the development of the qualification system and
qualification planning is the creation of the appropriate test stubs and scaffolds
with drivers for the relevant qualification scenarios. Each CI, component, and
the system as a whole must be stimulated by a given set of inputs for each
qualification case. In addition, test equipment must be put in place to capture the
outputs of these CIs, components, and the system. The qualification plan ensures
that these qualification system elements will be in place at the right time to enable
the planned integration sequence of CIs and components. The plan typically
breaks down when planned tests are failed by specific CIs, components, or the
system. A well-designed qualification plan will address schedule adjustments for
possible qualification failures as part of risk mitigation.

TABLE 11.1. Continued

Advantage:

Immediate feedback on the status of system elements is provided.

Little or no pre-test planning is required.

Little or no training is required.

Disadvantage:

Source of errors is difficult to trace.

Many errors are never detected.
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11.5 SOME QUALIFICATION TERMINOLOGY

The purpose of qualification is not only to find faults and failures but also to
prevent them and to provide comprehensible diagnoses about their location
and cause. Recall the following definitions from Chapter 7:

Failure: deviation in behavior between the system and its requirements. Since
the system does not maintain a copy of its requirements, a failure is not
observable by the system.

Error: a subset of the system state, which may lead to a failure. The system can
monitor its own state, so errors are observable in principle. Failures are
inferred when errors are observed. Since a system is usually not able to
monitor its entire state continuously, not all errors are observable. As a
result, not all failures are going to be detected (inferred).

Fault: defects in the system that can cause an error. Faults can be permanent
(e.g., a failure of system component that requires replacement) or temporary
due to either an internal malfunction or an external transient. Temporary
faults may not cause a sufficiently noticeable error or may cause a
permanent fault in addition to a temporary error.

The qualification designer should realize that the design of the qualification
system is not only important in terms of finding and defining faults and errors
but also in guiding designers to preclude them from introducing faults in the first
place. In addition, the qualification designer must realize that no qualification
procedure is perfect. As Glegg [1981] points out, no procedure can answer all
questions of interest. Some procedures do well at capturing what happened;
others do much better at explaining why these things happened. As a result a
number of complementary procedures must be employed for success. When
complete the qualification design must document the qualification procedures in
detail and the expected qualification results (requirements) for each procedure.
In fact, recall that the qualification process is being conducted by a qualification
system; the qualification design should be tested just as any system would be.

To design the qualification system, some basic knowledge of faults is needed
and some modeling of fault importance should be completed. The software
community [Beizer, 1990] has written much more extensively on these topics
than has the systems engineering community. Beizer [1990] presents three laws
of software testing that are directly relevant to systems:

First Law: The Pesticide Paradox—Every method you use to prevent or
find bugs leaves a residue of subtler bugs against which those methods are
ineffectual.

Corollary to the First Law—Test suites wear out.

Second Law: The Complexity Barrier— Software complexity (and therefore
that of bugs) grows to the limits of our ability to manage that complexity.

Third Law—Code migrates to data.
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For systems, replace the word bug with fault. The third law becomes
‘‘hardware and people migrate to software which eventually migrate to
data.’’ Theoretically Manna and Waldinger [1978 p. 208] summarized the
barriers to verification (the easy part of qualification) as:

� ‘‘We can never be sure that the specifications are correct.’’

� ‘‘No verification system can verify every correct program.’’

� ‘‘We can never be certain that a verification system is correct.’’

These barriers generalize to validation.
Beizer [1990] also provides a taxonomy of bug (fault) consequences:

Mild: The symptom offends us aesthetically, for example, misspelling or
poor formatting.

Moderate: Outputs are misleading or redundant, affecting system
performance.

Annoying: The system’s behavior is dehumanizing, for example, names are
truncated, bills for $0.00 are sent, operators must resort to unnatural
command actions to obtain the desired response.

Disturbing: The system refuses to handle legitimate functions.

Serious: The system loses track of functions and gobbles unique inputs, for
example, your deposit is lost.

Very Serious: The system mixes input and output streams, for example,
your deposit is credited to another account.

Extreme: The problems are not limited to a few situations but occur on a
frequent basis.

Intolerable: The system causes long-term, unrecoverable corruption of the
database and this corruption is not easily detected.

Catastrophic: The system decides on its own to shut down, causing
unrecoverable corruption of the database.

Infectious: The system completes its own functions, but in so doing it
corrupts the functioning of other systems.

This type of fault categorization is the first step in defining the importance of
faults; these categories define distinctions among the consequences of faults.
The other key element of fault importance is the frequency with which the fault
occurs. (Note Beizer’s extreme category is a variation of very serious that
increases the frequency. In a taxonomy on consequences, extreme should be
removed.) Consider the set of scenarios ( j=1, 2, y, J) in the operational
concept (or preferably some aggregation of these scenarios). Develop the
following two metrics for each scenario and each fault category ( i=1, 2,y, I ):

pij = probability of fault i in scenario j;

cij = dollar (or some other value measure) consequence of fault i in scenario j.
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The measure of the importance of the fault types Ii is:

Ii ¼
XJ

j¼1
Vjpijcij

where Vj is the relative measure of the importance of each scenario. (Note, if cij
is in dollars, the term Vi can be set to 1.0; however, if cij is in non-dollar units, Vi

will be needed to calibrate across scenarios.) This measure works well if the
likelihood of each fault type in each scenario is relatively rare. If some fault
types may occur multiple times in a scenario, then a more complex measure
should be used.

Bezier [1990] also presents a taxonomy of ‘‘bugs’’ (software faults) for
software programs based upon the cause or source of introduction of the bug.
This taxonomy includes requirements, features and functionality, structure,
data, implementation and coding, integration, system and software architec-
ture, and testing. Beizer [1990] provides detailed summary statistics for the
frequency of these types of bugs.

11.6 DEFINING THE QUALIFICATION SYSTEM

There are four major levels of qualification planning: Plan the qualification
process, plan the qualification approaches, plan qualification activities, and
plan specific tests. The first three qualification planning functions are con-
ducted for verification, validation, and acceptance testing. The fourth planning
function is conducted for every specific qualification activity identified in the
three prior planning functions. These final plans should stipulate that every
requirement be tested individually. Table 11.2 shows the elements of each of the
four qualification planning functions. Recent research has been conducted in
this area by Meisenzahl et al. [2006], Levardy et al. [2004], and Hoppe et al.
[2003].

The system’s objectives discussed in Chapter 6 become key for the initial
activity of planning the qualification process. These objectives of the system
drive the qualification objectives. A key part of the qualification objectives is
determining whether the test was passed by the system design or not. Defining
the threshold for passing the test is a difficult balancing act; the threshold
cannot be too low or there is no reason to conduct the test. At the same time the
threshold cannot be too high or there is too great a chance that development
money will be wasted fixing deficiencies that were not worth fixing and delaying
the production and delivery of a system that is badly needed by the stake-
holders, especially when competitive advantage is involved. The qualification
objectives must be focused on determining whether the system passes or fails
the threshold criteria. This focus on qualification objectives and pass/fail
thresholds is the identification of alternate concepts for the qualification
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TABLE 11.2 Qualification Planning Functions

Plan the qualification

process

Acceptance test

Validation test

Verification test

� Review system objectives

� Identify qualification system objectives

� Identify pass/fail thresholds

� Define qualification operational concept

� Define qualification requirements

� Define qualification functional architecture

� Define qualification generic physical architecture

� Generate qualification coverage matrices (allocate

requirements to functional architecture and functions to

the generic physical architecture)

� Identify risks and mitigation strategies

� Create master qualification plan

Plan the qualification

approaches

Acceptance test

Validation test

Verification test

� Define subfunctions (or test activities) for the functional

architecture

� Define qualification resources and organizations

(instantiated physical architecture)

� Assign qualification activities to organizations

� Allocate qualification activities to resources

� Develop qualification schedules consistent with

development schedule

Plan qualification

activities

Acceptance test

Validation test

Verification test

� Develop detailed derived qualification requirements for the

test activities

� Develop functional architectures for fulfilling the test

activities

� Define detailed component architectures for the test

resources (identifying what special test fixtures and test

stubs are needed)

� Generate coverage matrices (allocate derived requirements

to functional architectures and functions to physical

architectures)

� Write activity level qualification plans for each

qualification component

� Assign qualification responsibilities

Plan specific tests

Acceptance test

Validation test

Verification test

� Create test scenarios

� Identify required stimulation data for each activity

� Write test procedures

� Write analysis procedures

� Define test and analysis schedules
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system, culminating in the selection of that concept that is deemed most
appropriate. This concept selection decision must trace back to the original
system concept selection.

Once the qualification objectives have been established, the operational
concept for qualification (including key scenarios) can be defined. This
operational concept will produce a definition of all high level inputs and
outputs of the tests. The definition of the qualification scenarios in considera-
tion of the qualification objectives is establishing at a high level what should be
tested and to what precision of confidence. The qualification requirements,
based upon the threshold criteria for passing, determine how well the test
should be conducted in each area. Each specific test should be considered a
system; the major test functions are needed to help define the resources needed
for the test. These qualification functions enable the development of qualifica-
tion requirements; both input/output requirements and qualification-wide/
technology requirements. The qualification requirements in this case involve
the examination of the qualification system design to ensure that it satisfies the
requirements involved in meeting the qualification objectives. Qualification
coverage matrices involve comparisons of the qualification requirements to the
qualification activities; these matrices enable the management of qualification
requirements to ensure that every requirement is being met by some activity.
Even more so than with most systems, there may be risks that the testing
process will not be completed in a timely manner; test failures at certain points
may cause delays in fixing deficiencies or replacing test items. Therefore, extra
effort should be expended to identify risks to meeting qualification-wide
requirements (such as schedule and time) and develop risk mitigation strategies
for dealing with such risks. Finally, the plan for the qualification process should
be documented in a master qualification plan.

The second major qualification planning function of Table 11.2, plan the
qualification approach, involves creating specific test activities (subfunctions)
as well as the physical and allocated architectures for the qualification system.
The physical architecture for a test includes test equipment and facilities, as well
as the organizations (people) that will conduct a specific test. After one or more
generic qualification architectures have been devised and several instantiated
qualification architectures are identified, decisions can be made about the most
cost-effective means for achieving the qualification objectives with a reasonable
risk. As part of this process for selecting an allocated qualification architecture,
the allocation of qualification activities to equipment, facilities, and organiza-
tions must be considered. Planned previous qualification data must also be
considered so that each test does not retest or overtest certain requirements.
Finally, these qualification activities can now be planned in time so that the
qualification resources are used efficiently and development schedule require-
ments are met.

The last two qualification planning functions in Table 11.2 define the
qualification activities in greater detail, that is, at the component and CI levels.
Planning the qualification activities decomposes each activity to two or three
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levels of detail, and matches these subactivities to requirements and resources.
Planning the specific tests takes each test activity and creates detailed scenario
and data specifications of the activity. Test procedures for handling the test
equipment and test data are also produced. Finally detailed schedules are
produced.

Figure 11.7 depicts the design process of the qualification system as an
IDEF0 diagram. Note this is essentially the same process discussed in Chapters
6 to 10 for any system. However, a final activity is added to address the
development of all the models needed for qualification.

11.7 QUALIFICATION METHODS

Four categories of qualification methods are inspection, analysis and simulation,
instrumented test, and demonstration. Table 11.3 summarizes each of these
methods by describing each, discussing when each is used and when each is
most effective.

Inspection is used for physical, human verification of specific requirements.
As automation has come to replace humans in the performance of certain
activities, more and more of inspection can be accomplished by computers,
which falls under instrumented test. A major example of this migration from
inspection to instrumented test is the examination of software code for key
features or the lack of key features. Finally, qualitative models that are now
available with systems engineering tools that allow for extensive inspection
opportunities related to design validity and design verification.

Analysis and simulation involves the use of models to test key aspects of
the system. Models have always been used in engineering; see Chapter 3 and the
discussion of mental models. The most common use of models is to examine the
performance of the system in a range of environmental conditions. Initially
these models support the design process by enabling the comparison of
alternate physical architectures. However, as verification and validation begin,
these same models can be used to augment instrumented test and demonstra-
tion. Initially, the results of the instrumented test are fed back to the models
and used to refine parameters embedded in the model. Later, the models can be
used to predict the results of instrumented tests and demonstrations. As
confidence in a specific model increases, the model can be used to replace
some of the instrumented tests and demonstrations. An important example of
this interplay between models and instrumented tests is the development of
estimates for such parameters as reliability, availability, and durability [see
Holmberg and Folkeson, 1991]. Lee and Yannakakis [1996] provide a detailed
survey of the use of one class of models (finite-state machines) in testing.
Additional advances are being made in the verification of models that directly
relates to verifying systems; see Baier and Katoen [2008].

Table 11.4 describes testing methods that can be used at the system level and
lower. These functional and structural testing methods are used in conjunction
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TABLE 11.3 Qualification Methods

Method Description Used during: Most effective when:

Inspection

(Static Test)

Compare system

attributes to

requirements.

During all segments of

verification,

validation and

acceptance testing

for requirements

that can be

addressed by human

examination.

Success or failure can

be judged by

humans; examples

include inspection

of physical

attributes, code

walk-throughs and

evaluation of user’s

manuals.

Analysis and

Simulation

Use models that

represent some

aspect of the

system.

Examples of models

might address

system’s

environment,

system process,

system failures.

Used throughout

qualification, but

emphasis is early in

verification and

during acceptance.

Physical elements are

not yet available.

Expense prohibits

instrumented test,

and demonstration

is not sufficient.

Often used in

conjunction with

demonstration.

Issue involves all or

most of the system’s

life span.

Issue cannot be tested

(e.g., survive

nuclear blast).

Instrumented

Test

Use calibrated

instruments to

measure system’s

outputs. Examples

of calibrated

instruments are

oscilloscope,

voltmeter, LAN

analyzer.

Verification testing. Engineering test

models through

system elements are

available.

Detailed information

is required to

understand and

trace failures.

Life and reliability

data is needed for

analysis and

simulation.

Demonstration

or Field Test

Exercise system in

front of unbiased

reviewers in

expected system

environment.

Primarily used for

validation and

acceptance testing.

Complete

instrumented test is

too expensive.

High level data/

information is

needed to

corroborate results

from analysis and

simulation or

instrumented test.
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with top-down, bottom-up, and big-bang integration. Functional testing
examines the system at the level of inputs and outputs under mostly nominal
conditions. Structural testing deals with specific characteristics of the outputs
as well as the system-wide properties such as safety, availability, and recovery.
Structural testing pays particular attention to the most extreme environments
that the system will experience.

Samson [1993] postulates four facets for any qualification activity: structural
(relation to system implementation), function (relation to system functions),
environment (relation to environmental conditions), and conditions (relation to
requirement characteristic). The first two of these facets are mutually exclusive
and are described in Table 11.4. The second two need to be added to each
specific structural or functional test to make it complete. In other words there
has to be an environmental facet and a conditional facet for each functional test
and each structural test. Table 11.5 shows Samson’s examples of these facets.

Black box and white box testing methods (Table 11.6) are commonly
employed in software testing. For each method test cases must be specified and
test data generated as inputs. These inputs are then injected into both the system
prototype (which is essentially a model of the eventual system) and a model of the
system. The outputs of the system and the model are compared; any discrepancies
are checked to determine whether the system or the model is incorrect [see
Chusho, 1987; Richardson and Clarke, 1985; Voges and Taylor, 1985].

11.8 ACCEPTANCE TESTING

Acceptance testing is the final step in qualification and is separated from
validation because acceptance testing is conducted by the stakeholders, whereas

TABLE 11.4 Testing Methods

Functional

testing

Test conditions are set up to ensure that the correct outputs are

produced, based upon the inputs of the test conditions. Focus is on

whether the outputs are correct given the inputs (also called black

box testing).

Structural

testing

Examines the structure of the system and its proper functioning.

Includes such elements as performance, recovery, stress, security,

safety, availability. Some of the key elements are described below.

Performance Examination of the system performance under a range of nominal

conditions, ensures system is operational as well.

Recovery Various failure modes are created and the system’s ability to return to

an operational mode is determined.

Interface Examination of all interface conditions associated with the system’s

reception of inputs and sending of outputs.

Stress

testing

Above-normal loads are placed on the system to ensure that the

system can handle them; these above-normal loads are increased to

determine the system’s breaking point; these tests may proceed for a

long period of time in an environment as close to real as possible.
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verification and validation have been conducted by the development team of
systems engineers. In order for the development process to proceed efficiently
and effectively, the thresholds for acceptance need to be defined early in
the requirements development process by the stakeholders with the help of
the systems engineering team. In fact, in Chapter 6 the agreement on the

TABLE 11.5 Examples of Testing Facets

Structural Facet Functional Facet Environmental Facet Conditional Facet

Compliance Algorithm analysis Computer-supported Accuracy

Execution Control Live Adequacy

External Error handling Manual Boundary

Inspection Intersystem Prototype Compliance

Operations Parallel Simulator Existence

Path Regression Testbed Load

Recovery Requirements Location

Security Logic

Quality

Sequence

Size

Timing

Typing

Utilization

TABLE 11.6 Black and White Box Testing

Black box

testing

Outputs are determined correct or incorrect based upon inputs; inner

workings of the module are ignored. Both positive and negative

testing have to be employed. This approach is scalable to system-

level testing

� Positive testing pulls the test data and sequences from the

requirements documents.

� Negative testing attempts to find input sequences missed in the

requirements documents and then determine how the module reacts.

Crash testing is an example.

White box

testing

Inner workings of the module are examined as part of the testing to

ensure proper functioning. Usually used at the CI level of testing;

this method becomes impractical at the system level

� Path testing addresses each possible simple functionality and is based

upon a prescribed set of inputs.

� Path domain testing partitions the input space and then examines the

outputs for each partition of the input space.

� Mutation analysis injects pre-defined errors and tests the error

detection and recovery functionalities.
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acceptance criteria was defined to be the exit criterion for the requirements
development.

The acceptance test determines whether the stakeholders, especially the bill
payer, is willing to accept the system as it is; accept it subject to certain
changes; not accept it; or accept it after certain changes have been made.
Acceptance testing focuses on the use of the system by true users, typically a
small, but representative sample of users. (During verification and validation,
members of the systems engineering team and discipline engineers conducted
the use of the system.) As a result, usability characteristics of the system are a
major focus. Another characteristic of acceptance testing is the lack of time
and money to conduct thorough, controlled tests of the system with users
from which inferences, based on classical statistics, can be drawn. The two big
issues in acceptance testing are what to test and how to test the usability of
the system.

11.8.1 Deciding What to Test

Common wisdom says that everything possible, including all functionalities or
paths, should be tested. The case study about the Ariane 5 failure is one of
many examples that support this wisdom. In fact, during verification and
validation the key question is not ‘‘what should be tested?’’ but ‘‘what have we
forgotten to test?’’ The more systematic the design process the more likely it is
that key issues for testing will arise. Nonetheless, it is imperative that everyone
involved in the design and integration process constantly question where
problems might arise. If only someone on the Ariane 5 development team
had insisted on running the new flight envelope through the software of the
inertial reference system, the design flaw would have surfaced. This is an area in
which the brainstorming techniques discussed in Chapter 9 can be useful to
generate potential test issues, not all of which will be meaningful, but some of
which may save the system from the disasters of Ariane 5 and Hubble.

The question of ‘‘what should be tested?’’ becomes very relevant during
acceptance testing. Acceptance testing substitutes developmental testers with
real users but must rely on all of the previous testing activities. Exhaustive
repetition of verification and validation is not feasible during acceptance testing
due to the limits of time and money. The focus of acceptance testing is whether
the system is acceptable or not as is; and if not, why. But what does it mean to
say that the system is acceptable? Can we distinguish only between acceptable
and unacceptable? Acceptability is defined here to mean the stakeholders want
to deploy the system as it is as soon as practically possible, with whatever flaws
there are. More flaws are acceptable to stakeholders when the current system’s
deficiencies are causing severe problems for the users in accomplishing their
goals, for the buyers in maintaining market share, or with the victims in
suffering too many losses. However, the stakeholders may be willing to accept
the system, yet still demand major changes quickly. The system is unacceptable
when it will cause more problems than the current system. Similarly, the system
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can be totally unacceptable beyond the possibility of improvement or unac-
ceptable until certain changes are made.

The acceptance test can either be designed under the assumption that the
system is acceptable or that it is not. If the assumption that the system is
acceptable is chosen, the test should be designed to prove it is not. A test
designed to try to prove that the system is not acceptable would probably
include a relatively small set of challenging activities that are key to the system’s
performance. If the system cannot perform some of these challenging activities,
then it can be failed. On the other hand, if the test design assumption is that the
system is not acceptable, then a reasonable amount of standard activity would
be included in the test in order for the test to prove that the system is
acceptable. If the system can pass most of these standard activities, then it
can be accepted. Recall that a statement cannot be proven true by example, but
it can be proven false by example. This latter approach is the more common in
acceptance tests but not the more defensible.

Decision analysis (see Chapter 13) provides a rational, defensible way to
analyze alternate acceptance test designs, including a seldom used option of no
acceptance test or accept the system after verification and validation. The
decision is whether to accept or not accept the system; the other options of
accept but fix and do not accept until fixed should also be included. Now test
designs are ways to gather information about system parameters about which
uncertainty exists. This increased information, when collected during the test,
may update this uncertainty in ways that are sufficient to justify accepting or
not accepting the system.

11.8.2 Usability

In Chapter 6 usability testing with prototypes was discussed as a method of
generating requirements. In qualification, usability testing is again used as part
of acceptance testing to determine the success with which the requirements have
been met.

In fact, usability testing is also used as part of verification testing when an
iterative or evolutionary design process is employed. Limited experimental
results for evaluating the effectiveness of evolutionary design are reported by
Nielsen [1993, p. 107]. The median improvement over four projects was 38%
per iteration, but with a high degree of variability. As a result at least three
iterations are recommended.

Recall from Chapter 6 that usability concerns five aspects of a user’s
interaction with a system: learnability, efficiency or ease of use, memorability,
error rate, and satisfaction. These characteristics should be part of the system-
wide requirements for most systems. These characteristics can typically not be
tested adequately until the entire system has been assembled or simulated.
During validation, the characteristics are tested by specially defined sets of
users. Larger samples of users, often uncontrolled sets of users called beta
testers, address these five aspects during acceptance testing.
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When designing any test queries, there are two central issues: Is the query
reliable and is the query valid? Reliable queries are queries that will result in the
same response when repeated. Reliability is a major problem that cannot be
solved completely due to the large individual differences among users. Segment-
ing the users into relatively homogeneous groups along the dimensions of domain
experience, computer experience, and experience with the system under develop-
ment helps significantly to obtain a reasonable chance of repeatability. To obtain
sample users in this last of the three dimensions, there must be a sustained effort
to train selected users to become very experienced users. Care must be used in
defining homogeneous segments of users. If each of the three dimensions is
categorized at two extremes, there are 8 (23) different combinations. Not all of
these combinations may be that interesting for the system in question. There may
be some interest in user groups that are midrange in one or more of these
dimensions; for most systems the predominant number of users will be neither
naive nor expert along any of these three dimensions. However, there are some
systems for which all users will be trained extensively before even being allowed
access to the system, for example, air traffic control systems, and aircraft.
However, for these systems the memorability factor of usability may be critical.

Valid queries are those that are measuring the right or appropriate aspect of
the system. For usability this will refer back to the five concerns outlined above.
See the metrics in Table 6.5.

The best way to achieve reliability and validity of test measures is to set up
relevant tasks on which tests will be conducted and measures taken. These
tasks should be drawn from the operational concept; each task may be a
complete scenario or a small segment of a scenario, depending on where in the
qualification process the test is being used. Complete scenarios should be used
during acceptance and the latter stages of validation. Segments can be used
during prototyping and the early stages of validation. Each task must define a
realistic setting for the user in terms of the system and its context, a specified set
of circumstances in which to be performing the task, a well-defined outcome
that the user is expected to achieve, and a realistic time interval in which to
complete the task.

Cox et al. [1994] state the most serious obstacles to successful usability tests are:

� Obtaining test participants that represent the real users of the system

� Securing a representative sample that will be predictive of how the total
population will evaluate the system

� Selecting the tasks that are most critical to the usability needs of real users

� Writing test scenarios that accurately represent real task situations that a
user will encounter in the system’s environment

� Predicting which of the user interface characteristics are most critical or
most often used

Yet these obstacles must be overcome for usability testing to be successful.
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11.9 SUMMARY

Integration begins when assemblies of CIs and components are evaluated in
terms of the derived requirements. This process is part of verification,
determining that the system was built right. There are several approaches to
integration, bottom-up being the most common one to systems engineering.
Top-down and big-bang integration are more common in software engineering.
Verification and integration end at the system level.

Qualification consists of verification, validation, and acceptance testing.
Verification addresses the comparison of the specifications for the system’s CIs,
components, subsystems, and the system to the actual designs to make sure the
designs are right, that is, meet the specifications.

Validation consists of early validation and operational validation. Early
validation (conceptual, requirements, and design validity) proceeds during
design to ensure that the design process is valid. Conceptual validity addresses
the congruence between the stakeholders’ needs and the operational concept.
This is the hardest element of validation to complete successfully. Require-
ments validity applies to the conformity between the operational concept and
the stakeholders’ requirements. Design validity addresses the coherence be-
tween the stakeholders’ requirements and the layers of derived requirements
associated with the system, components, and CIs.

Operational validity may begin before verification is complete, but ends
after verification is complete and addresses the conformance of the system
as it has been built with the operational concept. This is the last phase of
the development process under the complete control of the systems engineering
team.

Acceptance testing is controlled by the stakeholders and provides the
stakeholders the final opportunity to review the design and verify that it meets
their needs. Acceptance testing should fully utilize all of the data and analyses
that have been part of verification and validation. At the same time, though,
acceptance testing is focused on the use of the system by representatives of the
stakeholders’ community, whereas verification and validation employ highly
qualified users (i.e., engineers) as stakeholders for the most part. As a result the
system’s usability is a major focus during acceptance testing.

There are two critical chains whose links are checked during qualification.
The top-level chain consists of these links: conceptual validity, operational
validity, and acceptability. The first link is validated early in the design
phase; the last two links are addressed at the end of integration. The second
chain consists of requirements validity, design validity, verification, and
operational validity. Note that operational validity is common to both chains,
and recall that the chain is as strong as its weakest length. Therefore, it is a
mistake to assert that any one of the links is more important than any of the
others.

11.9 SUMMARY 367



CASE STUDY: THERAC-25

The Therac-25 was a computer-controlled machine that provided radia-
tion therapy in the late 1980s. Three patients were killed and one seriously
injured by radiation overdoses in the 1985–1987 time frame when four
different operators entered an acceptable, but infrequently used, sequence
of commands. While this tragedy can be traced to requirements and
design errors, the qualification process should be focused on catching just
this sort of flaw. This was clearly a case in which all possible data entry
sequences should have been tested [Jacky, 1990].

The development of the qualification system should be approached just
as the development of any system, as described in Chapters 6 to 10. The
operational concept, external systems diagram, objectives hierarchy, require-
ments, and architectures (functional, physical, and allocated) are all critical
elements of the development of the qualification system. Besides addressing
verification, validation, and acceptance, the qualification system is often
broken into four methods (or components): inspection, analysis and simula-
tion, instrumented test, and demonstration.

While it is common to visualize the qualification system as the system that
will detect and isolate faults in the product system’s design, design of the
qualification system, when done right, also reinforces the design process and
reduces the introduction of faults into the design of the system.

In summary for Section 2 of this book, the Traditional, Top-Down Systems
Engineering (TTDSE) process has been described in some detail. Figure 11.8
integrates Figures 1.6 and 1.19 to bring the major elements of Chapters 6
through 11 together into a single picture. The point of this figure is that the
process described in Chapters 6 through 11 is repeatedly applied to the process
of ‘‘peeling the onion’’ of the layers of the system. Each preceding layer
provides the starting information for the layer before it. The major difficulty is
getting started when very little needed information is available.

CASE STUDY: FAILURE OF THE ARIANE 5

Ariane 5, a launch vehicle developed by the European Space Agency
(ESA), was first launched on June 4, 1996, with four satellites that would
become the backbone of the Solar Terrestrial Science Programme. These
four satellites were developed by 500 scientists in over 10 years for about
$500 million. But at 37 seconds into the flight Ariane 5 veered off course
and disintegrated shortly after. The failure was traced to the two inertial
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reference systems (SRIs), one of which was in ‘‘hot’’ standby mode for the
other. Both SRIs failed when their software converted a 64-bit floating-
point number to a 16-bit signed integer value. The conversion failed when
the floating-point number was too large for the 16-bit signed integer,
resulting in an operand error for which there was no protection. The
system operated as designed when this failure occurred: the failure was
indicated on the data bus, the failure context was stored in EEPROM
memory, and the SRI processor was shut down.

During the design of the SRI there was a strong theme of designing to
prevent random errors. In addition, a requirement had been set to limit
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FIGURE 11.8 Repeated application of TTDSE to the layers of the system’s design.
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the maximum workload of the SRI computer to 80% of its capacity. An
analysis was done during the development and testing of the SRI
software to determine the vulnerability of the code due to exceptions
such as operand errors. Analysis of conversions from floating-point to
integer numbers yielded seven variables that could cause an operand
error. A deliberate decision was made to protect four of the variables.
The other three, including the one that caused the SRI failure, were
judged to be protected by either physical limitations or a large margin of
safety. A clear trade-off decision was made in this design to risk an
operand error in lieu of increasing the workload on the SRI computer.

The testing and qualification procedures set out for the flight control
system of Ariane 5 consisted of four levels: equipment qualification,
software qualification, stage integration, and system validation. No test
was done on the SRI to examine the operational scenario associated with
the countdown and flight trajectory of the Ariane 5. This scenario could
not be tested with the SRI as a black box. However, the SRI could have
been tested by feeding simulated acceleration signals into the SRI while
the SRI was placed on a turntable to provide realistic movement. This
test was not done because the SRI specification does not require the SRI
to be operational after launch. The purpose of the SRI was to provide
inertial reference data prior to launch. Even though the SRI served no
useful purpose after launch, its operation after launch was sufficient to
cause the destruction of Ariane 5 37 seconds into the flight.

Much of the Ariane 5 requirements and software were inherited from
earlier versions of Ariane. Ten years earlier requirements had been
established that the SRI operate 50 seconds beyond the initiation of
flight mode. Flight mode started at—9 seconds for Ariane-4; this allowed
restarting the countdown without waiting for a normal alignment of the
spacecraft, which takes about 45minutes. However, Ariane 5 had a
different initiation sequence that did not require the SRI being active
during flight. This is one case in which the old adage ‘‘if it ain’t broke, don’t
fix it’’ caused a failure.

The final stage at which this error could have been detected was at the
Functional Simulation Facility (ISF) which tests (1) guidance, naviga-
tion, and control performance in the whole flight envelope, (2) sensor
redundancy operation, and (3) flight software compliance with all
equipment of the flight control electrical system. ‘‘Technically valid
arguments’’ [Lions. 1996] were presented for not having the SRIs in the
loop for the tests conducted at the ISF. As a result the SRIs were never
tested for the Ariane 5 launch. The trajectory profile of Ariane 5 was
sufficiently different than the profiles of previous Ariane launches that
this operand error would always occur; a major requirements’ failure
followed by a failure of test design [Lions, 1996].
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PROBLEMS

11.1 Describe a process of establishing conceptual validity that identifies the
elements of conceptual validity and links between pairs of these
elements. This process should then establish characteristics such as
completeness, consistency, and correctness.

11.2 Describe a process that could be used to establish requirements
validity. This process should identify the elements of moving from
the operational concept to the stakeholders’ requirements, as discussed
in Chapter 6. Additional products beyond those discussed in Chapter 6
should be identified that would enable the validation of such char-
acteristics as completeness, consistency, and correctness when compar-
ing the operational concept to the stakeholders’ requirements.
Examples of comparisons that should be involved are:

� Matching of operational concept elements to elements of the external
systems diagram

� Matching of operational concept elements to input/output
requirements

� Matching the objectives hierarchy to elements of the external systems
diagram

� Matching the objectives hierarchy to input/output requirements

� Matching elements of the external systems diagram to input/output
requirements

� Tracing input/output requirements to external items

� Matching the objectives hierarchy to system-wide requirements

11.3 Describe the types of activities (similar to those in Problem 11.2) that
could be used to establish design validity. Identify intermediate
products that could be used for establishing design validity. In
particular, focus on developing the best definition of completeness
for requirements that you can.

11.4 Develop an operational concept, external systems diagram, objectives
hierarchy, and requirements for the qualification system for a traffic
light system.

11.5 Develop an allocated architecture for the qualification system for a
traffic light system.
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