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Chapter 12

Graphical Modeling Techniques

12.1 INTRODUCTION

There are three categories of qualitative modeling approaches used as part of
the development of functional and allocated architectures during the engineer-
ing of systems: data modeling, process modeling, and behavior modeling. A
data model addresses the relationships among the inputs and outputs of a
system. A process model defines the functional decomposition of the system
function and the flow of inputs and outputs for those functions. A behavior
model defines the control, activation, and termination of system functions
needed to meet the performance requirements of the system. In addition,
object-oriented engineering is becoming a major force in software engineering
and is beginning to be employed in systems engineering; object-oriented
engineering uses these three domains as well. Within each of these three
approaches, as well as object-oriented engineering, there are a number of
methods that are currently being used in systems and software engineering, as
shown in Table 12.1. This table provides a subset of the modeling approaches
currently in use. This chapter provides a description and sample model
applications of each of the modeling techniques that comprise data, process,
and behavior modeling. SysML and its modeling methods as well as IDEF0
(Integrated Definition for Function Modeling) were covered in detail in
Chapter 3. As discussed in Chapter 9, balancing or aligning the elements of
multiple modeling techniques is important in the development of the functional
and allocated architectures.
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12.2 DATA MODELING

There are many approaches to data modeling. This section describes two
different modeling techniques. Entity–relationship (ER) diagrams are the
oldest form of data modeling. Higraphs are the most formally based approach
and offer the most power.

Two other approaches, IDEF1 and IDEF1X, were developed within the
IDEF community but are not discussed in detail here. IDEF1 models data
using entity classes and relations among entity classes. An entity class has
attributes that describe the entity. The relations that are possible between
classes come from entity–relationship diagrams and address mainly relation-
ships that are one-to-one, one-to-many, and so forth. IDEF1 is an approach for
modeling the structure of information as the information is maintained in an
organization, including the business rules [Griffith, 1994]. IDEF1X also models
data using entity classes and relations among the classes. IDEF1X allows for a

TABLE 12.1 Functions of the design process

Design Function Major Inputs Major Outputs

Define Problem To Be Solved Concerns and

Complaints by

Stakeholders

Definitions of Measures of

Effectiveness and Desired

Ranges

Available Data from

Stakeholders

Constraints

Develop and Evaluate

Alternate Concepts for

Solving Problem

Ideas for Concepts

from All Interested

Parties

Recommended Concept(s)

Objective Hierarchy & Value

Parameters for Meta-

System

Define System Level Design

Problem Being Solved

Stakeholders’ Inputs Stakeholders’ Requirements

Operational Concept

Develop System Functional

Architecture

Stakeholders’

Requirements

Functional Architecture

Operational Concept

Develop System Physical

Architecture

Stakeholders’

Requirements

Physical Architecture

Develop System Allocated

Architecture

Stakeholders’

Requirements

Allocated Architecture

Functional

Architecture

Physical Architecture

Interface Architecture

Develop Interface Architecture Draft Allocated

Architecture

Interface Architecture

Develop Qualification System

for the System

Stakeholders’

Requirements

Qualification System Design

Documentation

Systems Requirements
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fuller definition of subtypes and attributes in terms of their aliases, data type,
length, definition, primary key, discriminator, alternate keys, and inversion
entities than does IDEF1. Similarly, the relationships in IDEF1X may be
defined on the arcs and include one-to-one, one-to-many, and so forth.
IDEF1X is used for designing relational databases [Griffith, 1994]. The
interested reader should see the FIPS PUB 184 [1993] on IDEF1X.

12.2.1 Entity–Relationship Diagrams

Entity–relationship diagrams model the data structure or relationships between
data entities. Art entity is a class of real, similar items (e.g., people, books,
computers). Entity types are shown in boxes; relationships are shown in
diamonds or as labels on the arcs. If diamonds are used, the graph has no
directed edges (with one exception). The relationship is usually read from left to
right or from top to bottom, but this is not universal [see Yourdon, Inc., 1993].
When the edges are directed, the relationship is read in the direction of the edge.
Figure 12.1 shows examples of both directed edges and diamonds.

The exception for directed edges when diamonds and undirected edges are
being used is called an associative entity. The associative entity is important
when there will be important data that is related to the relationship, as well as
the entities connected with the relationship. For example, a bank may wish to
keep data about each transaction (e.g., deposit, withdrawal). In this case, the
relationship is placed in a box, like any entity would be, and the edge
connecting the box housing the relationship to the diamond in which the
relationship would have been placed becomes a directed edge, the direction of
which can be in either direction [see Yourdon, Inc., 1993; Yourdon, 1989].
Figure 12.2 shows an example of an associative entity.

A unique relationship is that of supertype/subtype, which has become
known as a class/subclass relationship and is shown in Figure 12.3. A common
way to define a supertype/subtype relationship is by the relation ‘‘is-a.’’ An is-a
relationship can be based upon a partition of an entity or a subdivision that is

Customer Money

Deposits

Withdraws

Transfers

Deposits

Withdraws
Transfers

Customer Money

FIGURE 12.1 Simple entity–relationship diagram.
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not a partition. For example, if there are only two types of accounts offered by
a bank, the relation shown in Figure 12.3 is based upon a partition; if there was
a third type of account, the relation is not based on a partition. Many of the
entities and relationships associated with systems engineering that we have
discussed so far are shown in Figure 12.4. Are the subtypes shown for
requirement a partition or not?

Another type of relationship is called a binary relationship; this is exactly the
same as the relations that we discussed in Chapter 4 and including both unary
and binary relations. Unary relations are relationships among instances of the
same object. These relationships can be reflexive. Figure 12.4 does not show any
of these relationships because there are no instances of any entities shown.
Binary relationships among instances to two different objects are binary relations
and must be irreflexive. The relationship ‘‘built-from’’ is an example of a binary
relationship. These binary relationships can be one-to-one, one-to-many,
many-to-one, or many-to-many. Some ER methods make the finer distinction
between one and zero-or-one, many, and zero-one-or-many.

12.2.2 Higraphs

Harel [1987] introduced higraphs as a generalization of Venn diagrams and ER
diagrams. Figure 12.5 shows a higraph for a subset of the ER diagram of
systems engineering shown in Figure 12.4. An entity is considered to be a set
with multiple elements, called a blob. A blob is represented as an enclosed area;
see system-wide requirement in Figure 12.5. Atomic sets are blobs with no other
blobs contained within them; the only nonatomic blobs in Figure 12.5 are

Customer Money

Transaction

FIGURE 12.2 Associative entity.

Accounts

Savings Checking

FIGURE 12.3 Class/subclass relationship diagram.
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requirements, time, and components. (To be correct we should have placed
blobs inside the eight intersections of stakeholders’ and derived requirements
with input/output, system-wide, trade-off, and test requirements. However, this
would have compromised the readability of the figure.) The is-a relationship
from ER diagrams is replaced by representing one entity as a subset of another.
Cartesian products (unordered n-tuples) are shown by placing a dashed line
between blobs inside a larger blob representing the n-tuple. See the time blob,
representing a four-tuple of year-month-day-hour in Figure 12.5. This concept
is not in Figure 12.4.

In higraphs the relation is shown in diamonds with an undirected line
entering the diamond and an arc leaving the diamond to indicate which way the
relation is read.

12.3 PROCESS MODELING

This section addresses data flow diagrams and N2 charts.

12.3.1 Data Flow Diagrams

Data flow diagrams (DFDs) are one of the original diagramming techniques,
popular primarily with the software and information systems communities.

Originating
Requirements

Document

Requirement

Derived S-W
Requirement

documents

is-a

Input/Output
Requirement

System-wide
Requirement

Function

Functional
ArchitectureFunctional

Decomposition

Item

Physical
Architecture

Component

Configuration
Item

Interface

External
System

documents

contains
performs

performs

performs

contains

is-a

carries

connects

connectsSystem

performs

traced
totraced

to

built
from

connects

Derived I/O
Requirement

traced
to

traced
to

traced
to

is-a

Test
Requirement

is-a

is-a

Trade-Off
Requirement

is-a

is-a

produces/transforms

produces/transforms

traced
to

FIGURE 12.4 Complex ER diagram of systems engineering.
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The basic constructs of data flow diagrams, shown in Figures 12.6–12.9, are the
(1) function or activity, (2) data flow, (3) store, and (4) terminator.

The circle is the most standard representation for a function. Arcs again
represent the flow of data or information between functions, or to and from
stores. Double-headed arcs are allowed; these represent dialog between two
functions, for example, a query and a response. The labels for an arc are placed
near each arrow. Branches are allowed and are depicted as forks. Branch
labeling conventions in data flow diagrams are the same as those for IDEF0;
see Figure 12.7. Joins are also permitted [Hatley and Pirbhai, 1988].

A new concept is introduced: the store or buffer, a set of data packets at rest.
Again there are several legal representations of a store, as shown in Figure 12.8.
In fact, a store is a physical solution based upon a number of problems; for
example, unreliable hardware, different programmers implementing software
that uses the same data, or growth potential for future enhancements. There is
no need for a store in a representation of ‘‘the essential requirements of the
system’’ [Yourdon, 1989, p. 151]. Stores are typically only shown on the level
one functional decomposition [Hatley and Pirbhai, 1988].

The final syntactical element of data flow diagrams is the terminator, or
external system in the language of Chapter 6. In fact, an ancestor diagram that

Requirement

Input /Output
Requirement

Originating
Requirement

Derived
Requirement

System-Wide
Requirement

Test
Requirement

Function
traced

to

traced
to

traced
to

System

performed
 by

built
from

Component

Configuration
Item

traced
to

Time

Month

Year

Day

Hour

defined
on

Trade Off
Requirement

FIGURE 12.5 Partial higraph representation of the systems engineering ER diagram.
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shows the interaction between the external systems, or terminators, and the
system being designed or analyzed, are standard in data flow diagrams (see Figure
12.9). Terminators are shown in boxes with the system being placed in an oval.

Yourdon’s guidelines for constructing DFDs are focused toward both
correctness and communicability:

1. Choose meaningful names for the processes, flows, stores, and
terminators.

2. Number the processes.

3. Redraw the DFD as many times as necessary for aesthetics.

4. Avoid overly complex DFDs.

5. Make sure the DFD is internally consistent and consistent with any
associated DFDs.

Process
Customer
Banking

Transactions

Process
Customer
Banking

Transactions

Process
Customer
Banking

Transactions

These are three equally valid representations of a process. 
Note a process begins with a verb, just as functions or activities
do in IDEF0.

Customer Notice:
   Main Menu
     Selection

This is an example of a “data
flow”. Note it is a noun
phrase and attached to an arc.

Double-headed
arcs signify dialog
between functions

FIGURE 12.6 Semantics of data flow diagram.

x1 ⊆ x, x2 ⊆ x, x3 ⊆ x

x1

x2

x3

x

FIGURE 12.7 Branches in data flow diagrams.
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Note that process names are verb–object phrases and are usually capitalized.
Flows are noun phrases and are not capitalized. Hierarchical numbers are
recommended along with the use of leveled DFDs in order to avoid complex
DFDs. Leveled DFDs follow many of the guidelines of IDEF0 decomposition.

ACCOUNT
NUMBERS

D1 ACCOUNT
NUMBERS

ACCOUNT
NUMBERS

FIGURE 12.8 Alternate representations of a store or buffer.
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BANK SERVICE 
PERSONNEL

BANK
COMPUTER

Completed
Transaction

Prodcuts

Customer
Inputs

System
Status
Report

Account
Transaction

DataCompleted
Trans. Info.Bank's

Acct. Info

Bank
Supplies

Employee
ID Info

PROVIDE
AUTOMATED

TELLER
MACHINE

SERVICES FOR
CUSTOMERS

Customer
Notices

(CN)

FIGURE 12.9 Context diagram using a data flow diagram.
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Finally Yourdon [1989] recommends avoiding processes and stores that are
sinks and sources and labeling all flows and processes.

12.3.2 N-Squared (N2) Charts

Systems engineers [Laws, 1990b] created N2 charts in the 1960s to depict the
data or items that are the inputs and outputs of the functions in the functional
architecture. The N2 elements provide the same description of a hierarchical
decomposition of the system’s functions as does IDEF0 and data flow
diagrams. The N functions that are a partition of some higher level function
are displayed along a diagonal of the diagram with N rows and N columns (see
Figure 12.10). Each function is shown in a rectangle with a numerical box
across the top. In the off-diagonal elements are roundtangles (rectangles with
rounded corners) that contain the names of the items being sent from the box in
the associated row to the box in the associated column. The charts (sometimes
called interface diagrams) are called N2 because the chart contains N2 boxes to
show the flow of items within (or internal to) the N functions. Every item
that exits the first function and enters the second function is in the box to the
right of the first function and above the second function. Items exiting the
second function and entering the first function are shown to the left of
the second function and below the first function. In general, items flowing
from the ith function to the jth function are in the ith row and jth column.
Additional boxes along the top and down the right are added as an option to
show the flow of external items into and out of the set of N functions,
respectively. The N2 charts provide the same information as IDEF0 and data
flow diagrams with the exception of stores in data flow diagrams and control
items in IDEF0. Ancestor diagrams are used to show the items being exchanged
between the system and its external systems. Branches and joins are not used;
rather, items are defined at the lowest level of decomposition relevant to a
particular diagram and are then repeated as often as necessary. See, for
example, the item ‘‘sensed malfunctions’’ in Figure 12.10.

As can be seen in the N2 chart in Figure 12.10, the most obvious value of this
technique is the information concerning where there is no interaction between
functions. Systems engineers have used the N2 chart to allocate functions to
components such that there is minimal interaction among the components; the
order of the functions is modified so that the interactions among the functions
are all grouped close to the diagonal.

12.4 BEHAVIOR MODELING

This section addresses modeling techniques that are used to explore the
dynamics of the system: behavior diagrams, finite-state machines, statecharts,
control flow diagrams and Petri nets. These modeling techniques address
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discrete-event behavior, which is behavior that is triggered by the occurrence of
specific events.

12.4.1 Behavior Diagrams

Behavior diagrams [Alford, 1977] originated as part of the Distributed
Computer Design System of the Department of Defense. System behavior is
described through a progressive hierarchical decomposition of a time sequence
of functions and their inputs and outputs. Functions are represented as verb
phrases inside boxes. There is a control structure represented by lines that flow
vertically, from top to bottom, through the boxes. The control structures (see
Figure 12.11) are identical to that described for FFBDs above. The control
lines have only one entry path into a function, but may have multiple-exit
control paths. Input and output items are represented in boxes with rounded
corners; their entry to and exit from functions is depicted by arcs that enter and
exit the boxes, respectively.

Specific control structures for sequence, selection, iteration, looping, con-
currency, and replication have been defined within behavior diagrams, just as
they have been in FFBDs. A sequence of functions is connected via a vertical
straight line. A selection function is denoted by a function with two or more
control lines emanating from the bottom of the function. The emanating control
lines must be labeled to denote the exit criterion associated with each control line.

The multiple control lines must also be joined lower in the diagram at a
select node, a small circle with a+ inside. Figure 12.11 shows a selection
function on the top middle.

An iterate control structure is set off on a control line by two nodes. Each
node is a circle with an @* inside. There is an arc from the bottom iterate node
to the top iterate node with a DomainSet label that defines at what frequency or
how many times the functions inside the iterate structure are to be exercised; see
the bottom left of Figure 12.11.

An exit loop control structure uses a selection function to determine the
point at which the repetition of a function (or set of functions) should be
terminated. The exit loop control structure is set off by two vertically placed
nodes (circles with an @ inside) that are connected with an arc going from the
bottom node to the top node. The selection function that is responsible for
ending the repetition has multiple exit control lines, one of which ends at an G
node or circle with G inside. An exit loop control structure is shown in the top
right of Figure 12.11. When the exit criterion for the G node is satisfied within
the function, control emanates out the control line with the G node and then
drops below the bottom iterate node to the L node.

The control structure denoting that functions can he executed concurrently
(see the bottom middle of Figure 12.11 and Figure 12.12) is depicted by two
vertically placed nodes designated by circles with & inside. In this special
control structure all of the control lines below the first concurrent node are
activated when control hits this first & node. The control line below the bottom
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concurrent node cannot become active until all of the functions on the
concurrent control lines are finished executing.

Two vertically placed nodes with &* inside denote a replication control
structure, which is a special case of a concurrent control structure. In this case
an identical function is executed concurrently, presumably by multiple copies of
the same resource. A DomainSet on a line that connects the upper and lower
replication nodes labels the number of concurrent resources. The fact that there
are multiple resources executing the same function is made visual by the symbol
for a ‘‘stack of papers’’ on the main control line between the upper and lower
replication nodes. There may be a Coordination function on the line with the
DomainSet label.

Definition of the items within the behavior diagram is equally important.
First, it is possible to use the sequence, concurrent, and replication control
structure to organize the items (or inputs and outputs) associated with
functions. Second, there are various categories of items. An item that enters
the system from outside or is produced by the system for outside consumption
is called an external item; all other items are called internal items. The
roundtangle for an external item is larger than that for an internal item. All
items can be hierarchically decomposed just as functions can. An item that is
decomposed is called a time item and is represented by a clear box with a solid
little square in the upper left corner. An item that is at the bottom of a
decomposition is called a discrete item; a discrete item is represented in a shaded
roundtangle. Discrete items are classified as either message, state, temporary, or
global items. A message item is sent from a function on one control line (or
process) to a function on a different control line (or process) and the message
item triggers the receiving function to execute as soon as the function is enabled
by the control structure. Global items do not trigger the receiving function to
execute. State items are input to and output from functions on the same control
line and are therefore always internal items. A state item is not a trigger.
Temporary items are for special purposes.

12.4.2 Finite-State Machines and State-Transition Diagrams

Machines, a modeling domain for dynamic systems, are partitioned into finite-
state and continuous. Finite-state machines (FSMs) [Denning et al., 1978] have
only discrete-valued inputs, outputs, and internal items. Continuous machines
allow continuous and discrete inputs, outputs, and internal items. Continuous
machines are sometimes called analog machines. When digital computers
became more popular than analog computers, FSMs became the major focus
of attention in engineering due to the finite-state nature of digital computers.
Even so continuous and discrete signals are usually handled very differently by
a digital computer. The continuous variable (e.g., speed or internal temperature
of the elevator car) is represented by a word that typically contains many more
bits than the variable has significant digits. On the other hand a digital variable
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(e.g., operating mode such as fully operational or partially operational or not
operational, and direction of a specific elevator car such as up or down) is
usually represented by a symbolic word that has a relatively few number of
states, say less than 10.

Finite-state machines are usually divided into sequential and combinational;
see the machine partition in Figure 12.13. The focus here is on the sequential
FSM, as represented by a state-transition diagram (STD). A combinational
FSM is one in which its current outputs are characterized only by its current
inputs, a condition of having no memory that is often not met. The sequential
FSM allows past inputs to play a role in the determination of the current
outputs, thus enabling the FSM to have a memory. There is a formal
mathematical theory for an FSM, providing some interesting theoretical results
and simulation capability.

The STD models the event-based, time-dependent behavior of a system.
Recall from Chapter 7, the state of a system is defined to be its status, as defined
by as many variables as needed to determine the system’s ability to meet its
missions. The mode of a system is its operating condition, such as off, idling, or
moving for an automobile. It is the mode of a system that should be modeled by
an STD. However, as shown in Figures 12.14 and 12.15, there is a fine line
between the modes of a system and the functions of a system.

Boxes (or ovals) and arcs are the syntactical elements of STDs; the boxes
represent system modes and the arcs represent the direction of mode change.
Typically the arcs are labeled to show both the input stimulus (or event that
triggers the mode change) and the action or output taken by the system in
response to the event. The event and output are typically separated by a slash or
horizontal line: event/output. Figure 12.14 shows a partially completed STD
for an automatic teller machine. This STD is incomplete because the transitions
to the four customer choices are not labeled; the transitions from the four
customer choices are not depicted via arcs. It is possible that each might be
completed successfully or canceled. The withdrawal might be denied. In each
case the customer can choose another transaction or not. Figure 12.15 shows an
STD for an elevator car (this figure is a modification of one found in Gomaa
[1993]).

Continuous or
Analog Machines

Combinational
FSM

Sequential
FSM

Finite State
Machines (FSMs)

Machines

FIGURE 12.13 Partition of machines.
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It is important to note differences between the view provided by an STD and
the view provided by one of the process models (DFD, IDEF0). The STD
makes no attempt to provide a functional partition of the top-level system
function or any function that is part of its partition. Rather the STD focuses on
key triggering events that will cause the system to transition from one
operational mode to another and identify any key system outputs produced
as a result that transition. Similarly process models are not required to capture
the system’s operating modes. In Chapter 7 the functional architecture was
defined to capture the system’s operating modes as the initial decomposition of
the system’s functions.

12.4.3 Statecharts

Statecharts are a generalization of higraphs by Harel [1987] to extend the
notions of STDs. This generalization of an STD is based on fonnal mathema-
tical principles and leads to theoretical results and simulation models.

A major criticism of STDs has always been that the entire diagram must he
contained on one level, meaning that an STD for a large system quickly
becomes unintelligible and unmanageable. Statecharts, by exploiting the subset

IDLE

WAITING FOR
CUSTOMER

IDENTIFICATION

WAITING FOR
CUSTOMER’S
ACCESS CODE

WAITING FOR
CUSTOMER’S

CHOICE

DEPOSIT WITHDRAWAL TRANSFER ACCOUNT
BALANCE

Cust. ID Presented
Process ID for Validity

Cust. ID Read
CN:‘‘Enter Access Code’’

Access Code Validated
CN:‘‘Main Menu Choices”

Invalid Access Code
CN:‘‘Please Re-enter’’

3rd Invalid Access Code
CN:‘‘Transaction Terminated’’

Unread Cust. ID
CN:‘‘ID Unreadable’’

FIGURE 12.14 State-transition diagram for an ATM.
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properties of higraphs, provide a means to develop hierarchical STDs. The
atomic blobs in a statechart are singleton, or atomic, states.

Figure 12.16 presents an external system representation of a cruise control
system (CCS) [Charbonneau, 1996]; the human operator and the remaining
components in the car are the external systems. Noting how the action ‘‘b’’ and
‘‘b hat’’ affect all three subsystems by causing simultaneous state transitions
with a single event demonstrates an extension by statecharts over the STD. The
states to which the X label is connected indicate the initial condition or state for
the three systems. Note that inside state ON for the automobile are the states of
acceleration, deceleration, and maintain speed.

Arcs in statecharts are labeled, just as they in STDs. Inside the system the
initial state is identified by finding the arc that emanates from a black dot; the
state that this arc enters is the initial state of the system; see Figure 12.17.

Figure 12.17 presents the decomposition of the NOT OFF state of the CCS.
The OFF state was not decomposed. Recall from the discussion on higraphs
that the vertical dotted line indicates a Cartesian product. The INDICATOR
and the SYSTEM STATUS blobs are independent, defining a Cartesian
product. Both INDICATOR and SYSTEM STATUS have two states. The
state DEAD for the INDICATOR is not decomposed.

Elevator Idle,
Door Open

Preparing To
Move Down

Preparing To
Move Up

Elevator
Door Opening

Elevator
Enabling Entry/Exit

Elevator
Moving

Elevator
Stopping

 Elevator
Starting

Checking Next
Destination

Down Request
Close Door

Close Door
Up Request

Door Closed
Up Indicator

Door Closed
Down Indicator

Acceleration > 0
Departed Floor

Near Requested Floor
Slowing

Door Opened
Direction Indicator

Elevator Stopped
Door Activated

Pause Timer Elapsed
Destination Query

Up Request
Close Door 

Down Request
Close Door

No Request
Maintain Open Door

FIGURE 12.15 State-transition diagram for an elevator car.
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The ability to represent unordered n-tuples in higraphs enables statecharts to
depict states as being the orthogonal composition of elements from sets of
states. When the initial state is an n-tuple, there must be n initiating arcs to
define which element of the set of n-tuples is the initial state. Similarly, when
there is a transition from (to) a state that is part of an n-tuple to (from) one that
is not, the arc must be joined by an arc from (must branch to) n� 1 other arcs
from other elements of the n-tuple.

Figure 12.18 shows the three states for ALIVE in Figure 12.17 that are
associated with the INDICATOR. The ‘‘w’’ activity in this third-level chart is
the same ‘‘w’’ in the supersystem top-level chart. This single activity, ‘‘w,’’

SUPERSYSTEM

HUMAN

AUTOMOBILE

b

b

CCS
w

OFF

w( b)

b

m

X

NOT OFF

b

b
DRIVE DRIVE

ON OFF

ARC LABEL DEFINITION 

b turn on car 

b hat turn off car 

m

w depress on/off button 

accident occurs 

FIGURE 12.16 External system statechart for a cruise control system (after
Charbonneau [1996]).
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causes state transitions both in depth (all sublevels) and in breadth (all
subsystems).

Figure 12.19 depicts the decomposition of ON in Figure 12.17. The circled
‘‘H’’ is the only new concept introduced in this diagram. When the ON state is
entered from the STANDBY state, it automatically reverts to the conditions it
was in before it transitioned to STANDBY. The circled ‘‘H’’ is read as
Historical. If the ON state is entered from the NOT ON state, it defaults to
maintain because there is no historical reference.

Figure 12.20 integrates the statecharts (Figures 12.17–12.19) for the CCS
with the additional decomposition for the STANDBY state shown in Figure
12.17 for SYSTEM STATUS.

When an event such as an interrupt causes a transition from many states to a
single state, an STD implements this with many arrows to depict the effect of a
single event. In a statechart an arrow can go from a state (blob in higraphs)
containing several atomic states (blobs). As a result an interrupt can be shown
with a single arrow from an aggregate state, demonstrating how the number of

NOT OFF

INDICATOR

DEAD

ALIVE

c
d

SYSTEM STATUS

ON

STANDBY
vr

fevs u

ARC LABEL DEFINITION

c circuit closed (good bulb or fuse)

d circuit open ( bad bulb or fuse)

e brake depressed 

f clutch depressed 

u wheel revolutions > 7920/ (pi*r) where r
is the wheel radius in inches

vr push button to resume / set 

vs push CCS button to standby

FIGURE 12.17 Decomposition of the ‘‘not off’’ State (after Charbonneau [1996]).
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these arrows can be reduced with statecharts. See the transitions between NOT
OFF and OFF in Figure 12.20.

Another extension of statecharts is the ability to nest transitions by using
labels such as a/b. This means that transition ‘‘a’’ will cause another transition
‘‘b.’’ located elsewhere in the statechart, to occur. Harel [1987] calls this
broadcasting because one event can broadcast a trigger that generates a chain
reaction of one or more transitions throughout the statechart.

12.4.4 Control Flow Diagrams

Control flow diagrams (CFDs) are used in conjunction with data flow diagrams
and model changes in the system’s operating mode, thus turning on or off or
restructuring sets of the system’s functions. As defined by Hatley and Pirbhai
[1988], the control structure of a system receives status information from
external systems and sends such information about the system to these external
systems. Control flows are typically discrete variables that can be modeled
symbolically.

Control flow diagrams mimic DFDs in syntax and semantics, except for one
additional symbol. In fact, the functional decomposition of the two should be

ALIVE

BLINK

OFFON

w

w w
vr

f

e

vs

ARC LABEL DEFINITION

e brake depressed

f

vr push button to resume / set 

vs push CCS button to standby 

w depress on/off button 

clutch depressed

FIGURE 12.18 Decomposition of the alive state for the indicator (after Charbonneau
[1996]).
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identical. These two types of diagrams could be superimposed to form a single
diagram; some authors recommend this. There is a context diagram of control
that shows the relationship of the system with the external systems, for
example, the passing of status information concerning the changing of modes.
The control arcs are typically shown as broken lines to distinguish them from
data flow. The additional symbol is a bar or solid line, shown either vertically or
horizontally. All of the bars on a particular diagram represent an FSM
behavior for the functional element being decomposed by the functional
elements shown on the joint DFD/CFD diagram.

12.4.5 Petri Nets

Petri nets (PNs) are based on a rigorous mathematical definition leading to an
executable simulation model and having formal mathematical properties. Petri

ON

MAINTAIN

ACCELERATEDECELERATE

H

vr

k j i

vd va

v v

hPULSE

h

vd

va

ARC LABEL DEFINITION

h non drive wheel RPM not equal to drive wheel RPM 

h(hat) non drive wheel RPM equal to drive wheel RPM 

i wheel RPM decrease from set speed 

j wheel RPM increase from set speed 

k wheel RPM match to set speed 

v(hat) release the CCS button 

va va = push CCS button to accelerate 

vd push CCS button to decelerate 

vr push button to resume / set 

k

FIGURE 12.19 Decomposition of the ‘‘on’’ state for the INDICATOR (after
Charbonneau [1996]).
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nets capture the precedence relations and structural interactions of potentially
concurrent and asynchronous events.

Mathematically, a PN is a bipartite directed multigraph. The two node types
are the place (depicted by a circle) and the transition (depicted by a bar or
rectangle); see Figure 12.21. The arcs are restricted to connect places to
transitions or transitions to places. In addition, PNs contain markings or a
mapping of tokens to places. A transition can fire when a token is present in
each of the places that have arcs entering the transition. So t1 can fire in the top
half of Figure 12.21; after the firing the transition places one token in each place
that has an arc from the token.

A Petri net is defined a four-tuple, or four sets:

P={p1, p2, y, pn}, the set of places,

T={t1, t2, y, tm}, the set of transitions,

A={P �T} , {T�P}, the set of input and output arcs,

M={m1, m2, y, mn), the net’s initial markings (drawn as dots).

The state of the PN is defined by the marking. In ordinary PNs, the tokens
are indistinguishable. The existence of one or more tokens at a place indicates
the availability of a resource for the fulfillment of a condition that is associated
with a transition. Figure 12.22 provides two examples of simple systems for
concurrent processing and a simple communications protocol.

There are many extensions of ordinary PNs. Colored PNs allow more than
one type of token; timed PNs allow varying times for the transitions to occur;
and stochastic PNs allow stochastic transitions. See Murata [1989] for a good
overview of this topic.

p1

p2

p3t1

p1

p2

p3t1

t1 “fires”.

FIGURE 12.21 Simple Petri net example.
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12.5 SUMMARY

The complete model-based examination of a system requires at least the use of
data, process, and behavior modeling. When using multiple approaches to
model a single system, balancing or aligning the elements of the multiple
models is critical. Several approaches for each of these model categories were
presented in this chapter.

Data modeling is the specification of data entities and relationships bet-
ween pairs of entities at a minimum. In addition attributes of each data entity
can be developed. Entity relationship diagrams provide the basic data
modeling capability and are probably the most widely used of the data
modeling techniques. Higraphs extend the data modeling of ER diagrams by

p2

t1

p1 t2

t3

p3

p4

t4

p5

begin end

Concurrent Processing

Simple Communication Protocol
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for ack.
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Ready
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received
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received

Process 2

Ready
to receive

Ack.
sent

Send
Message

Buffer
full

Buffer
fullReceive

Message
Send
ack.

Receive
ack.

FIGURE 12.22 Petri net models of simple system architectures (after Murata [1989]).
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adding the representation of subset and cross-product relationships among
entities.

The three process modeling techniques covered in this book are IDEF0
(see Chapter 3), data flow diagrams, and N2 charts. Each of these techniques
captures the relationship among functions in the functional decomposition by
representing the transformation of inputs into outputs. The N2 charts are the
simplest but least graphical representation of a process model. Data flow
diagrams are widely used but least standardized of all of the modeling
techniques discussed in this book. IDEF0 was quite standardized since it
was created in the 1970s; the National Institute of Standards and Technology
(NIST) has created a FIPS for IDEF0, thus making an IDEF0 model easy to
read and comprehend. Distinctions between these techniques are that IDEF0
defines at least one control item for each function while the other techniques
treat control items as inputs or ignore them. IDEF0 also includes the
construct of a mechanism to represent the resources that execute the function,
making it the only process modeling technique general enough to represent
portions of the allocated architecture of the system. The control could be a
trigger to activate the function or policy instructions for implementing the
function. Data flow diagrams contain the concept of a data store that is
useful during design to define which data elements will be contained in a
specific database.

Five modeling techniques for behavior modeling were described in this
chapter. FFBDs were described in Chapter 3. Control flow diagrams are the
simplest and by far the least useful. Control flow diagrams add the concept of
transitions to data flow diagrams, which suggests that the system modes and
functions are identical. While this assumption may be useful in simple systems
and software products, it is very limiting in most real systems of hardware,
software, and other resources. Behavior diagrams come from the systems
engineering discipline and add FFBD control structures on top of a process
model to represent serial, concurrent, repetitive, and replicated process
execution as well as the rule-based selection of functional outputs. While no
formal mathematical model has been published to define these control
structures, they have been implemented in software, suggesting that such a
formal model exists and could be specified. Finite-state machines and state-
transition diagrams are used in other engineering disciplines, but are not
sufficiently general to capture the rich behavior possible in a complex system,
for example, concurrent processing. Statecharts are a generalization of state-
transition diagrams that enable many of these limitations to be overcome but
still provide a limited semantics and syntax for modeling complex systems.
Petri nets are the only behavior modeling technique with an underlying
mathematical model that defines what can be done and provides analytical
results without simulation. Unfortunately, Petri net models are quite sophis-
ticated and are not likely to be employed on a widespread basis in the
engineering discipline for systems until their potential benefits are much better
justified and become widely known.
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PROBLEMS

12.1 Expand the ER model in Figure 12.4 to be a complete representation of
the entities and classes discussed in Chapter 2 for the systems
engineering process.

12.2 Create a higraph that is a complete version of Figure 12.4.

12.3 Create a complete behavior diagram model of the process of engineer-
ing a system based upon the IDEF0 model of the engineering of a
system in Appendix B.

12.4 Create a statechart for the functioning of the air bag system from the
time the driver turns the car on until an accident occurs that activates
the air bag or the driver turns the car off.
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