
Chapter 13

Decision Analysis
for Design Trades

13.1 INTRODUCTION

Decision making is a process undertaken by an individual or organization.
The intent of this process is to improve the future position of the individual
or organization in terms of one or more criteria. Most scholars [Howard,
1968] of decision making define this process as one that culminates in an
irrevocable allocation of resources to affect some chosen change or the
continuance of the status quo. The most commonly allocated resource is
money, but other scarce resources are goods and services and the time and
energy of talented people.

Watson and Buede [1987] have identified three primary decision modes:
choosing one alternative from a list, allocating a scarce resource(s) among
competing projects, and negotiating an agreement with one or more adver-
saries. Decision analysis is the common analytical approach for the first mode,
optimization for the second, and a host of techniques have been applied to
negotiation decisions [Jelassi and Foroughi, 1989]. Concepts of decision
analysis are relevant to the second and third of these modes.

Section 13.2 provides a philosophical discussion of decision making and the
elements of decision making: values, alternatives, and facts. Section 13.3
explains the rational basis of decision analysis in terms of a set of axioms
that provide a compelling structure for some decision makers. Section 13.4
provides an analytical basis for modeling stakeholder values in the face of
conflicting objectives, a critical element in design decisions when faster, better,
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and cheaper are all desired but not mutually compatible. Section 13.5 discusses
the modeling of uncertainty and risk preference for design decisions; decision
trees, relevance diagrams, and influence diagrams are introduced as modeling
tools. A sample application focused on the development of trade-off require-
ments consistent with an objectives hierarchy and performance requirements is
presented in Section 13.6; this sample application is based upon a real
application of decision analysis to requirements development.

This chapter describes a model of uncertainty (probability theory), a model
of value (multiattribute value theory), a model of risk preference (utility
theory), and a normative model for incorporating uncertainty, value, risk
preference, and complexity for aiding the thought and conversation process
needed to make explicit, rational decisions.

13.2 ELEMENTS OF DECISION PROBLEMS

Decision analysis is a normative theory for making a decision (an irrevocable
allocation of scarce resources). The three major elements of a decision
that make its resolution troublesome are the creative generation of alternatives,
the identification and quantification of multiple conflicting criteria, and the
assessment and analysis of uncertainty associated with the what is known and
not known about the decision situation. Howard [1993] has drawn an analogy
between the model building and analysis processes inherent in decision analysis
and a conversation with a decision maker. The conversation (or modeling)
needs to address what the decision maker (stakeholders in systems engineering)
cares about (values), what the decision maker can do (alternatives), and what
the decision maker knows (facts or absence thereof).

Many stakeholders and systems engineers claim to be troubled by the
feeling that there is an, as yet unidentified, alternative that must surely be
better than those so far considered. The development of techniques for
identifying such alternatives is receiving considerable attention [Elam and
Mead, 1990; Friend and Hickling, 1987; Keller and Ho, 1988; Keeney, 1992;
West, 2007].

Ample research [von Winterfeldt and Edwards, 1986] has been undertaken
to identify the pitfalls in assessing probability distributions that represent the
uncertainty of a stakeholder. Research has also focused on the identification of
the most appropriate assessment techniques. Similar research [von Winterfeldt
and Edwards, 1986] has focused on assessing value and utility functions.
Keeney [1992] has recently advanced concepts for the development and
structuring of a value hierarchy for key decisions. While it will never be
possible to turn decision support via decision analysis over to a computer, the
vast number of real-world applications of decision analysis [Kirkwood and
Corner, 1993] demonstrate that this analytic modeling support is well worth the
time and effort.

402 DECISION ANALYSIS FOR DESIGN TRADES



13.3 AXIOMS OF DECISION ANALYSIS

There are five basic rules of thought [von Neumann and Morgenstern, 1947;
Howard, 1992] that establish decision analysis: probability, order, equivalence,
substitution, and choice. Probability is adopted as the representation of
uncertainty. This is a well-founded discipline for addressing uncertainty and
is the common approach within engineering.

The order rule states that our preferences are sufficiently well defined that
any possible list of outcomes associated with the design alternatives can be
ordered from least preferred to most preferred on each objective in the
fundamental objectives hierarchy. In addition, once our preferences are
aggregated across all objectives there is a single list of outcomes ordered by
our preferences. Naturally, it is possible to be indifferent between two outcomes
on a specific objective or on the aggregate. Our preference order does not need
to be the same from one objective to the next; in fact, there would be no need to
have multiple objectives if this were the case. The ordered list must be
transitive, which is to say that any outcome can only appear once on any
ordered list. If this is not the case, we become subject to the ‘‘money pump’’
argument; a disinterested party could entice us to put up an infinite amount of
money by offering us a sequence of trades among three alternatives. For
example, I would be intransitive if I stated that I preferred a Lexus to a
Cadillac, a Cadillac to a BMW, and a BMW to a Lexus. With these preferences
and ownership of a Lexus, I would pay to swap for your BMW, pay again to
swap the BMW for your Cadillac, and then pay a third time to swap the
Cadillac for the Lexus I originally owned. By this time I should realize there
was something wrong with my preference structure.

The equivalence rule sets up a situation with three outcomes, A, B, and C,
where A is preferred to (W) B, and BWC. This rule states that there is some
lottery containing a probability, p, of obtaining outcome A and a probability of
(1 � p) of obtaining C that will make us indifferent to obtaining outcome B for
sure.

The substitution rule states that we are willing to substitute any combination
of outcomes in a decision-making situation if we are indifferent between them.
This is just the operational definition of equivalence.

Finally, suppose we have two alternatives, each with exactly the same
outcomes, and the probabilities of the outcomes are the same for all but two.
If one of the alternatives has a higher probability associated with the outcome
that is most preferred, then we should be happy to choose this alternative. This
is the choice rule.

Given these four rules plus the axioms of probability theory, a normative
theory of decision making results that dictates the maximization of expected
utility. Utility in this case needs to be measured on an interval scale; an interval
scale preserves equal intervals of measure and can be multiplied or divided by a
constant and can have a constant added or subtracted from it. A ratio scale of
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measurement for utility could be used but is not necessary. Note that
probabilities are constructed on a ratio scale.

13.4 MULTIATTRIBUTE VALUE ANALYSIS

Multiattribute value analysis is a quantitative method for aggregating a
stakeholder’s preferences over conflicting objectives to find the alternative
with the highest value when all objectives are considered. (Note the phrases
‘‘multiattribute utility analysis’’ and ‘‘multiple objectives decision analysis’’ are
also often used. In this book the word utility is reserved for situations in which
uncertainty has been explicitly modeled and the stakeholder’s risk preference is
being included in the analysis.) Multiattribute value analysis can be addressed
simply as is done in this chapter or with a great deal more sophistication [see
French, 1986; Keeney and Raiffa, 1976]. Additional insights can be found in
Kwinn and Parnell [2007]. Other approaches to value computations are also
available: analytical hierarchy process (AHP) [Saaty, 1980, 1986], percentaging
[Nagel, 1989], the technique for order preference by similarity to ideal solution
(TOPSIS) [Yoon, 1980], a fuzzy algorithm [Yager, 1978], quality function
deployment (QFD) [Akao, 1990], and Pugh matrix [Pugh, 1991]. None of these
other approaches are based on an underlying set of axioms that provide a
foundation for justifying an analytical process except the AHP. However, there
are a number of analytical concerns that have been raised about AHP,
percentaging, TOPSIS, and similar approaches [Buede and Maxwell, 1995;
Dyer, 1990; Harker and Vargas, 1990].

The process for defining the objectives of interest for a system has been
defined in Chapter 6. For the systems engineering application addressed in this
book, the objectives are the performance requirements that have been defined
as described in Chapter 6, as well as derived performance requirements that
have been defined as part of the development of the allocated architecture.

Following the definition of the objectives, a value scale must be defined for
each objective at the bottom of the objectives hierarchy. This value scale
definition begins by defining the minimum acceptable value of performance for
a given objective (constraining requirement) and the most desired value of
performance for the objective (the design goal). Then the relative value of
improving from the minimum acceptable threshold to the design goal is
quantified in the form of a value curve. Objectives that are a combination of
bottom-level objectives are in the hierarchy for ease of aggregation and
communication; as a result these intermediate and the top-level (or funda-
mental) objectives are computed from lower level objectives.

After value scales are defined for each bottom-level objective, value weights
that address the relative value associated with improving from the bottom
(minimum acceptable threshold) of the value scale to the top (design goal) must
be assessed from the stakeholder for all bottom-level objectives as well as the
intermediate objectives. The discussion in this chapter is going to address the
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common, but not universal, case in which the values can be aggregated across
objectives by using a weighted-average formula. The books by French [1986]
and by Keeney and Raiffa [1976] address the general aggregation process and
the assumptions required for various aggregation formulas.

The assumption that the general value function over the vector x of n
bottom-level objectives can be written as a weighted additive function of value
functions on the individual objectives:

vðxÞ ¼
Xn

i¼1
wiviðxiÞ ð13:1Þ

will be adopted from here on out. Note the weights are commonly normalized
to sum to 1.0, and the value functions are normalized to range from either 0 to
1, or 0 to 10, or 0 to 100.

13.4.1 Eliciting Value Functions

The axioms of decision analysis produce the result that the value function
over the vector x of bottom-level objectives must only be an interval function
when the decision maker is risk neutral (the assumption made here). As a result,
the individual value function vi over bottom-level objective xi must also be an
interval-scaled function of x. This interval property is the key to eliciting value
functions from stakeholders about the relative value they assign to improving
from the threshold of acceptable performance of xi, xi

0, to the most desired
value of xi*. Watson and Buede [1987] present the bisection and the equal
differences methods for eliciting these functions.

These value functions take four general forms (see Fig. 13.1): decreasing
returns to scale (RTS), linear RTS, increasing RTS, and an S-curve. The
decreasing RTS signifies a satiation of preference near the most desired value.
Decreasing RTS is commonly encountered when the threshold of acceptable
performance is within the key performance range of interest to the stakeholders
and the most desired value is outside this key performance range where
satiation takes over. The linear RTS is commonly found when both the
threshold of acceptable performance and the most desired value are within
the key performance range of interest, or when there is no possible satiation of
preference. The increasing RTS occurs when (1) the threshold of acceptable
performance has been pushed below (in a value sense) the key performance
range and (2) there is a technological or other cap on the most desired value so
satiation of preference has not begun. Pushing the threshold of acceptable
performance below the key performance range in a value sense means limited
value is obtained by small increases in the performance parameter until some
significant change is achieved. The S-curve reflects a joining of decreasing and
increasing RTS and reflects the case in which the key performance range lies
between the threshold of acceptable performance and the goal. The S-curve
indicates that the range of possible designs has been maximized.
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Note no value curves that increase and then decrease, or decrease and then
increase, have been shown. When value functions that are not monotonic
(always increasing or always decreasing) are elicited, it is highly likely that there
are two underlying objectives that have been combined. These two objectives
should be separated so that the stakeholders are only considering one objective
at a time when being asked to specify their preferences.

Exponential functions are most commonly used to approximate the value
functions of stakeholders [Kirkwood, 1997]. Equation (13.2) shows a standard
form for variables on which more is better and that is normalized to be 0 when
the minimum acceptable threshold is met and 1.0 when the design goal is met.
When a is greater than 1.0, this equation demonstrates decreasing RTS. When a
is equal to 1.0, this equation becomes a straight line. When a is less than 1.0,
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this equation demonstrates increasing RTS.

viðxiÞ ¼
1� e�aðxi�x

0
i Þ

1� e�aðx
�
i
�x0

i
Þ ð13:2Þ

Wymore [1993] has suggested a value function (or figure of merit) family that
can accommodate all of the above value curves to some degree.

13.4.2 Eliciting Value Weights

Before discussing how to elicit the weights that are used in the additive value
function of Eq. (13.1), the meaning of these weights must be made clear. In
words, the weights must reflect the relative value associated with increasing from
the bottom to the top of each value scale. Note in Figure 13.1 each of the value
functions has been normalized to range from 0 to 1. Other normalizations, for
example, 0 to 10, 0 to 100, 14 to 85, are all acceptable, but it is usually most
meaningful to stakeholders and everyone else to have every value function
normalized from the same bottom value to the same top value. Value weights
that reflect the relative value in increasing from the bottom to the top of each
value scale are called swing weights because they represent the value attached to
the swing from bottom to top.

Why must the weights reflect this change in value from the bottom to the top
of the value scale? Consider the most general assumption that we can make
about the value function, namely that the value across all objectives is the sum
of individual value functions, viu(xi), functions that have not yet been normal-
ized in any way; see Eq. (13.3):

vðxÞ ¼
Xn

i¼1
v0iðxiÞ ð13:3Þ

Equation 13.4 normalizes viu(xi) to range from 0 to 1. Recall that the axioms of
decision analysis implied that an interval-scaled value function was sufficient,
meaning that we can add or subtract constants from an interval scale, as well as
multiply or divide by constants and still have an interval scale. The normalized
value function, vi (xi), is computed by subtracting a constant from the
unnormalized value function; this constant is the unnormalized value asso-
ciated with the worst value (xi

0) of xi. This result is then multiplied by a
constant, namely the range in unnormalized value from worst to best (xi*) levels
of xi.Note that when xi= xi*, the numerator and denominator are equal. When
xi= xi

0, the numerator equals 0.

viðxiÞ ¼
1

v0iðxn
i Þ � v0iðx0i Þ

½v0iðxiÞ � v0iðx0i Þ� ð13:4Þ
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Now solving for the unnormalized value function:

v0iðxiÞ ¼ ½v0iðxn

i Þ � v0iðx0i Þ�
nviðxiÞ þ v0iðx0i Þ ð13:5Þ

Substituting (13.5) into (13.3) we get

vðxÞ ¼
Xn

i¼1
ðv0iðxn

i Þ � v0iðx0i ÞÞ
nviðxiÞ þ v0iðx0i Þ

¼
Xn

i¼1
ðv0iðxn

i Þ � v0iðx0i ÞÞ
nviðxiÞ þ

Xn

i¼1
v0iðx0i Þ

ð13:6Þ

The last summation is a constant that has no relevance to distinguishing among
alternatives, so it can be subtracted from both sides of the equation.

Now divide both sides by the constant

Xn

i¼1
½ðv0iðxn

i Þ � v0iðx0i Þ�

and distribute this term throughout the summation on the right side of the
equals sign. The weights for each objective are defined to be

wi ¼
v0iðxn

i Þ � v0iðx0i Þ
Pn

i¼1
ðv0iðxn

i Þ � v0iðx0i ÞÞ
; ð13:7Þ

Substituting Eq. (13.7) into (13.6),

vðxÞ �
Pn

i¼1
v0iðx0i Þ

Pn

i¼1
½v0iðxn

i Þ � v0iðx0i Þ�
¼
Xn

i¼1
wiviðxiÞ; ð13:8Þ

which is a linear transformation of the original value function and therefore
equivalent to Eq. (13.1). So the value weights in Eq. (13.1) must be defined to be
the relative swing in value from the worst point xi

0 to the best point xi* across
all objectives.

Any mathematical approach employing interval scales that uses Eq. (13.1) to
compute value but does not explicitly call for the use of swing weights is doing the
equivalent of changing money from one currency to another by picking a random
set of exchange rates rather than using the current market-derived exchange rates.
The use of weights that are not swing weights may well suggest an alternative as
best that is not consistent with the stakeholders’ preferences. Some methods
such as the Pugh methodology [Pugh, 1991] hope the objectives can be
developed so that they are nearly equal in relative weight, without even defining
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what the weight means. No application of the authors (out of over a hundred)
has generated a set of objectives that were nearly equal in importance.

While value functions only need to be interval scales, weights must be
defined on a ratio scale. A ratio scale is one on which zero means zero value. In
this case the value at the design goal must be equal to the value at the minimum
threshold: viðxn

i Þ ¼ viðx0i Þ: A weight of zero means that the objective can be
ignored.

Weight elicitation techniques can be divided into two categories: those that
ask directly for numbers and those that ask for indirect ordinal or interval
judgments that are used to derive a ratio scale.

13.4.2.1 Direct Weight Elicitation Techniques. The most common direct
elicitation technique for ratio scale numbers is to ask people to spread 100
points among the objectives at any given level of the objectives hierarchy. This
is a typical technique for eliciting weights in any multiattribute value applica-
tion. The research literature [Watson and Buede, 1987] is not kind to this
technique, and our experience confirms the literature findings. While it is
relatively easy to do, people assign numbers that are far too close together to
meet any ratio scale requirements; this is true no matter how many caveats the
assessor presents to the participants to remember the ratio scale requirements
[Stillwell et al., 1981].

Two other common direct assessment techniques involve anchoring on either
the most important or least important objective. The stakeholder is then asked
to assign the most (least) important a score of 100 (1) and scale the remaining
down (up) based upon ratio scale requirements. The research literature has not
really examined this method. In practice, it has not worked well for making the
initial assessment queries, but has worked reasonably well when it is introduced
later in the assessment process. By this point, the stakeholders have become
accustomed to thinking about ratio scale properties based upon a more detailed
assessment process. The advantage of starting with the most important
objective is that the stakeholders are probably most familiar with it and
therefore, it is a useful anchor. The least important objective may not be that
familiar to the stakeholders. In either case, the weights are normalized to sum
to 1.0 at the end.

Edwards [1977] introduced a multi-attribute utility technique called
SMART that was based upon importance weights. (Edwards describes this
as a self-recognized intellectual error [Edwards and Barron, 1994].) Edwards
and Barron [1994] introduced SMARTS and SMARTER. SMARTS is simply
SMART recast with the intellectually proper swing weights. SMARTS employs
anchoring on the best objective at 100 points and scaling the rest down, then
normalizing the weights to sum to 1.0.

SMARTER involves using the rank-order centroid technique of transform-
ing the swing ranks of criteria into swing weights. Stillwell et al. [1981] offered
several ad hoc ways to translate rank orders into weights. In the following
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equations, ri is the rank of the ith objective, K is the total number of objectives,
and wi is the normalized approximate ratio scale weight of the ith objective.
Rank sum:

wi ¼
K � ri þ 1

PK

j¼1
K � rj þ 1

Rank exponent:

wi ¼
ðK � ri þ 1Þz

PK

j¼1
ðK � rj þ 1Þz

where z is an undefined measure of the dispersion in the weights. The larger z is
the larger is the ratio of the most important objective to the least important
objective.
Rank reciprocal:

wi ¼
1=ri

PK

j¼1
1=rj
� �

Rank-order centroid (ROC):

wi ¼ 1=Kð Þ
XK

j¼i

1=rj
� �

w1 ¼ ð1þ 1=2þ 1=3þ � � � þ 1=KÞ=K

w2 ¼ ð0þ 1=2þ 1=3þ � � � þ 1=KÞ=K

w3 ¼ ð0þ 0þ 1=3þ � � � þ 1=KÞ=K

wK ¼ ð0þ 0þ 0þ � � � þ 1=KÞ=K

Barron and Barrett [1996] show that ROC weights accurately define the best
alternative 75 to 90% of the time based upon a set of true swing weights elicited
some other way. When the incorrect alternative was identified, the loss of utility
averaged 3 to 7%. The ROC results were at the worst ends of these ranges when
the attribute values of the alternatives were negatively correlated, which
unfortunately is the most common situation in practice. Barron and Barrett
[1996] show that the rank-reciprocal and rank-sum weights were nearly always
worse than the ROC weights. Kirkwood and Corner [1993] use an actual
application by Ulvila and Snider [1980] on oil tanker standards to provide some
results that contradict claims concerning the effectiveness of rank-sum, rank-
reciprocal, and rank-exponent weights.
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SIDEBAR 13.1: ILLUSTRATION OF WEIGHTING TECHNIQUES

To illustrate the weight elicitation techniques, consider the following
engineering design sample problem. Suppose a communication system to
be deployed as part of a data collection system is being designed. As part
of our requirements analysis the following five major performance
parameters that determine successful and profitable data collection
operations (our measure of effectiveness) have been identified and ranked
based upon the importance of the swing from minimum acceptable to
ideal performance:

Performance
Parameter

Minimum
Acceptable
Performance

Design Goal Rank Order

Throughput, mbits/sec 100 120 1

Availability 0.85 0.95 2

Operating life, yrs 5 7 3

Procurement cost, $ 100 85 4

Operating cost, $/mo 1.00 0.70 5

For the rank-based techniques the results in the table below are
obtained. (Note that a 0.4 was used for the parameter in the rank
exponent method.)

Rank
Method

Throughput Availability Operating
Life

Procurement
Cost

Operating
Cost

Rank
sum

0.33 0.27 0.20 0.18 0.07

Rank
exponent

0.25 0.23 0.21 0.18 0.13

Rank
reciprocal

0.44 0.22 0.14 0.11 0.09

ROC 0.45 0.26 0.16 0.09 0.04
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13.4.2.2 Indirect Weight Elicitation Techniques. Indirect assessment of
weights can be obtained via one of several paired comparison techniques and
the use of graphical adjustments on a computer. These techniques are generally
far superior to any of the direct techniques in their ability to capture the
decision maker’s trade offs across objectives.

The paired comparison techniques are the most common and include the
analytical hierarchy process (AHP) [Saaty, 1980], trade offs [Watson and
Buede, 1987], balance beam [Watson and Buede, 1987] judgments, and lottery
questions [Keeney and Raiffa, 1976].

AHP (see Sidebar 13.2) can be used to assess the weights of the objectives. In
the full implementation of AHP, it is not easy to elicit swing weights because the
AHP does not use the full value scale from 0 to 1. In AHP the stakeholders are
asked to compare each objective with every other objective; note it is possible to
skip some comparisons, but the accuracy of the results decreases rapidly as the
number of skipped comparisons grows. The AHP commonly does not ask the
stakeholders to rank order the objectives in terms of overall benefit but begins
by asking the stakeholders to compare objectives two at a time in whatever
order they appear. The stakeholders are given the option of using a verbal scale,
a numerical scale, or adjustable bar graphs. The numerical scale ranges from 9
times more valuable to one ninth as valuable. The verbal choices have numerical
equivalents that also vary from 9 to one ninth. If there are K objectives, AHP
would pose K(K�1)/2 questions of this sort. These responses are used as an
input to form a matrix upon which an eigenvector calculation is performed;
these mathematical operations are justified by a set of axioms that Saaty [1980,
1986] has developed. It is possible that the stakeholders’ judgments have
inconsistencies embedded in them. Saaty [1980] has developed an inconsistency
index based upon the mathematical operations he developed. Typically, the
stakeholders are asked to rethink selected judgments if the inconsistency index is
greater than 0.1. This approach seems to work well when the number of
objectives is greater than 3 and less than 7 or 8. Naturally, it is possible to break
a large number of objectives into subsets too/de this approach more efficient.

Trade offs are used for swing weights and involve using the scores to help
elicit the weights of the objectives. First, the objectives are ranked in order of
their overall swing in value. Next, the stakeholders are asked if the overall
swing weight of the second objective is as great as the swing from the lowest to
some intermediate point of the value scale of the first ranked objective. For
example, the stakeholders are asked whether the overall swing in value of the
second ranked objective was closer to 80 or 60% of the swing in value of the
first ranked objective. Suppose after some discussion the stakeholders agreed
that the swing in value on the second objective was roughly equivalent to a
swing from 0 to 0.7 on the value scale (normalized to a high of 1.0) of the first
objective. This establishes that the weight of the second objective is 70% that of
the first objective. The third ranked objective could now be compared to
intermediate points on either the first or second ranked objectives. This method
works very well when the value curves are firmly established and the value
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curves are continuous. If the value curves change significantly after trade offs
have been used, the weights have to be reassessed.

SIDEBAR 13.2 AHP EXAMPLE

Returning to the example of design trade offs for a communication
system, suppose the stakeholders provide the judgments shown in the
following table into the AHP verbal mode.

Throughput Availability Operating
Life

Procurement
Cost

Operating
Cost

Throughput (Equal) 1 2 4 6 (Absolutely)
9

Availability 1/2 (Equal) 1 4 (Strongly) 5 (Absolutely)
9

Operating
Life

1/4 1/4 (Equal) 1 (Weakly) 3 (Strongly) 5

Procurement
Cost

1/6 1/5 1/3 (Equal) 1 2

Operating
Cost

1/9 1/9 1/5 1/2 (Equal) 1

The normalized eigenvector of the largest eigenvalue for the numerical
version of the above matrix is 0.43, 0.39, 0.11, 0.03, and 0.01. (Note that
the AHP process associates a 9 with absolutely, 7 with very strongly, 5
with strongly, 3 with weakly, and 1 with equal.)

The balance beam approach is another approach for assessing the weights of
the objectives (see Sidebar 13.3). The stakeholders are initially asked to establish
a rank order of the overall swing weights of the objectives. Next, a series of
questions is posed to the stakeholders that begins with ‘‘Is the overall swing in
value of the first objective (a) greater, (b) less than, or (c) equal to the combined
overall swing in values of the second and third most important objectives?’’ To
illustrate this question a balance beam analogy (see Fig. 13.2) is used. If the
stakeholders respond that the first ranked objective has the highest overall swing
weight, the attractiveness of the other choice is increased by adding the fourth
ranked objective to the package of the second and third ranked objectives. If the
stakeholders say the package of second and third ranked objectives has a higher
swing value than the first ranked objective, the attractiveness of the combination
package is decreased by dropping the third ranked objective and adding the
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fourth ranked objective. This process is continued until the stakeholders have
found a package of objectives with an overall swing in value that is comparable
to the first ranked objective. Next, the second ranked objective is compared with
the third and fourth ranked objectives. This continues until only the last two
objectives remain. The process creates a set of inequality and equality equations
that relate the swing weights of the objectives. Typically, a weight of 1 is assigned
to the least weighted objective, the stakeholders are asked to assign a swing
weight to the second least weighted objective, and then the equations are used to
bound the swing weights of the remaining objectives. It is possible that there will
be an inconsistency in a subset of the equations. If such an inconsistency exists,
the balance beam questions posed by this subset of equations are reexamined
until the stakeholders identify their inconsistency and make an adjustment.
This approach generally produces a wide spread in the swing weights for the
objectives.

SIDEBAR 13.3: BALANCE BEAM EXAMPLE

Using the balance beam approach for the communication system design
the stakeholders are asked to compare the swing in benefit of throughput
(T ) to that of the combined swings of availability (A) and operating life
(OL). The stakeholders respond the combination is greater than that of
throughput, or

ToAþOL

However, throughput (T ) is preferred to availability (A) and procure-
ment cost (PC):

T4Aþ PC

Availability is preferred to OL, PC, and operating cost (OC):

A4OL� 1� PCþOC

OL is preferred to PC and OC:

OL4PCþOC

Next, the unnormalized weight of operating cost is fixed at 1 and the
stakeholders are asked to provide a ratio weight for procurement cost;
suppose they say 1.5. Now the weight for operating life is greater than 2.5,
suppose the stakeholders say 3. The stakeholders now know that the
weight for availability is greater than 4.5 (3+1.5) and agree to a weight
of 6. Finally, the weight of throughput is between 7.5 (6+1.5) and 9
(6+3). The stakeholders choose 8. The normalized weights are 0.41,
0.31, 0.15, 0.08, and 0.05.
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Graphical elicitation procedures have been implemented in several software
packages for the elicitation of scores and weights. Bar graph adjustment is most
commonly used, but some software packages contain adjustable pie charts,
where the wedges of the pie represent different objectives.

13.5 UNCERTAINTY IN DECISIONS

This section addresses the analysis of decisions when there is substantial
uncertainty associated with outcomes impacting the relative value of the
decision’s alternatives. In systems engineering this uncertainty could be asso-
ciated with the state of technology at some time in the future; the stakeholders’
needs now and in the future; the ability to achieve cost, schedule, or performance
goals; and environmental variables associated with the use or testing of the
system.

Probability theory is discussed in Section 13.5.1 to refresh the reader’s
knowledge of this subject. Section 13.5.2 discusses the use of relevance
diagrams to represent joint probability distributions. Influence diagrams are
introduced in Section 13.5.3 as a way of representing a decision. The calcula-
tions of expected utility are described in terms of decision trees. Section 13.5.4
addresses risk preference.

13.5.1 Probability Theory

This section is not meant to be a detailed introduction to probability theory; for
such an introduction see Roberts [1992] and Ghahramani [1996]. The reader is

B

C

A

B

C
A D

FIGURE 13.2 Balance beam analogy for paired comparisons.
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assumed to be familiar with the concepts of probability density functions for
continuous random variables, probability mass functions for discrete random
variables, the difference between marginal and conditional probability distri-
butions, the notion of cumulative probability distributions, and joint prob-
ability distributions of two or more random variables. First, the concepts of
probabilistic independence and dependence are discussed. Then two important
equations, the law of total probability and Bayes rule, are provided. Finally,
relevance diagrams are introduced as a way to describe the probabilistic
dependencies among a set of random variables. This entire discussion will be
conducted in terms of discrete random variables because the mathematics is
easier to convey, and discrete random variables are more commonly encoun-
tered is systems engineering problems. In addition, decision analysis commonly
discretizes continuous random variables for computational ease.

The probabilistic independence of two random variables, X and Y, is defined
to occur when the conditional probability distribution on X given Y equals the
marginal probability distribution on X. It can be shown that when the
preceding is true for X, then the probability distribution on Y given X must
also equal the probability distribution on Y. As a result, the joint probability
distribution of instances of X, xi, and Y, yi, can be written as

pðxi; yjÞ ¼ pðxijyjÞ pðyjÞ ¼ pðyjjxiÞ pðxiÞ ¼ pðxiÞ pðyjÞ ð13:9Þ

when X and Y are probabilistically independent. Intuitively, probabilistic
independence means that learning the value of X does not cause us to change
our probability distribution about Y.

The law of total probability allows the computation of a marginal probability
distribution of one random variable by summing over all possible values of a
second random variable that is probabilistically dependent on the first. This
law is used to compute p(xi) when the probabilities on the right-hand side of
Eq. (13.10) are known better than p(xi) (shown in Fig. 13.3):

pðxiÞ ¼
Xm

j¼1
pðxijyjÞpðyjÞ ð13:10Þ

Bayes rule is used to update our uncertainty on one random variable when
information about another random variable becomes available, assuming the

y1
y2 y3

y4

y5y6

xi

FIGURE 13.3 xi as a subset of the universal event, which is partitioned by Y.
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two random variables are probabilistically dependent on each other.

pðyjjxiÞ ¼
pðxijyjÞpðyjÞ
Pn

i¼1
pðxijyjÞpðyjÞ

¼ pðxijyjÞpðyjÞ
pðxiÞ

ð13:11Þ

In the case of Eq. (13.11) information about the value of random variable X is
obtained and is used to update our uncertainty about Y. The left-hand side of
Eq. (13.11) is called the posterior probability distribution of Y when all values
of j=1, 2, y m are considered. The p(yj) in the numerator on the right-hand
side of (13.10) is called the prior probability, the probability of Y before
information on X became available. The values of p(xi|yj) in the numerator and
denominator are called the likelihood values of getting information on X given
values of Y. Finally, the denominator of Eq. (13.10) is called the preposterior
and is in fact equal to p(xi), as computed by the law of total probability
[Eq. (13.10)]. The contrast between the law of total probability and Bayes rule
can be seen by revisiting Figure 13.3. With the law of total probability the
task is to compute the probability of a subset of the universal event using
conditional probabilities that partition the universal event. With Bayes rule the
universal event has been redefined based upon a new state of information,
namely xi is known to be true. Bayes rule provides the process for updating the
probability of any variable based upon this new information.

Adoption of Bayes rule in practice requires a philosophical shift in the
meaning of probabilities for most people. The most common philosophical
interpretation of probability among engineers and statisticians is that of a long-
run frequency associated with a set of events that have been or could be
repeated many times, for example, flipping coins, removing production samples
from a production line. However, in systems engineering the engineer of a
system is typically involved in very early design decisions regarding the
operational system, the test system for the operational system, the manufactur-
ing system of the operational system, the test system for the manufacturing
system of the operational system, and so forth. In these early design decisions
there is typically a great deal of uncertainty about specific outcomes related to
these decisions and very little data. In fact, it is often not possible to
contemplate repeating experiments to develop long-run frequencies within a
reasonable amount of time and money. Bayesian, or subjective, probability
interprets a probability as a state of information about the uncertainty
regarding a variable. Powerful mathematical and logical arguments have
been put forward by Savage [1954], De Finetti [1974], Lindley [1994], and
others for this interpretation of probability. Now that the computational power
that we have on our desks is quite sizable, many theoreticians are becoming
Bayesians due to the theoretical justification of the Bayesian argument. Yet
many of these Bayesian converts still prefer to put uniform priors on the
random variables and let the data shape the posterior distributions. This is
fine when there is a lot of data, as there is late in the systems engineering
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development process. Early in the development process there is precious little
data and uniform priors are not consistent with engineering judgment and
likely to lead to poor design decisions. There is a vast amount of research
available on the ability of humans to provide probability judgments [Hogarth,
1980; Kleindorfer et al., 1993; Wright and Ayton, 1994]. Serious probability
elicitation processes have been developed and used extensively with successful
results [Spetzler and Stael von Holstein, 1975; Merkhofer, 1987].

Bayes rule is useful during the design phase in systems engineering when
there is little hard data available. During this phase there are often significant
results available from analyses and simulations; these results are appropriately
considered as data, making Bayes rule an appropriate tool.

Bayes rule has wide applicability in the world of testing. Before the test we
have some uncertainty about the ultimate value of certain performance, cost, or
schedule parameters. Data is collected during the test regarding the values of
certain system or project characteristics that relate to the parameters of interest.
These data should then be used to update our uncertainty about the parameters
of interest. Test data should always be viewed as likelihood measures. All too
often, the test result is viewed to be the answer, and only the data parameter
associated with the largest likelihood value is reported.

13.5.2 Relevance Diagrams

A relevance diagram is a directed graph, or digraph, that is a statement of the
joint probability distribution among a set of random variables as a factoriza-
tion of conditional and marginal probability distributions. For example, the
three possible factorizations of two random variables, X and Y, are shown
in Figure 13.4. Each random variable is shown as a node with an oval
encapsulation. The top case shows two probabilistically independent random
variables; the absence of an arc indicates this independence. The next two cases
show dependence or relevance in a Bayesian sense of probabilistic updating; the
arc can go in either direction, with the direction reflecting a different condi-
tional and marginal distribution that define the joint distribution. It is obvious
from this simple graph that the arc in the bottom two graphs can be flipped
(have its direction changed) without any repercussions. However, this is not
true in general. A relevance diagram cannot have a cycle (see Chapter 5 for a
definition), so flipping an arc that causes a cycle to form is never possible. In
addition, when flipping an arc does not cause a cycle to be formed, it is possible
that arcs will have to be added to the digraph [see Shachter, 1986].

As an example of relevance diagrams for systems engineering, consider an
elevator design in which the state of technology related to control systems and
power systems is highly uncertain in the time frame of the development effort
(Fig. 13.5). The key performance requirements (design objectives) are elevator
performance in terms of mean wait times; the operational cost of the system;
and the availability of the elevator system. A relevance diagram depicting
the probabilistic dependencies is shown in Figure 13.5. Note that there is no
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dependence between the three key performance requirements; these three
variables are probabilistically independent of each other given the states of
control technology and power technology. This is called conditional indepen-
dence; if the variables for the control and power technologies were not present,
there would be edges between the three requirements nodes (performance,
availability, and cost). As discussed in previous chapters, there is great power to
be gained in communicating the structure of reasoning (modeling) about design
issues by using a graphical representation such as relevance diagrams.

X Y

p(xi, yj) = p(xi) p(yj)

X Y

p(xi, yj) = p(xi|yj) p(yj)

X Y

p(xi, yj) = p(yj|xi) p(xi)

FIGURE 13.4 Relevance diagrams for two variables.

Control
Technology

Elevator
Performance

Elevator
Availability

Elevator
Cost

Power
Technology

FIGURE 13.5 Notional relevance diagram for elevator design.
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As mentioned above, test results always provide likelihood information for
Bayes rule. As a result, a relevance diagram that includes test results will have
arcs going to the test result from the variable relevant to the test. A survey of
power technology to assess the possible state of power technology in two years
is an example of test data for the elevator design problem. This test data would
be shown as a node with an arc coming to it from the Power Technology node
in Figure 13.6. Bayes rule would then be used to flip this arc so that the survey
results could be incorporated in the decision being made.

13.5.3 Influence Diagrams and Decision Trees

Consider a standard design decision faced by systems engineers: Should a
component for the system be bought from an existing supply source or be
developed from more basic components? The uncertainty that may be most
troublesome in this decision is how long it will to take to develop the major
component and how much will it cost. The schedule and cost results could be
better than, equal to, or worse than the result associated with purchasing the
component. For this simple example assume the performance of both alter-
natives is equal. A decision tree depicting this decision is shown in Figure 13.7.
The value computation at the end of each branch of the tree addresses the cost
and schedule issues via a multiattribute value formulation. The decision node at
the beginning of the tree depicts the two alternatives as branches emanating
from a small square. After the Build alternative there are chance nodes (little
circles) that represent the uncertainties concerning cost and schedule. The tree
is ‘‘rolled back’’ by multiplying the value at the end of each branch times the
probability value on the branch just before it. These probability-weighted

Control
Technology

Elevator
Performance

Elevator
Availability

Elevator
Cost

Power
Technology

Survey Results
on Power

Technology

FIGURE 13.6 Relevance diagram with survey data on power technology.
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values are summed at each chance node to get an expected value at that node.
These expected values are then multiplied by the probabilities on the branches
before them and summed again. This process continues until the expected value
of each alternative is available at the decision node. The preferred alternative
should be the one with the highest expected value.

Influence diagrams are a graph-theoretic representation of a decision.
Shachter [1986, 1990] presented the requirements and algorithms needed to
transform an influence diagram from solely a communication tool into a
computation and analysis tool capable of replacing the standard decision
analysis tree. Significant additional research continues into influence diagrams
for structuring decision problems, defining the underlying mathematics and
graph theory of influence diagrams, and analyzing decision problems. When
properly implemented, decision trees and influence diagrams provide identical
solutions to the same problem. They are referred to as isomorphic since the
decision tree can be converted to an influence diagram, and vice versa.

An influence diagram may include four types of nodes (decision, chance,
value, and deterministic), directed arcs between the nodes, a marginal or
conditional probability distribution defined at each chance node, and a
mathematical function associated with each decision, value, and deterministic
node. Each decision node, represented by a box, has a discrete number of states
(or decision alternatives) associated with it; chance nodes, represented by an
oval, must be discrete random variables. Deterministic nodes are represented
by a double oval. A value node may be represented by a roundtangle, diamond,
hexagon, or octagon.

An arc between two nodes (shown by an arrow) identifies a dependency
between the two nodes. An arc between two chance nodes expresses relevance

Buy

0.5

[0.5]

 Low

  1 .500 

 [1] 

 Nominal 

  0.85  .500 

 [0.85]

 High 

  0.7 .000 

 [0.7] 

Build_Schedule 
Low

 .100

[0.925]
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  0.65  .250 

 [0.65]

 Nominal 

  0.5  .500 

 [0.5] 

 High 

  0.35  .250 

 [0.35]

Build_Schedule
Nominal

.700

[0.5] 
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  0.3  .100 

 [0.3] 
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  0.15 .500 

 [0.15]

 High 

  0  .400 

 [0] 

Build_Schedule
High

 .200

[0.105]

Build_Cost
Build [0.4635]

Buy_vs__Build
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FIGURE 13.7 Decision tree for buy vs. build decision.
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and indicates the need for a conditional probability distribution. An arc from a
decision node into a chance or deterministic node expresses influence and
indicates probabilistic or functional dependence, respectively. An arc from a
chance node into a deterministic or value node expresses relevance; that is to
say, the function in either the deterministic or value node must include the
variables on the other ends of the arcs. An arc from any node into a decision
node indicates information availability; that is, the states of these nodes are
known with certainty when the decision is to be made.

Figure 13.8 shows an influence diagram for the buy versus develop decision
described in the decision tree of Figure 13.7. The decision is represented in the
box, the value node in the box with rounded corners, and the two chance nodes
in ovals. Note that the alternatives and chance outcomes that were shown in the
decision tree are not visible in the influence diagram. However, the edges in the
influence diagram provide new information that was not readily available in
the decision tree, namely the probabilistic and value dependencies inherent in
the decision. Both cost and schedule are dependent on which alternative is
selected. Cost and schedule are also probabilistically dependent on each other,
with the influence diagram showing an arc from Build Cost to Build Schedule.
Value only depends on cost and schedule.

The decision node represents a logical maximum (minimum) operation, that
is, choose the alternative with the maximum (minimum) expected value or
utility (cost). A deterministic node can contain any relevant mathematical
function of the variables associated with nodes having arcs into the determi-
nistic node. A value node also can contain any mathematical function of the
variables with arcs entering the value node. In addition, the mathematical
function in the value node defines the risk preference of the stakeholder.

A well-formed influence diagram meets the following conditions: (1) the
influence diagram is an acyclic directed graph, that is, it is not possible to start
at any node and travel in the direction of the arcs in such a way that one returns
to the initial node; (2) each decision or chance node is defined in terms of
mutually exclusive and collectively exhaustive states; (3) there is a joint
probability distribution that is defined over the chance nodes in the diagram
that is consistent with the probabilistic dependence defined by the arcs; (4) there
is at least one directed path that begins at the originating or initial decision
node, passes through all the other decision nodes, and ends at the value node;

Value

Build
Cost

Build
Schedule

Buy vs.
Build

FIGURE 13.8 Influence diagram for build-buy decision.
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(5) there is a proper value function defined at the value node (i.e., one that is
defined over all the nodes with arcs into the value node); and (6) there are
proper functions defined for each deterministic node. An influence diagram that
is well formed can be evaluated analytically to determine the optimal decision
strategy implied by the structural, functional, and numerical definition of the
influence diagram. The analytic operations needed to evaluate an influence
diagram numerically are evidence absorption, deterministic absorption, null
reversal, arc reversal, and deterministic propagation [Shachter, 1986].

The influence diagram in Figure 13.9 shows an example of an influence
diagram for a requirements allocation decision for the design of a new elevator
system. The systems engineer is considering the use of one of two new
technologies (power or controller); the large decision node (center left of
Figure 13.9) defines the three alternatives. The requirements allocation (shown
as three separate decision nodes) of costs, performance, and availability will be
different if one or neither of these technologies is included in the design. Since
this initial decision will be known when the three requirements allocation
decisions are made, there are arcs from the initial decision node to the three
requirements allocation decision nodes. The other arcs between the three
requirements allocation decision nodes indicate the order in which the decisions
will be made: performance, availability, and cost. (The decision maker is free to
select any order among these three nodes.) These allocations and the prior
uncertainty of the systems engineering team about the power and controller
technologies will affect the uncertainty about the elevator’s cost, performance,
and availability. The arcs between the chance nodes are identical to those
shown in Figure 13.5. Note, this diagram shows the uncertainty of elevator
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System Cost Power
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2) Hi Tech Power
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Availability

Controller
Technology

FIGURE 13.9 Sample influence diagram for requirements allocation.

13.5 UNCERTAINTY IN DECISIONS 423



performance to be independent of power technology. In this simplified
example, the fundamental objective is comprised of three elements: cost,
performance, and availability.

The results of a case study analysis of the above elevator architecture and
requirements allocation decision are shown in Figure 13.10. First, the value
functions for elevator performance (an index of various passenger waiting times),
life-cycle cost, and availability and their weights are shown. Note that marginal
decreasing returns to scale is shown in each curve as capability moves from
the minimum acceptable threshold to the technological maximum. Next, the
uncertainties associated with the two technologies in question are shown.
The other uncertainties encoded as part of the analysis are not shown here.
The analytical results show that the allocated architecture and the requirements
allocation associated with the advanced power technology should be chosen to
be consistent with the requirements (the value structure captured by the trade-off
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FIGURE 13.10 Summary of requirements allocation case study.
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requirements) and the uncertainty about the technologies. The alternative
associated with the control technology is very close; in fact, too close to be
confident that the power technology is preferred given the limitations of value
and probabilistic assessments. The low-risk alternative is clearly inferior;
the design team could feel comfortable choosing either of the new technologies.
The choice of technology would significantly change the requirements allocation
decisions made in the three subsequent decision nodes.

13.5.4 Risk Preference and Expected Utility

Webster’s dictionary defines risk simply as the ‘‘exposure to the chance of loss,’’
and most people have at least an intuitive sense of what risk means to them. But
from a decision-making perspective, it is essential to provide a more formal
definition. The Defense Systems Management College (DSMC), [1989] in their
Risk Management Handbook, defines risk as ‘‘the combination of the prob-
ability of an event occurring and the significance of the consequence of the
event occurring’’ and defines risk management as ‘‘the various processes used to
manage risk.’’

There are several strategies used for dealing with risk: avoidance, transfer-
ence, management, and analysis. Risk avoidance is the selection of the low-risk
alternative; unfortunately, what seems to be low risk intuitively is high risk in
some cases. For example, consider a situation in which you have a sizable
portfolio of U.S.-based stocks and are considering purchasing either another
U.S. stock or what is considered a high-risk international stock. The interna-
tional stock is often the lower risk alternative because its performance is either
negatively correlated or uncorrelated with the performance of your portfolio
while the performance of the low-risk U.S. stock is highly correlated with your
current portfolio.

Risk transference involves options that transfer risk to others, an example
being the purchase of insurance. The insurance purchaser is willing to pay a
fixed price and have the insurance company take the risk of a major loss.

Risk management involves the use of hedging strategies; a hedging strategy is
the maintenance of fallback options in case a riskier option fails. The failure is
not catastrophic because the fall back option can be used. This is common in
systems engineering when multiple contractors are asked to develop the same
component; one contractor is pursuing the high-risk and high-performance
approach that will be used if successful, while another contractor is pursuing a
more conservative approach.

Risk analysis addresses risk explicitly when decisions are made in uncertain
situations. Addressing the uncertainty faced in a decision by assigning
probabilities to the uncertain outcomes, producing a lottery, has been discussed
above. If the outcomes are measured on a numerical scale (e.g., dollars) that
captures the value associated with the outcome, the expected value of the
lottery is used as a measure of the attractiveness of the lottery. However, if the
outcomes of the lottery are substantial compared to the wealth or well being of
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the decision maker, the expected value may not be an appropriate measure of
the value of the lottery, as judged by many decision makers. The value
associated with a lottery is called the certain equivalent, the value the decision
maker would be willing to accept in place of the lottery. Since this notion of
certain equivalence is a subjective judgment that is special to the individual (or
set of stakeholders) and the context at the time of the decision, a mathematical
description of risk preference must be guided by the feelings of decision makers.

A utility or risk preference function, u, is introduced to be a function of the
outcome values of the lottery. If such a function exists, the inverse function of
the expected utility of the lottery is the value of the certain equivalent of the
lottery that can then be used to compare the attractiveness of the lottery with
other lotteries. For example, consider the two lotteries in Figure 13.11 in which
the outcomes are measured in dollars. The expected values (EV) of these two
lotteries are:

EVð1Þ ¼ 0:5 � $1000þ 0:5� $0 ¼ $500

EVð2Þ ¼ 0:1� $100;000þ 0:9��$10;000 ¼ $1000

These expected values indicate that lottery 2 is preferred to lottery 1;
EV(2)WEV(1). Yet many people, who cannot afford a loss of $10,000, would
prefer the first lottery with the lower expected value. In other words, for those
people, the expected utility of lottery 1Wthe expected utility of lottery 2, or

0:5uð$1000Þ þ 0:5uð$0Þ40:1uð$100;000Þ þ 0:9uð�$10;000Þ ð13:12Þ

Mathematically, if the inverse function of u(.) exists, then Eq. (13.12) can be
restated as

u�1½0:5uð500Þ þ 0:5uð0Þ�4u�1½0:1uð100;000Þ þ 0:9uð�10;000Þ� ð13:13Þ

The question is: ‘‘Will such a function generally explain the decision maker’s
risk preference judgments over all possible lotteries?’’ The two expressions on

.5

.5

$1000

$0

.1

.9

$100,000

-$10,000

Win

Lose

Win

Lose

FIGURE 13.11 Comparison of two lotteries.
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either side of the inequality in Eq. (13.13) are called the certain equivalents of
the two lotteries.

The risk premium, xp, of a lottery is defined to be the difference between the
expected value of the lottery and the certain equivalent, ~x,

xp ¼ �x� ~x ð13:14Þ

For risk-averse decision makers the certain equivalent will always be less than
the expected value and the risk premium will be positive.

13.5.4.1 Assessing A Risk Preference Function. Discussion of a risk pre-
ference function for a specific decision assumes that the outcomes of the
decision have been characterized by a value function that collapses all
dimensions of value onto one dimension, commonly called the numeraire. A
money equivalent is the most common numeraire, but others are also possible.
The risk preference function is then a function over the value numeraire.

There are two types of questions involving a certain equivalent and a two-
outcome lottery that one can ask a decision maker during a risk assessment
session. These two question types are shown in Figure 13.12. The first question
type assumes the probabilities of the lottery are known and the decision maker

.5

.5

$100

$0

1
? = $35 

Query about the certain
equivalent given a completely
defined lottery. 

? = .6

1 - ? = .4 

$100

$0

1
$35

Query about the probability
of a lottery given all outcomes
are completely defined.

=

=

FIGURE 13.12 Simple risk preference assessment queries.
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is asked to provide one of the outcome values, typically the value of the certain
equivalent. However, one could fix the certain equivalent and ask for the value
of either the best outcome or worst outcome. The second question assumes that
all of the outcome values are known, including the certain equivalent, and the
decision maker is asked to supply the probability value.

Unfortunately, research has shown that people do not provide coherent
answers to these two types of queries. That is, in general the answers to the
second question type are going to suggest much greater risk aversion than
answers by the same individual to the first question type. A not uncommon
response to the first query, which has an expected value of $50, is $35, yielding a
risk premium of $15. Now if $35 is the certain equivalent in the second query,
an individual might respond that the question mark for the probability of $100
in the second lottery would be 0.6. The risk premium for this second lottery is
$25 (the expected value of $60minus the certainty equivalent of $35).

The first question type is asking directly for the response that will be
substituted into various analyses. Therefore, it is somewhat more appropriate
to ask this question. However, very few decision makers have thought seriously
about these issues in general, and even fewer have thought about them with
respect to a specific decision situation. The assessment process is therefore a
learning experience for the decision maker. The responses to the early questions
should be treated as a warm-up process.

A second caution for the risk assessment process is that there is a very
substantial zero effect. That is, people exhibit risk-averse behavior for gains but
risk-seeking behavior for losses. Figure 13.13 shows responses for a certainty
equivalent that demonstrates this behavior. The risk premium is $15 for the top
lottery and �$15 for the bottom lottery. The risk-averse person in the top
lottery would have a certain equivalent of less than�$50 for the bottom lottery.
Generally, people do not want to exhibit this ‘‘zero effect’’ once the seeming
contradiction is pointed out to them and will switch to a consistent risk-averse
(or risk-seeking) policy.

To investigate the decision maker’s risk preference fully in the region of
outcomes associated with the current decision, multiple lottery questions
should be asked in this region. For illustrative purposes, suppose the decision
involves gains of up to $10,000 and losses as great as $10,000. We arbitrarily set
the end points of the utility scale as u($0)=0 and u($10,000)=1. Figure 13.14
provides six such lotteries and the responses of the decision maker shown in the
boxes. Note that the utilities shown under each figure are calculated as in the
following example:

uð$2;500Þ ¼ :5 uð$10;000Þþ:5 uð$0Þ

¼ :5 ð1Þ þ :5 ð0Þ

¼ :5

Figure 13.15 displays the resulting risk preference function. Note the decreasing
rate of increase associated with this curve, mathematically known as a concave
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curve. A risk-neutral decision maker would have a straight line as a risk
preference function; risk-seeking behavior is typified by a convex curve.

13.5.4.2 Exponential Risk Preference. Define the risk aversion coefficient
g ¼ �u00ðxÞ=u0ðxÞ. If g is a constant, it can be shown by simple integration that
the risk preference function must take the form

uðxÞ ¼
k1xþ k2; if g ¼ 0

k1e
�gxþ k2; if g =2 0

(
ð13:15Þ

A common way to write such a risk preference function is

uðxÞ ¼ 1� e�gx

1� e�gxmax
; ð13:16Þ

where xmax is the largest value that x is expected to take. Thus, for any valued
outcome x, the utility of x can be calculated using the exponential utility
function. Note that this format produces

uðxmaxÞ ¼ 1:0

uð0Þ ¼ 0
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FIGURE 13.13 Illustration of the zero effect.
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The risk preference function plotted in Figure 13.15 is an exponential risk
preference function with g=0.00025.

Another important concept in risk preference is the risk tolerance, or the
inverse of the risk aversion coefficient. For the exponential risk preference
function and its constant risk aversion coefficient, the risk tolerance is constant.
In Figure 13.15, the risk tolerance is $4000. For an expected value decision
maker the risk aversion coefficient is zero, making the risk tolerance infinity.

The exponential risk preference function has another very special property,
called the delta property This property is stated as follows: An increase in all
outcomes of the lottery by a constant amount, D, results in an increase of the
certain equivalent by the same amount, A. So, for example, in the first example
above suppose that the certain equivalent for fifty—fifty gamble of $100 and
$0 was $35. Now, if each prize is increased by $100 and the certain equivalent of
a fifty—fifty gamble on $200 and $100 becomes $135, then the delta property is
satisfied for at least this one case. The exponential risk preference function is
the only function that can satisfy this property.

One very important implication of the delta property is that the buying and
selling prices of a lottery are the same. For example, the maximum that a
decision maker was willing to pay, B. for a lottery is the amount that when
subtracted by every outcome made us indifferent to having the lottery and not
having it, or a value of $0. Similarly, the minimum that the decision maker
would sell the lottery for, S, is its certain equivalent; also see Figure 13.16. If the
risk preference function is exponential, it can be proven that B=S through the
use of the delta property. For other risk preference functions the buying and
selling prices of a lottery are not necessarily equal.

There is a ‘‘quick and dirty’’ method for assessing a decision maker’s risk
aversion coefficient for an exponential utility function. The value of R for
which the decision maker is indifferent to accepting the lottery in Figure 13.17
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FIGURE 13.15 Assessed risk preference points.
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is the risk tolerance. That is, the certainty equivalent of the lottery in Figure
13.17 is 0 when R is the risk tolerance of the decision maker. It can be shown
that g= 1/R.

The exponential risk preference function is used as an approximation early
in risk analyses to determine the effect of risk preference on the choice of
alternatives. If this choice is sensitive in the appropriate region of the decision
maker’s risk tolerance, then more detailed analysis of the decision maker’s risk
preference is appropriate.
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FIGURE 13.16 Buying and selling prices are equal for exponential risk preference.
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FIGURE 13.17 Risk aversion coefficient lottery.
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13.6 SAMPLE APPLICATION

This application demonstrates how decision analysis can be used in the require-
ments development process of systems engineering. The requirements develop-
ment process consists of the development of an operational concept,
identification of the external systems that interact with the system and the
context in which the system operates, an objectives hierarchy for the system’s
performance, and the requirements. These requirements are divided into require-
ments categories of input/output, system-wide and technology, trade-off, and
test. The focus of this application is the use of multiattribute value analysis as the
approach for defining the trade-off requirements that comprise the value model
to be used by the stakeholder in evaluating the available alternatives. Implicit in
this approach is an objectives hierarchy for defining the value space of the
stakeholder (see Sidebar 13.4). Also included is the mathematical structure for
the trade-off requirements.

SIDEBAR 13.4: ECONOMIC MODELS

Hazelrigg [1996] provides strong motivation to use decision analysis tools
in systems engineering design decisions. In his treatment he addresses the
results of Arrow’s impossibility theorem [Sen, 1970] for achieving group
consensus on preferences and recommends the use of the demand
function from economics for defining consumer preferences for alternate
design alternatives. The issue of gaining stakeholder consensus on trade
offs needed during design is real; thus the systems engineering team must
resort to accepting the position of one stakeholder (the bill payer) as king
when these disagreements cannot be resolved. This was the method used
in the application presented in this section.

The notion of a demand function for a military system is not helpful.
However, for a commercial system the multiattribute value function can
be considered to be a first-order, Taylor series approximation of the
demand function. Hazelrigg [1996] does not go into detail about how to
obtain the demand function; the suggestion made in this book is to elicit
stakeholders’ preferences and use the bill payer as king or queen to
resolve disagreements.

Throughout this discussion a system called the Mobile Protected Weapons
System (MPWS) is used to describe the development of the system engineering
and decision analysis concepts. The MPWS was to be a helicopter-transpor-
table, direct-fire support weapons system for the U.S. Marine Corps (USMC),
with an initial operating capability of 1988. The basis of the example was a real
application of decision analysis to the MPWS in 1980. After the evaluation
structure embodied in the objectives hierarchy and trade-off requirements
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discussed below was used to evaluate proposed MPWS designs, the MPWS
was stopped in favor of purchasing similar vehicles ‘‘off-the-shelf,’’ as directed
by Congress. The contractors who received the objectives hierarchy and
trade-off requirements as part of the Request for Proposal were very
complimentary of the USMC for providing this information to guide their
design decisions.

13.6.1 MPWS Overview

An intuitive need for a highly mobile, helicopter-transportable weapons system
that can provide the landing force assault fire support as well as an antiarmor
capability first became apparent to the USMC in the early 1970s. There were
several contributing factors:

� Naval gunfire support assets, so important during an amphibious assault,
were steadily decreasing.

� Navy combatant ships with suitable guns for shore bombardment were
being retired without replacements or being replaced with ships less
capable of providing gunfire support to amphibious forces.

� The retirement from the Fleet Marine Force (FMF) of the ONTOS, a
light, mobile, antitank weapon system carrying six 106-millimeter (mm)
recoilless rifles.

� The retirement of the crew-served individual 106-mm recoilless rifle.

� The deletion of the 3.5-inch rocket launcher from the Marine Corps
inventory.

� At a time when naval gunfire and direct-fire weapons were decreasing, the
Soviet and Soviet aligned forces increased their capability with a wide
array of armored weapons systems, including tanks, armored personnel
carriers, and lightly armored weapons platforms.

In accordance with acquisition procedures contained in Circular A-109 of
the U.S. Office of Management and Budget, Mission Area Analysis (MAA)
was continuous, and a Mission Element Needs Statement was developed
stating that:

� Amphibious forces possess capabilities that are uniquely featured by their
responsiveness to the maritime aspects of the national strategy. Amphi-
bious warfare requires the full spectrum of capabilities from naval combat
effectiveness offshore and in the air to the close combat mission ashore.
The close combat capability provides the mobility, shock action, and
portions of the firepower necessary to enable landing forces to successfully
attack and destroy enemy personnel and materiel, breach their defenses,
link up surface-borne with helicopter-borne forces, defeat infantry and
mechanized counterattacks, and exploit success in combat ashore.
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� Capabilities currently possessed by the landing force provide limited
mobility and direct fire combat power to enable assault units to rapidly
close with and destroy enemy forces. Mobility and direct fire support
capabilities required to enhance current capabilities are:

a. Helicopter transportability of weapons systems by heavy-lift
helicopter

b. Vehicle and crew survivability through armor protection from nearby
artillery airbursts and medium-caliber direct-fire weapons firing at
medium range

c. Rapid cross-country mobility, agility, and endurance without signifi-
cant degradation of on-road capability and capable of competing with
the expected mobility of the threat

d. An on-board weapons suite with a long-range, high-kill probability
capability against armored, light armored, materiel, and personnel
targets characteristic of the threat

e. The ability to engage and defeat the target spectrum in all weather
conditions

f. Nuclear, Biological and Chemical (NBC) detection and protection

The Marine Corps requirements defined an affordable weapons system that
was to be highly mobile, helicopter-transportable, compatible with amphibious
operations, and able to provide direct-fire support during landing force
operations. The weapons system must provide protection from suppressive
fires and be capable of engaging and defeating armored, personnel, and
materiel targets.

13.6.2 Operational Concept for MPWS

In defining the mission needs for the MPWS, three employment scenarios were
considered. These scenarios represent the spectrum of scenarios that drives the
design of MPWS. The relative importance of each parameter in the design
process changes as a function of scenario.

Scenario 1: Offensive Role (assault support with the infantry) MPWS would
be used with the infantry in offensive operations. A red/blue force ratio of
1:4 and a northern NATO environment are established as the base for the
determination of relative capability requirements in this scenario.

Scenario 2: Defensive Role (blocking position) MPWS would be employed
with helicopter-borne forces to establish blocking positions. Friendly
tanks are not available. The mission calls for delaying the enemy and
channelizing his avenues of approach. It is assumed that enemy forces are
mechanized to include T62, T64, and T72 tanks, BMP, BTR, assault
guns, SP artillery, and attack helicopters. MPWS will be operating at
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altitudes higher than sea level. A red/blue force ratio of 4:1 in a Middle
East environment is established as the base in this scenario.

Scenario 3: Subsequent Operations MPWS would be employed with a
combined arms task force and would no longer be in an amphibious
assault role. Blue forces are task organized, and there would most likely
be low-mid-intensity nonnuclear conflict. Red/blue force ratio of 1:4 and
a Middle East/Third World environment are the requirements determina-
tion base.

13.6.3 External Systems Diagram

The external systems of the MPWS during its operational and maintenance
phase would be the operators (driver, gunner, and passengers), maintainers,
targets (light armored vehicles, tanks, personnel, and helicopters), and a heavy
lift helicopter that would have to transport the MPWS.

Figure 13.18 is an external systems diagram showing the inputs to and
outputs from MPWS for the various external systems. This diagram was
completed using the IDEFO Integrated Definition for Function Modeling
process modeling (see Chapter 3). Four external systems are shown in Figure
13.18; the MPWS operators, the MPWS targets, the heavy-lift helicopter that
will carry the MPWS from point to point, and the MPWS maintenance
personnel. The interaction between the MPWS and its operators is shown by
the three arrows; two leaving the operators’ function and one leaving the
MPWS function. Terrain forces are shown as part of the context, entering the
MPWS function as input from outside the set of external systems. The primary
benefits of this analytical construct are to bound the MPWS system very
specifically by showing where MPWS ends and other systems begin, and to
specify the inputs to and outputs of MPWS so that requirements can be defined
to make these inputs and outputs possible.

Figure 13.19 portrays an objectives hierarchy similar to the one developed
by a team of USMC experts and the decision analysts working the project. The
three operational scenarios are the first decomposition of the hierarchy because
the principal objectives of the USMC for the MPWS had different relative
importance depending upon the scenario. The top-level objectives, or measures
of effectiveness (MOEs), were firepower, mobility, availability, and surviva-
bility. Firepower was broken into measures of performance (MOPs): lethality,
servicing rate, stowed kills (a combination of the number of stowed rounds
and the lethality of those rounds), and target acquisition. Lethality is composed
of the various types of targets, followed by the ranges at which those targets
would be engaged. Target acquisition is composed of identification and
recognition in good weather as well as the bad weather capability. Mobility
is broken into capabilities related to cross-country, long-distance airlift, road,
and water. Survivability is measured by means proxies for agility, protection,
and signature.
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FIGURE 13.19 Operational effectiveness performance parameters.
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13.6.4 Requirements

The focus of this application is the set of requirements called trade-off
requirements, algorithms for comparing any two alternate designs on the
aggregation of cost and performance objectives. As discussed in Chapter 6,
these algorithms are divided into (a) performance trade offs, (b) cost trade offs,
and (c) cost-performance trade offs.

In the development of requirements for MPWS substantial attention was
devoted to the trade-off requirements for performance. The structure that
describes the mission-related objectives on which these performance trade offs
were defined is the objectives hierarchy shown in Figure 13.19. The trade-off
requirements consist of a utility or value curve for each bottom-level objective
and a set of weights at each branch in the tree.

13.6.4.1 Utility Curves. Figure 13.19 portrays the many operational effec-
tiveness variable performance parameters whose utility for improvement were
quantified for guidance by the USMC committee. Inherent in these value or
utility curves for the many performance parameters is the notion that design
trade offs are acceptable within the 0-to-100 range of utility; that is, MPWS
performance in some area can be sacrificed to the point of zero marginal utility,
but no further, in order to achieve performance gains in other areas. The zero
utility point on each performance parameter does not mean that a system with
this capability has no utility to the Marine Corps. Rather, it means that this
level of performance is the minimum acceptable to the Marine Corps across its
range of missions. So, for example, to be helicopter-transportable the MPWS
must not weigh any more than 16 ton at 3000 feet on a 91.51F day. The utility
curve for helicopter transportability is shown in Figure 13.20. Increased
performance for each parameter has value to the Marine Corps as shown by
the shape of the utility curves.

The shapes of these utility curves are the same for all of the above scenarios.
However, the relative values of improvements in one parameter compared to
improvements in another parameter do not vary across the three scenarios.
These relative values of performance parameter improvements are described in
Section 13.6.4.2.

13.6.4.2 Weights. Improvements in performance determined from the
curves for each parameter are not equally important in the overall analysis
of an MPWS. Therefore, a weighting procedure is applied to define the relative
value of improving from the 0 to the 100 level of utility on one performance
objective compared to another. The meaning of the weights can be described as
follows: the weight given to parameter A reflects how much more valuable it is
to improve from a score of 0 to 100 in parameter A as compared to the
improvement in parameter B from 0 to 100. Note weights are not a generic
measure of value but are dependent upon the swings from 0 to 100 on the
associated utility curves.
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For MPWS, weights played a large role in distinguishing among scenarios.
While the shapes of utility curves remain constant across scenarios, their
relative importance changed significantly. For example, an improvement in
utility for helicopter transportability was very important in the blocking
position role since the MPWS might have to be lifted into position. This
same improvement was far less important in the subsequent operations role
since the force would be traveling over land. Therefore, the weight that
helicopter transportability has, relative to other operational effectiveness
factors, was greater in the former role than in the latter.

13.6.5 Use of Utility Curves and Weights

Value (or utility) curves and weights can be used as follows: the abscissa (x axis)
of each curve is a measurable attribute that provides input to the curve. The
ordinate (y axis) is a measure of relative value or utility ranging from 0 to 100.
As an example, value or utility curves for V80 and Percent No-Go are shown in
Figures 13.21 and 13.22. Note that an improvement in V80 from 10 to 15 mph
is valued as highly as a gain from 15 to 25 mph. Both improvements would net
50 utility points. Using these curves, a candidate propulsion system yielding a
V80 speed of 15 mph would receive 50 utility points while one with a V80 speed
of 20 mph would receive 80 points; a candidate with 6% No-Go scores 85 while
one with 16% scores 35.

These value or utility scores would not be very meaningful for comparing
systems without a relative measure of importance between attributes. Thus,
a weighting procedure is applied to the scores to allow evaluation based upon
a combination of parameters. Again, consider the value or utility curves
illustrated in Figures 13.21 and 13.22: Suppose propulsion system 1 yields a
V80 speed of 15 mph and Percent No-Go of 6%, while propulsion system 2 had
values of 20 mph and 16%. System 1 scores would be 50 and 85, while system 2

U
til

ity

Helicopter Transpor (Tons, 3000 ft, 91.5)

1

0

12 16

FIGURE 13.20 Utility curve for helicopter transportability, measured in tons.
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scores would be 80 and 35. If both V80 and Percent No-Go were equally
important, the weighted scores for both systems would be:

System 1 : 1=2 ð50Þ þ 1=2 ð85Þ ¼ 67:5

System 2 : 1=2 ð80Þ þ 1=2 ð35Þ ¼ 57:5

This would indicate that propulsion system 1 was superior on these factors.
However, if V80 was considered to be two times as important as Percent No-
Go, the weighted scores would be:

System 1 : 2=3 ð50Þ þ 1=3 ð85Þ ¼ 61:7

System 2 : 2=3 ð80Þ þ 1=3 ð35Þ ¼ 65

In this case, propulsion system 2 would be better.
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FIGURE 13.21 Utility curve for V80, speed on the best 80% of terrain.
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FIGURE 13.22 Utility curve for % No Go, % of terrain that is not negotiable.
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It should be clear that the relative weights of the objectives play a major role
in the design and evaluation processes.

13.6.6 Conclusions

As discussed in Chapter 6 the requirements development process is a systematic
one that considers how the system is to be used, how the system is going to
interact with other systems and the general environment, and the user
objectives and priorities. Since user objectives and priorities are inherently
subjective, the ultimate requirements for the system have to be subjective,
reflecting trade offs of the users. This is not to say that substantial analysis is
not critical to the development of good requirements. In the case of the MPWS
the USMC used a great deal of analysis about alternate sites around the world
in which it might be involved in conflict and the capabilities of the CH-53E
helicopter to develop the utility curve for helicopter transportability and its
relative weight to other performance objectives. By using many analysis
techniques and a broad base of experts, logical and explicit statements of
requirements were developed based upon informed consensus. The appropri-
ate, detailed requirements inputs to the process can be obtained at lower
organizational levels using appropriate experts and analyses, yet the more
difficult, high-level requirement questions can be addressed at the highest levels
of the organization.

13.7 SUMMARY

This chapter has introduced the complexities associated with decision making
in general and addressed the difficulty of decision making in the engineering of
a system. With respect to engineering a system, the definition of clear and
meaningful alternatives for the design and integration of a system involves the
use of sophisticated processes and modeling techniques as described in the first
12 chapters of this book. The development of the value structure for selecting
design and integration alternatives was discussed in Chapter 6 and involves
complex trade offs across stakeholders and stages of the system’s life cycle.
Finally, there is significant uncertainty regarding the relative effectiveness and
cost of competing technologies as well as future needs of the stakeholders.

The axioms of decision analysis, as presented in this chapter, provide a
sound basis for a coherent, rational decision-making process that incorporates
meaningful approaches for addressing value trade offs and uncertainty. Multi-
attribute value analysis, a product of the axioms of decision analysis, uses value
functions and weights to quantify the trade offs across objectives. These value
functions and weights require that the stakeholders answer questions that have
meaningful interpretations to them in terms of the decision being made; the
quantification of values is not an ad hoc set of numbers producing an index of
goodness.
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Dealing with uncertainty is a difficult problem; decision analysis relies upon
probability theory to capture the uncertainty faced by the decision maker. In
the engineering of a system the uncertainty is not often described by existing
data and interpretable as the long-run frequency of a set of known events.
Instead the uncertainty deals with processes that change with time and
for which no (or at most a few) known events have occurred. Instead of
ignoring the uncertainty faced in the engineering of a system, decision analysis
permits the engineers to capture the expert judgment of the engineers,
stakeholders, and other experts and use this information to provide insights
about the design choices with the best information available at the time. Recent
advances in decision analysis provide graph-theoretic models for representing
probabilistic dependence (relevance diagrams) and decisions problems (influ-
ence diagrams).

Once uncertainty is modeled explicitly, the risk preference of the decision
maker has to be addressed as part of decision analysis. The concepts of risk
aversion, neutrality, and preference are defined mathematically and illustrated
as part of the decision analysis process. Using the decision maker’s risk
preference requires computing the certainty equivalent as the inverse of the
utility function.

Clearly, it is inappropriate to use the sophisticated tools of decision analysis
for every decision that is part of the engineering of a system. Many times
engineers have described the benefit of thinking about the decision in the terms
of decision analysis. At other times developing the value model and using a
quick scoring and weighting evaluation provides insight into which alternatives
are serious and which should be ignored. For really complex and contentious
decisions, the full power of decision analysis can provide an explicit and
rational process for defining and discussing the alternatives to reach a
conclusion consistent with the values of the stakeholders and the uncertainty
as defined by relevant experts.

PROBLEMS

13.1 In defining reliability of a system, we talk about the probability of a
failure. Failure here is an event or distinction, but not one that passes
the clarity test. As a result, systems engineers work very hard to focus
on the distinction, mission failure, where a mission failure is a failure
that precludes the user from completing her/his mission. This definition
still does not pass the clarity test because we have not defined the
mission, a definition that is system and context dependent.

For the elevator system where you work or go to school,

a. Define mission in a way that meets the clarity test.

b. Define as many failures as possible and show which would be
classified a mission failure. Be sure to keep the clarity test in mind
when defining these failures.
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c. Discuss whether it is sufficient to discuss failures one at a time or
whether it is necessary to examine possible combinations of failures
to define fully all possible mission failures.

13.2 Garbled Communications, Ltd. is designing a new system for special-
purpose use that only requires three signals to be sent and received. The
derived requirements below list the probability that signal si is received
given that signal si is sent:

p(sj received | si sent, &) Receive s1 Receive s2 Receive s3

Send s1 0.80 0.10 0.10

Send s2 0.05 0.90 0.05

Send s3 0.02 0.08 0.90

For the operational concept each signal is equally likely to be sent. The
stakeholders’ requirement for this scenario is that each signal should
have a 0.85 probability of being sent given that it was received. Is this
requirement met if these derived requirements can be satisfied? Note
the symbol ‘‘&’’ on the right-hand side stands for all prior information.

13.3 Garbled Communications, Ltd. has begun producing its new commu-
nications system and has built three assembly lines: LI, L2, and L3. Ll
is the most productive, accounting for 40% of the production; L2 is the
least productive, accounting for 25%. L3 accounts for the rest. Test
data show that L1 has a 2% chance of producing a lemon, L2 a 4%
chance, and L3 a 3% chance. What is the probability that a lemon
picked at random will come from each of the assembly lines?

13.4 Write the joint probability distribution that is consistent with the
relevance diagram shown below.

x9

x6

x7

x8

x1 x2

x5

x4

x3
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13.5 Create a relevance diagram that is consistent with the following joint
probability distribution:

pðx1; x2; x3; x4; x5; x6; x7; x8j&Þ

¼ pðx8jx7;x5;&Þ pðx7jx6; x5; x4;&Þ pðx6jx3;&Þ

� pðx5jx2; x1;&Þ pðx4jx3; x1;&Þ pðx3j&Þ pðx2j&Þ pðx1j&Þ

13.6 You have been tasked with providing a recommendation for a test site
at which an acceptance test will be conducted. There are three possible
test sites (A, B, and C). Site A is the preferred site during good weather.
Site C is the least preferred. Unfortunately, there is a long-range
weather forecast for 3 months from now when the test needs to be
conducted. The weather forecasters described the possibilities for
weather as ‘‘good,’’ ‘‘fair,’’ and ‘‘poor.’’ These possibilities have been
defined very carefully and their forecast for the time period of the test
is: 0.3 for good, 0.6 for fair and 0.1 for poor.

You have tried to find a way to reserve site A for a long enough period
of time that the weather will certainly be good. However, site A is used
by many people, and management has determined that the project
cannot afford to rent site A for this extended time period. The cost at
which the sites can be reserved for the time period in question is $1000
for site A, $700 for site B, and $400 for site C.

Usage of each of these sites has varying positives and negatives for
being able to analyze the results and recommend that the system be
accepted. You have queried your colleagues to determine how much
they would be willing to pay to change a specific site in the different
weather conditions to the preferred site A and weather condition. These
relative dollar values do not include the cost of renting the site for the
needed time period. The relative dollar value equivalents for sites and
weather conditions are shown below:

Weather Is Good Weather Is Fair Weather Is Poor

Site A $1000 $200 $0

Site B $950 $300 $200

Site C $500 $450 $300

That is, site A in good weather is worth $1000 more dollars in terms of
test performance than it is in poor weather. Similarly, site A in good
weather is worth $500 more than site C in good weather.
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a. Draw the influence (or decision) diagram for this problem.

b. Draw the decision tree for the problem.

c. Compute the expected values for the three sites to determine which
site should be recommended.

d. What is the value of perfect information for weather? Show the
influence diagram and decision tree for computing the value of
perfect information.

e. Using the following u curve, what is the best expected utility
decision?

uðxÞ ¼ ð1� e�0:01xÞ=ð1� e�0:01Þ

where x is the total monetary value associated with using the site in
question.

f. What is the value of perfect information using the above u curve.

13.7 As part of the management group of the systems engineering team, Bill
D. Orby has been given the task of recommending whether to ‘‘build’’
or ‘‘buy’’ a particular component. Bill has called several manufacturers
of this component and found the best ‘‘buy’’ alternative will cost
$200,000 for the quantity needed. The performance of this component
that is available from outside is categorized as moderate; this categor-
ization includes many performance parameters and is rather coarse,
but Bill hopes sufficient for an initial analysis.

Next, Bill spent significant time talking to several design engineers
within his company who would be given the task of building this
component, and several others who have built similar components in
the past. There is uncertainty concerning both the cost and ultimate
performance of this component if it is built by Bill’s organization. Bill
has modeled the uncertainty about total cost for developing and
building the total quantity of the component as follows:

Build Cost Probability

$100,000 0.2

$200,000 0.6

$400,000 0.2

The performance of the built component expected by the engineers
with whom Bill spoke is substantially greater than the performance to
be provided by the bought component. Bill has devised three perfor-
mance categories to describe the uncertainty surrounding the built
component: low, moderate, and high. The assessed probabilities of
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these performance outcomes, which are independent of the cost
uncertainty, are

Build Performance Probability

Low 0.2

Moderate 0.3

High 0.5

The last issue that must be addressed is the combination of costs and
performance, including the difference between spending money outside
the organization for the component versus spending the money inside
the organization. You have found that management can think of an
‘‘equivalent purchase price’’ for the nine possible combinations of
outcomes associated with building the component. The following table
provides this equivalent purchase price. [Note that (1) negative
numbers are equivalent to receiving money and (2) the cost of building
the component has been included in the values in the table.]
Table of Equivalent Outside Purchase Price as a Function of ‘‘Built
Performance’’ and ‘‘Built Cost’’

Built Cost inside the organization

Built Performance $100,000 $200,000 $400,000

High �300,000 �200,000 0

Moderate 0 100,000 300,000

Low 100,000 200,000 400,000

Note that management prefers to build the component inside because
the $200,000 build cost with moderate performance is equivalent to
spending $100,000 outside. Assume that management’s value function
on ‘‘Outside Purchase Price’’ is a linear function with coefficient of �1.
a. Draw an influence diagram for this problem.

b. What is the best expected value decision?

c. What is the expected value of perfect information for built perfor-
mance? for built cost? and for the combination of built performance
and built cost? Show the influence diagram for each of these perfect
information calculations.

13.8 Consider Problem 13.6. The first paragraph holds except we will drop
the fair weather condition. The probability of good weather is 0.3; the
probability of poor weather is 0.7.
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We are now going to enhance this model to address the need to test our
system under a specified test condition. The weather affects the ability
of each site to provide the necessary elements (e.g., terrain, visibility)
that define the test condition. Our test experts visit each site and return
with probabilities that each site can do a ‘‘good’’ versus ‘‘poor’’ job of
reproducing the needed test condition. Assume that we have defini-
tions of good and poor that meet the clairvoyant’s test. (Note we could
have defined more than two categories if we felt we needed to achieve
more accuracy.)

Site Weather p(test condition good|site,
Weather, &)

p(test condition poor|site,
Weather, &)

A Good 1.0 0.0

A Poor 0.5 0.5

B Good 0.9 0.1

B Poor 0.5 0.5

C Good 0.7 0.3

C Poor 0.2 0.8

The test engineers have determined that they would be willing to pay
$10,000 to move from a test site providing a poor version of the test
condition to a test site providing a good version of the test condition.

Which site should we choose? Remember the rental cost of each site.
What is the value of perfect information on the weather?

13.9 Now we are going to take Problem 13.8 and increase the modeling
complexity by defining three different test conditions that must be
reproduced by the test site. We call these test conditions X, Y, and Z.
We first generate descriptions of ‘‘good’’ and ‘‘poor’’ for each test
condition. Then we ask the wizard to help us elicit the values for having
good versus poor representations of the three test conditions. We
respond that having a poor representation of each test condition is
worth no money to us. Test condition X is the most important for
obtaining a good representation and we would pay $10,000. Similarly,
we would pay $5000 to obtain a good representation of Y and $1667 to
obtain a good representation of Z.

If we were using multiattribute value theory, what would our swing
weights be for these three test conditions?
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Site Weather p(test condition
X is good|site,
Weather, &)

p(test condition
Y is good|site,
Weather, &)

p(test condition
Z is good|site,
Weather, &)

A Good 1.0 1.0 1.0

A Poor 0.5 0.5 0.5

B Good 0.9 0.9 0.6

B Poor 0.5 0.5 0.5

C Good 0.7 0.5 0.7

C Poor 0.2 0.2 0.2

Which site should we choose? Remember the rental cost of each site.

What is the value of perfect information on the weather?

13.10 Returning to Problem 13.6, there is another way in which we
could have expanded the analysis from this point. In fact, the
systems engineers and stakeholders have to determine whether the
system is acceptable after these tests are over and the test results
are in; that is, they have to make a decision. In addition, going
into the test, they are not sure whether the system has acceptable
performance for the stakeholders. If the system does, and it is
accepted, then there should be relatively few and inexpensive
fixes needed relative to the case where the system’s perfor-
mance is unacceptable, but the decision is made to accept the
system.

So we have two decision nodes: which test site to choose and whether
to accept the system for use by the stakeholders.

The weather has two states and associated probabilities as in
Problem 13.8.

The ability of the three sites to reproduce good versus poor test
conditions in the weather conditions is as it was in Problem 13.8.

Now we must introduce our prior probabilities on the acceptability
of the system’s performance. Suppose we start with only two
possibilities (acceptable and unacceptable) with probabilities of 0.8
and 0.2.

We must also introduce our uncertainty that the test will say the
system is ‘‘acceptable.’’ This uncertainty is dependent on the system’s
actual performance and our ability to reproduce the test condition.
The table below describes this probability distribution.
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Actual System
Performance

Ability to Reproduce
the Test Condition

p(test says
accept|system is., test
condition is, &)

Acceptable Good 0.95

Acceptable Poor 0.60

Unacceptable Good 0.10

Unacceptable Poor 0.25

The quality engineers are called in to help us determine what the
relative value of accepting a system is given it is or is not acceptable,
over the life time of the system. These engineers conduct an analysis
over the 10-year life time of our system and present the net present
value (NPV) to our organization for the following conditions:

Actual System
Performance

Decision to
Accept or Not

Justification for Last
Column

NPV over
System Life
Time

Acceptable Accept Best profit $100,000

Acceptable Do Not Accept Make some unneeded
fixes

$80,000

Unacceptable Accept Have many repairs
under warranty,
damage reputation

�$10,000

Unacceptable Do Not Accept Make needed fixes,
delay hurts sales

$20,000

Which site should we choose? Remember the rental cost of each site.

What is the expected value of perfect information on the weather?
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