
Chapter 3

Basic Calculations

INTRODUCTION

This chapter provides a review of basic calculations and the fundamentals of
measurement. Four topics receive treatment:

1 Units and Dimensions

2 Conversion of Units

3 The Gravitational Constant, gc

4 Significant Figures and Scientific Notation

The reader is directed to the literature in the Reference section of this chapter(1 – 3) for
additional information on these four topics.

UNITS AND DIMENSIONS

The units used in this text are consistent with those adopted by the engineering
profession in the United States. For engineering work, SI (Système International)
and English units are most often employed. In the United States, the English engineer-
ing units are generally used, although efforts are still underway to obtain universal
adoption of SI units for all engineering and science applications. The SI units have
the advantage of being based on the decimal system, which allows for more con-
venient conversion of units within the system. There are other systems of units;
some of the more common of these are shown in Table 3.1. Although English engin-
eering units will primarily be used, Tables 3.2 and 3.3 present units for both the
English and SI systems, respectively. Some of the more common prefixes for SI
units are given in Table 3.4 (see also Appendix A.5) and the decimal equivalents
are provided in Table 3.5. Conversion factors between SI and English units and
additional details on the SI system are provided in Appendices A and B.
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Table 3.2 English Engineering Units

Physical quantity Name of unit Symbol for unit

Length foot ft
Time second, minute, hour s, min, h
Mass pound (mass) lb
Temperature degree Rankine 8R
Temperature (alternative) degree Fahrenheit 8F
Moles pound mole lbmol
Energy British thermal unit Btu
Energy (alternative) horsepower . hour hp . h
Force pound (force) lbf

Acceleration foot per second square ft/s2

Velocity foot per second ft/s
Volume cubic foot ft3

Area square foot ft2

Frequency cycles per second, Hertz cycles/s, Hz
Power horsepower, Btu per second hp, Btu/s
Heat capacity British thermal unit per (pound

mass . degree Rankine)
Btu/lb . 8R

Density pound (mass) per cubic foot lb/ft3

Pressure pound (force) per square inch psi
pound (force) per square foot psf
atmospheres atm
bar bar

Table 3.3 SI Units

Physical unit Name of unit Symbol for unit

Length meter m
Mass kilogram, gram kg, g
Time second s
Temperature Kelvin K
Temperature (alternative) degree Celsius 8C
Moles gram mole gmol
Energy Joule J, kg . m2/s2

Force Newton N, kg . m/s2, J/m
Acceleration meters per second squared m/s2

Pressure Pascal, Newton per square meter Pa, N/m2

Pressure (alternative) bar bar
Velocity meters per second m/s
Volume cubic meters, liters m3, L
Area square meters m2

Frequency Hertz Hz, cycles/s
Power Watt W, kg . m2 . s3, J/s
Heat capacity Joule per kilogram . Kelvin J/kg . K
Density kilogram per cubic meter kg/m3

Angular velocity radians per second rad/s



Table 3.5 Decimal Equivalents

Inch in fractions Decimal equivalent Millimeter equivalent

A. 4ths and 8ths
1/8 0.125 3.175
1/4 0.250 6.350
3/8 0.375 9.525
1/2 0.500 12.700
5/8 0.625 15.875
3/4 0.750 19.050
7/8 0.875 22.225
B. 16ths
1/16 0.0625 1.588
3/16 0.1875 4.763
5/16 0.3125 7.938
7/16 0.4375 11.113
9/16 0.5625 14.288
11/16 0.6875 17.463
13/16 0.8125 20.638
15/16 0.9375 23.813
C. 32nds
1/32 0.03125 0.794
3/32 0.09375 2.381

(Continued)

Table 3.4 Prefixes for SI Units

Multiplication factors Prefix Symbol

1,000,000,000,000,000,000 ¼ 1018 exa E
1,000,000,000,000,000 ¼ 1015 peta P

1,000,000,000,000 ¼ 1012 tera T
1,000,000,000 ¼ 109 giga G

1,000,000 ¼ 106 mega M
1,000 ¼ 103 kilo k

100 ¼ 102 hecto h
10 ¼ 101 deka da
0.1 ¼ 1021 deci d

0.01 ¼ 1022 centi c
0.001 ¼ 1023 milli m

0.000 001 ¼ 1026 micro m

0.000 000 001 ¼ 1029 nano n
0.000 000 000 001 ¼ 10212 pico p

0.000 000 000 000 001 ¼ 10215 femto f
0.000 000 000 000 000 001 ¼ 10218 atto a
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Two units that appear in dated literature are the poundal and slug. By definition,
one poundal force will give a 1 pound mass an acceleration of 1 ft/s2. Alternatively,
1 slug is defined as the mass that will accelerate 1 ft/s2 when acted upon by a
1 pound force; thus, a slug is equal to 32.2 pounds mass.

CONVERSION OF UNITS

Converting a measurement from one unit to another can conveniently be accomplished
by using unit conversion factors; these factors are obtained from a simple equation that
relates the two units numerically. For example, from

12 inches (in) ¼ 1 foot (ft) (3:1)

the following conversion factor can be obtained:

12 in=1ft ¼ 1 (3:2)

Since this factor is equal to unity, multiplying some quantity (e.g., 18 ft) by this factor
cannot alter its value. Hence

18 ft (12 in=1 ft) ¼ 216 in (3:3)

Note that in Equation (3.3), the old units of feet on the left-hand side cancel out leaving
only the desired units of inches.

Physical equations must be dimensionally consistent. For the equality to hold,
each additive term in the equation must have the same dimensions. This condition
can be and should be checked when solving engineering problems. Throughout the

TABLE 3.5 Continued

Inch in fractions Decimal equivalent Millimeter equivalent

5/32 0.15625 3.969
7/32 0.21875 5.556
9/32 0.28125 7.144

11/32 0.34375 8.731
13/32 0.40625 10.319
15/32 0.46875 11.906
17/32 0.53125 13.494
19/32 0.59375 15.081
21/32 0.65625 16.669
23/32 0.71875 18.256
25/32 0.78125 19.844
27/32 0.84375 21.431
29/32 0.90625 23.019
31/32 0.96875 24.606
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text, great care is exercised in maintaining the dimensional formulas of all terms and
the dimensional homogeneity of each equation. Equations will generally be developed
in terms of specific units rather than general dimensions, e.g., feet, rather than length.
This approach should help the reader to more easily attach physical significance to the
equations presented in these chapters.

Consider now the example of calculating the perimeter, P, of a rectangle with
length, L, and height, H. Mathematically, this may be expressed as P ¼ 2L þ 2H.
This is about as simple a mathematical equation that one can find. However, it only
applies when P, L, and H are expressed in the same units.

Terms in equations must be consistent from a “magnitude” viewpoint.(3)

Differential terms cannot be equated with finite or integral terms. Care should also
be exercised in solving differential equations. In order to solve differential equations
to obtain a description of the pressure, temperature, composition, etc., of a system, it is
necessary to specify boundary and/or initial conditions (B a/o IC) for the system. This
information arises from a description of the problem or the physical situation. The
number of boundary conditions (BC) that must be specified is the sum of the highest
order derivative for each independent differential equation. A value of the solution on
the boundary of the system is one type of boundary condition. The number of initial
conditions (IC) that must be specified is the highest order time derivative appearing in
the differential equation. The value for the solution at time equal to zero constitutes an
initial condition. For example, the equation

d2CA

dz2
¼ 0; CA ¼ concentration (3:4)

requires 2 BCs (in terms of the position variable z). The equation

dCA

dt
¼ 0; t ¼ time (3:5)

requires 1 IC. And finally, the equation

@CA

@t
¼ D

@2CA

@y2
(3:6)

requires 1 IC and 2 BCs (in terms of the position variable y).

ILLUSTRATIVE EXAMPLE 3.1

Convert units of acceleration in cm/s2 to miles/yr2.

SOLUTION: The procedure outlined on the previous page is applied to the units of cm/s2.

1 cm
s2

� �
36002 s2

1 h2

� �
242 h2

1 day2

� �
3652 day2

1 yr2

� �
1 in

2:54 cm

� �
1 ft

12 in

� �
1 mile
5280 ft

� �

¼ 6:18� 109 miles=yr2

Thus, 1.0 cm/s2 is equal to 6.18 � 109 miles/yr2. B
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THE GRAVITATIONAL CONSTANT gc

The momentum of a system is defined as the product of the mass and velocity of the
system:

Momentum ¼ (mass)(velocity) (3:7)

A commonly employed set of units for momentum are therefore lb . ft/s. The units of
the time rate of change of momentum (hereafter referred to as rate of momentum) are
simply the units of momentum divided by time, i.e.,

Rate of momentum ;
lb � ft

s2
(3:8)

The above units can be converted to units of pound force (lbf) if multiplied by an
appropriate constant. As noted earlier, a conversion constant is a term that is used
to obtain units in a more convenient form; all conversion constants have magnitude
and units in the term, but can also be shown to be equal to 1.0 (unity) with no units
(i.e., dimensionless).

A defining equation is

1 lbf ¼ 32:2
lb � ft

s2
(3:9)

If this equation is divided by lbf, one obtains

1:0 ¼ 32:2
lb � ft

lbf � s2
(3:10)

This serves to define the conversion constant gc. If the rate of momentum is divided
by gc as 32.2 lb . ft/lbf

. s2—this operation being equivalent to dividing by 1.0—the
following units result:

Rate of momentum ;
lb � ft

s2

� �
lbf � s2

lb � ft

� �

; lbf

(3:11)

One can conclude from the above dimensional analysis that a force is equivalent to a
rate of momentum.

SIGNIFICANT FIGURES AND SCIENTIFIC
NOTATION(3)

Significant figures provide an indication of the precision with which a quantity is
measured or known. The last digit represents, in a qualitative sense, some degree of
doubt. For example, a measurement of 8.32 inches implies that the actual quantity
is somewhere between 8.315 and 8.325 inches. This applies to calculated and
measured quantities; quantities that are known exactly (e.g., pure integers) have an
infinite number of significant figures.

The significant digits of a number are the digits from the first nonzero digit on the
left to either (a) the last digit (whether it is nonzero or zero) on the right if there is a
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decimal point, or (b) the last nonzero digit of the number if there is no decimal point.
For example:

370
370.
370.0
28,070
0.037
0.0370
0.02807

has 2 significant figures
has 3 significant figures
has 4 significant figures
has 4 significant figures
has 2 significant figures
has 3 significant figures
has 4 significant figures

Whenever quantities are combined by multiplication and/or division, the number of
significant figures in the result should equal the lowest number of significant figures
of any of the quantities. In long calculations, the final result should be rounded off
to the correct number of significant figures. When quantities are combined by addition
and/or subtraction, the final result cannot be more precise than any of the quantities
added or subtracted. Therefore, the position (relative to the decimal point) of the
last significant digit in the number that has the lowest degree of precision is the position
of the last permissible significant digit in the result. For example, the sum of 3702.,
370, 0.037, 4, and 37. should be reported as 4110 (without a decimal). The least pre-
cise of the five numbers is 370, which has its last significant digit in the tens position.
The answer should also have its last significant digit in the tens position.

Unfortunately, engineers and scientists rarely concern themselves with significant
figures in their calculations. However, it is recommended—at least for this chapter—
that the reader attempt to follow the calculational procedure set forth in this section.

In the process of performing engineering calculations, very large and very small
numbers are often encountered. A convenient way to represent these numbers is to use
scientific notation. Generally, a number represented in scientific notation is the product
of a number (,10 but . or ¼ 1) and 10 raised to an integer power. For example,

28,070,000,000 ¼ 2:807� 1010

0:000 002 807 ¼ 2:807� 10�6

A positive feature of using scientific notation is that only the significant figures need
appear in the number.

REFERENCES

1. D. GREEN and R. PERRY (eds), “Perry’s Chemical Engineers’ Handbook,” 8th edition, McGraw-Hill,
New York City, NY, 2008.

2. J. REYNOLDS, J. JERIS, and L. THEODORE, “Handbook of Chemical and Environmental Engineering
Calculations,” John Wiley & Sons, Hoboken, NJ, 2004.

3. J. SANTOLERI, J. REYNOLDS, and L. THEODORE, “Introduction to Hazardous Waste Incineration,” 2nd
edition, John Wiley & Sons, Hoboken, NJ, 2000.

NOTE: Additional problems are available for all readers at www.wiley.com. Follow
links for this title. These problems may be used for additional review, homework,
and/or exam purposes.

18 Chapter 3 Basic Calculations


