Chapter 7

Rate Principles

INTRODUCTION

The rate transfer process can be described by the product of three terms (see
Chapter 5):

1 the area available for transfer

2 the driving force for transfer

3 the (reciprocal of the) resistance to the transfer process

In effect, the rate process in equation form is

rate — (area)(dr.lvmg force) 7.1)
(resistance)

For mass transfer (MT) applications, Equation (7.1) becomes

(area available for MT)(driving force for MT)
(rate of MT) = . (7.2)
(resistance to MT)

Rate principles may be applied at molecular, microscopic, or macroscopic levels.
These three approaches were previously discussed in a generic sense in Chapter 2.
For mass transfer operations, the molecular rate process will employ the diffusivity
in Fick’s Law," while the microscopic approach will employ overall and individual
mass transfer coefficients.

Both the molecular and microscopic approaches are reviewed in this chapter and
every attempt has been made to relate the molecular and microscopic approaches to
each other. Relating the microscopic treatment of mass transfer operations to the
macroscopic treatment is not as simple, but information is available in the litera-
ture.*> As noted in Chapter 2, macroscopic approaches often produce algebraic
equations that have withstood the test of time. For example, the macroscopic equation
for calculating the height of an absorber (see Chapter 10) is simply given by the
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72  Chapter 7 Rate Principles

product of two terms: Hog and Npg. Hog is related to the rate process while Ngg is
related to equilibrium.

THE OPERATING LINE

The NH;—air—H,0 discussion presented in Chapter 6 is now revisited in an attempt to
shed some light on rate considerations. Refer first to Figure 6.8 in the previous chapter.
The initial state and final (equilibrium) state of the system pictured in Figure 7.1 are
designated with a square point and a circular point, respectively. If V and L represent
the moles of flowing air and water, respectively, and y and x the mole fraction of NH;
in the air and H,O, respectively, an NH; mole balance written between the initial (0)
and final (1) states gives

Lxo 4+ Vyy = Lx; + Vy,; (7.3)

(The reader should note that the terms V and G are used interchangeably in this text as
well as in the literature.) This assumes that if the mole fraction of NHj is small in both
phases (L and V are essentially constant), this equation may be rearranged to give

L(x; — x0) = V(yo — y1)

£:y0_yl (74)
\% X1 — Xo '
or
_L_yn=y (7.5)
Vo ox—x '

There are two important points to be made regarding Figure 7.1.

1 The dashed line may be thought of as an “operating line” since it describes the
operating x, y values during the system’s transition from point O to 1.

Figure 7.1 Equilibrium-operating line plot.
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Figure 7.2 Equilibrium-operating line plot.

2 The vertical displacement of any point from the equilibrium line provides a
direct measure of the driving force (and thus the rate) of the system’s attempt
to achieve equilibrium. In effect, the driving force is maximum at point 0
and zero at point 1.

Equation (7.4) plots out as a straight line as shown with dashes in Figure 7.1. If ab/
bc = 2.0, the mole ratio of liquid to gas is correspondingly 2.0. If the initial state is as
shown in Figure 7.2 and ab/bc = 0.5, then the liquid to gas ratio is also 0.5.

The important point made in the above analysis is that the rate of the NHj;
transfer process is linearly related to the vertical displacement of the point representing
the state of the system from the equilibrium point directly below and, as indicated
above, the rate ultimately becomes zero when the operating point reaches the equili-
brium point. While this type of macroscopic rate/equilibrium approach receives treat-
ment in Part [I—Applications, what follows keys on the aforementioned molecular
and microscopic considerations.

FICK'S LAW

Molecular diffusion results from the motion of molecules. At any instant, the
individual molecules in a fluid are moving in random directions at speeds varying
from low to high values. The molecules move at random, frequently colliding
with one another. Because of the frequent collisions, the molecular velocities are
continually changing in both direction and magnitude. Diffusion is more rapid at
higher temperatures due to greater molecular velocities. For gases, it is more rapid
at low pressures because the average distance between the molecules is greater and
the collisions are less frequent.

If a solution is not uniform in concentration, the solution is gradually brought into
uniformity by diffusion; the molecules move from an area of high concentration to one
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of low concentration. The rate at which a solute travels depends on the concentration
gradient which exists in the solution. This gradient applies across adjacent regions of
high and low concentrations. However, a quantitative measure of rate is needed to
describe what is occurring.

The rate of diffusion can be described in terms of a molar flux term, with units of
moles/(area)(time), and with the area being measured as that which the solute diffuses
through. In a nonuniform solution containing only two components, both must diffuse
if uniformity is to occur. This leads to the use of two fluxes to describe the motion of
one of the components N, the flux relative to a fixed location and J, the flux of a com-
ponent relative to the average molar velocity of all components. The first of these is of
importance in the design of equipment, but the second is more characteristic of the
nature of the component. For example, the rate at which a fish swims upstream against
the flowing current is analogous to N, while the velocity of the fish relative to the
stream is more characteristic of the swimming ability of the fish and is analogous to J.

The diffusivity, or diffusion coefficient, D,p, of component A in solution B,
which is a measure of its diffusive mobility, is defined as the ratio of its flux, Jy, to
its concentration gradient and is given by

Ja = —DAB% (7.6)

0z

This is Fick’s first law'" written for the z direction. The concentration gradient term
represents the variation of the concentration, C,, in the z direction. The negative
sign accounts for diffusion occurring from high to low concentrations. The diffusivity
is a characteristic of the component and its environment (temperature, pressure, con-
centration, etc.). This equation is analogous to the flux equations®> defined for
momentum transfer (in terms of the previously defined viscosity) and for heat transfer
(in terms of the thermal conductivity). The diffusivity is usually expressed with units
of (length)?/time or moles/time - area. This coefficient, as well as Fick’s law, will
receive additional treatment later in this chapter.

ILLUSTRATIVE EXAMPLE 7.1
Express the diffusivity in English units.

SOLUTION: Based on its definition, the units of the diffusivity may be expressed as either
ft? /hr
or
Ibmol/hr - ft
The latter units are derived by simply multiplying ftz/hr by the molar density, i.e.,
Ibmol /ft’. [

Imagine if two fluids are placed side by side in a container separated by a par-
tition.” As pictured in Figure 7.3, fluid A is on the left-hand side and fluid B is on
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A B A : B A+ B : A+ B

Before During After

Figure 7.3 Diffusion process.

the right-hand side. When the partition is removed, the two fluids begin to diffuse
(A towards B and B towards A). The diffusion process occurs because of a finite
concentration driving force, which is the concentration gradient between the two con-
tainers. Diffusion stops when the concentration is uniform throughout the total
mixture, i.e., there is no concentration gradient or driving force. However, imagine
that there has been a net mass movement to the right. If the direction to the right is
taken as positive, the flux of A (noted as N,), relative to a fixed position is positive,
while the flux of B, Np, is negative. At steady state, the net flux is

Ny +Np=N (7.7)

The movement of A is made up of two parts, namely, that resulting from the bulk
movement of A in N (i.e., x4N), and that resulting from the diffusion of A through
B. This latter effect is defined as J4. The sum of these two effects is then

Na = xaN + Jy (7.8)

Employing Fick’s first law leads to

oC
Ny = x4(Ns + Np) — Dag 8—; (7.9)

The next sub-section presents three different cases of steady-state molecular diffusion
in gases.*?

Diffusion in Gases

1 Diffusion of A through non-diffusing B. This can be illustrated by the
example of ammonia (A) being absorbed from air (B) into water. Since air
does not dissolve appreciably in water, only ammonia diffuses. For this case,
Np =0 and N, is constant and the following relationship can be written

Ny

M (7.10)
Na+ Np

It can be shown that for a system where component A diffuses through non-
diffusing B, the diffusion rate can be calculated from

Dg AP
RTz i’B,M

A=

](Pm — Pa2) (7.11)
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PB2 — PB1
In(pp2/ pa1)
force of component B and pg; = P — pai1, pg2 = P — pa1, pa1 is the partial
pressure of component B at the liquid—vapor interface, pp, is the partial
pressure of component B at distance z from the interface, ps; is the par-
tial pressure of component A at the interface, p 4, is the partial pressure of com-
ponent A at distance z from the interface, P is the total system pressure, Dg_ap 1S
the diffusivity of component A through B, T'is the system absolute temperature,
z is the distance from the interface for state 2, and R is the ideal gas constant.

For addition analyses of these systems, the interested reader is referred to the
original works of Treybal® and Geankopolis. ¥

where pp,, = is the log mean partial pressure difference driving

2 Steady state equimolar counter-diffusion. For this case, both A and B are
diffusing, as occurs in distillation operations. Again, a detailed analysis of
this system ultimately leads to

Dg ap
Ny = : — 7.12
A [ Rz ](PA] Pa2) (7.12)

3 Steady-state diffusion in multicomponent mixtures. An example of this is
the diffusion of oxygen in a non-diffusing mixture of methane and hydrogen.
The estimation of diffusion in multicomponent systems is very complicated,
but it can usually be handled by defining an effective diffusivity, D4y, The
effective diffusivity of one component can be calculated based on its diffusivity
with each of the other constituents. It can be shown that D 4;, can be represented
by the following equation

1
Yihe
=B Da;
where Dy; is the binary diffusivity of component A in each of the components
present in the system and y; is the mole fraction of component i on an A
free basis, e.g., for a system consisting of components A, B, and C, yp is the
mole fraction of B based on B and C only. Thus, the calculation of the effective

diffusivity of oxygen in a mixture of methane and hydrogen is dependent on
the diffusivity of oxygen in methane and oxygen in hydrogen.

Dy = (7.13)

ILLUSTRATIVE EXAMPLE 7.2

Calculate the rate of diffusion of oxygen (A) in a non-diffusing mixture of carbon monoxide (B)
and carbon dioxide (C), which has a volume ratio of 3: 1, respectively. The system temperature
and pressure are 25°C and 1 x 10° N/m2 at the interface, respectively. The oxygen partial
pressure is 15,000 N/m? at the interface and 7500 N/m? at a distance of 3 mm from the
interface. It can be assumed that the partial pressure of the non-diffusing mixture is the differ-
ence between the total pressure and the oxygen partial pressure at each location. In addition,
Dyp = 0.185 cm?/s and D¢ = 0.139 cm?/s.
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SOLUTION: The describing equation for the diffusivity for this system is given by
Equation (7.13)

1
=
Zi:B D;i

Write the mole fraction of each non-diffusing component on an A-free basis

Day =

yz = 0.75
ye =025

Calculate the effective diffusivity for the mixture

1 | |
Z' Yi VB n Ye. 0.75 n 0.25
=BDpi \Dug Dac) 0.185 ° 0.139

Obtain the log mean pressure difference for the mixture

Day = =0.171 cm?/s

_ _ PB2 — PBI _ (105 - 7500) - (105 - 15,000)
P = m(@) T (07 =7500)
PB1 (10° — 15,000)
Calculate the diffusion of oxygen in the mixture using Equation (7.11), being careful to maintain
consistent units

= 8.87 x 10* N/m?

(0.171/1000)(10%)
(8.314)(298)(0.003)(8.87 x 10%)

D asP
= [ G.AB (15,000 — 7500)

RTZﬁB,M](pM —pa2) =

=1.95 x 1072 gmol/m’ - s |

ILLUSTRATIVE EXAMPLE 7.3

Ethylene is diffusing at a constant rate through a 2 mm-thick stagnant layer of nitrogen.
Conditions are such that at one boundary of the stagnant layer, the gas contains 60% by
volume ethylene. The ethylene concentration at the other boundary can be considered negli-
gible. The total pressure is one atmosphere and the temperature 25°C. The diffusivity for the
mixture is 0.163 cm? /s. Determine the rate of diffusion of ethylene through the nitrogen layer.

SOLUTION: This is another case of steady-state diffusion through a second non-diffusing
gas; hence, Equation (7.11) is again applicable.

. |: D¢ agP
[\ =

m](lml — pa2)

Pertinent data are now rewritten (A = ethylene, B = nitrogen)

Dyp = 0.163 cm?/s
P=1.0 atm
R = 82.07 cm® - atm/gmol - K
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T=298K
pa1 = (0.6)(1.0) = 0.6 atm
Paz = 0.0 atm

pp1 = 1.0 — 0.6=0.4 atm
pp2= 1.0 atm
z=2mm=0.2 cm
Substituting yields
_ ppr—pp 1—04

= = =0.655at
UG )
In{ — In{ —
PB1 0.4
Substitute into Equation (7.11).
25
A RTZ o Al A2
0.163)(1
_ (0.163)(1) 06
(82.07)(298)(0.2)(0.655)

=3.047 x 107> gmol/cm? - s u

The diffusivity, or diffusion coefficient, D, was defined previously as the propor-
tionality constant in the rate equation for mass transfer (Fick’s law) and it is a property
of the system that is dependent on temperature, pressure, and the nature of the
components. Reliable diffusion data is difficult to obtain, particularly over a wide
range of temperatures. Table 7.1 lists diffusion coefficients for a few pairs of gases
that have been investigated. The diffusion coefficient, Dg (cm? /s), at a temperature
Tc (°C) and pressure P (atm), may be determined from the data in Table 7.1 at state
“0” and the following equation

Te+273.2V1
D¢ = Dgo| =522 ) = 7.14
¢ o <Tco + 273.2) P (7.19)

Additional values for diffusivities may be found in the literature.® When exper-
imentally determined diffusivity data is not readily available, several estimation

Table 7.1 Diffusion Coefficients

Gas Air COZ Hz Nz 02 TC(), °C b

Air - - 0.611 - 0.178 0 1.75
CO - 0.137 0.651 0.192 0.185 0 1.75
CO, 0.138 - - - 0.139 0 2.00
H, 0.611 0.550 - 0.674 0.697¢ 0 1.75
N, - 0.144 0.674 - 0.181 0 1.75

“Temperature (7¢) for H, in O, is 20°C.
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techniques based on the kinetic theory of gases are available. However, the gas diffu-
sivity may be calculated directly by using the following expression:

- B/TI.S /JW—W

D = 7.15
¢ PO'“%BQ ( )

where D¢ = gas diffusivity, cm? /s, B' = molecular weight parameter, dimensionless,
MW = weighted average molecular weight, dimensionless, o4z = molar volume
parameter, dimensionless, and ) = parameter, dimensionless.

The term B’ can be found using the equation:

B =0.00217 — 0.00050

1
7.16
MW, +MWB ( )

where MW, = molecular weight of A and MWp = molecular weight of B.

Diffusion in Liquids

No purely theoretical generalized correlation of liquid phase diffusivities has yet been
found, but certain empirical equations are available. This probably reflects the inade-
quacy of kinetic theory when applied to liquids. It is therefore preferable to use exper-
imental data for liquid phase diffusivities. Table 7.2 provides a number of typical
values for liquid phase diffusivities. Additional liquid diffusivities are available in
the literature.*’

Investigations on diffusion in liquids are not as extensive as those on diffusion in
gases, with less experimental data available. The rate of diffusion in liquids may take a
long time to reach equilibrium unless agitated. This is, in part, explained by the fact
that there is a much closer spacing of the molecules in a liquid, thereby retarding
the movement of solute. Thus, molecular attractions become more important. Also
note that diffusivity values in liquids are therefore smaller than in gases.

In the absence of an adequate theory for diffusion in liquids, it is usually assumed
that Fick’s law is obeyed and that the equations developed in the subsection
for diffusion in gases can also be applied to diffusion in liquids. Two situations are
considered below.

Table 7.2 Liquid Diffusivities at Atmospheric Pressure

Temperature, Ditfusivity,
Solute Solvent °C m?/s x 10°
NH; Water 5 1.24
NaCl Water 18 1.26
Ethanol Water 10 0.5

Acetic Acid Water 12.5 0.82
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1 Steady-state diffusion of A through non-diffusing B

_ Dprap ( p

7)o 01— ) 7.17)

ZXBM

2 Steady-state equimolar counterdiffusion

_Diap ( p

Ny = — — 7.18
A - MW>avg(xA1 XA2) (7.18)

where p is the mass density of the solution, and MW is the molecular weight of the
solution.
When no experimental data is available, an estimation of the liquid diffusivity,
D;, can be obtained using various empirical approaches, one of which is the
Wilke—Chang equation‘®
117.3 x 10~ '8(eMWp)*>

0.6
HUA

LAB = (7.19)
where D, 4 is the diffusivity of A in a very dilute solution in solvent B (m? /8), MW s
the molecular weight of solvent (g/gmol), T is the temperature (K), w is the solution
viscosity (kg/m-s), vy is the solute molar volume at the normal boiling point
(m® /kmol), and ¢ is the association factor for the solvent (¢ = 2.26 for water,
1.5 for ethanol, and 1.0 for solvents like benzene and ethyl ether).

A modified form of Equation (7.19) that can be used to obtain the diffusivity is

13.26 x 1075
= (7.20)
/~L1414U‘2‘589

where D, = liquid diffusivity, cm?/s

v4 = molar volume of solute, cm’ /mol

MASS TRANSFER COEFFICIENTS

In the discussion of diffusion in the previous section, the emphasis was placed on the
molecular transport in fluids that were stagnant or in laminar flow. However, in many
cases, these diffusion processes are too slow, and more rapid diffusion or transport is
required. Quite often, to speed up this diffusion, the fluid velocity is increased so that
turbulent transport occurs.

When a fluid flows past a surface under such conditions that the fluid is in turbu-
lent flow, the actual velocity of small parcels or lumps of fluid cannot be described as
simply as in laminar flow. Since fluid flows in smooth streamlines in laminar flow, its
behavior can usually be described mathematically. However, there are no orderly
streamlines or equations to describe fluid behavior in turbulent motion. However,
there are large eddies or “chunks” of fluid which move rapidly in a seemingly
random fashion. This eddy transfer, or turbulent diffusion, is very fast in comparison
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to the relatively slow process of molecular diffusion, where each solute molecule must
move by random motion through the fluid.

When a fluid flows past a surface under conditions such that turbulence generally
prevails, a thin laminar-type sublayer film exists adjacent to the surface. The mass
transfer in this region occurs by molecular diffusion since little or no eddies are
present. Since this is a slow process, a large concentration gradient or decrease in con-
centration across this laminar film occurs. Adjacent to this is the transition or buffer
region. Here, some eddy activity exists and the transfer occurs by the sum of molecular
and turbulent diffusion. In this region, there is a gradual and non-abrupt transition from
the total transfer occurring by almost pure molecular diffusion at one end to mainly
turbulent at the other end. The concentration decrease is much less in this region.
Although most of the transfer is by turbulent or eddy diffusion, molecular diffusion
still occurs, but it contributes little to the overall transfer. The concentration decrease
is very small here since the rapid eddy movement evens out any gradients tending
to exist.

Many approaches to the turbulent (convective) mass transfer problem exist: film
theory, combined film-surface-renewal theory, boundary layer theory, empirical
approaches, etc. One former theory has somehow managed to survive the test of
time, having been successful in interpreting the results of most two-phase mass trans-
fer operations of industrial importance.

Film theory” (as applied by Whitman) postulates the existence of an imaginary
stagnant film next to the interface whose resistance to mass transfer is equal to the total
mass transfer resistance of the system. The difficulty with this theory is in the calcu-
lation of the effective film thickness. Other theories are briefly detailed below.

1 Surface-renewal theory assumes that a clump of fluid far from the interface:
(a) moves to the interface without transferring mass,

(b) sits there stagnant, transferring mass by molecular diffusion for a time short
enough such that little change in the concentration profile occurs in the
clump, and

(c) then moves away from the interface without transferring mass en route and
mixes with the bulk fluid instantly.

This theory is somewhat more satisfactory in general than film theory.

2 Boundary layer theory rests on the solution of a set of simplified differential
equations which are approximations to a more nearly correct set of differential
equations.®

3 Empirical approaches, which are merely data correlations, serve for specific
cases, but give little information about extrapolation.

Further details regarding any of these approaches are available in the literature.®

Individual Mass Transfer Coefficients

In the mass transfer operation of gas absorption, two insoluble phases are brought into
contact in order to permit the transfer of a solute from one phase to the other (e.g., and
as discussed earlier, ammonia can be absorbed from an air—ammonia mixture into
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a water stream without air dissolving appreciably in the water). Concern for this
application is with the simultaneous application of the diffusion mechanism for
each phase to the combined system.

It has already been shown that the rate of diffusion within each phase is dependent
on the concentration gradient existing within it. At the same time, the concentration
gradients of a two-phase system are indicative of the departure from equilibrium
which exists between the phases. Since this departure from equilibrium provides the
driving force for diffusion, the rates of diffusion in terms of the driving forces may
now be studied.

In view of Whitman’s two-film theory, it is assumed that at the gas-liquid inter-
face the principal diffusion resistances occur in a thin film of gas and a thin film of
liquid. The rates of diffusion in these two films will describe the mass transfer
operation. The diffusion coefficient, D, in Fick’s law is inversely proportional to the
concentration of the inert material, cp, in the liquid film through which material A
must diffuse. Replacing D with (k/cp) yields

k
Ny = |: i|(CAI — caL) (7.21)
CBm

where ¢y, is the log mean concentration difference of the inert material across the film,
k is a proportionality constant, and N is the amount of material transferred per unit area
per unit time, or mols/area - time. The practical application of Equation (7.21) is based
on the assumption that z, the film thickness, is a constant that represents an effective
average value throughout the length of the contact path. Also, cg,, is considered to be
constant since many mass transfer processes usually involve fairly dilute mixtures and
solutions. Equation (7.21) can therefore be written as

Ny = ki(car — car) (7.22)
or
Na = kg(pac — par) (7.23)

where k; is the liquid mass transfer coefficient based on concentration, kg is the gas
mass transfer coefficient based on partial pressure, ca; is the interfacial (surface)
concentration of component A, ¢4 is the bulk liquid concentration of component A,
Ppayisthe interfacial partial pressure of component A, p ¢ is the partial pressure of com-
ponent A.

Equation (7.22) expresses the transfer of N molecules of solute (A) through the
liquid film under a concentration driving force, and Equation (7.23), the transfer of
the same number of molecules of solute through the gas film under a partial pressure
driving force.

For certain simplified cases of molecular diffusion, equations can be derived to
determine precisely the rate at which mass is being transferred. For example, the
equation below was presented in the previous section

_ |: D¢ apP

_ |DPoasP | 7.11
A RTZPB,M] (pa1 — pa2) (7.11)
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The bracketed term above is an exact definition for the individual mass transfer coeffi-
cient corresponding to the steady-state situation of one component diffusing through
a nondiffusing second component. In principle, it is then not necessary to calculate
any other mass transfer coefficient for laminar flow since molecular diffusion prevails
and exact equations are available. However, in general, obtaining such analytically-
derived expressions are difficult; in most cases encountered in practice, it is impossible
since turbulent mass transfer, which becomes quite complex, usually prevails.

Only the more frequently encountered situations of diffusion will now be dis-
cussed, namely, equimolar counterdiffusion and diffusion of one component through
another non-diffusing component.**

Equimolar Counterdiffusion

In absorption operations, the absorbing medium may evaporate into the gas being
treated, resulting in the simultaneous diffusion of both gases in opposite directions.
The diffusion of each gas is affected by the presence of the molecules of the other
gas and hindered if the gases are diffusing in opposite directions. When such a situ-
ation exists, the diffusion of equal moles per unit area per unit time occurs in opposite
directions. This is referred to as equimolar counterdiffusion.

For the case of equimolar counterdiffusion, the concentration profile shown in
Figure 7.4 can be plotted graphically as in Figure 7.5. In this latter figure, point P rep-
resents the bulk phase compositions y,s and x,4,, and point M represents the concen-
trations y; and x4, at the interface. The equations for the flux of component A, when A
is diffusing from a gas to a liquid and there is equimolar counterdiffusion of com-
ponent B from the liquid, are given by

Na = ki(yag — yar) = ky(xar — xar) (7.24)

where &/, is the liquid mass transfer coefficient based on mole fraction, k’y is the gas
mass transfer coefficient based on mole fraction, x,; and y,; are the bulk liquid and
gas interfacial mole fraction, respectively, and x,; and y,s are the bulk liquid and

Liquid phase
solution of Ain liquid L

Gas phase
mixture of Ain gas G

>

A

Distance from interface

Figure 7.4 Concentration (mole fraction) profile of solute A diffusing from one phase to another.
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Figure 7.5 Overall concentration differences.

gas mole fractions, respectively. Note that the prime with the individual mass transfer
coefficient, i.e., k;, is a reminder that the transfer process involves equimolar
counterdiffusion.

The values (yag — yar) and (xa; — x47) are the differences in concentration,
or driving forces, in each phase. For example, (yac — ya;) is the driving force in
the vapor phase since y,s represents the average vapor concentration at a distance
from the liquid vapor interface which has a composition y,;. Rearranging Equation
(7.24) gives

ke (ag — yan) (7.25)

ky (AL — Xar)

Hence, the slope of PM in Figure 7.5 is —(k;/k;). This means that if the two mass
transfer coefficients are known, then the interfacial compositions can be determined
by the line PM. While the bulk concentrations y,; and x4, can ordinarily be deter-
mined experimentally (from equilibrium relationships), the concentrations at the
interface cannot, and Equation (7.25) can instead be used.

Diffusion of Component A Through Non-diffusing
Component B

In the case of component A diffusing through nondiffusing component B, the con-
centrations can also be plotted as in Figure 7.5 where P represents the bulk phase
compositions and M, the interface. The equation for A diffusing through a stagnant
gas and through a stagnant liquid can be shown to be:

k K
Ni = Y _ " T— — 7.26
T (YaG — yan) T =xm (xar — xar) (7.26)
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where the subscript “IM” represents the bulk flow correction factor for nondilute
liquid and gas phases. The correction terms can be calculated from the following
two equations:

(I —ya) — (1 = yac)

1— = 7.27
( yA)IM . (1 _ yA[) ( )
(I = yac)
or,
1-— -1 -
(1 — gy = L) — ) (7.28)
| (1 — xar)
n— 4L/
(1 — xar)
Equation (7.26) may be combined with Equations (7.27) and (7.28) to give:
K/ — -
ke /A =x)m _ (yag — yar) (7.29)

ky /(1= ya)m (AL — Xar)

The slope of the line PM for the case of A diffusing through stagnant B is given by the
left-hand side of Equation (7.29). The slope of Equation (7.29) differs from that of
Equation (7.25) for equimolar counterdiffusion by the bulk flow correction terms,
(1 = ya)ms and (1 — x4);- When A is diffusing through nondiffusing B and the sol-
utions are dilute, the bulk flow correction terms are approximately unity, and Equation
(7.25) can be used instead of Equation (7.29). It is for this reason that Equation (7.25)
is often employed even if the transfer process involves A diffusing through nondiffus-
ing B. Also note that the subscripts L and G, e.g., k; and kg, are employed when the
rate is expressed in terms of the concentration and partial pressure, respectively.

The use of Equation (7.29) to obtain the slope is, by necessity, trial-and-error
because the left-hand side contains the interfacial concentrations y,; and x,; which
are being sought. A first trial estimate can be obtained using Equation (7.25). With
these estimates for y,; and x4, a value of the left-hand side of Equation (7.29) is com-
puted and a new slope drawn to obtain new values of y4; and x4, (read off the equili-
brium line). The second trial is repeated until the values of y4; and x4; do not change
significantly with successive trials. Three trials will usually suffice.

ILLUSTRATIVE EXAMPLE 7.4

An air—ammonia mixture is being treated with a water stream in a 10 ft pilot scale absorber in a
lab test under atmospheric conditions (70°F and 1 atm). The absorber was set-up in such a way to
measure the partial pressure of each component at various locations in the column. It was found
that at a distance of 5 feet up the column the liquid contained 0.4 wt% ammonia while the partial
pressure of the ammonia was 10 mm Hg. Estimate the interfacial gas and liquid phase concen-
trations. Based on previous experiments, the ratio of the liquid mass transfer coefficient (—k;/
kg) was found to be — 1.0 atm/Ibmol - ft*. Solubility data for this system are presented in
Table 7.3.
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Table 7.3 Ammonia Data

NHj partial pressure,

Liquid concentration,

atm Ibmol NH; /ft*
0.0045 0.0180
0.0097 0.0367
0.0119 0.0440
0.0158 0.0586
0.0201 0.0733
0.0255 0.0916
0.0309 0.1100

SOLUTION: Write the describing equation for this system. See Equation (7.24).

Na = ky(yac — yar) = k(xar — Xar)

Construct an equilibrium diagram from the data in Table 7.3, as shown in Figure 7.6.

Based on the data provided

yai, = 10/760 = 0.0136; pxy, = 0.0136 atm

The corresponding liquid concentration is

ent, = (0.004/17)62.4 = 0.0147 Ibmol /ft®

These two conditions are represented as a square point on Figure 7.6. A line extended
from that point with a slope of —1.0 intersects the equilibrium line (see triangle point)

at approximately:

pa; = 0.0056 atm
car = 0.023 Ibmol /ft?

0.035
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0.02

>

0.015

0.01 = 3

0.005 A

Partial pressure of ammonia (atm)

0 0.02 0.04

0.06

0.08

0.1

Concentration of ammonia (Ibmol/ft3)

Figure 7.6 Equilibrium plot for ammonia—water.
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ILLUSTRATIVE EXAMPLE 7.5

Referring to Ilustrative Example 7.4, if the mass transfer coefficients (k) is 12.5 Ibmol /h - ft* -
atm, estimate the molar flux of the ammonia.

SOLUTION: Apply Equation (7.24). First note that

par = yarP
so that,
_par
YAl P

Since P = 1 atm and the solution is dilute, one may write
Ny = ky(yac — yar) = kc(paG — par)
= 12.5(0.01316 — 0.0056) = 0.0945 1bmol/h - ft? m

OVERALL MASS TRANSFER COEFFICIENT

It is generally more convenient to utilize an overall coefficient for the gas and liquid
phases rather than the individual coefficients since it is not possible to measure the par-
tial pressure and concentration at the interface (p4; or y41, and c4q Or x4, respect-
ively). The preferred procedure is to express the overall coefficient in terms of the
individual coefficients. For this approach, it is common to employ overall mass trans-
fer coefficients based on the overall driving force between p,g (or yas) and ¢4z (or
xaz)- The overall coefficients may be defined on the basis of the gas film, K¢, or the
liquid film K;, by the equations

Na = Ka(pac — py) = Ky(Yac — y}3) (7.30)
Njy = K (¢} — car) = K(xy — xar) (7.31)

where p} is the partial pressure in equilibrium with ¢4, and ¢ is the concentration in
equilibrium with pyg.

Consider again the situation shown in Figures 7.4 and 7.5 using the concentration
(mole fraction) driving force. The equilibrium-distribution curve for the system is
unique at a fixed temperature and pressure. Then, yj, since it is in equilibrium with
Xar, 18 as good a measure of x4, as xu, itself, and, moreover, it is on the same basis
as y,¢. In this situation, the entire two-phase mass transfer effect may then be deter-
mined from expressions such as those given in Equations (7.30) and (7.31). In this
manner, the ratio of the resistance of either phase to the total resistance is given by
the ratio of the driving force through that phase to the “total” driving force across
both films. In effect,

I/k;, _ YAG — YAl

s . (7.32)
1/K,  yac — i

with a similar equation on the liquid side. This analysis is further expanded in the next
three subsections.
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Equimolar Counterdiffusion and/or Diffusion in
Dilute Solutions

When equimolar counterdiffusion is occurring, or when the solutions are quite dilute,
the following equation applies:

Na = k(yag — yar) = ki (Xar — xar) (7.33)
From the geometry of Figure 7.5,

(yaG — Y1) = (yac — yan) + (yar — y3) (7.34)
(yac — Ya) = (yag — yar) +m'(xar — xar) (7.35)

where 7’ is the slope of the chord CM. Substituting for the concentration differences,
one obtains

NA _NA NAI’I’l/

— = ; (7.36)
K, K K.
or
1 1 m
— =—+4— 7.37
K; ki + K (7.37)

Equation (7.37) demonstrates the relationship between the individual mass transfer
coefficients and the overall mass transfer coefficient. The left-hand side of Equation
(7.37) can be looked upon as the total resistance based on the overall gas driving
force, which is equal to the sum of the gas film resistance (1/k}) and the liquid film
resistance (m'/k.).

In a similar manner, from the geometry of Figure 7.5,

(4 — xar) = (X3 — xar) + (xa7 — xar) (7.38)

The slope between the points M and D is

m =20 (7.39)
Xy — XAl
Then,
yAGm;”y’“ =X\ —x (7.40)
and it can be readily shown that
! = ! + ! (7.41)

= o T
K. m'k, k,

As before, the left-hand side of Equation (7.41) is the total resistance and is equal to the
sum of the individual resistances.
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Gas Phase Resistance Controlling

Assuming that the numerical values of & and k, are roughly equal, the importance
of the slope of the equilibrium curve chords can readily be demonstrated. However,
if m’ is very small, so that the equilibrium curve in Figure 7.5 is nearly flat, then
only a very small concentration of y, in the gas will give a relatively large value of
X, in equilibrium with the liquid. This indicates that gas solute A is very soluble in
the liquid phase, and hence, the term m'/k, in Equation (7.37) becomes very small
or negligible. Then

11

T
K, K

(7.42)

and the major resistance is said to be in the gas phase, or the “gas phase is controlling.”
Also,

YAG — yf; ~ YAG — YAI (7.43)

Under such circumstances, even fairly large percentage changes in &/ will not
significantly affect K;, and efforts to increase the rate of mass transfer would best
be directed toward decreasing the gas-phase resistance, e.g., by increasing the gas
phase turbulence or using equipment that specifically will have a high turbulence in
the gas phase.

Liquid Phase Resistance Controlling

In a similar manner, when m” is very large or the solute A is very insoluble in the
liquid, with & and k| again very roughly equal, then the term 1/(m"k;) becomes
very small and
1 1

— & 7.44

[ (749
The major resistance to mass transfer is then in the liquid, the “liquid phase is control-
ling,” and

x:; — XAL = XAl — XAL (7.45)

In such cases, efforts to affect large changes in the rate of mass transfer are best
directed toward conditions influencing the liquid coefficient, k;, i.e., increasing the
turbulence in the liquid phase.

For cases where k. and k; are not nearly equal, Figure 7.5 shows that it will be the
relative size of the ratio k/./k| and of m’ (or m”) which will determine the location of the
controlling mass transfer resistance.

Table 7.4 lists some cases of specific films controlling a particular mass transfer
operation.®'?
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Table 7.4 Controlling Films for Various Systems

Gas film
. Absorption of ammonia in water

. Absorption of ammonia in aqueous ammonia

. Stripping of ammonia from aqueous ammonia

. Absorption of water vapor in strong acids

. Absorption of sulfur trioxide in strong sulfuric acid

. Absorption of hydrogen chloride in water

. Absorption of hydrogen chloride in weak hydrochloric acid
. Absorption of 5 vol% ammonia in acids

O 0 3N Lt AW~

. Absorption of sulfur dioxide in alkali solutions

10. Absorption of sulfur dioxide in ammonia solutions
11. Absorption of hydrogen sulfide in weak caustic
12. Evaporation of liquids

13. Condensation of liquids

Liquid film

1. Absorption of carbon dioxide in water

2. Absorption of oxygen in water

3. Absorption of hydrogen in water

4. Absorption of carbon dioxide in weak alkali
5. Absorption of chlorine in water

Both gas and liquid film

1. Absorption of sulfur dioxide in water

2. Absorption of acetone in water

3. Absorption of nitrogen oxide in strong sulfuric acid

Experimental Mass Transfer Coefficients

In many instances, investigators have found that their data correlate well on the basis of
some empirical relationship quite different from the foregoing formalized treatment,
and that these relationships are useful in design work for systems to be reviewed
in Part Two. Examples of such relationships are provided in the literature along
with other important data pertaining to the reported experimental studies." "
Experimental data are often correlated in terms of dimensionless numbers such
as the Schmidt number (Sc = u/pD4p) and the Reynolds’s number (Re = Lvp/ ).
In the absence of experimental mass transfer data, many correlations are available
which may be used to estimate the mass transfer coefficient for the system being
studied. In practice, when choosing a correlation, one should make every effort to
match as closely as possible the system conditions under which the correlation was
formulated. Some of the correlations, primarily applicable in gas absorption mass
transfer processes, are available in the literature.**> In general, they apply to absorp-
tion columns loaded with various types of packing. These various types of absorption
columns and the different packings utilized will be discussed in Chapter 10.
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ILLUSTRATIVE EXAMPLE 7.6

The absorption of ammonia into water from an air—ammonia mixture was studied at 40°F and at
a total pressure of 2.0 atm. The average value of k, was estimated to be 0.40 Ibmol /h - ft> - mol
fraction and that of k to be 1.10 lbmol/h - ft> - mol /ft>. The equilibrium partial pressure of
ammonia was approximated by Henry’s law to be

p = 0.246¢

where p is the partial pressure of ammonia (mm Hg) and ¢ is the molar concentration of ammonia
in the liquid (Ibmol /ft*). Estimate the overall gas mass transfer coefficient in Ibmol /h - ft* - atm.

SOLUTION: First, convert k( to a pressure basis in atm. From Equations (7.23) and (7.24),
and noting that p; = y;P
k, 0.40
ki = ;} =75 = 0:20 Ibmol/h- ft> - atm
One may now modify and apply Equation (7.37) to obtain Ki;. Note the equilibrium coefficient
0.246 essentially represents Henry’s constant, n1'.

L1 om 1 0246
L_bym 1 020 5o,
K.k Tk 020 110

Therefore,

, 1
Kg = 5557 = 01914 Ibmol /h - ft - atm =

ILLUSTRATIVE EXAMPLE 7.7

Refer to Illustrative Example 7.6 and determine the relative magnitude of the resistances of the
gas and liquid phases.

SOLUTION: Since 1/kg = 5.0, the relative magnitude of the gas phase resistance is the
overall resistance, R, is

1/k., 5.0
—R=_—"_—0.957 = 95.7%
1/K, 5004~ 097 =95.7%

The relative resistance of the liquid is therefore 4.3%. |

ILLUSTRATIVE EXAMPLE 7.8

In Mlustrative Example 7.6, the average gas concentration at one point in the equipment is 1%
ammonia by volume, and the water is pure. For this condition, calculate the interfacial compo-
sition for both phases, draw to scale a graph of p vs ¢, plot the equilibrium curve, the point repre-
senting the gas and liquid compositions, and the point representing the interface compositions.
Mark the driving forces in each phase and the overall gas phase driving force. Compute the rate
of absorption, in Ibmol NH3/h - ft? using kg, kz, and K.
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Figure 7.7 Figure for Illustrative Example 7.8.

SOLUTION: Start with Equations (7.22) and (7.23), noting that for a dilute solution kg = kg
and k; = kj,

Na = kc(pac — par) = ki(car — car)
with pag = 0.01(2.0) = 0.02 atm and c;, = 0: substituting yields
0.20(0.02 — pay) = 1.10(ca; — 0)
In addition, at the interface (see previous Illustrative Example)
par = 0.246¢4;

The solution of these two equations, or the intersection (point A) of the two lines in Figure 7.7,
leads to

par = 0.000856 atm
From the equilibrium relation,

_ par __0.000856
T0.246 0 0.246
The graph is provided in Figure 7.7.

The rate of absorption may be calculated from any one of three equations:

Car = 0.00348 Ibmol/ft}

N = ko(pag — par) = 0.20(0.0191) = 0.00383 Ibmol/h - fi*
Na = kz(cas — car) = 1.10(0.00348) = 0.00383 Ibmol/h - f2
Ni = Ko(pag — p%) = 0.19(0.02) = 0.00383 Ibmol /h - ft> [ ]
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ILLUSTRATIVE EXAMPLE 7.9

Compare the results generated for the flux from the three equations.

SOLUTION: As can be seen, and as expected, there is excellent agreement. |
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NOTE: Additional problems are available for all readers at www.wiley.com. Follow
links for this title. These problems may be used for additional review, homework,
and/or exam purposes.





