DECISION MAKING IN SYSTEMS ENGINEERING AND MANAGEMENT

DECISION MAKING IN SYSTEMS ENGINEERING AND MANAGEMENT

Second Edition

Edited by

GREGORY S. PARNELL PATRICK J. DRISCOLL DALE L. HENDERSON

Copyright © 2011 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400, fax 978-750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, 201-748-6011, fax 201-748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commerical damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at 877-762-2974, outside the United States at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Decision making in systems engineering and management / [edited by] Gregory S. Parnell, Patrick J. Driscoll, Dale L. Henderson.—2nd ed.
p. cm.—(Wiley series in systems engineering and management; 79)
ISBN 978-0-470-90042-0 (hardback)
1. Systems engineering–Management. 2. Systems engineering–Decision making. I. Parnell, Gregory S. II. Driscoll, Patrick J. III. Henderson, Dale L. TA168.D43 2010
620.001'171-dc22

2010025497

Printed in the United States of America

oBook ISBN: 978-0-470-92695-6 ePDF ISBN: 978-0-470-92695-6 ePub ISBN: 978-0-470-93471-5

10 9 8 7 6 5 4 3 2 1

Systems engineers apply their knowledge, creativity, and energy to making things better. Rarely do we assume grave personal risk to do so.

We dedicate this book to our colleagues from the Department of Systems Engineering at The United States Military Academy who have sacrificed their lives to make the world a place where systems engineers are free to make things better.

Contents

Foreword to the Second Edition		xvii	
Foreword to the First Edition Preface to the Second Edition			xix
			xxi
Ac	know	ledgments	XXV
Th	ought	ts for Instructors	xxvii
Сс	ontribu	utors	xxxiii
Ac	ronyn	ns	xli
1	Intro Greg	oduction gory S. Parnell and Patrick J. Driscoll	1
	1.1	Purpose	1
	1.2	System	3
	1.3	Stakeholders	3
	1.4	System Life Cycle	7
	1.5	Systems Thinking	10
	1.6	Systems Engineering Thought Process	12
	1.7	Systems Engineering	13
	1.8	Engineering Management	15
	1.9	Systems Decision Process	16
	1.10	Overview	21
	1.11	Exercises	21
	Refe	rences	23
			vii

viii	viii CONT			
PART I SYSTEMS THINKING				
2	Syst Patri	27		
	2.1	Introduction	27	
	2.2	Structure	32	
	2.3	Classification	33	
	2.4	Boundaries	35	
	2.5	Visibility	39	
	2.6	IDEFU Models	40	
	2.1	Mathematical Structure	50 54	
	2.0 2.0	Evolution	58	
	$\frac{2.9}{2.10}$	Summary	58	
	2.11	Exercises	59	
	Refe	rences	63	
3	Syste	em Life Cycle	65	
	Patri	ick J. Driscoll and Paul Kucik		
	3.1	Introduction	65	
	3.2	System Life Cycle Model	68	
		3.2.1 Establish System Need	70	
		3.2.2 Develop System Concept	70	
		3.2.3 Design and Develop System	70	
		3.2.4 Produce System	71	
		3.2.5 Deploy System	72	
		3.2.6 Operate System	72	
	22	5.2.7 Keure System	73 74	
	3.5 3.4	Risk Management in the System Life Cycle	74	
	J. +	3.4.1 Risk Identification	78	
		3.4.2 Risk Assessment	83	
		3.4.3 Risk Mitigation	88	
	3.5	Summary	89	
	3.6	Exercises	90	
	Refe	rences	92	
4	Syste	ems Modeling and Analysis	95	
	Paul	D. West, John E. Kobza, and Simon R. Goerger		
	4.1	Introduction	95	
	4.2	Developing System Measures	96	
	4.3	Modeling the System Design	98	
		4.3.1 What Models Are	99	

5

5

	4.3.2 Why We Use Models	99
	4.3.3 Role of Models in Solution Design	101
	4.3.4 Qualities of Useful Models	102
4.4	The Modeling Process: How We Build Models	104
	4.4.1 Create a Conceptual Model	105
	4.4.2 Construct the Model	106
	4.4.3 Exercise the Model	107
	4.4.4 Revise the Model	108
4.5	The Model Toolbox: Types of Models, Their Characteristics,	100
	and Their Uses	109
	4.5.1 Characteristics of Models	112
1.0	4.5.2 The Model Toolbox	114
4.0	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	121
	Appropriate to Use Simulation	122
	4.6.2 Simulation Tools	122
4.7	Determining Required Sample Size	129
4.8	Summary	131
4.9	Exercises	132
Refe	erences	134
Life	Cycle Costing	137
Edu	ward Pobl and Heather Nachtmann	137
LUN		
5.1	Introduction to Life Cycle Costing	137
5.2	Introduction to Cost Estimating Techniques	139
	5.2.1 Types of Costs	143
5.3	Cost Estimation Techniques	145
	5.3.1 Estimating by Analogy Using Expert Judgment	145
	5.3.2 Parametric Estimation Using Cost Estimating	110
	Relationships	146
5 4	5.3.3 Learning Curves	160
5.4	System Cost for Systems Decision Making	167
	5.4.1 Time Value of Money	168
	5.4.2 Inflation 5.4.2 Not Present Value	168
	5.4.4 Breakeven Analysis and Replacement Analysis	171
5 5	Disk and Uncertainty in Cost Estimation	172
5.5	Risk and Uncertainty in Cost Estimation	1/2
	5.5.1 Monte Carlo Simulation Analysis	172
	5.5.1 Monte Carlo Simulation Analysis	173
56	5.5.1 Monte Carlo Simulation Analysis5.5.2 Sensitivity AnalysisSummary	173 177 178
5.6 5.7	 5.5.1 Monte Carlo Simulation Analysis 5.5.2 Sensitivity Analysis Summary Exercises 	173 177 178 178

ix

CONTENTS

PA	RT II	SYSTEMS ENGINEERING	183
6	Intro Greg	oduction to Systems Engineering gory S. Parnell	185
	6.1	Introduction	185
	6.2	Definition of System and Systems Thinking	185
	6.3	Brief History of Systems Engineering	186
	6.4	Systems Trends that Challenge Systems Engineers	186
	6.5 6.6	Three Fundamental Tasks of Systems Engineers Relationship of Systems Engineers to Other Engineering	189
		Disciplines	192
	6.7	Education, Training, and Knowledge of Systems Engineers	192
	6.0	6.7.1 Next Two Chapters	193
	6.8	Exercises	193
	Ackn	nowledgment	194
	Refe	rences	194
7	Syste Roge	ems Engineering in Professional Practice er C. Burk	197
	7.1	The Systems Engineer in the Engineering Organization	197
		The Systems Engineering Job	199
		Three Systems Engineering Perspectives	199
		Organizational Placement of Systems Engineers	199
	7.2	Systems Engineering Activities	200
		Establish System Need	201
		Develop System Concept	202
		Design and Develop the System	202
		Produce System	202
		Deploy System	203
		Operate System	203
		Retire System	203
	7.3	Working with the Systems Development Team	203
		The SE and the Program Manager	203
		The SE and the Client, the User, and the Consumer	203
		The SE and the CTO or CIO	205
		The SE and the Operations Researcher or System Analyst	205
		The SE and the Configuration Manager	206
		The SE and the Life Cycle Cost Estimator	206
		The SE and the Engineering Manager	206
		The SE and the Discipline Engineer	207
		The SE and the Test Engineer	207
		The SE and the Specialty Engineer	207
		The SE and the Industrial Engineer	208

X

CONTENTS	

8

	The SE and Quality Assurance	208
7.4	Building an Interdisciplinary Team	208
	Team Fundamentals	208
	Team Attitude	209
	Team Selection	210
	Team Life Cycle	210
	Cross-Cultural Teams	211
7.5	Systems Engineering Responsibilities	212
	Systems Engineering Management Plan (SEMP)	212
	Technical Interface with Users and Consumers	213
	Analysis and Management of Systems Requirements	213
	System Architecting	216
	Systems Engineering Tools and Formal Models	217
	Interface Control Documents (ICDs)	218
	Test and Evaluation Master Plan (TEMP)	218
	Configuration Management (CM)	218
	Specialty Engineering	218
	Major Program Technical Reviews	220
	System Integration and Test	221
7.6	Roles of the Systems Engineer	221
7.7	Characteristics of the Ideal Systems Engineer	222
7.8	Summary	223
7.9	Exercises	224
Ack	nowledgment	225
Refe	erences	225
Syst	em Reliability	227
Edw	vard Pohl	
8.1	Introduction to System Effectiveness	227
8.2	Reliability Modeling	228
8.3	Mathematical Models in Reliability	229
	8.3.1 Common Continuous Reliability Distributions	233
	8.3.2 Common Discrete Distributions	242
8.4	Basic System Models	244
	8.4.1 Series System	245
	8.4.2 Parallel System	245
	8.4.3 K-out-of-N Systems	247
	8.4.4 Complex Systems	247
8.5	Component Reliability Importance Measures	249
	8.5.1 Importance Measure for Series System	249
	8.5.2 Importance Measure for Parallel System	250
8.6	Reliability Allocation and Improvement	250
8.7	Markov Models of Repairable Systems	253
	8.7.1 Kolmogorov Differential Equations	253

xi

		054
	8.7.2 Iransient Analysis	254
	8.7.4 CTMC Models of Repairable Systems	250
	8.7.5 Modeling Multiple Machine Problems	258
	8.7.6 Conclusions	263
	8.8 Exercises	263
	References	271
PA	ART III SYSTEMS DECISION MAKING	273
9	Systems Decision Process Overview	275
	Gregory S. Parnell and Paul D. West	
	9.1 Introduction	275
	9.2 Value-Focused Versus Alternative-Focused Thinking	276
	9.3 Decision Quality	278
	9.4 Systems Decision Process	280
	9.5 Role of Stakeholders	282
	9.6 Role of Decision Makers	283
	9.7 Environment	284
	9.8 Comparison with Other Processes	285
	9.9 When to Use the Systems Decision Process 0.0.1 Need	280
	992 Resources	289
	9.9.3 Decision Maker and Stakeholder Support	289
	9.10 Tailoring the Systems Decision Process	289
	9.11 Example Use of the Systems Decision Process	290
	9.12 Illustrative Example: Systems Engineering Curriculum	
	Management System (CMS)—Summary and Introduction	290
	9.13 Exercises	293
	References	294 294
10	Problem Definition	297
	Timothy Trainor and Gregory S. Parnell	
	10.1 Introduction	297
	10.1.1 The Problem Definition Phase	298
	10.1.2 Comparison with Other Systems Engineering Processes	299
	10.1.3 Purpose of the Problem Definition Phase	300
	10.1.4 Chapter Example	300
	10.2 Research and Stakeholder Analysis	300
	10.2.1 Techniques for Stakeholder Analysis	302
	10.2.2 Stakeholder Analysis for the Rocket System Decision	212
	10.2.3 At Completion	313 314
	10.2.5 At Completion	514

CONTENTS

xii

CONTENTS	
CONTENTS	

	10.3	Functional and Requirements Analyses	314
		10.3.1 Terminology	315
		10.3.2 Importance of Functional Analysis	315
		10.3.3 Functional Analysis Techniques	316
		10.3.4 Requirements Analysis	324
		10.3.5 At Completion	325
	10.4	Value Modeling	326
		10.4.1 Definitions Used In Value Modeling	326
		10.4.2 Qualitative Value Modeling	327
		10.4.3 Quantitative Value Model	331
		10.4.4 At Completion of Value Modeling	340
	10.5	Output of the Problem Definition Phase	340
		10.5.1 Discussion	340
		10.5.2 Conclusion	341
	10.6	Illustrative Example: Systems Engineering Curriculum	
		Management System (CMS)—Problem Definition	341
	10.7	Exercises	350
	Refe	rences	350
11	Solu	tion Design	353
	Paul	D. West	
	11.1	Introduction to Solution Design	353
	11.2	Survey of Idea Generation Techniques	355
		11.2.1 Brainstorming	355
		11.2.2 Brainwriting	358
		11.2.3 Affinity Diagramming	358
		11.2.4 Delphi	358
		11.2.5 Groupware	361
		11.2.6 Lateral and Parallel Thinking and Six Thinking Hats	361
		11.2.7 Morphology	361
		11.2.8 Ends–Means Chains	363
		11.2.9 Existing or New Options	363
		11.2.10 Other Ideation Techniques	363
	11.3	Turning Ideas into Alternatives	365
		11.3.1 Alternative Generation Approaches	365
		11.3.2 Feasibility Screening	366
	11.4	Analyzing Candidate Solution Costs	368
	11.5	Improving Candidate Solutions	369
		11.5.1 Modeling Alternatives	369
		11.5.2 Simulating Alternatives	369
		11.5.3 Design of Experiments	370
		11.5.4 Fractional Factorial Design	376
		11.5.5 Pareto Analysis	386
	11.6	Summary	388

xiii

xiv		CC	ONTENTS
	11.7	Illustrative Example: Systems Engineering Curriculum	
		Management System (CMS)—Solution Design	388
	11.8	Exercises	390
	Refere	ences	391
12	Decis	sion Making	395
	Micha	ael J. Kwinn, Jr., Gregory S. Parnell, and Robert A. Dees	
	12.1	Introduction	395
	12.2	Preparing to Score Candidate Solutions	396
		12.2.1 Revised Problem Statement	396
		12.2.2 Value Model	397
		12.2.3 Candidate Solutions	397
		12.2.4 Life Cycle Cost Model	397
		12.2.5 Modeling and Simulation Results	397
		12.2.6 Confirm Value Measure Ranges and Weights	397
	12.3	Five Scoring Methods	398
		12.3.1 Operations	398
		12.3.2 Testing	398
		12.3.3 Modeling	399
		12.3.4 Simulation	399
		12.3.5 Expert Opinion	399
		12.3.6 Revisit Value Measures and Weights	400
	12.4	Score Candidate Solutions or Candidate Components	400
		12.4.1 Software for Decision Analysis	401
		12.4.2 Candidate Solution Scoring and Value Calculation12.4.3 Candidate Components Scoring and System	402
		Optimization	404
	12.5	Conduct Sensitivity Analysis	409
		12.5.1 Analyzing Sensitivity on Weights	410
		12.5.2 Sensitivity Analysis on Weights Using Excel	411
	12.6	Analyses of Uncertainty and Risk	412
		12.6.1 Risk Analysis—Conduct Monte Carlo Simulation on	
		Measure Scores	413
	12.7	Use Value-Focused Thinking to Improve Solutions	417
		12.7.1 Decision Analysis of Dependent Risks	419
	12.8	Conduct Cost Analysis	423
	12.9	Conduct Cost/Benefit Analysis	423
	12.10	Decision-Focused Transformation (DFT)	424
		12.10.1 Transformation Equations	425
		12.10.2 Visual Demonstration of Decision-Focused	105
		Iransformation	427
		12.10.3 Cost/Benefit Analysis and Removal of Candidate	407
	10.11	Solutions	427
	12.11	Prepare Recommendation Report and Presentation	432

CO	NTENT	5		XV
		12.11.1	Develop Report	433
		12.11.2	2 Develop Presentation	434
	12.12 Prepare for Solution Implementation		e for Solution Implementation	439
	12.13	Illustra	tive Example: Systems Engineering Curriculum	
		Manag	ement System (CMS)—Decision Making	439
	12.13	Exercis	jes	443
	Refer	ences		446
13	Solut	ion Imp	lementation	447
	Kenn	eth W. /	McDonald and Daniel J. McCarthy	
	13.1	Introdu	ction	447
	13.2	Solutio	n Implementation Phase	449
	13.3	The Ini	tiating Process	452
	13.4	Plannin	ıg	453
	13.5	Executi	ing	457
	13.6	Monito	ring and Controlling	458
	13.7	Closing		461
	13.8	Implen	nentation During Life Cycle Stages	462
		13.8.1	Implementation in "Produce the System"	462
		13.8.2	Implementation in "Deploy the System"	464
		13.8.3	Implementation in "Operate the System"	466
	13.9	Exercis	ies	474
	Refer	ences		475
14	Sumn	nary		477
	Greg	ory S. Pa	arnell	
	14.1	System	s Thinking—Key to Systems Decision Making	478
		14.1.1	Systems Thinking Reveals Dynamic Behavior	478
		14.1.2	The System Life Cycle Must Be Considered	478
		14.1.3	Modeling and Simulation—Important Tools The System Life Cycle Is a Key Risk Management	479
		1	Tool	479
		14.1.5	Life Cycle Costing Is an Important Tool for Systems	
			Engineering	479
	14.2	System	s Engineers Play a Critical Role in the System Life	
		Cycle		480
		14.2.1	Systems Engineers Lead Interdisciplinary Teams to	
			Obtain System Solutions that Create Value for	
		1422	Decision Makers and Stakeholders	480
		14.2.2	Systems Engineers Convert Stakeholder Needs to	40.0
		14.2.2	System Functions and Requirements	480
		14.2.3	Effectiveness	400
			Enecuveness	480

CONTENTS

	14.2.4	Systems Engineers Have Key Roles Throughout the	
		System Life Cycle	481
14.3	A Syste	ems Decision Process Is Required for Complex Systems	
	Decisio	ns	481
	14.3.1	Problem Definition Is the Key to Systems Decisions	481
	14.3.2	If We Want Better Decisions, We Need Better System	
		Solution Designs	482
	14.3.3	We Need to Identify the Best Value for the Resources	482
	14.3.4	Solution Implementation Requires Planning,	
		Executing, and Monitoring and Controlling	482
14.4	System	s Engineering Will Become More Challenging	483
Appendi	A SD	P Trade Space Concepts	485

Index

491

xvi

Foreword to the Second Edition

The first edition of this book was developed by the faculty of the Department of Systems Engineering at the United States Military Academy and two colleagues at the University of Arkansas. We used the book in draft and final form for four years as a text for undergraduate courses and professional continuing education courses for systems engineers and engineering managers, and the book has been used as a text for undergraduate and graduate courses at other universities. In addition, we used the foundational material on systems thinking, systems engineering, and systems decision making on very diverse and important research and consulting projects by our students and faculty. The development and use of this text resulted in restructuring part of our curriculum and has significantly improved our academic programs and the research of our faculty and our students.

However, we have continued to develop new material and refine the techniques that we use to present the material. The second edition keeps the problem-solving focus on systems thinking, systems engineering, and systems decision making but incorporates our learning based on teaching students and helping senior leaders solve significant challenges in many important problem domains.

The major changes include an increased focus on risk analysis as a key tool for systems thinking and decision making; explicit inclusion of cost analysis in our solution design phase; additional techniques for the analysis of uncertainty and risk in the decision making phase; and a revised solution implementation chapter more aligned with project management literature.

With the new material, this second edition can be used as an undergraduate or a graduate text in systems engineering, industrial engineering, engineering management, and systems management programs. In addition, the book is an excellent resource for engineers and managers whose professional education is not in systems engineering or engineering management.

FOREWORD TO THE SECOND EDITION

We hope that the material in this book will improve your problem solving skills by expanding your system thinking ability, increasing your understanding of the roles of systems engineers, and improving the systems decision making processes required to solve the complex challenges in your organization.

> BRIGADIER GENERAL TIM TRAINOR, PH.D. Dean of the Academic Board

United States Military Academy West Point, New York September 2010

xviii

Foreword to the First Edition

The Department of Systems Engineering is the youngest academic department at the United States Military Academy. Established in 1989, the department has developed into an entrepreneurial, forward-looking organization characterized by its unique blend of talented military and civilian faculty. This book is our effort to leverage that talent and experience to produce a useful undergraduate textbook focusing on the practical application of systems engineering techniques to solving complex problems. Collectively, the authors bring nearly two centuries of experience in both teaching and practicing systems engineering and engineering management. Their work on behalf of clients at the highest levels of government, military service, and industry spans two generations and a remarkably broad range of important, challenging, and complex problems. They have led thousands of systems engineering, engineering management, information engineering, and systems management students through a demanding curriculum focused on problem solving.

Teaching systems engineering at the undergraduate level presents a unique set of challenges to both faculty and students. During the seven years I served as the department head, we searched for a comprehensive source on systems engineering for undergraduates to no avail. What we found was either too narrowly focused on specific areas of the systems engineering process or more intended for practitioners or students in masters or doctoral programs.

While conceived to fill the need for an undergraduate textbook supporting the faculty and cadets of the United States Military Academy, it is designed to be used by faculty in any discipline at the undergraduate level and as a supplement to graduate level studies for students who do not have a formal education or practical experience in systems engineering.

The book is organized around the principles we teach and apply in our research efforts. It goes beyond exposing a problem-solving procedure, offering students the opportunity to grow into true systems thinkers who can apply their knowledge across the full spectrum of challenges facing our nation.

BRIGADIER GENERAL (Ret.) MICHAEL MCGINNIS, PH.D.

Formerly Professor and Head, Department of Systems Engineering, 1999–2006 United States Military Academy

> Executive Director Peter Kiewit Institute University of Nebraska

Preface to the Second Edition

WHAT IS THE PURPOSE OF THE BOOK?

The purpose of this book is to contribute to the education of systems engineers by providing them with the concepts and tools to successfully deal with systems engineering challenges of the twenty-first century. The book seeks to communicate to the reader a philosophical foundation through a systems thinking world view, a knowledge of the role of systems engineers, and a systems decision process (SDP) using techniques that have proven successful over the past 20 years in helping to solve tough problems presenting significant challenges to decision makers. This SDP applies to major systems decisions at any stage of their system life cycle. The second edition makes several important refinements to the SDP based on our teaching and practice since the first edition was published in 2008. A sound understanding of this approach provides a foundation for future courses in systems engineering, engineering management, industrial engineering, systems management, and operations research.

WHAT IS THIS BOOK?

This book provides a multidisciplinary framework for problem solving that uses accepted principles and practices of systems engineering and decision analysis. It has been constructed in a way that aligns with a structure moving from the broad to the specific, using illustrative examples that integrate the framework and demonstrate the principles and processes for systems engineering. The book is not a detailed engineering design book nor a guide to system architecting. It is a complement to engineering design and system architecting. It introduces tools and techniques sufficient for a complete treatment of systems decision making with references for future learning. The text blends the mathematics of multiple objective decision analysis with select elements of stakeholder theory, multi-attribute value theory, risk analysis, and life cycle cost analysis as a foundation for trade studies and the analysis of design solutions.

WHO IS THIS BOOK FOR?

The first edition of this book was intended primarily to be a textbook for an undergraduate course that provides an introduction to systems engineering or systems management. Based on the recommendations and requests from a host of academic and professional practitioners, this second edition extends much of the existing material and adds new material to enable the book to be comfortably adopted as a graduate text or a text in support of professional continuing education while remaining a valuable resource for systems engineering professionals. The book retains all of the features that readers identified as useful for any individual who is leading or participating in a large, complex systems engineering or engineering management process. Not surprisingly, readers of the first edition have highlighted the usefulness of the approach we present to other disciplines as well, such as human factors engineering, law, history, behavioral sciences, and management, in which the object of focus can be conceptualized as a system.

WHY DID WE WRITE THIS BOOK?

We authored the first edition of this book to fill a critical gap in available resources that we (and others) needed to support systems engineering projects that our faculty, and hence our students as future systems engineers, were being asked to engage with concerning high-visibility, high-impact systems in both government and corporate settings. Moreover, it was nearly always the case in these projects that key stakeholders vested in the potential solutions demanded-large amounts of decision support throughout the engagement horizon. Thus, systems engineering with a systems decision-making emphasis had evolved to be our primary professional practice with clients and yet the field was lacking a single source that students and practitioners could turn to for guidance.

Specifically, there were three immediate needs driving us to the task. First, we needed a textbook for our lead-in systems engineering courses offered by the Department of Systems Engineering at the United States Military Academy at West Point. Second, we needed to more fully describe the problem solving process that we developed and successfully applied since the Systems Engineering Department was formed in 1989. The process introduced in this book, called the systems decision process (SDP), is the refined version of this process we currently use. Lastly,

we wanted to document the problem solving lessons we have learned by hard knocks, happenstance, and good fortune as leaders, military officers, engineering managers, systems engineers, teachers, and researchers.

We teach two foundational systems engineering undergraduate courses at West Point that serve a broad clientele. SE301, Foundations of Engineering Design and System Management, is the first course we offer to our approximately 100 academic majors each year. These majors include systems engineering, engineering management, and systems management. The first two of these are programs accredited by ABET Inc.

This is the course where our faculty make "first contact" with each new class of talented students. Based on a host of discussions with students, faculty, and external stakeholders to our curriculum, we concluded that this needed to be the flagship course of the department, taught by our most experienced faculty; to communicate a fundamentally different thought process than that emphasized by other engineering fields; and to change the way our students thought about problem solving and their role in the process. Moreover, the course needed to set the professional standards required to put our students in front of real-world clients with real-world systems decision problems at the start of their senior year, to support the requirement of their year-long senior capstone experience.

The other course, SE300, Introduction to Systems Engineering, is the first course in a three-course Systems Engineering sequence taken by 300–400 nonengineering majors each year. Rather than simply providing an introduction to a field that was not their academic major, we structure this course to deliver value to the students both in their chosen majors and as future decision makers in their role as military officers. These design considerations became part of our plan for the first edition of the textbook, and we retained these for the second edition as well.

HOW DID WE WRITE THE BOOK?

We wrote the book in the manner that we advocate good systems engineering be applied in practice. The editors led a team effort that leveraged the expertise of each of the authors, several of whom were personally responsible for the structure of the downstream courses for each of our academic majors. In this manner, each author could craft critical material in direct support of later courses so that the book retained value as a reference beyond the initial program course.

A host of regularly scheduled collaboration and communication sessions were used to develop and refine the terminology, content, and voice used throughout the book. The concept maps in each chapter serve two purposes. First, they define the key concepts of the chapter. Second, they help us identify a common lexicon for the book. Since the book includes a systems decision process, we tried to incorporate several illustrative examples as an integrating tool that would carry the reader through the various systems decision process chapters. Our faculty and students read and evaluated each of the chapters for clarity, consistency, and ease of use.

As with most iterative processes, we learned a great deal about our own programs in the process. The writing of this book became a wonderful means of cross-leveling knowledge and understanding among the faculty as to the emphasis and content that was being taught across our curriculum. This book and the approach contained within have significantly contributed to our curriculum assessment process, enabling us to more clearly articulate program and course outcomes and objectives in a manner that communicates value return while aligning with accepted professional standards. Valuable feedback from faculty and students using the initial three preliminary printings and the first edition has been incorporated into this edition.

HOW IS THIS BOOK ORGANIZED?

The book is organized in three parts. Part I provides an introduction to systems thinking, system life cycles, risk management, systems modeling and analysis, and life cycle costing. Part II provides an introduction to systems engineering, the practice of systems engineering, and systems effectiveness. Part III introduces the systems decision process (SDP) and describes the four phases of our systems decision process: problem definition, solution design, decision making, and solution implementation, in addition to the primary environmental factors that house important stakeholders and their vested interests. The systems decision process can be used in all stages of a system life cycle. The final chapter provides a summary of the book.

GREGORY S. PARNELL and PATRICK J. DRISCOLL

West Point, New York July 2010

xxiv

Acknowledgments

We would like to acknowledge several individuals for their contributions and support for this second edition. Our design editor, Dale Henderson, again did a superb job on many design details that add quality to this work. The department leadership under COL Robert Kewley continues to provide great support and encouragement for the project. Thanks also go to many of the U.S. Military Academy Department of Systems Engineering faculty contributed to what was to become the Systems Decision Process (SDP).

The editors would like to thank the chapter authors for their hard work and flexibility as we defined and refined many of the concepts included in the book. Crafting a text such as this is a challenging undertaking. Having a tight production schedule adds to this challenge in a significant way. Their continuing level of patience, professionalism, and commitment to the project is acknowledged with our heartfelt gratitude.

A great example of this flexibility was how the Rocket Problem, developed for the first edition by Dr. Paul West, was quickly accepted and used as the example to present the concepts in Chapters 10–13. It continues to prove its usefulness for many of the extended concepts and new material of this second edition. We would also like to acknowledge COL Kewley's development of the Curriculum Management System example, along with the real system that has been implemented at our institution as a result. We also thank COL Donna Korycinski for a very careful read of the initial manuscript and many helpful suggestions for clarification. We continue to extend thanks to the many, many cadets who have taken courses in the Department of Systems Engineering. We honor their commitment to service with our best efforts to inspire and lead them. Their enthusiasm and high standards make us all better teachers and better leaders. Finally, the entire project team would like to thank their families for their selfless support and encouragement during this demanding book project.

> G. S. P. P. J. D.

xxvi

Thoughts for Instructors

COURSE DESIGN USING THE BOOK

This book has been designed as a systems engineering and management textbook and as a reference book for systems engineers and managers. There are lots of ways to use this material for undergraduate and graduate courses. Chapter 1 is always a good place to start! Part I (Chapters 2 through 5) present systems thinking. Most courses would probably want to start with at least Chapters 2 and 3 to set a good foundation in systems thinking and the system life cycle. Chapters 4 and 5 can be introduced next or during presentation of the systems decision process in Part III. Part III is designed to be presented sequentially but is based on knowledge provided in Chapter 1 through Chapter 5. Chapters 6 and 7 introduce systems engineering and describe systems engineering practice. They can be presented before or after Part III. The most advanced mathematics of the book is in Chapter 8, and Chapter 11, Section 11.4. These can be omitted in an introductory course since they may be covered in other courses in your student's academic program. Instructors will want to supplement the course with additional material.

AN EXAMPLE UNDERGRADUATE COURSE DESIGN

We use the text for our undergraduate systems engineering and management fundamentals course, our introduction to systems engineering course for nonengineering majors, and our year long capstone design course for academic majors. The fundamentals course is taken by our systems engineering, engineering management, and systems management majors, whereas the introductory course is the first of a three course systems engineering sequence taken annually by about 350–400 students. The capstone design course is the final, integrative experience for our students. We have found it useful to have the students learn the systems decision process from three perspectives: a personal systems decision with known or relatively easy to determine alternatives (e.g., buying a car); a complex systems integration problem involving multiple decision makers and stakeholders (e.g., adding new components to perform new missions with an existing unmanned aircraft system); and a complex systems design involving multiple stakeholders with challenging implementation issues (e.g., the IT illustrative example presented at the end of each chapter in Part III of the text).

Figure 0.1 provides the flow of the course material using this approach. We begin with Chapters 1 through 3 to provide an introduction to the course material

Figure 0.1 Course design with two projects and one illustrative example.

xxviii

and a good understanding of systems thinking and the system life cycle. Next, we introduce Project 1, a system decision problem that the students may encounter in which, as the assumed primary decision maker, they can easily determine their values, solution alternatives, measure scores, and basic life cycle costs. Example problems might be buying a car or selecting a graduate program of study. The students read Chapter 9 and the introductory parts of the four chapters describing the four phases in the systems decision process (Chapters 10–13). They then apply these concepts to their system decision problem. The effort culminates with a presentation and a paper that demonstrate the degree to which each student understands the multiple objective decision analysis (MODA) mathematics used to evaluate the value of the alternatives. Following this, we present the fundamentals and the practice of systems engineering using Chapters 6 and 7. This is also a good time to give the first exam.

Next, we introduce Project 2. For this project, we look to a systems integration and/or systems design project that has one or more decision makers and multiple stakeholders influencing the system requirements and subsequent trade space. We require the students to perform more extensive research, stakeholder interviews and surveys to develop the data and modeling components required by the MODA approach. Proceeding to Chapters 10 to 13, we introduce additional material to help the students address design and analysis issues associated with more complex systems decision problems. Modeling and simulation techniques introduced in Chapter 4 are used for solution design and evaluation. Time permitting, we include material from Chapter 5 addressing life cycle cost estimating.

While the students are completing their analysis of Project 2, we discuss the design of a system from system need to implementation. The IT illustrative example presented at the end of Chapters 9-13 was included in the book to provide an example of a complete application of the systems decision process. We conclude the Project 2 effort with student presentations and a summary of the course.

EXAMPLE GRADUATE PROGRAM SUPPORT

As mentioned previously, we received a significant number of suggestions for enhancements to the book from academicians and practitioners since the publication of the first edition. A number of these expressed a desire to use the book in support of their graduate programs or for workshops they were offering as continuing professional education. Figure 0.2 shows one perspective that might be helpful in this regard. It describes how that each chapter might support program and course objectives for a select number of graduate programs listed. It is intended purely as illustrative course topic coverage based on the editors' experience teaching courses in these types of programs. Any specific curriculum design would and should obviously be driven by the academic program specifics and course objectives. In addition, several of the chapters include material and associated mathematical content that may be appropriate for advanced undergraduate or graduate courses. These are predominantly:

THOUGHTS FOR INSTRUCTORS

	Program Chapter	Industrial & Systems Engineering	Engineering Management	Traditional Engineering	Acquisition Management/ Professional Continuing Education
1.	Introduction	Introduces key systems concepts and role of stakeholders			
2.	Systems Thinking	Foundational systems thinking principles and techniques			
3.	Systems Life Cycle	Importance of life cycle and risk management for system solutions	Importance of life cycle and risk management for system management	Importance of life cycle and risk management for system engineered solutions	Optional
4.	Systems Modeling & Analysis	Introduces roles and techniques of M&S in systems analysis	Introduces roles and techniques of M&S in systems analysis	Introduces roles of M&S in systems analysis	Introduces roles of M&S in systems analysis
5.	Life Cycle Costing	Supplements engineering economy course	Supplements engineering economy course	Foundational cost analysis principles and techniques	Foundational cost analysis principles and techniques
6.	Introduction to SE	Provides setting and context for SE and system complexity	Provides setting and context for SE and system complexity	Provides setting and context for SE and system complexity	Provides setting and context for SE and system complexity
7.	SE in Professional Practice	Help system engineers understand the roles and activities of SEs	Helps engineering manager understand the roles of SE	Help traditional engineers understand the role of SE	Helps acquisition manager understand the role of SE
8.	Systems Reliability	Overview of systems effectiveness principles and techniques	Optional	Overview of systems effectiveness principles and techniques	Optional
9.	Systems Decision Process Overview	Useful to introduce and compare SDP with other DM processes	Useful to introduce and compare SDP with other DM processes	Useful to introduce and compare SDP with other DM processes	Useful to introduce and compare SDP with other DM processes
10.	Problem Definition	Emphasizes importance of problem definition and demonstrates key qualitative techniques			
11.	Solution Design	Teaches fundamental system design principles and techniques	Teaches fundamental system design principles and techniques	Shows relationship of traditional engineering design in systems design	Teaches fundamental system design principles and techniques
12.	Decision Making	Demonstrates sound mathematical techniques for trade studies and analysis of alternatives and presentations to DMs	Demonstrates sound mathematical techniques for trade studies and analysis of alternatives and presentations to DMs	Demonstrates sound mathematical techniques for trade studies and analysis of alternatives and presentations to DMs	Demonstrates sound mathematical techniques for trade studies and analysis of alternatives and presentations to DMs
13.	Solution Implement- ation	Introduces key project management techniques	Reinforces project management techniques	Introduces key project management techniques	Reinforces project management techniques
14.	Summary	Summarizes key messages of the book	Summarizes key messages of the book	Optional	Optional

Figure 0.2 Example graduate program topical support.

- Chapter 5: Life Cycle Costing, CER
- Chapter 8: System Reliability
- Chapter 11: Solution Design (section on experimental design and response surface methodology)
- Chapter 12: Decision Making (the sections on Decision-Focused Transformation, Monte Carlo simulation, and decision trees)

THOUGHTS FOR INSTRUCTORS

Presentation and	Criteria and grade				
decision quality	Worst	Adequate	Very good	Ideal	
	0	7	9	10	
Bottom line up front	Not used	One bullet chart that summarizes the major results.	Bullet and graphs or pictures that illustrate the major results.	Briefing could be presented in one chart.	
	0	14	18	20	
1. Appropriate frame	No problem definition	Problem definition based on stakeholder analysis performed using interviews and surveys. Findings, conclusions, and recommendations.	Insightful problem definition clearly supported by stakeholder analysis.	New insights provided to the client.	
2 Croativa	0	14	18	20	
doable alternatives	No alternatives	Alternative generation table used to generate feasible alternatives.	Alternatives identified that have potential to provide high value.	Create alternatives client has not considered.	
2 Mooningful	0	14	18	20	
reliable	No documentation on presentation.	Adequate documentation for values and scores. Assumptions identified.	Appropriate sources.	Very credible sources.	
	0	28	36	40	
4. Clear values and tradeoffs	No value modal	Value model (measures aligned with system functions), value functions, and swing weight model implemented without errors.	Clear, meaningful objectives and credible measures.	Insightful objectives and direct measures.	
	0	14	18	20	
5. Logically correct reasoning	No rotational for recommendations	Value versus cost plot presented and interpretated correctly.	Logic for recommendation explained in three sentences.	Logic for recommendation explained in one sentences.	
	0	14	18	20	
6. Commitment to action	No discussion of implementation	Implementation plan presented using WBS and performance measures. Key risks identified.	Clean plan to reduce implementation risk.	Identified stakeholders who may not support and develop plan to obtain their support.	
Total	0	105	135	150	

Figure 0.3 A systems-based, project evaluation rubric.

DECISION ANALYSIS SOFTWARE

The text is designed to be independent of software. All of multiple objective decision analysis in Chapter 12 can be performed in a spreadsheet environment. For the case of Microsoft[®] Excel, macros that perform a linear interpolation useful for converting measure scores to units of value via value functions exist (Kirkwood, 1997).¹ In several of the illustrative examples, we call upon the Excel Solver to support component optimization. Any similar utility within other spreadsheet software would serve this purpose just as well. Certainly, one alternative to using a spreadsheet would be to employ decision analysis software, a number of which we highlight in this text where appropriate. Any Excel templates we use are available upon request from the editors.

STUDENT EVALUATION

Systems engineers face a continuing challenge of balancing robust processes with quality content. Creative ideas without a solid systems decision process will seldom be defended and successfully implemented. However, a wonderful, logical process is of little value without creativity and innovation. We believe we must impart to our students the importance of both process and creativity without sacrificing the benefits of either. Consequently, we used the concepts introduced in this book—the systems decision process, quality decisions, and presentation guidance—to develop a project grading mechanism that rewards both process and content. Figure 0.3 shows our Project 2 grading sheet. The decision quality terms in the first column are explained in Chapter 9. Insofar as grades are concerned, a student able able to perform the process correctly will earn a "C." Performing the process and having very good context will earn a "B." Demonstrating a mastery of the process, appropriate creativity, and producing outstanding insights will typically result in a grade of "A." We have found this grading approach helpful for recognizing student performance and for conveying course expectations.

FINAL THOUGHT

While we have attempted to incorporate all the suggestions and great ideas we have received from readers of the first edition, we wholeheartedly recognize the value of continuous improvement. Thus, while we are certainly limited in the degree to which the outstanding publication staff at Wiley allow us to alter content between printings without engaging in a third edition, we welcome feedback and suggestions whenever they occur.

GREGORY S. PARNELL AND PATRICK J. DRISCOLL

West Point, New York July 2010

¹Kirkwood, CW. *Strategic Decision Making: Multiple Objective Decision Analysis with Spreadsheets*. Pacific Grove, CA: Duxbury Press, 1997.

Contributors

- **Roger C. Burk, Ph.D.** Dr. Burk is an Associate Professor in the Department of Systems Engineering at the United States Military Academy (USMA) at West Point. He retired from the (U.S.) Air Force after a career in space operations, space systems analysis, and graduate-level instruction; afterwards he worked in industry as a systems engineer supporting national space programs before joining the USMA faculty. He teaches courses in statistics, decision analysis, mathematical modeling, systems engineering, and systems acquisition and advises senior research projects. He also consults in the areas of decision analysis and mathematical modeling in the space and national defense domains. Dr. Burk has a bachlor in Liberal Arts from St. John's College, Annapolis; an M.S. in Space Operations from the Air Force Institute of Technology; and a Ph.D. in Operations Research from the University of North Carolina at Chapel Hill. He is a member of the Institute for Operations Research and the Management Sciences, the Military Operations Research Society, the American Society for Engineering Education, and Alpha Pi Mu.
- **Robert A. Dees, M.S.** Major Robert Dees is an instructor and senior analyst with the Department of Systems Engineering at United States Military Academy. MAJ Dees has degrees in Engineering Management (United States Military Academy) and Industrial and Systems Engineering (M.S. Texas A&M University). MAJ Dees conducts applications research in the fields of decision analysis, systems engineering, and simulation for the U.S. Department of Defense and is an integral part of the teaching faculty at USMA. He is a member of the Military Applications Society of the Institute for Operations Research and the Management Sciences, the Decision Analysis Society of the Institute for Operations

Research and the Management Sciences, and the Military Operations Research Society.

- **Patrick J. Driscoll, Ph.D.** Dr. Pat Driscoll is a Professor of Operations Research at the United States Military Academy at West Point. He has systems experience modeling and improving a wide range of systems including university academic timetabling, information quality in supply chains, vulnerability and risk propagation in maritime transportation, infrastructure modeling and analysis, and value structuring in personnel systems. He also serves on the boards of several nonprofit organizations. Dr. Driscoll has degrees in Engineering (U.S. Military Academy, West Point), Operations Research (Stanford University), Engineering-Economic Systems (Stanford University), and Industrial and Systems Engineering (OR) (Ph.D, Virginia Tech). He is a member of the Institute for Operations Research and the Management Sciences, the Institute of Industrial Engineers, the IEEE, the Military Operations Research Society, the Operational Research Society, and is President of the Military Applications Society of INFORMS.
- **Bobbie L. Foote, Ph.D.** Dr. Bobbie Leon Foote served as a senior member of the faculty in Systems Engineering at the United States Military Academy. He has created systems redesign plans for Compaq, American Pine Products, the United States Navy, and Tinker Air Force Base. He was a finalist for the Edelman prize for his work with Tinker Air Force Base. He is the author of four sections on systems, forecasting, scheduling and plant layout for the 2006 Industrial and Systems Engineering Handbook and the 2007 Handbook of Operations Research. He jointly holds a patent on a new statistical test process granted in 2006 for work done on the Air Warrior project. He is a fellow of the Institute of Industrial Engineers.
- Simon R. Goerger, Ph.D. Colonel Simon R. Goerger is the Director of the DRRS Implementation Office and Senior Readiness Analyst for the U.S. Office of the Secretary of Defense. Col. Goerger is a former Assistant Professor in the Department of Systems Engineering at the United States Military Academy. He has taught both systems simulations and senior capstone courses at the undergraduate level. He holds a Bachelor of Science from the United States Military Academy and a Masters in Computer Science and a Doctorate in Modeling and Simulations from the Naval Postgraduate School. His research interests include combat models, agent-based modeling, human factors, training in virtual environments, and verification, validation, and accreditation of human behavior representations. LTC Goerger has served as an infantry and cavalry officer for the U.S. Army as well as a software engineer for COMBAT XXI, the U.S. Army's future brigade and below analytical model for the twenty-first century. He is a member of the Institute for Operations Research and the Management Sciences, the Military Operations Research Society, and the Simulation Interoperability Standards Organization.

xxxiv

CONTRIBUTORS

- **Dale L. Henderson, Ph.D., Design Editor** LTC Dale Henderson is a senior military analyst for the TRADOC Analysis Center (Ft. Lee) and a former Assistant Professor of Systems Engineering at the United States Military Academy at West Point. He has systems engineering and modeling experience in support of large-scale human resources systems and aviation systems. He graduated from West Point with a B.S. in Engineering Physics and holds an M.S. in Operations Research from the Naval Postgraduate School and a Ph.D. in Systems and Industrial Engineering from the University of Arizona. He is a member of the Institute for Operations Research and the Management Sciences, the Military Operations Research Society, and Omega Rho.
- **Robert Kewley, Ph.D.** COL Robert Kewley is the Professor and Head of the Department of Systems Engineering at the United States Military Academy Department of Systems Engineering. He has systems analysis experience in the areas of battle command, combat identification, logistics, and sensor systems. He has also conducted research in the areas of data mining and agent-based modeling. He has taught courses in decision support systems, system simulation, linear optimization, and computer-aided systems engineering. COL Kewley has a bachelor's degree in mathematics from the United States Military Academy and has both a master's degree in Industrial and Managerial Engineering and a Ph.D. in Decision Science and Engineering Systems from Rensselaer Polytechnic Institute. He is a member of the Military Operations Research Society.
- John E. Kobza, Ph.D. Dr. John E. Kobza is a Professor of Industrial Engineering and Senior Associate Dean of Engineering at Texas Tech University in Lubbock, Texas. He has experience modeling communication, manufacturing, and security systems. He has taught courses in statistics, applied probability, optimization, simulation, and quality. Dr. Kobza has a B.S. in Electrical Engineering from Washington State University, a Master's in Electrical Engineering from Clemson University, and a Ph.D. in Industrial and Systems Engineering from Virginia Tech. He is a member of Omega Rho, Sigma Xi, Alpha Pi Mu, the Institute for Operations Research and the Management Sciences, the Institute of Industrial Engineers, and the Institute of Electrical and Electronics Engineers and is a registered professional engineer in the state of Texas.
- Paul D. Kucik III, Ph.D. LTC Paul Kucik is an Academy Professor and Director of the Operations Research Center at the United States Military Academy at West Point. He has extensive systems experience in the operations and maintenance of military aviation assets. He has taught a variety of economics, engineering management, and systems engineering courses. LTC Kucik conducts research in decision analysis, systems engineering, optimization, cost analysis, and management and incentive systems. LTC Kucik has degrees in Economics (United States Military Academy), Business Administration (MBA, Sloan School of Management, Massachusetts Institute of Technology), and Management Science and Engineering (Ph.D., Stanford University). He is a member of the Military

Applications Society of the Institute for Operations Research and the Management Sciences, the Military Operations Research Society, the American Society for Engineering Management, and the Society for Risk Analysis.

- Michael J. Kwinn, Jr., Ph.D. Dr. Michael J. Kwinn, Jr. is the Deputy Director for the System-of-Systems Engineering organization for the Assistant Secretary of the U.S. Army for Acquisition, Logistics and Technology and is a former Professor of Systems Engineering at the United States Military Academy at West Point. He has worked on systems engineering projects for over 15 years. Some of his recent work is in the areas of acquisition simulation analysis, military recruiting process management, and condition-based maintenance implementation. He has also applied systems engineering techniques while deployed in support of Operation Iraqi Freedom (OIF) and Operation Enduring Freedom (OEF). He teaches systems engineering and operations research courses and has served as an advisory member for the Army Science Board. Dr. Kwinn has degrees in General Engineering (U.S. Military Academy), Systems Engineering (MSe, University of Arizona), National Security and Strategic Studies (MA, US Naval War College), Management Science (Ph.D., University of Texas at Austin). He is the past-President of the Military Operations Research Society and is a member of the International Council on Systems Engineering, the American Society for Engineering Education, and the Institute for Operations Research and the Management Sciences.
- LTC Daniel J. McCarthy is an Academy Professor and the Director of the Systems Engineering and Operations Research Programs in the Department of Systems Engineering at the United States Military Academy. He has systems analysis experience in the areas of personnel management, logistics, battle command, and unmanned systems. He has also conducted research and has experience in the areas of system dynamics, project management, product development, strategic partnership and strategic assessment. He has taught courses in systems engineering design, system dynamics, production operations management, mathematical modeling, decision analysis, and engineering statistics. LTC McCarthy has degrees in Organizational Leadership (U.S. Military Academy), Systems Engineering (University of Virginia), and Management Science (Ph.D., Massachusetts Institute of Technology). He is a member of the Military Operations Research Society (MORS), the International Council of Systems Engineering (INCOSE), the System Dynamics Society, the American Society of Engineering Education (ASEE), and the Institute of Industrial Engineers (IIE).
- Kenneth W. McDonald, Ph.D. LTC Kenneth W. McDonald is an Associate Professor and Engineering Management Program Director in the Department of Systems Engineering at the United States Military Academy at West Point. He has extensive engineering management experience throughout a 25-year career of service in the U.S. Army Corps of Engineers and teaching. He teaches engineering management and systems engineering courses while overseeing the

xxxvi

CONTRIBUTORS

Engineering Management program. LTC McDonald has degrees in Civil Engineering, Environmental Engineering, Geography, City and Regional Planning, Business and Information Systems. He is also a registered Professional Engineer (PE), a Project Management Professional (PMP), and a certified professional planner (AICP). He is a member of the Institute of Industrial Engineering, the American Society of Engineering Management, the American Institute of Certified Planners and the Society of American Military Engineers. He is also an ABET evaluator for Engineering Management programs.

- Heather Nachtmann, Ph.D. Dr. Heather Nachtmann is an Associate Professor of Industrial Engineering and Director of the Mack-Blackwell Rural Transportation Center at the University of Arkansas. Her research interests include modeling of transportation, logistics, and economic systems. She teaches in the areas of operations research, engineering economy, cost and financial engineering, and decision analysis. Dr. Nachtmann received her Ph.D. in Industrial Engineering from the University of Pittsburgh. She is a member of Alpha Pi Mu, the American Society for Engineering Education, the American Society for Engineering Management, the Institute for Operations Research and the Management Sciences, the Institute of Industrial Engineers, and the Society of Women Engineers.
- **Gregory S. Parnell, Ph.D.** Dr. Gregory S. Parnell is a Professor of Systems Engineering at the United States Military Academy at West Point. He has systems experience operating space systems, managing aircraft and missile R&D programs, and leading a missile systems engineering office during his 25 years in the U.S. Air Force. He teaches decision analysis, operations research, systems engineering, and engineering management courses. He also serves as a senior principal with Innovative Decisions Inc., a leading decision analysis consulting company. He serves on the Technology Panel of the National Security Agency Advisory Board. Dr. Parnell has degrees in Aerospace Engineering (University of New York at Buffalo), Industrial and Systems Engineering (University of Florida), Systems Management (University of Southern California) and Engineering-Economic Systems (Ph.D., Stanford University). Dr. Parnell is a member of the American Society for Engineering Education, the International Council on Systems Engineering, the Institute for Operations Research and the Management Sciences, and the Military Operations Research Society.
- **Edward Pohl, Ph.D.** Dr. Edward A. Pohl is an Associate Professor and John L. Imhoff Chair of Industrial Engineering at the University of Arkansas. Prior to joining the faculty at Arkansas, Dr. Pohl served as an Associate Professor of Systems Engineering at the United States Military Academy, and as an Assistant Professor of Systems Engineering at the Air Force Institute of Technology. During his 21 years of service in the United States Air Force, Dr. Pohl held a variety of systems engineering and analysis positions. He worked as a systems engineer on the B-2 Weapon Systems Trainer and worked as a reliability, maintainability, and availability engineer on a variety of strategic and tactical

missile systems. Finally, he worked as a systems analyst on the staff of the Secretary of Defense, Programs Analysis and Evaluation on a variety of space and missile defense systems. Dr. Pohl has degrees in Electrical Engineering (Boston University), Engineering Management (University of Dayton), Systems Engineering (Air Force Institute of Technology), Reliability Engineering (University of Arizona), and Systems and Industrial Engineering (Ph.D., University of Arizona). He is a member of the International Council on Systems Engineering, the Institute for Operations Research and the Management Sciences, the Institute of Industrial Engineers, the Institute of Electrical and Electronics Engineers, and the Military Operations Research Society.

- Robert Powell, Ph.D. COL Robert A. Powell was a former Academy Professor and Director of the Systems Management program at the United States Military Academy at West Point. Prior to his death in 2008, he had a vast and varied background of academic, research, and government experience in the engineering profession that spanned more than 21 years. He conducted research in decision analysis, systems engineering, battlefield imagery, optimization, and project management, as well as on the value of integrating practice into engineering curriculums. While on the faculty at USMA, COL. Powell taught courses in production operations management, engineering economics, and project management. COL Powell held a Ph.D. in Systems Engineering from Stevens Institute of Technology, a Master of Military Art and Science from the U.S. Army Command and General Staff College, an M.S. in Operations Research/Management Science from George Mason University, and a B.S. in Industrial Engineering from Texas A&M University. COL. Powell was also a member of the American Society for Engineering Education, the International Council on Systems Engineering, the Military Operations Research Society, and the National Society of Black Engineers.
- **Timothy Trainor, Ph.D.** Brigadier General Timothy E. Trainor is the Dean of Academics and former Professor and Head of the Department of Systems Engineering at the United States Military Academy at West Point. He has systems experience in the operations of military engineering organizations. He teaches engineering management, systems engineering, and decision analysis courses. BG Trainor has degrees in Engineering Mechanics (United States Military Academy), Business Administration (MBA, Fuqua School of Business, Duke University), and Industrial Engineering (Ph.D., North Carolina State University). He is a member of the Military Applications Society of the Institute for Operations Research and the Management Sciences, the Military Operations Research Society, the American Society for Engineering Education, and the American Society of Engineering Management. Colonel Trainor is a member of the Board of Fellows for the David Crawford School of Engineering at Norwich University.

xxxviii

CONTRIBUTORS

Paul D. West, Ph.D. Dr. Paul D. West is an Assistant Professor in the Department of Systems Engineering at the United States Military Academy at West Point. His systems engineering experience ranges from weapon system to state and local emergency management system design. He has taught courses in combat modeling and simulation, system design, and engineering economics. He designed and implemented an immersive 3D virtual test bed for West Point and chaired the Academy's Emerging Computing Committee. Other research interests include the design and operation of network-centric systems and human behavior modeling. He holds a bachelor's degree in Liberal Studies from the State University of New York at Albany, an M.B.A. degree from Long Island University, a Master of Technology Management degree from Stevens Institute of Technology, and a Ph.D. in Systems Engineering and Technology Management, also from Stevens. He is a member of the Military Operations Research Society, the American Society of Engineering Management, and the Institute for Operations Research and the Management Sciences.

Acronyms

ABET	Formerly Accreditation Board for Engineering and Technology, now			
	ABET, Inc.			
AFT	Alternative-Focused Thinking			
AoA	Analysis of Alternatives			
ASEM	American Society for Engineering Management			
ASI	American Shield Initiative			
BRAC	Base Realignment and Closure Commission			
CAS	Complex Adaptive System			
CCB	Configuration Control Board			
CER	Cost Estimating Relationship			
CFR	Constant Failure Rate			
CIO	Chief Information Officer			
СМ	Configuration Manager (or Management)			
CPS	Creative Problem Solving			
СТО	Chief Technology Officer			
DDDC	Dynamic, Deterministic, Descriptive, Continuous			
DDDD	Dynamic, Deterministic, Descriptive, Discrete			
DDPC	Dynamic, Deterministic, Prescriptive, Continuous			
DDPD	Dynamic, Deterministic, Prescriptive, Discrete			
DFR	Decreasing Failure Rate			
DoD	Department of Defense			

DOE Design of Experiments

ACRONYMS

DPDC Dynamic, Probabilistic, Descriptive, Continuous DPDD Dynamic, Probabilistic, Descriptive, Discrete DPPC Dynamic, Probabilistic, Prescriptive, Continuous Dynamic, Probabilistic, Prescriptive, Discrete DPPD EM Engineering Manager (or Management) ESS **Environmental Stress Screening** Federal Information Processing Standards FIPS FRP Full Rate Production Global Information Grid GIG Interface Control Document ICD **ICOM** Inputs, Controls, Outputs, and Mechanisms IDEF Integrated Definition for Function Modeling IE Industrial Engineer (or Engineering) Improvised Explosive Device IED Increasing Failure Rate IFR Institute of Industrial Engineers IIE Integrated Logistic Support ILS INCOSE International Council on Systems Engineering INFORMS Institute for Operations Research and the Management Sciences IV& V Independent Verification and Validation Life Cycle Costing LCC LRIP Low Rate Initial Production M& S Modeling and Simulation Morphological Analysis MA MAS Multi-Agent System Mean Time to Failure MTF Multiple Objective Decision Analysis MODA MOE Measure of Effectiveness MOP Measures of Performance Military Operations Research Society MORS Network Centric Warfare NCW NPV Net Present Value National Space Transportation System NSTS OR/MS Operations Research & Management Science ORS **Operational Research Society** Program Manager (or Management) PM OA Quality Assurance Radio Controlled R/C RFP Request for Proposal **RMA** Reliability, Maintainability, and Availability RPS **Revised Problem Statement** RSM Response Surface Method Structured Analysis and Design Technique SADT SCEA Society of Cost Estimating and Analysis

xlii

ACRONYMS

SDDC	Static, Deterministic, Descriptive, Continuous
SDDD	Static, Deterministic, Descriptive, Discrete
SDP	Systems Decision Process
SDPC	Static, Deterministic, Probabilistic, Continuous
SDPD	Static, Deterministic, Prescriptive, Discrete
SE	System(s) Engineer (or Engineering)
SEC	Securities and Exchange Commission
SEMP	Systems Engineering Master Plan
SME	Subject Matter Expert
SPDC	Static, Probabilistic, Descriptive, Continuous
SPDD	Static, Probabilistic, Descriptive, Discrete
SPPC	Static, Probabilistic, Prescriptive, Continuous
SPPD	Static, Probabilistic, Prescriptive, Discrete
TEMP	Test and Evaluation Master Plan
U.S.	United States
VFT	Value-Focused Thinking
WBS	Work Breakdown Structure

xliii