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All models are wrong, some are useful.
—George Box

All but war is simulation.
—U.S. Army

4.1 INTRODUCTION

Thinking about a system’s essential components, attributes, and relationships in
abstract ways occurs in various forms throughout the system life cycle. This was
described in Section 2.8 during the discussion on the spatial placement of systems
and their components. It may also take the form of a mathematical representation,
such as E = mc?, that examines the relationship between available energy, an
object’s mass, and the speed of light. At times it is useful to create a physical
mockup of an object and put it in the hands of a user to obtain feedback on
how the system performs or reacts to change. All of these ways of thinking about
systems are using models to better understand the system. This chapter explores
models—what they are and how they’re used—and a unique type of model, a
simulation, which exercises a system’s components, attributes, and relationships
over time.
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Figure 4.1 Concept map for Chapter 4.
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This chapter introduces four of the tools a systems engineer needs to master
to fully understand the system life cycle, introduced in Chapter 3, and to develop
and evaluate candidate solutions to present to a decision maker. These tools are:
measures of system performance and effectiveness, models, simulations, and deter-
mining sample size. Each tool builds on the previous one. Figure 4.1 captures
the fundamental relationships between systems engineers and the modeling and
simulation (M&S) process.

4.2 DEVELOPING SYSTEM MEASURES

System measures enable systems engineering teams to evaluate alternatives. They
are vital for deciding which models or simulations to use and are therefore key
considerations throughout the M&S process. It is essential that measures based on
stakeholder values be identified before any modeling and simulation effort begins.
A fatal flaw in system analysis occurs when modelers force a system into favorite
analysis tools, observe dominant outcomes, and attempt to retrofit measures to out-
comes. Almost always these measures do not reflect the values of the stakeholders
or even the modeler and thus fail to provide meaningful support to the decision
maker.

Measures are tied either directly or indirectly to every system objective identi-
fied in the problem definition process. Although most objectives can be evaluated
directly, others, such as “To develop a sound energy policy,” can be assessed
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only in terms of percentage of fulfillment of other objectives [1]. Measures can
take several forms, but the most prevalent fall into the categories of measures of
effectiveness (MOE) and measures of performance (MOP).

A measure of performance is a quantitative expression of how well the oper-
ation of a system meets its design specification.

A measure of effectiveness is a quantitative expression of how well the oper-
ation of a system contributes to the success of the greater system.

For example, the measure miles per gallon reflects the reliability of how well
an engine performs. It is not directly related to the success of the greater system’s
mission, which may be to transport people across town. An effectiveness measure
for such a vehicle may better be stated in terms of passengers delivered per hour.

A military weapon system may meet a specification of firing 1000 rounds per
minute (an MOP), but if the probability of hitting a target with a single round (an
MOE) is 0.9 and the probability of destroying the target, given a hit (an MOE),
is 0.9, then the measure of performance, rounds per minute, is not very helpful
in evaluating the effectiveness of the greater system in its mission of destroying
targets.

Performance measures are developed by systems engineers during the Problem
Definition phase of the SDP and are described in the system specification. Effec-
tiveness measures are also based directly on stakeholder values, but these measures
view the system in a larger context and therefore selecting meaningful MOE can
be more difficult. In the 1970s, the U.S. Army produced a seven-step format for
defining MOE that is helpful both in the Problem Definition phase of the SDP
and for describing the relevance of a measure to stakeholders. In its discussion of
MOE, the Army noted several characteristics of a good MOE [2]. These are:

¢ A good MOE reflects and measures functional objectives of the system.
e A good MOE is simple and quantifiable.

e A good MOE measures effectiveness at echelons above the system (how it
contributes).

A good MOE involves aggregation of data.
e A good MOE can be used to determine synergistic effects of a system.

Defining a good MOE has seven steps, two of which are optional. These are:

1. Define the measure. Include both a narrative description and an equation.
2. Indicate the dimension of the measure. Is it a ratio, an index, a time interval?

3. Define the limits on the range of the measure. Specify upper and lower
bounds.

4. Explain the rationale for the measure. Why is this measure useful?

5. Describe the decisional relevance of the measure. How will this measure help
the decision maker?



98 SYSTEMS MODELING AND ANALYSIS

Time To Estimate Range

1. Definition of the Measure. Time to estimate range is the elapsed time from
detection of a target to estimation of range. Input data are the moment of
detection and the moment estimation of range is complete. Relation of output to
input is:

time to estimate range = time of estimation — time of detection.

2. Dimension of the Measure. Interval-elapsed time in terms of seconds. If the
measure is taken at different times or under varying circumstances, it can be used
in the form of mean time to estimate range or median time.

3. Limits on the Range of the Measure. The output can be zero or any positive
value. The resolution of the measure is limited by the precision of taking start
time and end time. The data cannot be disassociated from the definition of
computed estimation used, whether it is the first estimate stated regardless of
accuracy or is the final in a series of estimates which is used for firing.

4. Rationale for the Measure. This measure addresses a component of target
acquisition time. Problems in estimation are assumed to contribute to the length
of estimation time.

5. Decisional Relevance of the Measure. This measure can be used to compare
estimation times of means of range estimation (techniques, aids, range finders,
trained personnel) with each other or a standard. It would not ordinarily be used
alone, but would be combined with accuracy of estimation or accuracy of firing
in most cases.

6. Associated Measures.

e Accuracy of range estimation
o Firing accuracy

e Time to detect

e Exposure time

e Time to identify

Figure 4.2 A fully defined measure of effectiveness (MOE).

6. List associated measures, if any, to put this measure in context (optional).
7. List references (optional). Give examples of where it has been used.

An example MOE using this format is shown in Figure 4.2.

Thinking about how a system will be evaluated occurs continuously as the
understanding of the system evolves. This brief introduction on measures will be
expanded in depth in Chapter 8.

4.3 MODELING THE SYSTEM DESIGN

This section introduces the concept of modeling. Modeling is more of an art than
a science. Just as with playing a musical instrument or painting a picture, some
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people have more talent for modeling than others. However, everyone can improve
their skill with knowledge of their discipline and practice building models. This
section provides insight into what makes good models and presents guidelines for
building them.

4.3.1 What Models Are

A model is an abstract representation of a system. Consider a model airplane. It
could be a 1/72 scale plastic model that comes in a kit. The assembled model has
some of the features of the real aircraft, such as the shape of the fuselage and the
angle of the wings. However, it does not have a working engine or controllable
flight surfaces.

Another airplane model is the ready-built radio controlled (R/C) airplane. It flies
with the user controlling the elevator, ailerons, and speed. Electric ducted fans even
replace jet engines! However, this model is also not the real aircraft. The weight
and balance are different, the rudder is fixed, and the flight dynamics are different
than the real aircraft.

Both of these are useful representations of the real aircraft system, but each has
a different purpose. The model kit illustrates the shape of the fuselage in relation
to wing angle. The R/C model demonstrates how the aircraft would look in the
sky. Neither model is useful for predicting the maximum altitude or flying range
of the actual aircraft. Their usefulness, as in all models, depends on what aspect
of the actual system is being studied.

A model captures essential attributes and relationships between system compo-
nents, but it does not capture them all.

A model is an abstract representation of a system.

The modeler must choose what to put in and what to leave out of a model, as
well as how to represent what is put in. This is the essence of modeling. It is also
what makes modeling an art. It can be very difficult to choose the key aspects of the
system and incorporate them into a workable model. A set of differential equations
may accurately represent the relationships among system variables, but it is not
workable if it cannot be solved. Modelers build models using their knowledge of
the system (or experience with similar systems) and their understanding of available
modeling techniques.

4.3.2 Why We Use Models

One of the greatest ideas the Wright brothers had was to model the wing instead of
building and flying different wing shapes. In the following excerpt, Wilbur Wright
describes how they developed their understanding of the wing. It illustrates many
of the reasons to use a model.

It took us about a month of experimenting with the wind tunnel [Figure 4.3] we had
built to learn how to use it effectively. Eventually we learned how to operate it so
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Figure 4.3 Replica of Wright brothers’ wind tunnel, 5-10-39 [3].

that it gave us results that varied less than one-tenth of a degree. Occasionally I had
to yell at my brother to keep him from moving even just a little in the room because
it would disturb the air flow and destroy the accuracy of the test.

Over a two-month period we tested more than two hundred models of different types
of wings. All of the models were three to nine inches long. Altogether we measured
monoplane wing designs (airplanes with one wing), biplanes, triplanes and even an
aircraft design with one wing behind the other like Professor Langley proposed.
Professor Langley was the director of the Smithsonian Museum at the time and also
trying to invent the first airplane. On each little aircraft wing design we tested we
located the center of pressure and made measurements for lift and drift. We also
measured the lift produced by wings of different aspect ratios. An aspect ratio is the
ratio or comparison of how long a wing is left to right (the wing span) compared to
the length from the front to the back of the wing (the wing chord). Sometimes we
got results that were just hard to believe, especially when compared to the earlier
aerodynamic lift numbers supplied by the German Lillienthal. His numbers were
being used by most of the early aviation inventors and they proved to be full of
errors. Lillienthal didn’t use a wind tunnel like Orville and I did to obtain and test
our data.

We finally stopped our wind tunnel experiments just before Christmas, 1901. We
really concluded them rather reluctantly because we had a bicycle business to run and
a lot of work to do for that as well. It is difficult to underestimate the value of that
very laborious work we did over that homemade wind tunnel. It was, in fact, the first
wind tunnel in which small models of wings were tested and their lifting properties
accurately noted. From all the data that Orville and I accumulated into tables, an
accurate and reliable wing could finally be built. Even modern wind tunnel data
with the most sophisticated equipment varies comparatively little from what we first
discovered. In fact, the accurate wind tunnel data we developed was so important, it is
doubtful if anyone would have ever developed a flyable wing without first developing
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these data. Sometimes the nonglamorous lab work is absolutely crucial to the success
of a project [3].

A couple of bicycle mechanics from Ohio used models to become the first to
achieve controlled powered flight. Their use of models saved them time, money,
and, probably, their lives. Otto Lillienthal’s data was gathered from over 2000 glider
tests over more than 20 years [4]. He was killed in a glider crash in 1896. After
three months of studying physical models in a wind tunnel, the Wright brothers
understood how wings behave. This understanding allowed them to create a flyable
wing design for their plane.

This example illustrates the three major reasons we use models.

Models are Flexible. By changing parameter values, a single model can rep-
resent the system across a broad set of conditions or represent a variety of
related systems.

Models Save Time. It is usually much faster to build or change a model of a
system than the system itself. Testing the design using a model could reveal
flaws that can be fixed more quickly and less expensively before the system
is built.

Models Save Money. Building prototypes of a car or a production line is expen-
sive. It is much cheaper to make changes to a mathematical or computer
model than to build different versions of the actual system.

4.3.3 Role of Models in Solution Design

The primary purpose of a model is to understand how the actual system design
will or does perform. This understanding can then be used to design the system in
a way that improves or optimizes its performance. The Wright brothers used their
wind tunnel to gain an understanding of how a wing behaves. They then used this
knowledge to design a wing for their aircraft.

There are three different types of system designs: satisficing, adaptivising, and
optimizing (Figure 4.4). Satisficing is a term that comes from a concatenation of
satisfying with sacrificing. Satisficing, as a goal for an existing system, means the
current performance is satisfactory. For a new system, satisficing means that any
good feasible solution with acceptable intrinsic cost tradeoff will be satisfactory.
If the goal is to move up a hillside, a satisficing solution may be to crawl uphill
through some bushes.

The primary criterion for adaptivising solutions is cost effectiveness. Improved
system performance is the goal, but only when it can be obtained at a reasonable
cost. Satisficing accepts any solution that works. Adaptivising looks for “good”
solutions. For the example of moving up the hill, an adaptivising solution may be
to walk a path that leads up the hill. Ascent may not be as rapid as crawling up a
steep slope, but it is a lot easier and will probably get us there faster.

Optimizing solutions are at least as good and often better than all other solutions.
They are the best according to performance measures. However, they may require
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Optimizing
choose the best from
among all possible
solutions

Adaptivising
seek a better solution until
further effort is not justified

Satisficing
choose the first
solution that
meets all criteria

\/

Resources and effort:
time, money, people,and computer time spent
looking for a better solution

Figure 4.4 The relationship between effort and solution quality.

much effort or expense. If the goal is to get to the top of the hill in the quickest
manner, the optimizing solution may be to land on top of the hill in a helicopter.

4.3.4 Qualities of Useful Models

creator [5].

Art is a selective recreation of reality. Its purpose is to concretize an abstraction
to bring an idea or emotion within the grasp of the observer. It is a selective
recreation, with the selection process depending on the value judgments of the

The above definition of art sounds perilously close to our definition of a model.
Aesthetics is the branch of philosophy that relates to art and includes the study
of methods of evaluating art. Just as art can be evaluated, so can models. Just
as the artist must make value judgments when capturing an idea or emotion in a
concrete form, so the engineer must make value judgments when representing the
key elements of a system in a usable form. Just as art can be beautiful, so can
models. This section presents the characteristics used to judge models.

Parsimony. One of the primary characteristics of a model is its level of com-
plexity. The principle of parsimony (also known as Occam’s Razor) states
that when choosing among scientific theories that make exactly the same pre-
dictions, the best one is the simplest [6]. The same is true of models—simpler
is usually better. Given several models of the system with comparable output,
the best model is the simplest one. It is typically easier to understand. It also
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may require fewer and more reasonable assumptions. For these reasons, it is
usually easier to explain to stakeholders.

Simplicity. Another characteristic is expressed by the relationship between the
complexity of the model and that of the system it represents. The model’s
level of complexity typically increases in response to the system’s level of
complexity. This is not always the case, but a complex model for a simple
system usually represents a lack of effort on the part of the modeler. It takes
time, effort, and creativity to simplify a model. Sometimes this can result in
a simple model of a complex system, which is truly a thing of rarest beauty.

Accuracy. Accuracy is another important characteristic of models. Accuracy
is “the degree to which a parameter or variable, or a set of parameters or
variables, within a model or simulation conforms exactly to reality or to
some chosen standard or referent” [7]. An inaccurate model is not much
good to anyone. Accuracy must often be considered hand-in-hand with model
complexity. A “quick-and-dirty” solution results from a simple model with
low accuracy. Sometimes this level of accuracy is enough to gain sufficient
insight into the system behavior. At other times, more accurate, and perhaps
more complex, models are needed.

Robustness. Robustness characterizes the ability of a model to represent the
system over a wide range of input values. A model that is not robust only
represents the system for a narrow range of inputs. Beyond this range, other
models must be used or the structural parameters of the existing model must
substantially change. This is not necessarily a problem. For example, if the
narrow range of input values covers all of the alternatives from the Solution
Design phase of the SDP, the model is good. However, if the narrow range
only covers a portion of the design space, other models will be needed; or a
more robust model must be developed.

Scale. The scale of the model is an important characteristic that refers to the
level of detail used in the problem. If a model contains both insect life cycles
and continental drift, it may suffer from inconsistent scale. Both ends of the
spectrum may exist in the actual system, but there are orders of magnitude
difference in how they affect the system. If you are modeling the life cycle
of a flower, the effects of continental drift are negligible. However, if you are
modeling the spread of a flower species over geologic periods, continental
drift is much more important than insect life cycles.

Fidelity. Fidelity is an overall characterization of how well the model represents
the actual system. Just as the high-fidelity recordings of the late vinyl age
were touted as being truer to the actual sound produced by an orchestra,
a high-fidelity model is closer to representing the actual system. Fidelity is
an aggregate characteristic that brings together complexity (parsimony and
simplicity), accuracy, robustness, and scale. A 100% replication of an actual
system represents a duplicate or copy of the actual system.

Balance. Just as an artist must choose which aspects of an idea to convey and
how to represent it in an art form, a systems engineer must choose which
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aspects of a system are essential and how to represent them in the concrete
form of a model. The modeler must balance and blend complexity (parsimony
and simplicity), accuracy, scale, and robustness. (One definition of an expert
is knowing what to ignore.) Among the choices the modeler must make is
the type of model (or models) to use. Section 4.5 introduces some of the
different types of models.

4.4 THE MODELING PROCESS: HOW WE BUILD MODELS

Just as there is no “correct” way to create art, there is no ‘correct’” way to create
a model. However, there are steps or processes that have been used in the past to
develop models. This section presents only one possible modeling process. Think
of it is a list of things to consider while developing a model, rather than a rigid
step-by-step procedure. In fact, some of the steps listed in Figure 4.5 may need to
be repeated several times in different orders as the model is developed.

Typically, a model begins in the mind and is then rendered in a form that is
tested or examined for usefulness. The experience gained may then be used to
revise and improve the model. This sequence is repeated until an acceptable model
is created, verified, validated, and accredited.

The Modeling Process

Create a conceptual (mental) model

~ 0
Identify the purpose of the model —»
—4[o) U

Identify input variables —

I\

Identify output measures

Identify components of the system

Identify controls

Specify assumptions D—rD

Identify relationships and interactions

Draw a diagram of the system

Create a flow chart of the system g -
Construct the model Og

Choose a model type @

Represent relationships

Exercise the model
Verify /\/\/\
Validate ﬂ
Y

Accredit

Revise the model (modeltest-model)

Figure 4.5 The modeling process.
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4.4.1 Create a Conceptual Model

Not surprisingly, the conceptual model begins in the modeler’s mind as the realiza-
tion of a key relationship or an idea about representing a key feature of the system.
For example, the modeler may notice that inventory goes up as demand decreases
or production increases. How can this relationship be represented in a model?

A conceptual model is a theoretical representation of the system based on anec-
dotal or scientific observations. “It includes logic and algorithms and explicitly
recognizes assumptions and limitations” [8].

Many of the items or steps in Figure 4.5 related to the conceptual model have
already been considered as part of the systems decision process (see Chapter 2).
These include identifying system elements or components, specifying assumptions,
analyzing data to identify relationships and interactions, and drawing diagrams and
flowcharts for the system. Other items need to be considered in the context of the
desired model.

Identify the Purpose of the Model. The most important consideration is the pur-
pose of the model. One purpose of a model might be to predict how a
system will perform under a given set of conditions. Consider the following
examples: How many satellites can be placed into space if two space shuttles
or payload rockets are purchased? What is the worst-case response time to
a distress call from manned lunar station? What penetration will a specific
rocket thrust or certain projectile shape achieve through a concrete block?
Another possible purpose could be to determine the set of design choices that
optimizes performance as in the following examples. How many machines
should be purchased to maximize profit? What balance of forces should be
used to maximize the probability of success? What is the best fin configura-
tion for a rocket system? The purpose of the model will influence the choice
of modeling tools used.

Identify Input Variables. The purpose of the model affects the choice of model
input variables. These could represent aspects of the design that the sys-
tems engineer can choose—sometimes called controllable or independent
variables. These could include such factors as the number of space shuttles,
payload delivery rockets, or emergency response teams. They can also rep-
resent parameters that the user of the model may be unsure of or wishes to
vary across a range of values as they test the model exploring “what if?”
scenarios. These may include the rate of inflation, the cost of rocket fuel,
rocket fin configuration, the amount of thrust produced by a rocket engine,
or the thickness of the asbestos shielding on the space shuttle.

Identify Output Variables. Output variables represent what the modeler wants to
learn from the model. These are sometimes called uncontrollable or dependent
variables, and may include the amount of payload that can be taken into space,
the response time for an emergency response team or the number of rockets
to purchase.
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Identify Controls. 1dentifying inputs, outputs, controls, and components (mech-
anisms) of a system provide the elements necessary to build in IDEFO model.
Of those, controls are often the most difficult to understand. The IEEE Stan-
dard for IDEFO (IEEE Std 1320.1-1998) defines a control as “a condition
or set of conditions required for a function to produce correct output.” This
may include a wide variety of conditions, including regulations, instruction
manuals, or “trigger” events. Section 2.6 lists the family of IDEF models
and points out that IDEFO focuses on functions. IDEFO models must have at
least one control and at least one output, although typically a function will
also include at least one input, which is transformed into an output by the
function.

Interestingly, the same variable could be an input variable for one model and an
output variable for another. For example, suppose a model is created to predict the
probability of detecting an explosive device in a bag that is screened by Machine
A and Machine B. An input value could be the detection rate for Machine B at an
airport terminal. However, if the purpose of the model is to determine the detection
rate for Machine B that maximizes the probability of detecting the device, then the
detection rate for Machine B is an output variable.

After the modeler understands the system and has created a conceptual model,
the model can be built.

4.4.2 Construct the Model

One of the key decisions in constructing a model is choosing a type of model to
use. Different types of models and some of their implications will be discussed in
Section 4.5. For now, we will focus on some of the different factors that lead to
the choice of a model type.

A constructed model is an implementation of a conceptual model—mathematical,
physical, or codified.

Choose a Model Type. Sometimes assumptions about the system lead naturally
to a choice of model. If it is assumed that there is no randomness in the sys-
tem, then deterministic models are appropriate (Section 4.5). The availability
of data can also drive the choice of a model type. For example, lack of data
for a certain input variable may lead to another model type that does not
need that input. The type of data is also a factor. For example, quarterly data
may lead to a discrete-time model that moves in 3-month steps. In addition,
the goal of the model can be the primary factor in choosing a model type.
For example, optimization models are likely to be used if the purpose is to
find the best solution.

Represent Relationships. After the model type is chosen, the system relation-
ships relevant to the goal must be represented in the model. Each type of
model has specific ways of representing relationships. For example, a linear
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model y = mx + b is defined by the choice of m and b. A continuous-time
Markov chain is described by the definition of the state variables and the
transition rates.

Issues may arise during the M&S process which require rethinking the conceptual
model. For example, perhaps there is insufficient data to determine the value of m
in a linear model or perhaps the range of data is too narrow relative to the desired
range of system operation.

4.4.3 Exercise the Model

Once a model is constructed, the modeler must determine how good the model
is and how and when it is appropriate to use. This is referred to as exercising or
testing the model. There are several concepts related to this testing: verification,
validation, and accreditation.

Verification. Verification determines whether the constructed model matches the
conceptual model [9]. That is, was the conceptual model correctly imple-
mented? First, simple tests are done—sometimes referred to as sanity checks.
Are there special cases where the behavior or condition of the conceptual
model is known? For example, in the conceptual model if there is a limited
payload and no rocket launch, there should be no satisfied demand for resup-
plies needed at a manned lunar base. Does this happen in the constructed
model?

If the model passes the simple tests, more complicated ones are tried until
the model developer and accreditation agent are confident that the constructed
model performs as the conceptual model states it should. Input variables and
parameters may be varied over a range of values to determine the model’s
accuracy and robustness. If a conceptual model predicts that inventory will
rise as demand decreases, does this occur in the constructed model? Actual
data from the system or a similar system may be used as input to the model,
and the output can then be compared to the actual behavior of the system.

During this process, failure can be more enlightening than success. Param-
eters may need to be adjusted or extra terms or components added to the
model that were initially overlooked because of tacit assumptions that were
not intended. Sometimes the model does not represent the system well, and
a new type of model must be developed.

Validation. Validation determines whether the conceptual model (and con-
structed model if it is verified) appropriately represents the actual system
[9]. For example, a conceptual model may assume a linear relationship
between thrust and speed; that is, speed increases proportionately as thrust
increases. If the actual system includes both drag and thrust, then there
may be times when speed declines because drag from the payload and
atmospheric conditions are greater than the force generated by thrust. In this
case, the conceptual model is not valid.
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Validation is concerned with building the right model. Verification is con-
cerned with building the model right. Both concepts are important and both
need to be checked when testing a model. Testing is usually not separated
for verification or validation. Tests are conducted and failures are inves-
tigated to determine if the problem is with the conceptual or constructed
model. Previous steps in the process may need to be repeated to correct the
problems.

Validation is building the right model. Verification is building the model right.

Accreditation. Accreditation is an “official” seal of approval granted by a des-
ignated authority [9]. This authority is frequently the decision maker, but
may be an accreditation agency, such as ABET, Inc., which accredits aca-
demic engineering programs. This signifies the model has been verified and
validated for an intended purpose, application, or scenario. Accreditation rep-
resents the process of users accepting the model for use in a specific study.
This can be very informal, for example, if the same people who develop
the model will be using it. On the other hand, if the model is developed by
one organization and used by another, accreditation can be a lengthy and
involved process. Normally, models are accredited by a representative of the
using organization. All models and simulations used by the Department of
Defense must be verified, validated, and accredited [9].

It may be tempting to believe that a model is only judged by its usefulness.
However, the process used to create the model and the testing involved in its
development are both very important when judging a model. What characteristics
were considered for inclusion in the model? What assumptions were made while
developing the model? What value ranges or conditions were tested? The answers
to such questions build confidence in the model’s capabilities.

4.4.4 Revise the Model

As has already been discussed, test results may cause changes in the model. This
is sometimes called the model—test—model concept. The idea is to use knowledge
gained about the system or the model to continually revise and improve the con-
ceptual or constructed model. Revising the model is always an option and typically
happens quite frequently during model development.

Recall the story of the Wright brothers’ wind tunnel. Their experience flying
gliders and data from others helped them to know what they wanted to measure and
what they wanted to vary. Lift and drift were their output variables. The different
types of wing shape and aspect ratios were their input variables. The wind tunnel
gave them the means to do it. They spent over a month experimenting with the wind
tunnel. This corresponds to verification and validation. They wanted to be confident
that their model would yield useful results and they understood the conditions under
which it would. At some point they had a discussion and agreed they were ready to
collect data. This corresponds to accreditation. Once they were confident of how to
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use their model, they systematically explored the system by trying different wing
shapes and aspect ratios.

4.5 THE MODEL TOOLBOX: TYPES OF MODELS, THEIR
CHARACTERISTICS, AND THEIR USES

There are several types of models including physical, graphical, and mathematical.
Even though these are distinct types of models, they are often used together as will
be discussed below.

Physical. Physical models involve a physical representation of the system, such
as the wing designs the Wright brothers tested in their wind tunnel. These
models can be time-consuming and expensive to produce. However, they can
provide valuable data that can be studied to learn about the system. Sometimes
physical models are the only alternative because mathematical models may
not be practical. This was the case for many aerospace models until high-
speed computers allowed real-time solution of mathematical formulas for
fluid flow dynamics to replace, or reduce the number of, physical wind tunnel
tests.

Physical models need not always be miniature versions of the real system.
Sometimes a physical representation is used to take advantage of a physical
property. For example, soap film takes a shape that minimizes surface area.
Before the age of computers, some optimization problems were solved using
soap films and wire frames or glass plates with wooden pegs. Surprisingly,
this technique is currently a topic of discussion concerning a fundamental
research question related to computational complexity theory [10].

Sometimes physical models are based on analogies; something in the phys-
ical model represents a quantity of interest in the system. An interesting
example of this is the analog computer. An analog computer uses electri-
cal circuits to represent differential equations. Combinations of operational
amplifiers, resistors, and capacitors are used to construct circuits that perform
such mathematical operations as integration, differentiation, summation, and
inversion. The Norden bombsight used during World War II was a mechanical
analog computer that calculated the trajectory of the bomb and determined
when to release it.

Physical models have always had limited areas of application, and the use
of digital computers has further limited their use. However, they can still
effectively demonstrate system performance. Seeing a truss design made out
of toothpicks support a large weight can be pretty dramatic!

Graphical. Graphical or schematic models use diagrams to represent relation-
ships among system components. Examples are causal loop diagrams that
represent feedback relationships or Petri networks that represent a sequence
of conditions over time. Figure 4.6 shows a network model of a discrete
event simulation (see Section 4.6). These can be used to show alternatives.
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Figure 4.6 Rocket launch discrete event model.

Concept maps, such as those used at the start of each chapter in this book,
can represent how different system characteristics or components affect one
another. Sometimes these diagrams are the end product of the systems deci-
sion process and can provide an understanding of some aspect of the system
being studied. Sometimes they are graphical front-ends for computer pack-
ages that generate and execute code. The code may represent mathematical
equations based on the diagrams, which are numerically solved to provide
quantitative results. System dynamics software is an example of such a pack-
age. The relationships in the diagram are represented as differential equations
that are numerically solved by the computer. In other packages, such as the
discrete-event simulation languages Arena® and ProModel®, the graphical
model represents the logical structure of simulation model (see Section 4.6).
The computer uses this to generate code that is run to produce both numerical
and graphical output. For example, the computer may show people or jobs
moving through the system.

Mathematical. Mathematical models use quantitative relationships to represent

systems. It can be helpful to view mathematics as a language, such as Latin
or Spanish. Learning a new language involves vocabulary and syntax. Vocab-
ulary refers to the meaning of words. Syntaxis learning how to put words
together to convey ideas. Mathematics also has a vocabulary and syntax. Just
as words in a novel convey complex thoughts, emotions, and relationships,
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mathematics can convey the complex relationships and structure of a system.
Part of the challenge of constructing a mathematical model is translating from
English to math.

Mathematical models can provide exact or approximate solutions. Approx-
imations are models that provide a solution close to the actual solution.
Although not as accurate as exact solutions, approximations are usually much
easier to solve. As an example, suppose we wish to determine the area under
the function f (x) = x2 between points a and b. The exact solution is

b 1
/ x2dx = =x°
p 3

An alternative is to use an approximate model to represent the area with a
trapezoid. The approximate solution would be

b 33
_br-a 4.1y

a

2 b2 b3_ b2 2b 3
(L)(b—a)z a”+abrar (4.2)

2 2

If a =1 and b = 2, the exact solution is 7/3 and the approximate solution
is 5/2. The approximation error is 1/6. The advantage of the approximate
solution is that it did not require integration.

Mathematical models can be solved analytically or numerically. An analyt-
ical solution is a mathematical expression that yields a value after appropriate
parameter values are substituted. For an analytical solution, the hard work
is usually done before the parameter values are given. They are represented
as variables or constants in the final expression. The values are substituted
into the expression and some arithmetic is performed to obtain the solution.
A numerical solution requires a (sometimes lengthy) series of calculations
after the parameter values are given.

Again consider the area under the function x> between points a and b.
Both of the solutions, Equations (4.1) and (4.2) in the previous paragraph are
analytical solutions. Instead of using constants such as a and b, a numerical
(or computational) solution needs numbers from the beginning. If @ = 1 and
b = 2, a numerical solution approach may divide the interval between 1 and
2 into some number of steps—in this case, 10. For each step, the area under
the curve could be approximated as a rectangle (see Figure 4.7). Adding the
area of each rectangle gives the solution.

Numerical solutions often use approximations, which can introduce ap-
proximation error. They may also have errors due to computation, such as
rounding or truncation. For example, consider the expression 3(4/3). If it
is evaluated analytically, the result is 4. If it is evaluated numerically on a
computer, the result is 3.9999999, because the computer cannot represent the
exact value of 1/3.

Computers can be used to obtain either analytical or numerical solu-
tions. Mathematical analysis software such as Mathematica®, Matlab®, and
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Maple™ can solve many problems analytically. They also provide a variety
of numerical tools to solve problems.

4.5.1 Characteristics of Models

Models have a number of characteristics that can be used to determine when they
are appropriate to use. Some of these characteristics are shown in Figure 4.8 and are
discussed below. These characteristics will be presented as either/or possibilities—a
model is either static or dynamic—however, models often have elements of both.

Descriptive versus Prescriptive. Descriptive models describe or predict how a
system will behave. Their outputs give information about system behavior.
Prescriptive models prescribe a course of action—they dictate what the best
thing to do. A descriptive model of a payload rocket launch could represent

Model characteristics

Descriptive < » Prescriptive
Purpose

Static @————————9 Dynamic
Time

Deterministic <@——————— Stochastic
Randomness

Discrete ———————Continuous
Variables

Figure 4.8 Model characteristics.
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the pre-launch, launch, and post-launch activities at the launch pad to compare
the different possible locations for launch observers, security forces, emer-
gency response teams, and launch monitoring cameras. A prescriptive model
would be used to determine the proper mixture of rocket fuel and payload.
Consider a scheduling problem in which a number of different jobs must be
processed on a machine. There are different types of jobs, and a changeover
on the machine is needed when switching from one type of job to another.
A descriptive model would be used to determine the total production time for
a given sequence of jobs. A prescriptive model would be used to determine
the sequence with the shortest total production time.

How many boxes are needed to cushion the fall of a motorcycle and rider
jumping over an elephant? Several models are needed to solve this problem.
A descriptive model is needed to describe the speed and momentum of the
motorcycle and the rider over time. The values of these quantities at the
moment of impact (hopefully with the boxes not the elephant) would be an
input to a prescriptive model that would determine the number of boxes.

Static versus Dynamic. Static models do not change. Dynamic models repre-
sent change. This change usually occurs over time, but could also be over
distance (e.g., gravitational or magnetic attraction) or some other measure.
As an example of a problem that is static, suppose that a company has a
development budget and a large number of potential products, each of which
has a development cost and a potential profit. Which products should be
developed to maximize the potential profit? The parameters of this problem
do not change. They are static. Change in the model usually refers to the
primary output of the model and whether or not it changes. In this problem,
there is only one list of products; it does not change. If the potential profit
for each product changed over time to reflect changes in consumer needs or
tastes, the primary output of the model, the list of projects to invest in today,
is still static. However, if the company had annual budgets for each of the
next five years and wanted to know which projects to invest in each year,
the output becomes dynamic because the list changes each year.

As another example, suppose there is a rocket manufacturing plant.
A dynamic simulation model could represent arriving raw materials (metal
alloys, fiber-optic cable, wiring harnesses, computer processors, instrument
gages, etc.), storing these materials, modifying them into rocket components,
assembling the components into a rocket, and delivering the rockets to the
customer. The simulation could monitor inventory levels over time, the time
in system for the different materials, or the occurrence of shortages.

Dynamic models can represent transient or equilibrium behavior. Transient-
focused models concern behavior that depends on the initial conditions of the
system. They are usually appropriate over short time intervals. Equilibrium-
focused models represent system behavior after it is no longer affected by
initial conditions. They are usually appropriate over longer time intervals. The
amount of fuel left in the launch rocket after the initial launch phase depends
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a lot on the amount of fuel and payload in the rocket prior to ignition. This
is transient behavior. The amount of fuel in the space shuttle prior to reentry
does not depend on how heavy the initial payload was (except in extreme
cases) since another rocket subsystem launched the shuttle into space.

Deterministic versus Probabilistic. Deterministic models use quantities that are
known with certainty. Probabilistic (or stochastic) models have at least one
quantity with random values. Suppose the chairs of a chair lift arrive at the
top of a ski slope every 30 seconds. If every other chair has one skier and the
rest have two, how many skiers are at the top of the slope after 10 minutes?
All the quantity values are known with certainty, so a deterministic model is
appropriate here. If the arriving chair has one skier with probability 0.5 or
two skiers with probability 0.5, how many skiers are at the top of the slope
after 10 minutes? The number of skiers on a particular chair is not known
and the number of skiers after 10 minutes cannot be known with certainty.
A probabilistic model is appropriate here. A deterministic model of the
rocket production plant’s inventory would use fixed quantities for the times
between material deliveries, production service times, and pickup times. The
model would still be dynamic and inventories would change over time, but
there would be no variation and, eventually, a repeating pattern will appear.
A probabilistic model would introduce random variation into at least one of
the quantities, which would result in continually changing behavior over time.

Discrete versus Continuous. The variables in a problem can be discrete, con-
tinuous, or mixed. One way to tell is to put all the possible values for the
variable in a set. If the number of values is countable (i.e., a one-to-one
correspondence exists with the positive integers), the variable is discrete.
Discrete means separate, distinct, or unconnected. In this case, the values are
separate so we can distinguish and count them. Obvious examples are the
number of rocket fins in the rocket assembly plant inventory at noon each
day or the number of cars passing through an intersection on a given day.
Another example of a discrete problem we have already discussed is the set
of projects to fund. Different sets of projects are distinct from each other
and we can count how many different possibilities there are. The sequence
of jobs to process is another example.

Continuous variables represent quantities that take on values from an inter-
val, such as 0 < x < 10 or —501.6 < y. How many values are between 0 and
1? How do you separate them? Is 0.5 different than 0.50000001? An example
of a continuous quantity is the total production time for a sequence of jobs
or the average time it takes a rocket to enter near space once the launching
rockets have ignited. Mixed variables take on values from both countable
and uncountable sets.

4.5.2 The Model Toolbox

Several different tools can be used to fix one board onto another. A nail gun uses
compressed air to drive the nail and is ideal for applications requiring many nails.
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However, it may be too expensive or take too much time to set up to drive a single
nail. A claw hammer is relatively inexpensive, but may require some expertise
to use without bending the nail or damaging the wood when missing the nail. If
neither of these quality defects is a concern, a heavy wrench or even a rock could
be used to drive the nail. All of these tools are options for accomplishing the
objective. Each has its advantages and disadvantages, which must be considered
when choosing which one to use. The same is true of modeling tools.

This subsection surveys the modeler’s toolbox and presents some of the options
available when deciding which type of model to use. To aid in understanding
how these tools relate to each other, the toolbox is divided into 16 compartments
based on the characteristics previously presented (see Table 4.1). Organizing the
toolbox this way should help you determine the appropriate tool to use. Similar to
the Myers—Briggs Type Indicator, the “personality” of each compartment will be
represented by a four-letter code. The sequence represents Static (S) or Dynamic
(D), Deterministic (D) or Probabilistic (P), Descriptive (D) or Prescriptive (P),
Discrete (D) or Continuous (C).

Ideally, this section would provide a thorough presentation of the tools in each
compartment of the toolbox and how to use them. However, since entire courses
are dedicated to accomplishing this task for many of these tools, we will, instead,
give examples of the problems associated with each compartment, list some of
the appropriate tools and suggest helpful references. References that survey many
of the compartments include references 11—13. An online source for all things
related to operations research and management science is reference 14. Two good
references for using spreadsheets are references 11 and 15.

The majority of the following discussion concerns example problems containing
characteristics associated with each of the compartments. To further explain each
of the compartments, consider the following problem setting. A news vendor sells
newspapers on a street corner. The newspapers are purchased from the publisher
at $0.50 and sold for $0.75. This is called the news vendor problem. We will look
at different versions of the problem as we explore each of the compartments.

The first two compartments describe problem characteristics that should be
familiar to you. Arithmetic, algebra, and geometry are key tools used throughout the
course of secondary and college education. Spreadsheets have helpful built-in func-
tions that automate many of the associated mathematical tasks and are frequently
used for large models [11, 15].

TABLE 4.1 The Modeler’s Toolbox

Static Dynamic
Models Deterministic ~ Probabilistic ~ Deterministic ~ Probabilistic
Descriptive  Discrete 1-SDDD 5-SPDD 9-DDDD 13-DPDD
Continuous 2-SDDC 6-SPDC 10-DDDC 14-DPDC
Prescriptive  Discrete 3-SDPD 7-SPPD 11-DDPD 15-DPPD

Continuous 4-SDPC 8-SPPC 12-DDPC 16-DPPC
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Compartment 1. SDDD (Static, Deterministic, Descriptive, Discrete). For the
news vendor problem, what will the profit be if the news vendor purchases
50 newspapers and sells 35 of them? This problem is static; the context
is a specific point in time. The data are discrete since the purchases and
sales are in whole newspapers. The data are also deterministic because all
the quantities are known and fixed. Finally, the problem is descriptive. No
decision is needed.

Recall the company that has a development budget and a large number
of potential products, each of which has a development cost and a potential
profit. Given a subset of the products, compute the total development cost
and potential profit for the subset. A spreadsheet model could be used.

Compartment 2. SDDC (Static, Deterministic, Descriptive, Continuous). Some
simple examples include computing the number of gallons of water needed
to fill a pool that is 15 feet long, 10 feet wide, and 4 feet deep or computing
the monthly payment for a $1000 loan at 10% interest compounded annually
and amortized over 10 years. The formulas V = IR and F = ma are other
examples from this compartment. Suppose the time it takes until the next
newspaper sells is 1.5 times the time it took the last newspaper to sell. If it
takes 0.1 hour to sell the first newspaper, then what is the total time needed to
sell 10 papers? The quantity of interest is now continuous rather than discrete.

Compartment 3. SDPD (Static, Deterministic, Prescriptive, Discrete). As an
example of a problem associated with this compartment, let us consider the
company that has a development budget and a large number of potential
products, each of which has an estimated development cost and a potential
profit. Which products should be chosen to maximize the potential profit?
A prescriptive solution is needed to identify the best combination of products.
Prescriptive problems are usually complicated by constraints. Here, the devel-
opment budget limits or constrains the possible combinations of products.

Suppose the news vendor also has the option of selling the magazine Sys-
tems Engineering Today, which can be purchased for $0.75 and sold for
$1.50. Suppose up to 20 customers will purchase only a newspaper, 15 cus-
tomers will purchase both a newspaper and magazine, and five customers will
purchase only a magazine. If the news vendor has $15.00 to purchase sup-
plies, how many newspapers and magazines should she purchase to maximize
her profit? The problem is now prescriptive instead of descriptive.

A similar problem structure can be seen in a crew scheduling problem. An
airline wishes to schedule its pilots and flight attendants for the next month.
There are many conditions that the schedule must satisfy. There are union
requirements for the number of hours a crew member can be on duty per day
or away from their home station. Each crew member’s next flight must leave
from the destination of their last flight (or they need to be flown as a passenger
to their next starting point). The crew members submit work requests, and
their seniority must be considered when constructing the schedule. Costs
increase if crews stay overnight away from their home stations or fly too
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many hours in a day. Of course, it is more costly to have flights without an
available crew! The airline wants a schedule that is feasible (i.e., satisfies all
the conditions) and has the lowest cost (or at least lower than most of the
other schedules).

This is a complicated problem, why does it belong in this compartment?
First, it is discrete. A solution is a schedule assigning crew members to
flights. Each possible schedule could be numbered and counted. The num-
ber of solutions is countable and, therefore, discrete. The airline wants the
schedule with the lowest cost. Finding a better solution or the best solution
requires a prescriptive model. There is no randomness in the problem, so it
is deterministic. Finally, the problem is static; the solution does not change
over time. The schedule is only for one month.

Small problems in this compartment can be solved by enumerating all
the possible solutions, using a descriptive model to evaluate each one, then
choosing the best one. Large problems of this type require discrete opti-
mization tools. It is often difficult to find the best possible solutions for
very large problems, so heuristics are often used. These are algorithms that
find solutions that are good, but not necessarily the best. Some discrete opti-
mization topics include combinatorial optimization and integer programming.
References for tools in this area include references 12 and 13. Note that
many prescriptive tools include the term programming (e.g., integer program-
ming or linear programming). In this context, programming means planning.
A concert program (or play list depending on the type of concert) is a plan
for the music to be performed.

Compartment 4. SDPC (Static, Deterministic, Prescriptive, Continuous). Inter-
estingly, continuous problems are often easier to optimize than discrete ones.
Suppose a quantity of interest is described by the formulay = (x — 3)2. What
value of x gives the minimum value of y? Calculus can solve this problem
analytically. Numerical techniques include line-search algorithms such as the
bisection search or the golden mean search.

There are many different types of problems in this compartment. The func-
tion to be optimized may be linear or nonlinear. There may or may not be
constraints. If there are, they may be linear, nonlinear, or both. As a result,
many different tools have been developed to model and solve these types of
problems.

Linear programming is a tool that can very efficiently solve some problems
in this compartment. The function to be optimized and the constraints to be
satisfied must all be linear functions. The simplex method [16—18] is an
efficient algorithm to find optimal solutions for linear programs and is now
widely available in spreadsheet packages such as Microsoft® Excel.

As an example, consider the following product mix problem. A gravel
company has two types of aggregate mixes it sells. Each consists of a differ-
ent ratio of two component aggregates and has different profit margins. The
quantities of component aggregates are limited. If the company can sell all
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it produces, how much of each mix should be produced to maximize profit?
This is the continuous version of the news vendor problem with newspapers
and magazines. Instead of whole numbers of newspapers and magazines, the
quantities can be in any amount. The problem is still static and determin-
istic. It is also prescriptive since the best solution is needed—one that will
maximize profits.

A primary difficulty faced with most nonlinear problems is distinguish-
ing between local optimal solutions and global optimal solutions. Figure 4.9
shows a function of x that has several points where the first derivative is zero
and the second derivative is positive. These points are local optimal solutions
(for a minimization problem); they are better than the nearby points that sur-
round them. A global optimal solution is a local optimal solution with the
best value. There are a number of techniques to identify local optimal solu-
tions [19, 20]. Metaheuristic techniques [21] such as tabu search, simulated
annealing, genetic algorithms, and generalized hill climbing try to move past
the local optimal solutions to find the global optimal solutions.

These metaheuristic algorithms are flexible prescriptive tools and are
appropriate (with varying degrees of effectiveness) for any compartment
with a prescriptive element.

Compartments 5 through 8 are similar to Compartments 1 through 4,
respectively, except one or more of the input variables or parameter values
are now uncertain quantities. They are random variables with a probability
mass function (if they are discrete) or a probability density function (if they
are continuous). This randomness could be the result of measurement error
or the inability to know with certainty what will happen. One approximation
technique is to model and solve the problem as a deterministic one by fixing
each random variable at its expected value. This approach can be misleading
because the result is typically not the expected value of the solution.

Analytical techniques may be available for these compartments depending
on the type of distributions and relationships involved (e.g., sums of normal
random variables) [22, 23]. If the discrete random variables have only a few
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possible values, probability tree diagrams can be a useful tool [16]. Statis-
tical tools such as hypothesis testing or regression analysis can be helpful
[24, 25]. An easy-to-apply numerical technique is Monte Carlo simulation
[11]. Suppose the distribution functions of two random variables X and Y
are known and the distribution of Z = XY is needed. The functional relation-
ship is specified in a program or a spreadsheet. Random number generators
produce values for X and Y, which are substituted into the function. The
resulting value of Z is saved. The process is repeated, perhaps millions of
times. The resulting data represent the distribution of Z. Spreadsheet add-ins
for this technique include @Risk® and Crystal Ball®.

Compartment 5. SPDD (Static, Probabilistic, Descriptive, Discrete).

Compartment 6. SPDC (Static, Probabilistic, Descriptive, Continuous). The pre-
vious versions of the news vendor problem were deterministic and did not
consider the fact that the number of newspapers that can be sold on a par-
ticular day is not known when the vendor buys her newspapers. Demand is
uncertain and dependent on factors such as the weather, local traffic condi-
tions, and world events. The vendor could make more profitable decisions
about the number of papers to order if uncertainty were reduced. It may be
possible to use a probability distribution to quantify this uncertainty and deter-
mine probabilities for the number of newspapers wanted on a particular day.
If so, an example of a discrete descriptive problem is to compute the number
of newspapers the news vendor must buy so there is at least a 95% probability
that all will be sold that day. A continuous descriptive problem is to determine
the probability the news vendor has unsold newspapers at the end of the day
if she buys 25 newspapers. Another example is to find the average time it will
take to sell 10 papers if the time between sales is random with a given distri-
bution. If an airplane has 50 seats, an airline wants to know the probability
that more than 50 people show up for the flight if 55 tickets are sold.

Compartment 7. SPPD (Static, Probabilistic, Prescriptive, Discrete).

Compartment 8. SPPC (Static, Probabilistic, Prescriptive, Continuous). Prescrip-
tive problems seek the best answer among a number of alternatives. The
vendor wants to know how many papers to purchase to maximize expected
profit given a distribution for daily demand. Linear programs with random
coefficients are an example of a continuous problem in this compartment.
Decision analysis under risk or uncertainty [16] and stochastic programming
[26, 27] are probabilistic prescriptive tools for Compartments 7 and 8. Monte
Carlo techniques can also be used.

The remaining compartments are dynamic; the model parameters or outputs
change, typically over time.

Compartment 9. DDDD (Dynamic, Deterministic, Descriptive, Discrete).

Compartment 10. DDDC (Dynamic, Deterministic, Descriptive, Continuous).
Physics examples of continuous systems are falling bodies, spring systems,
and voltage across capacitors or current through inductors in electrical
circuits. Calculus and differential equations are often-used tools for these
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systems. Fourier and Laplace transforms can also be helpful. These systems
are deterministic. Engineers and scientists planning a space mission can
predict where the planets will be years in advance; there is no uncertainty.

In discrete-time systems, time passes in discrete increments (e.g., whole
hours or days). Discrete-time systems are common if digitized signals are
involved. For example, a digital cell phone samples the speaker’s voice 8000
times per second. Each sample results in an 8-bit codeword that is transmitted
through the telephone network. The voice information is converted from
analog (continuous information) to digital (discrete information). Since the
information is periodic (one codeword every 1/8000 seconds), the network is
synchronized with high-speed transmission channels interleaving codewords
from hundreds or thousands of conversations. The listener’s phone receives a
codeword 8000 times per second. The phone converts the codeword (discrete
information) into an analog (continuous information) signal that is (usually)
heard by the listener. Compact disc and DVD players also receive periodic
(i.e., one codeword every fixed time interval) digital data from the disc,
which is converted into an analog signal for playback. Coding systems often
attempt to predict the next codeword to reduce the number of bits needed to
carry information. This prediction is an example of a dynamic, deterministic,
descriptive discrete system.

Difference equations, discrete-time Fourier transforms, and z-transforms
are primary tools for discrete-time systems [28, 29]. Electrical engineers will
become intimately familiar with these in courses on digital signal processing,
digital communications systems, and digital control systems.

Compartment 11. DDPD (Dynamic, Deterministic, Prescriptive, Discrete).

Compartment 12. DDPC (Dynamic, Deterministic, Prescriptive, Continuous).

Continuous and discrete-time control systems are examples of these com-
partments [29, 30]. Consider a missile locked onto a target. The target may
move and winds may deflect the missile. A prescriptive solution that changes
over time is needed to guide the missile to its target. Another example is an
automobile cruise control. A target speed is set and the throttle is adjusted
to meet the target. Hills will affect the speed and the throttle must adjust to
keep the target speed. These types of systems can be modeled in continuous
time or, using sampling and digital electronics, in discrete time.

Compartment 13. DPDD (Dynamic, Probabilistic, Descriptive, Discrete).

Compartment 14. DPDC (Dynamic, Probabilistic, Descriptive, Continuous).

Stochastic or random processes [23], discrete-event simulation [31] and
time series analysis [32] are primary tools for systems with randomness
that changes over time. These dynamic probabilistic systems are all around
us: the number of people in line at the coffee shop throughout the day,
the gas mileage over different segments of a trip home, whether or not the
next person through the checkpoint is a smuggler. A company designing a
new factory may wish to determine where the bottlenecks for material flow
will be or predict the pick time for orders if the layout of a warehouse is
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changed. A continuous-time model represents the system at all points in
time. A discrete-time model may only represent the system at fixed points
in time (e.g., quarterly).

Compartment 15. DPPD (Dynamic, Probabilistic, Prescriptive, Discrete).

Compartment 16. DPPC (Dynamic, Probabilistic, Prescriptive, Continuous).
A call center wants to determine staffing levels so there is a 95% probability
an incoming call is answered by a human operator. Call volume changes
over time and the company wastes money if too many operators are on
duty, so the optimal number of operators changes over time.

The price of an airline ticket changes over time. The airline wants to maxi-
mize revenue while selling a perishable commodity; after the flight leaves, an
open seat has no value. Suppose an airline has 100 seats on a flight from New
York to Phoenix departing at 9:20 a.m. next February 5th. Consumer demand
for tickets that will occur 8 months prior to departure will be different than
the demand that will occur 1 month prior. Demand fluctuates over time, but
can be influenced by price. If the airline sets the price too low, all the seats are
sold months in advance. If the price is too high, the flight leaves with many
empty seats. Neither solution maximizes revenue. The airline needs a pricing
strategy that sets the best ticket price to maximize revenue conditioned on the
time remaining until the flight departs and the number of seats that have been
sold at different pricing levels. Finding the optimal price for each ticket over
time is an example of a dynamic, probabilistic, prescriptive problem. This is a
yield management problem and is common in the travel industry for compa-
nies such as airlines, hotels, rental car operators, and cruise lines. A model that
sets the ticket price every day would be a discrete-time model; one that sets
the price at the time a quote is requested would be a continuous-time model.

Tools for these compartments include probabilistic dynamic programming
[16] and Markov decision processes [23]. Metaheuristic optimization tech-
niques can also be used with stochastic descriptive models [21].

This section presented the “big picture” of modeling. It began with a discussion
of what models are and why they are used. Qualities were introduced as a way
to evaluate or compare models. A sample modeling process was provided that
included the different aspects of building a model. Finally, model characteristics
were used to classify different types of models.

It is important to remember that, just as “a map is not the territory it represents,”
a model is not the system it represents—‘“‘all models are wrong.” They have limi-
tations, drawbacks, and faults, and unpleasant consequences can result if they are
used haphazardly.

4.6 SIMULATION MODELING

The last section discussed how models can be relatively simple yet powerful tools
often used by systems engineers. In the next section we will discuss another set of
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tools used by systems engineers and which employ models: simulations. If models
are analogous to claw hammers used to pound in nails or screw drivers to install
screws, then simulations can be thought of as nail guns and drills which allow a
carpenter to drive in numerous nails and screws much more rapidly. As we will see,
each set of tools, models and simulations, has its appropriate place in the systems
engineer’s toolbox.

In its simplest form, a simulation is a model operated over time. In more mathe-
matical terms, it is the numerical execution of a model to see the potential effect of
the variables in question on the model’s output [31]. In other words, a simulation
is the execution of a model over time to produce varied outputs for use in analysis
of the system.

A simulation is a model operated over time.

We use simulations to see the potential effects of time or some other variable(s)
on the system a model is representing. Often, vast amounts of data representing
the states of a system need to be generated in order to determine the statistical
significance of change on the system. This data may be too difficult or costly to
collect on the actual system in abundance to calculate the most probable effects of
modifications to the system. A simulation of a viable model of a system can be
used to generate this data.

4.6.1 Analytical Solutions versus Simulation; When It Is Appropriate
to Use Simulation

It is appropriate to use simulation when a system is sufficiently complex that the
possibility of a simple analytical solution is unlikely [31]. Many times we model
systems which on the surface appear simple. However, once we begin to alter
variable values, the mathematical representation or model becomes too complex to
solve using a closed form analytical solution.

In general, choosing to use a simulation is based on six factors [33]:

¢ An operational decision based on a logical or quantitative model is needed.

e The system being analyzed is well-defined and repetitive.

o System/model activities, variables, and events are interdependent and change
over time or condition.

o Cost/impact of the decision is greater than the cost of developing the model,
executing the simulation, and assessing the data.

o Experimenting with the actual system costs more than developing the model,
executing the simulation, and assessing the data.

e System events occur infrequently, not allowing for the system to achieve
a steady state of performance where multiple adjustments to the system
events can be made and assessed in an attempt to create a more efficient
system.
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The first three factors address system characteristics and structures. The next two
address resource concerns. The last factor deals with the frequency of system usage.
The first five factors can be used to help determine if a simulation is appropriate
for assessing the alternatives generated in the solution design phase of the SDP.
The last factor is a possible mitigating factor used to balance the risk of making
or not making changes to a system which is used infrequently.

4.6.2 Simulation Tools

Analytical Solutions versus Simulation Simulation tools are categorized in dif-
ferent ways depending on their intended use. In this section, we will present both
industry and military simulations to provide the broader scope of preexisting sim-
ulation tools, which currently exist and need not be developed. They do require
the development of the scenarios but the basic simulation engine exists alleviating
the need to program a theoretical model. Also, their user interfaces allow the rapid
development of a simulation scenario. From industry, we will limit our discus-
sion to ProModel®. With regard to military simulations, we will describe various
military categories of simulations and provide a general overview of some of the
existing simulations used in the analytical community.

Complex Queuing Simulations (ProModel®) ProModel® is a discrete-event
simulation tool used by industry to model manufacturing, transportation, logistics,
and service related systems. It allows systems to be represented as a series of
queues and servers in which an entity, typically a customer product being pro-
duced/processed, is either being serviced or awaiting service. The simulation tool
allows one to test various alternative layout designs and service processes prior
to implementing the layout or process in the system. This tool has the fidelity
to model “resource utilization, production capacity, productivity, inventory levels,
bottlenecks, throughput times, and other performance measures” [33].

ProModel® is used by many industries to simulate their manufacturing and/or
transportation system(s). ProModel® can also be used to simulate military systems.
Figure 4.10 is an example of a student-lead systems engineering project to simulate
alternative solutions for a proposed missile defense system. Similar simulation tools
currently available on the market are Arena® and AutoMod.

Military Simulations Military simulations are normally used by the U.S. Depart-
ment of Defense to simulate a myriad of aspects related to military operations and
systems. These include, but are not limited to, issues related to: environmental fac-
tors, vehicle performance, communications capabilities, weapons effects, human
behavior, and so on. There are fundamentally four categories of military simula-
tion: simulation typologies, real-time versus non-real-time simulations, hierarchy of
models and simulations, and military simulations versus games. These categories
are illustrated in Figure 4.11.

Simulation Typologies. There are four simulation typologies: live, virtual, con-
structive, and augmented. The right side of Figure 4.11 is a visual depiction
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Figure 4.10 ProModel® anti-ballistic missile simulation example [34].
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Figure 4.11 Simulation types [35].

of the relationship between the first three simulation typologies and games.
Live simulations involve real people using real systems in a simulated envi-
ronment. An example of a live simulation is an emergency response team
conducting a full dress rehearsal on the launch pad prior to the launch of
a manned rocket. Virtual simulations include the additional complexity of
real users interacting with the simulated equipment. An astronaut conducting
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Figure 4.12 Simulation-reality relationships.

flight training in a simulator is an example of a virtual simulation. Each
typology can be considered in terms of people and environment. Each may
be either real or synthetic, as shown in Figure 4.12. A common augmented
reality technique is to display computer-generated people in optical systems
through which real people look. This allows the use of real weapons against
synthetic criminals or combatants in a training environment without the risk
of bodily harm or death.

The third typology is constructive simulation. In this typology, simulated
entities operate in a simulated environment. Constructive simulations are
normally used to simulate activities in rapid succession in order to pro-
vide insight into emerging system behavior or possible outcomes based on
changes in equipment or processes. Agent-based simulations (see Section
4.6.2) of human behavior or multifaceted relationships between entities and
which replicate hundreds, if not thousands, of entities interacting in a complex
virtual environment are examples of constructive simulations. For example,
NASA could use a constructive simulation to assess the effect(s) of aster-
oid activity on a space station. It could use other constructive simulations to
predict the oxygen exchange rate in a space station based on the predicted
growth of vegetation in the station, air filtering capacity of the ventilation
system, and the number of personnel in the station.

Real-Time versus Non-Real-Time Simulations. Simulations can be categorized
based on their ability to provide “real-time” performance or “non-real-time”
performance. Real-time simulations are usually associated with virtual sim-
ulations that provide human participants with timely information, reactions,
and effects. Non-real-time simulations are usually associated with construc-
tive simulations that run uninterrupted for their duration. During solution
design and decision-making phases of the SDP, systems engineers frequently
use non-real-time simulations to generate data for use in analysis of alterna-
tives. The use of non-real-time simulations allows users to conduct studies
using the highest fidelity algorithms available with little concern for how
long it takes to run the simulation because the system activities modeled in



126

SYSTEMS MODELING AND ANALYSIS

this type of simulation are not constrained to actual clock time. Non-real-time
simulations can work faster or slower than actual clock time. A real-time sim-
ulation could be used to conduct flight training or to test the reaction times
of emergency response teams. A non-real-time simulation could be used to
identify the disturbance of the air flow (lift and drag) as it streams over the
fins of a new rocket design.

Hierarchy of Models and Simulations. Military simulations are also categorized

according to the simulation’s level of fidelity (see left side of Figure 4.11).
The greater the fidelity, normally the greater the detail of the item(s) you are
attempting to simulate. For example, a low-level fidelity model of a rocket
system might represent the rocket as a solid object where a higher fidelity
model might include the fins, fuel system, guidance system, and load capac-
ity of the rocket. Fidelity can be seen as a continued scale but is routinely
organized into smaller groupings to make it easier to group simulations into
consistent hierarchy categories. Some organizations place simulations into a
hierarchy consisting of five levels: campaign, theater, mission, engagement,
and engineering [36]. The Army Modeling and Simulation Office’s publi-
cation, “Planning Guidelines for Simulation and Modeling for Acquisition
Requirements and Training,” describes a four-level hierarchy where the hier-
archy combines theater and campaign into one level [37]. Hughes refers to
these four levels as campaign or theater, battle or multi-unit engagement,
single engagement, and phenomenological [38].

The front triangle of Figure 4.11 is an illustration of a three-tier hier-
archy: aggregate, entity, and engineering. The aggregate level consists of
simulations or models that combine entities into groups based on function-
ality or association. Examples of these are boxes of gages or reels of wire
in a rocket manufacturing plant warehouse or the payload capacities of the
rockets, respectively. The aggregation of entities helps to reduce the com-
putational requirements for modeling and simulating large-scale scenarios.
Aggregate simulations routinely have less fidelity than is normally found at
the entity and engineering level simulations. Aggregate simulations would
represent a group of vehicles, such as a convoy, as it moves packaged goods
from one side of a country to another.

Entity-level simulations reside between aggregate and engineering level
simulations. Entity-level simulations represent individual platforms and the
effects created by or acting on them. An entity is a platform, system, product,
or individual that is creating effects or receives the effects of the system, such
as the entity in ProModel®. As such, a “distinguishable person, place, unit,
thing, event, or concept” simulation must maintain or track information about
each entity in the model [39]. An entity-level simulation of an asteroid field
would replicate each individual asteroid, its relevant behaviors, and positional
data as a rocket passes through the asteroid field.

Engineering-level simulations normally deal with the components of one
or two individual systems or subsystems. These simulations may go into more



SIMULATION MODELING 127

detail (higher fidelity) to model the physical aspects of a system. Modeling
the subcomponents, components, and behaviors of a rocket’s guidance system
is an example of an engineering-level simulation. Organizations use this form
of modeling and simulation prior to building a new piece of equipment or
integrating new technologies into existing facilities or systems before testing
the changes using live simulations.

Systems engineers choose the appropriate level of simulation fidelity based
on what aspect(s) of a system they are assessing.

Simulations versus Games. The military and industry produce numerous sim-
ulations to provide training for their people or to conduct analysis of oper-
ations/systems. The needs of the research and training communities place
different constraints on the validity of the model or simulation. However,
in the gaming industry the overriding concern is to manufacture a product
people are interested in purchasing and playing. A notable exception is the
game America’s Army™, which was originally built as a recruiting tool for
the U.S. Army.

Games are “activit(ies) engaged in for diversion or amusement” [40]. As
such, the focus of the gaming industry has been to produce simulations which
deliver entertainment value to its customers; however, developing or adapting
games for use in education or training is becoming more popular. The belief
that individuals will learn more if they are actively engaged in the learning
activity is one of the fundamental reasons for using games. Most computer-
ized games are simulations primarily designed for entertainment but may be
used for learning, individual or team training, or analytical studies seeking
to gain insight into human behavior.

One can categorize games as aggregate or entity-level simulations. Aggre-
gate games are strategic in nature (e.g., Risk®, Axis & Allies, Railroad
Tycoon™, Kohan II: Kings of War, etc.). In contrast, first shooter and role-
playing games can be considered entity-level games (e.g., America’s Army®,
Air-Sea Battle, Alex Kidd in the Enchanted Castle, etc.). No matter which
category of simulation a game resides, game developers’ primary concern
is entertainment not realism or the accurate portrayal of human performance
during the design and coding of a game. This lack of realism can place games
at the lower end of the fidelity spectrum (see Figure 4.11).

Simulation Behaviors A simulation executes based on the prescribed set of
behaviors outlined for each entity. These behaviors can be complex or very
simple. They can be reactive or proactive in nature. Simulation behaviors are most
often limited based on the model architecture used to represent these behaviors.
Generally speaking, the five most popular cognitive model representations
in use in the late twentieth and early twenty-first centuries are agent-based,
Bayesian-network, multiagent system, neural-networks, and rule-based. We will
only address rule-based, agent-based, and multiagent representations in this
section.
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Rule-Based Simulations. A rule-based (knowledge-based) simulation replicates
human behavior using a catalog of actions with causal if/then association to
select and execute an appropriate action [41, 42]. This causal representation
often requires an extensive effort to identify and code all relative possible
conditions an entity may encounter along with viable entity actions for those
conditions. Subject matter experts are routinely used to establish and validate
these data prior to its use. Rule-based simulations are best used to model
systems, which are physics-based, or for replicating systems with a relatively
limited (countable) number of states and actions.

Agent-Based Simulations. Agent-based representations model intelligence
through codified objects that perceive characteristics of the environment
and act on those perceptions [41]. There are several types of agent-based
cognitive architectures. Two of these are reactive and rational agents.
A reactive agent bases its actions solely on the last set of sensory inputs.
Often the approach uses a simple condition action rule (e.g., if this is my
perceived state of world, then I choose this action). A rational agent uses
sensors to perceive its environment and performs actions on the environment
using effectors. Rational agents maintain a state of situational awareness
based on their past knowledge of the world and current sensory inputs [41].

Multiagent System Simulations. The multiagent system (MAS) is a relatively
new representation for modeling and simulating behaviors based on the com-
plex adaptive system (CAS) theory. Developed in the late 1970s, MAS is
a system with autonomous or semiautonomous software agents that produce
adaptive and emergent behaviors. The model uses a bottom-up approach
where software agents have independent micro decisions that generate group
and system-level macro behaviors. A MAS can use any form of agent-based
software technology (reactive, rational, goal-based, utility-based, etc.) that
has agents characterized as possessing intentions that influence their actions.
Multiagent systems are used in large domains where nonlinearity is present
[43]. The MAS, limited only by the physics constraints of the simulation
boundaries, uses an indirect approach to search the large domain for viable
results. Another feature of MAS is its ability to allow agents to evolve to
create new agents which, in general, are better suited to survive or prosper
in the simulated environment [44].

Agent-based and MAS simulations are often used to explore a wide
spectrum of possible system effects based on an extensive range of
variables inputs. This allows systems engineers to assess the likelihood of
possible system-level behavior in the context of various system constraints.
Agent-based tools often lack the higher fidelity levels found in most
physics-based simulations. However, these lower fidelity agent-based models
allow for more varied behavior interactions. This makes them highly useful
for simulating system alternatives in which complex, nonlinear interactions
can occur between entities that are difficult, if not impossible, to specify
in the closed-form expressions required of physics-based models and
simulations.
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4.7 DETERMINING REQUIRED SAMPLE SIZE

A convenience of deterministic models is that given a known set of inputs, the
same output is ensured. For example, using E = mc? with a given mass, if the
speed of light was unknown or uncertain and consequently represented by a ran-
dom variable between 299 and 300 million meters per second(mmps), instead of a
constant 299,792,458 mmps, then a single calculation would not necessarily predict
the true amount of available energy. Instead, some number of calculations, each
with a different value for the random variable, would be required to gain a certain
level of confidence that the true value had been captured. These calculations, inter-
changeably called replications, trials, or runs, may significantly add to the cost
of an experiment, so the modeler needs a mechanism to understand the trade-offs
between replication cost and certainty. Deterministic models of complex systems
may also benefit from testing only a sample of the possible combinations instead
of the entire population.

Two methods are usually used to determine a reasonable number of replications,
the required sample size, on which to base an estimate. The first, power analysis,
is an approach that determines how much “power” a test has to detect a particular
effect. It is often referred to as the power of the test. This approach is not explored
in this chapter.

The second method is based on the logic of a statistical confidence interval
(CI). In this case, the goal is to have a certain degree of confidence that the
true population mean has been captured by determining the sample mean, given a
certain number of observations and an acceptable probability of error. The formula
for determining a confidence interval is shown in Equation (4.3) as

S2
CIn = )En + tn—l,l—ot/2 = (43)
n

This says that we can believe, with only an « probability of error, that the true
mean is the same as the sample mean, x,, give or take some margin of error. The
margin of error—everything to the right of the 4+ symbol—is made up of the
variance of the sample, sf, a desired level of confidence, 1 — «, and the ¢ statistic
for n — 1 degrees of freedom where n is the sample size.

For example, a health inspector may take 10 samples of drinking water to
measure the amount of a contaminant and records the following levels, in parts per
million (ppm):

29, 34, 20, 26, 20, 35, 23, 30,27, 34.

The mean, x,, is found to be 27.8; the variance, sf, is 31.51; n is 10; and « is
0.10 for a 90% confidence interval. Inserting these numbers into Equation (4.3),
we can expect the true mean value of contaminant in the drinking water to be
27.8 £3.254, or an interval of between 24.546 and 31.054 ppm.

Since everything to the right of the £ symbol represents margin of error, the

number of samples required, n, can be calculated if the modeler is willing to specify
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that error up-front. This is done routinely, for example, when someone declares
some value, “give or take a couple.” This is the same approach taken in power
analysis when the modeler selects a level of effect to be detected. The modeler
is saying, “I want to know how many samples/trials/replications/runs are required
to detect a certain margin or error.” These calculations can be done easily in a
spreadsheet, although the modeler must rely on experience and judgment to avoid
certain pitfalls. Specifically:

e Select a meaningful measure to use for sample size estimation.

e Generate a reasonable number of pilot runs to establish a solid mean and
variance.

o Beware of the assumption that the pilot variance represents the true variance.

o Always round up the estimated n to the next higher number. Err on the side
of caution.

e Generate an estimated n from the pilot runs, then incrementally increase the
actual runs, rechecking the estimate for n, until the estimated n equals the
actual n and your professional judgment is comfortable with the results and
they are defensible to a decision maker.

e The larger the n, the greater the likelihood that the sample mean represents
the true mean. Find the balance between replication cost and result accuracy.

Consider a golf club manufacturer interested in the performance of a new club.
A swing machine hits 10 balls that fly the following distances, in yards:

220,210, 189,201, 197, 200, 205, 198, 196, 200

Engineers want to use this series of pilot replications to determine how many balls
need to be hit to find the mean distance, plus or minus two yards. By saying that,
they acknowledge that they are willing to have a margin or error of two yards.
Since it has been shown that the margin of error is represented in Equation (4.4),
the engineers can set the margin of error equal to two and solve for n, as in
Equations (4.5) through (4.9):

2
Margin of error = t,_1 1—«/2 % “4.4)
n
72.27
2=1.833 4.5)
n
(1.833) (8.5)
2=—— 4.6
= NG (“.6)
1.833) (8.5
o = LD ES) (4.7)

2
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15.58\\2
=== (4.8)
2
— n = 60.68 4.9)

Hitting 61 more golf balls is not likely to be a problem, unless they replace the
swing machine with a professional golfer like Tiger Woods, whose per-swing fee
may be very costly to the company. In that case, they may have Tiger hit another
10 balls and recalculate the required n. They can continue to incrementally move
toward the 61-ball goal until the revised n equals the actual n. With each increment,
the recorded variance approaches the true variance for the club and is therefore a
better representation of reality.

Although this approach provides only an estimate, it also provides the modeler
with an easy and defensible tool for determining how many replications are required
to achieve a desired result.

4.8 SUMMARY

Modeling a system’s essential components, attributes, and relationships, and under-
standing how they change over time, provides systems engineers with critical
insights into all stages of the system’s life cycle. While Chapter 2 appropriately
frames the system thinking perspective on how systems can be thought of and
represented, this chapter has introduced tools that reveal the inner workings of a
system. Chapter 4 highlights the fundamentals of system measures, models, simu-
lations, and required sample size to an understanding of the life cycle. It starts with
three key reasons for understanding the system life cycle, all of which are sup-
ported directly with the tools and techniques from this chapter. The three motivating
reasons are as follows:

1. We can organize system development activities in a logical fashion that rec-
ognizes some activities must be accomplished prior to others.

2. We can identify the specific activities needed to be accomplished in each
stage to successfully move to the next stage.

3. We can effectively consider the impact that early decisions have on later
stages of the systems life cycle, especially with regard to cost and risk.

Knowing which tools to use at given stages of the system life cycle is part of the
art of systems engineering illustrated throughout this book. There is rarely a single
right answer, though there are always many wrong ones. The system modeler must
always keep in mind that as abstract representations of objects or processes, models
at best provide only insights into understanding a system and at worst lead decision
makers astray. The opening quote of this chapter, “All models are wrong, some
are useful,” must never be far from the systems engineer’s mind.
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4.9 EXERCISES

4.1.

4.2.

4.3.

44.

4.5.
4.6.

4.7.
4.8.
4.9.

4.10.

Use model qualities to compare and contrast the following models used at
a fast food restaurant to order burger supplies for the next week:

(a) Fit a distribution to weekly data from the past year, then order an amount
that would satisfy demand for 95% of the weeks.
(b) Order supplies based on how many burgers were sold last week.

Use model qualities to compare and contrast the following models used to
predict gas mileage for an automobile:

(a) Randomly choose a number of different destinations within 100 miles of
your present location. Gather experimental data by driving from your
location to each destination and back. Record the average speed and
average mileage. Fit a line to the data.

(b) Develop a formula to predict gas mileage by using formulas for kinetic
energy and chemical-mechanical conversion with assumptions about
wheel bearing friction and engine torque.

Describe an example of a robust and a nonrobust system or model. Justify
your labels.

Describe an example of a high-fidelity and a low-fidelity system or model.
Justify your labels.

Describe an example of a system or model that is dynamic and deterministic.
Describe an example of a system or model that is deterministic and proba-
bilistic.

Describe an example of a system or model that is static and predictive.
Describe an example of a system or model that is descriptive and dynamic.

A security checkpoint screens passengers entering the passenger terminal of
an airport. List the probabilistic elements in the system. Describe how you
could make these elements deterministic.

For each of the following problems, categorize the following system or
model using each of the four characteristics (i.e., the modeler’s toolbox).
(a) A rubber duck floating in a bathtub.

(b) A NASCAR pit stop.

(¢) The latest version of the computer game Halo.

d) E = mc?.

(e) The Illinois Lottery Mega Millions game.

(f) The Federal Emergency Management Agency (FEMA) wishes to
develop a model to predict the resiliency of a metropolitan area; how
quickly an area can return to normal following a natural or man-made
disaster.

(g) A state department of transportation wants to determine how long the
left-turn lane should be at a busy intersection.
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4.11.
4.12.
4.13.

4.14.

4.15.
4.16.
4.17.

4.18.
4.19.

4.20.

4.21.

4.22.

4.23.

(h) An artillery officer needs to determine the angle of launch for a given
type of artillery round.

(i) The U.S. Air Force must determine which planes to fly which routes
to which destinations. Each type of plane has its own range, speed,
load size, and weight capabilities. The location of supply bases and the
locations of receiving bases and their materiel requirements are given.

(j) The FEMA is pre-positioning disaster relief supplies in regional areas.
They need to determine where these supplies should be located so they
can be quickly deployed in an emergency. The likelihood of different
types of disasters (e.g., floods, hurricanes, earthquakes, tornadoes) and
their severity must be considered. The budget is limited and FEMA
wants to maximize the impact they have following a disaster.

(k) An investment company has $1 million to invest in five different asset
classes (e.g., short-term treasury notes, stocks, bonds, etc.). The com-
pany must consider the return and risk of each asset class. Return is
usually measured as the expected value of the return over some time
horizon (e.g., a year). Risk is usually measured as the standard deviation
of return over the same time horizon. The company wants to maximize
its return while limiting risk to a set level.

What is the difference between a model and a simulation?
Why would a systems engineer use a model?

List and describe the four qualities you feel are the most important for a
model to be useful. Why did you pick these four?

List and describe the three types of models. Give examples of each (different
than those found in this chapter).

What are the four major steps in the modeling process?

List the three means of exercising a model and explain how they differ.
What is the difference between a deterministic and a probabilistic model?
Give an example of each using a fast-food restaurant as your system.
When and why is it appropriate for a systems engineer to use a simulation?
List and describe the three simulation typologies. Give an example of each
using a fast-food restaurant as your system.

Which of the three simulation hierarchies would be used to describe a model
of traffic flow of individual vehicles down an interstate highway? Why?
What is the difference between a game and a simulation? Can a game be a
simulation? Why?

Construct a seven-paragraph measure of effectiveness for an unmanned
aerial vehicle (UAV) designed for U.S. border surveillance.

Pilot runs of a simulated emergency response system results in response
times of 25, 42, 18, 36, 28, 40, 20, and 34 min. Calculate the required
sample size necessary to be 90% confident that the sample mean represents
the true mean, given or take 3 min.
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