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Nothing is more difficult, and therefore more precious, than to be able to decide.
—Napoleon Bonaparte

12.1 INTRODUCTION

To this point, we have learned how to work with our decision maker and our
stakeholders to define our problem. We then developed candidate solutions to that
problem. We now turn to the process of determining a recommendation and obtain-
ing a decision. It is important to remember that when supporting a systems decision,
which requires the level of detail of the process we describe in this book, systems
engineers do not make the decision but rather they provide the necessary informa-
tion to enable a logical, defensible decision by the decision maker. We will discuss
how we obtain a decision later in this chapter.

In this chapter, we will first prepare to start the decision-making phase. Within
this phase, we have three tasks that can be seen in the chapter’s concept map shown
in Figure 12.1. From the problem definition phase we have the problem statement,
requirements, and value model. From the solution design phase, we have the can-
didate solutions and the life cycle cost model. We also may have some models and
simulations that can be used in the decision making phase. The four tasks of the
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Figure 12.1 Concept map for Chapter 12.

decision-making phase are: score and cost the candidate solutions, conduct sensi-
tivity and risk analyses, use value-focused thinking to improve solutions, and apply
tradeoff analysis to compare value versus cost associated with candidate solutions.
This chapter draws on material introduced by Parnell [1]. After performing these
tasks, the systems engineer will present the recommended solution to the deci-
sion maker and obtain a decision. This will prepare the systems engineer for the
implementation phase described in the next chapter.

Before the systems engineer begins scoring the candidate solutions, it is critical
to review where we have been and ensure the process is still aligned with the
problem.

12.2 PREPARING TO SCORE CANDIDATE SOLUTIONS

Like any task, before we begin the work, we have to ensure that we are prepared
for success. In our case, we need to revisit some steps from previous phases of the
process to ensure that we are still correctly aligned.

Before we begin we have to review data from previous phases of the SDP to
ensure the process is still aligned with the problem.

12.2.1 Revised Problem Statement

In the problem definition phase of the process, we developed a revised problem
statement. Before we begin the decision-making phase of this process, we need to
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revisit the revised problem statement. Does the statement still capture the stake-
holders’ needs, wants, and desires? Does it still address the “real” problem? Is it
still relevant? If the answer to any of these is no, then we need to do more work
on properly structuring the problem statement. If we can still answer “yes” to each
of these, we can continue.

12.2.2 Value Model

Also in the problem definition phase of this process, we developed the requirements
and the value model. The requirements were used to narrow the alternatives to the
potential solution candidates. The value model is very significant in the decision-
making phase of the process. Though we will review the value measures and
weights later in this chapter, we should pause now to review the entire value
model. Is it still relevant? Does it capture all of the aspects of the problem, the
functions, the requirements, and the values of the key stakeholders? If the answer
to any of these is “no,” we need to do some more work on the value model. If we
can still answer “yes” to each of these, we can continue.

12.2.3 Candidate Solutions

We should also have our candidate solutions that form our solution set at this point
in our process. The candidate solutions should have sufficient detail to allow us to
score them on each value measure and assess their cost.

12.2.4 Life Cycle Cost Model

Using the principles and techniques in Chapter 5, we should have developed a life
cycle cost model in the solution design phase to ensure that our candidate solutions
were affordable and that they achieve any cost goals or requirements. We will use
and possibly refine this model in this chapter to perform value versus cost tradeoffs.

12.2.5 Modeling and Simulation Results

When we did the solution design phase, our analysis determined the candidate
solutions, and we may have accomplished some initial modeling and simulation.
We should not discard these models and simulations. Some of the models and
simulations we developed previously can be used in this phase to analyze candidate
solutions and help improve the solutions.

12.2.6 Confirm Value Measure Ranges and Weights

Finally, this is a good time to reconfirm our ranges on the value measures and
analyze their impact on the weights using the swing weight matrix for determining
weights (see Chapter 10). We should have some more information from the mod-
eling and simulation conducted to ensure the feasibility of our solutions. Do these
results indicate that the ranges of our value measures may be different than we first
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assumed? If so, then we should make the adjustments now before we proceed to
further evaluation.

So as we move forward, we have the revised problem statement, the require-
ments, the revised value model, the candidate solutions, a life cycle cost model,
and possibly some models and simulations with associated outputs. In the steps
below, we will begin to put them together to help form a recommendation for the
decision maker.

12.3 FIVE SCORING METHODS

There are many methods for scoring the solutions against each value measure.
Most of these fall into five categories: operations, testing, modeling, simulation,
and expert opinion. We will discuss each of these, including their strengths and
weaknesses.

The five methods to score candidate solutions are operations, testing, modeling,
simulation, and expert opinion.

12.3.1 Operations

The best data are usually obtained by using the system in the real operational
environment. Unfortunately, operational data are usually only available for the
baseline solution and candidate solutions that have been used for similar problems.
It will usually be cost and schedule prohibitive to obtain operational data on
all candidate solutions. For candidate solutions that require development, other
scoring data will have to be used.

12.3.2 Testing

This is also known as development and operational testing.1 This is essentially
conducting testing using a prototype, a developmental, or a production system
solution. Development and operational testing are key tasks in the system life
cycle. We should use all available data to score our candidate solutions. Typically
the development testing has less operational realism than operational testing.

In terms of accuracy and replicability, this is probably the best method to score
solutions. It directly measures solutions against the value measures and reduces the
number of assumptions required by the other methods.

The drawback of this method obviously is the costs associated with the scoring.
Building prototypes, developmental, or production systems can be very costly and
time consuming. That said, testing certainly has its important role in the design and
evaluation process and is required prior to fielding any system. The other means
of scoring solutions are less costly and are used in early system life cycle stages
when test data are not available.

1Development testing is done by developers and operational testing is done by the users. Operational
testing usually has more realistic environments. See Chapter 7 for discussion of the role of systems
engineers and test engineers.
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12.3.3 Modeling

Modeling usually refers to the development of mathematical models vice physical
models (see Chapter 4). Mathematical models can prove to be very beneficial in
the scoring of solutions. Because they are based on sound mathematical principles,
they are accurate and can be easily replicated. Queuing models are important when
determining service times for facilities layouts and other similar problems types.
Often such problems lend themselves to a closed form solution using this type of
model. If this type of problem becomes more complex, and especially if there is
a stochastic nature of the problem, analysts use simulation to help determine the
value measure scores. We turn to simulation now.

12.3.4 Simulation

Simulation is becoming more widely used as computing power increases and sim-
ulation packages make the building of these simulation models easier and quicker.
Simulation is not limited to computer simulation, however. Simulation simply
means using a representation of the solutions to determine its performance char-
acteristics. Using this definition, simulation includes computer simulation and also
physical representations of the candidate solutions (see Chapter 4).

Simulation is a very powerful tool for any systems engineer because it can be
used to evaluate nearly any candidate solution. For example, a computer simulation
could be built to assess the throughput of an assembly line layout. Also, a vehicle
model could be manufactured similar to a candidate solution and placed in a wind
tunnel or used in a physics-based virtual simulation to determine value measure
scores required for the analysis.

Simulation is very useful because of its relative low cost when compared to
developmental or operational testing. However, there are some significant limita-
tions. One of the most significant is that the representation of a candidate solution
may be biased by the analyst building the simulation. In other words, what is put
into a simulation greatly affects what we get out of a simulation.

12.3.5 Expert Opinion

This is often considered the simplest means of obtaining the value measure scores
for the candidate solutions. It is also considered the most questionable because it
lends itself to more subjective analysis than the potentially more objective evalu-
ation means described above. Certainly bias can creep into an analysis by relying
too heavily on expert opinion for the value measure scores.

However, do not quickly dismiss this approach. It can be very valuable, depend-
ing on the time you have for the analysis and the level of fidelity required for the
decision. For example, if the decision is required very quickly and all you have
available is an expert on the subject, then this is a very sound approach to deter-
mining the value measure score. It is much quicker than building a model or a sim-
ulation and especially a prototype. It does add to the burden of sensitivity analysis,
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which we will discuss later in this chapter. Furthermore, experts often know oper-
ational data, development test results, and other related modeling and simulation
results and use this knowledge in their assessment of the candidate solution scores.

12.3.6 Revisit Value Measures and Weights

A favorite saying of the second author is that “no value model ever survives first
contact with the candidate solution scores!” After we have obtained the scores, we
again return to the value measures to ensure that we can measure each of these and
that the value model is weighted appropriately. Our revisiting the value measures
and swing weights is critical to the success of the overall process to ensure they
are correct and the weights accurately reflect the importance and impact of the
variation of the value measures on the decision.

We need to revisit the value measure ranges and update the value functions
and swing weights if required.

Ensure that Each Candidate Solution Can Be Measured We begin our review of
the value measures to ensure that each candidate solution can be measured against
each value measure. For consistency, we would like to use the same methodology
to measure each value measure against each candidate solution. This is not always
possible. An example would be if a candidate solution is so early in the development
stage that it cannot be fully modeled or operationally tested, but all other candidate
solutions can be operationally tested.

Adjust Value Model and Weights If we have identified value measures that we
cannot fully measure for each candidate solution, we have to change those value
measures. This will change our value model. We should also take this time to
ensure that we identify the potential ranges for each value measure. This is crucial
to ensure that we have the correct weights on each value measure. In Chapter 10,
we explained how to weight the value measures using the swing weight matrix.
After confirming the weights, we are ready to begin our scoring of the candidate
solutions.

12.4 SCORE CANDIDATE SOLUTIONS OR CANDIDATE COMPONENTS

In this section, we introduce two scoring approaches for assessing the value of
competing feasible system solutions: candidate solutions and candidate compo-
nents. Using the candidate solutions approach described in Section 12.4.1, we
holistically score the candidate solutions for each value measure. Then we use the
value functions developed in Chapter 10 to determine a value for each measure
and then use Equation (10.1) to calculate the total candidate solution value. Using
this approach, we calculate the value of the baseline, the candidate solutions, and
the ideal solution. With a baseline, four candidate solutions, and n value measures
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to consider, this approach involves potentially obtaining a maximum of 5n scores.
The baseline is a starting point for what we know. For existing systems, this could
be the current system or systems used to perform the functions. In some cases,
the problem is so new or technologically advanced that we many not have a base-
line. The ideal solution score is the best score on each value measure. Notice that
the candidate solutions approach does not evaluate all of the possible component
combinations that could be made into a system.

The candidate components approach considers all feasible systems designs using
the list of components to perform each system function. In this approach, we score
each component using the values measures that are affected by the component.
We assume that only one component contributes to each value measure’s score.
If we have four candidate components for each function, we would again obtain
a maximum of 5n scores including the baseline. Next, we calculate the weighted
value for the value measures affected by the component. Finally, we will use
optimization (Chapter 4) to determine the candidate solution with the highest value
(sum of the component value) subject to compatibility and cost constraints. The
compatibility constraints may eliminate some of the component combinations that
are not feasible. Section 12.4.3 describes this approach.

After obtaining scores for each candidate solution against each measure, we
convert the scores to values so we can compare the solutions and develop a rec-
ommended solution decision. Some of the analysis can be done by hand, but there
are software packages that can assist in more complicated analysis.

12.4.1 Software for Decision Analysis

As discussed in Chapter 1 and Chapter 9, the underlying mathematics of the SDP is
multiobjective decision analysis. OR/MS Today has published four major surveys on
decision analysis software [2]. Thirty-four of the packages trade off among multiple
objectives, the focus of this chapter. Several of these packages allow the analyst
to use some multiple objective decision analysis (MODA) techniques, but few can
do all analyses described in this chapter. Logical Decisions™ exemplifies a typical
MODA package with several built-in analysis techniques [3]. The disadvantages
associated with these packages include their cost and the time needed to learn them.

Analysts can use spreadsheet models for MODA studies. Kirkwood’s text offers
Microsoft® Excel macros for converting scores to values [4]. Using Kirkwood’s
macros and spreadsheet add-ins (mathematical programming, Monte Carlo
simulation, and decision trees), all the analysis described in this chapter can be
performed.

Using spreadsheet models makes sense for several reasons. Spreadsheets are
ubiquitous in that all computers today are configured with some office suite of
software that contains a spreadsheet application. It has become the analysis envi-
ronment of choice for most businesses and organizations. Consequently, clients
may be more comfortable performing an analysis with spreadsheet models because
they view them as less of a “black box” than more complex software. For the
analyst building the model, having to construct each piece of the model builds a
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level of familiarity with the details and assumptions going into the model that can
be useful in a decision briefing.

The main disadvantage of spreadsheet models is that analysts must design and
program each model element—and this takes time. It is relatively straightforward
to change a quantitative value model, such as by revising value functions, chang-
ing weights, or changing scores when the model is reasonably small. However,
as a model size increases, making these updates in a spreadsheet becomes more
demanding and time-consuming than similar updates using specially designed soft-
ware packages. Additionally, most of the speciality software earn their value by
being able to quickly produce key sensitivity analysis and summary graphics. This
point will be illustrated in Section 12.6.1 for the case of using a Monte Carlo
simulation for sensitivity analysis.

There are several decision analysis software packages that simplify value models
development and the analysis of candidate solutions.

12.4.2 Candidate Solution Scoring and Value Calculation

At this point, we have a value measure score for each measure for each solution.
To assist in the further analysis and for proper documentation, we put this data into
a table that provides scores for each of the measures for each candidate solution.
This table is known as the score matrix , or raw data matrix . The raw data matrix
of our rocket example is shown below in Table 12.1. For proper documentation,
this table should include the dimensions for each measure and the source of the
scores.

After completing this raw data matrix, we convert the raw data into the dimen-
sionless value. This is accomplished by mapping the candidate solution’s score
for each measure against the value function for that measure. The resulting value
is then recorded for each solution and measure in the value matrix . This value

TABLE 12.1 Raw Data Matrix

1.1.1 1.1.2 1.2.1 2.1.1 2.2.1 3.1.1 3.2.1
Speed of Number Number

Candidate Platform Percent of Thrust of Accuracy Range
Solution (kph) Grade People (lb) Payloads (m) (km)

Baseline 30 20 4 1000 2 10 20

Global
lightning

75 29 6 1546 5 2 100

Hot wired 66 56 3 2818 4 5 14
Star

cluster
45 32 4 2993 3 4 55

Slow poke 30 42 2 1138 2 8 36

Ideal 90 60 0 3000 5 1 105
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TABLE 12.2 Value Matrix

1.1.1 1.1.2 1.2.1 2.1.1 2.2.1 3.1.1 3.2.1
Speed of Number Number

Candidate Platform Percent of Thrust of Accuracy Range
Solution (kph) Grade People (lb) Payloads (m) (km)

Baseline 14 10 40 0 10 0 19

Global
lightning

77 19 5 27 100 90 94

Hot wired 65 87 60 91 60 72 13

Star
cluster

35 26 40 100 20 80 52

Slow poke 13 51 90 7 10 36 33

Ideal 100 100 100 100 100 100 100

function might be discrete or continuous as described in Chapter 10. These con-
versions can be computed automatically using a variety of software programs such
as macros in Excel or software such as Logical Decisions™. The value matrix for
the rocket example is shown in Table 12.2.

The value functions convert raw data to value.

With the value matrix complete, we are ready to determine the total value for
each solution.

Multiply Value by Weights and Obtain Overall Candidate Solution Values
MODA uses many mathematical equations to evaluate solutions. The simplest and
most commonly used model is the additive value model introduced in Chapter
10. This model uses the following equation to calculate each candidate solution’s
value:

v(x) =
n∑

i=1

wi vi (xi ) (12.1)

where v(x) is the candidate solution’s value, i = 1 to n is the number of the value
measure, xi is the candidate solution’s score in the i th value measure, vi (xi ) is
the single-dimensional value of the score of xi , and wi is the measure weight
(normalized swing weight) of the i th value measure, so that all weights sum to
one.

n∑

i=1

wi = 1 (12.2)

We use the same equations to evaluate every candidate solution.



404 DECISION MAKING

TABLE 12.3 Candidate Solution Value and Costa

Candidate
Candidate Solution Cost Solution Value

Baseline 30 10

Global lightning 85 76

Hot wired 96 62

Star cluster 48 55

Slow poke 148 26

Ideal 200 100
a The cost of the ideal is not known. For display purposes we assume
a cost larger than the highest cost solution. An alternative would be a
cost of 0.

Using the above equation, the weights for each measure developed in the swing
weight matrix and the value matrix, the analyst can quickly determine the total
value for each solution. The total value for each candidate solution in the rocket
example is shown in Table 12.3 and plotted in Figure 12.5. We see that the
candidate solution with the highest value is “Global lightning.” Though this solu-
tion scored the highest, we still have a great deal of work until we can make a
recommendation.

Again, many software packages can accomplish this quickly by linking all the
data, the weights, and the value functions. For many large-scale problems, the use
of these software packages can prove to be quite beneficial.

12.4.3 Candidate Components Scoring and System Optimization

In the candidate solutions scoring approach of the previous section, we holistically
scored each candidate solution on each of the n value measures. Here, we extend our
analysis of the rocket problem using the candidate components approach, applying
system optimization in order to determine the best system solution. As discussed
earlier, in this approach we assume that only one component affects each measure.
This requirement can be relaxed, but this is beyond the scope of this book. Before
performing component scoring, we have to align the individual value measures
uniquely to one component. Notice, however, that this many-to-one assignment
allows for several value measures to be aligned with each component.

Continuing our analysis of the rocket problem, consider the component raw
data matrix shown in Figure 12.2. The five component types are mobility, logistics,
rocket, number of payloads, and guidance. The first type has five candidate compo-
nents while each of the rest has four candidate components. Scores are provided for
each measure affected by the component. To illustrate an earlier point, notice how,
for example, the component “Rocket A” affects two value measures (thrust and
range), but each value measure is aligned with a single component. In Figure 12.2,
this means that while we might have multiple value measure row entries for a
component, each value measure will be assigned to only one component.
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Figure 12.2 Component raw data matrix.

Using the same value functions developed in Chapter 10 that we did for the
candidate solutions approach, we next convert the raw data score on each value
measure to a value as shown in the component value matrix in Figure 12.3. We
then calculate each component’s total value using Equation (12.1), using only the
value measures affected by the component. We also calculate an ideal component
value by summing the weights of the value measures affected and multiplying

Figure 12.3 Component value matrix.
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by 100. The ideal component value is a useful analytical tool for determining the
value gap associated with any one component. During the value improvement task,
we can compare the maximum component value with the ideal component value
and decide if we need to continue to search or design for higher value component
candidates. For example, the highest value vehicle component (B) has a value of
19 compared to the ideal vehicle component value of 24. If this difference was
considered significant, it would motivate a search for a new component that could
potentially close the value gap of 5.

Once we have calculated the component value for each component, we proceed
with a system optimization. The particular system optimization technique we use
is adapted from the project selection methodology proposed by Kirkwood [4].
There are many useful operations research books (e.g., Ragsdale [5]) and credible
websites2 that provide detailed explanations of how to use Excel Solver. Figure 12.4
shows the standard format for the system optimization table. The table is used to
calculate the value and cost of any feasible system solution. We then use Excel
Solver to identify the components that provide the highest solution value in light
of the design constraints imposed on the system. For the rocket problem illustrated,
these constraints are budget and weight limitations.

The left side of the table is used to calculate system value. The five types of
components are shown on the left and repeated on the top of the table. For the
component rocket problem, we assume that we will select only one component (or
one level) from each of the component categories. A binary decision variable (0
or 1) is used for each of the component categories. The resulting optimal values
identified by the Excel Solver then show whether the component is selected for
the best solution (1) or not (0). For example, Vehicle B is identified for use as the
mobility component in the optimal system solution, whereas the rest are not.

Each cell in the system total line contains an expression representing the sum of
the binary variables for each component category. These become the left-hand side
of the component constraints for the Excel Solver. The required line entries are
numerical values limiting this sum. For the rocket problem, these indicate that only
one component can be selected for each component category. These values become
the right-hand-side values for the component constraints for the Excel Solver. The
value column provides the component values calculated earlier in Figure 12.3.
These act as objective function coefficients for each of the binary decision variables
for creating the target cell objective function for the Excel Solver. The individual
component values are included in the total system value being maximized only if
their corresponding component is used in the design.

The right side of the table is used to calculate the system cost and the weight of
payloads and guidance that must be launched by the rocket. The five-year research
and development (R&D) and production costs are included for each component.
The system cost is calculated in the system total row. Again, as in the case of
component value, an individual component cost is only included in the total cost if
the component is used in the system. Therefore, the system total cost cells shown

2Frontline Systems, Inc. (http://www.solver.com)(http://www.solver.com) accessed August 20, 2010.
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at the bottom of the table for each year contain an expression representing the
sum product of the binary variables and the cost in that year. The total system
production cost cell is similarly constructed. The required line for the cost columns
are numerical entries listing the system annual budget limitations for R&D and
production. The total payload and guidance weight is calculated in system total
row. The maximum allowable weight is placed in the required row.

Four system totals are calculated in the bottom center of Figure 12.4. The system
value cell contains an expression that is the sum product of the component binary
variables and the component values. The “max value with above components” cell
calculates the highest value that can be achieved with the component values in the
table. The estimated system cost is the sum of the system total cost row on the
right. The total budget is the sum of the five-year system costs and the system
production cost in the required row on the right.

The system optimization using binary linear programming is performed using
the following settings in Excel Solver.

• Maximize system value cell
• Decision variables: 21 component variables.
• Constraints

—The decision variables are binary.

—The number of components in the systems row on the left are set equal to
the required row.

—The system cost row is less than or equal to the required budget row.

—The system payload and guidance weight is less than or equal to the max-
imum weigh.

Many additional constraints may arise in optimizing a system design. For example,
Vehicle B is not compatible with logistics concept D, or perhaps Rocket A can
only launch two payloads. Kirkwood [4] and Ragsdale [5] provide examples of
additional constraints that may be appropriate for systems design constraints and
many others.

Once we have determined the system value using component optimization we
can plot a cost versus value plot to gain insights as to how each system solution lies
in relation to each other solution, as illustrated in Figure 12.5. Since, when feasible,
the optimization model will use the highest value components, the component
optimization value is greater than Global Lightning. However, this high value was
achieved by using more costly components.

The candidate components approach has advantages and disadvantages com-
pared to the candidate solutions approach. The candidate solutions approach is
simpler and quicker, requiring a systems engineer to develop three or four candi-
date solutions. Once the highest value candidate solution is identified, additional
value-focused thinking is required to improve the solution. The candidate compo-
nents approach requires more effort to obtain information on all of the components.
Interestingly, the total number of scores generated by the two approaches is the
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same. The major advantage of the candidate solutions approach is that it provides
assurance of identifying the highest value system solution possible given the com-
ponents being considered and the constraint limitations within which all system
solutions must lie.

Value-focused thinking can be used to change constraints and add better perform-
ing or less expensive components, if required by either the candidate components or
candidate solutions approach. The systems engineer should select the best method
to use based on availability of data and time to perform the analysis.

In the remaining sections of this chapter, we will use the candidate solutions
approach. Recognize, however, that each of these sections would be similar had
we chosen to use a candidate components approach.

12.5 CONDUCT SENSITIVITY ANALYSIS

When dealing with complicated decisions, such as the ones we are presenting in
this book, systems engineers must be cognizant of the robustness of their analysis.
The systems engineer should analyze the “sensitivity” of their candidate solution
modeling assumptions and scores of the candidate solutions. The Pareto principle
usually applies. Typically the decision will only be sensitive to 2 out of 10 factors.
In the next section, we will discuss how the systems engineers should look at
this sensitivity analysis and how it might affect their recommended solutions to a
problem.

Figure 12.5 Cost versus value plot with component optimization.
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In order to tell the whole story, systems engineers must conduct sensitivity
analysis to modeling assumptions and candidate system scoring uncertainty.

12.5.1 Analyzing Sensitivity on Weights

The purpose of sensitivity analysis is to see if a change in an assumption changes
the preferred solution. A parameter is sensitive if the decision maker’s preferred
solution changes as the parameter is varied over a range of interest. The most
common sensitivity analysis is sensitivity to the assessment of weights. We plot
weight versus value for the range of interest for all solutions. If the solution
value lines do not intersect, we say the weight is not sensitive. If the lines
cross over, we consider the weights sensitive. The standard assumption for
analyzing weights sensitivity is to vary one weight and hold the other weights
in the same proportion so the weights still add to one. Since many factors are
involved in realistically large value models (weights, value functions, and scores),
typically less than 20% of the weights will be sensitive for realistic ranges of
interest.

There are several ways to do weights sensitivity. The first is to vary the weight
of each value measure from 0 to 1. This approach is shown in some MODA
books [4] for illustrative problems with only a few value measures. This approach
is not very useful for analytical purposes if there are a large number of value
measures and little disagreement about the weights assessment. The second way
when the weight assessments have not been controversial is to vary each of the
weights by ±0.1. This is a reasonable approach to determine if small changes in the
weights will change the preferred solution. However, sometimes weight assessment
is controversial and key stakeholders do not want to agree on one or more weight
assessments. The third way is to perform sensitivity analysis is to vary the weight
across the range of interest. This is typically the most useful and important weight
sensitivity analysis. If the preferred solution does not change across the range of
interest, then we do not need to spend time resolving the disagreement. If the
preferred solution changes across the range of interest, then we need to present this
to the key stakeholders and decision maker(s) for resolution.

Using the swing weight method (see top table in Figure 12.6), there are two
options for weights sensitivity analysis. The first option is to perform the sensitivity
analysis using the original swing weights. This approach has the advantage that
the analysis is done directly on the weight assessment judgment. The disadvantage
is that the measure weight variation depends on the other swing weights. Suppose
we vary a swing weight set at 85 out of 365 (= measure weight of 0.23) from 0 to
100 (the highest swing weight), the measure weight will then vary from 0 to 0.26.
Applying the second approach varies the measure weight ±0.1, causing it to span
the interval 0.13 to 0.33 (= swing weight assessment of 47 to 120). The advantage
of this approach is that is achieves the full range of ±0.1. The disadvantage is that
the swing from 100 to 120 may be unrealistic if there is agreement that the value
measure with 100 has the highest swing weight.
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Swing Weight Matrix with swing weights link to calculation of value:

Data Table with cell referencing of Solution Value calculation cells:

Mission critical Mission enabling

Level of importance of the value measure

Mission enhancing

Value Measure Value
Measure

Value
Measure

Percent
Grade

Platform can
Traverse

Swing
Weight

Range
of

variation

Large
capability

gap
Accuracy 100 0.27 Range

85 0.23 Thrust of
Rocket

60 0.16

50

45

20

0
Baseline 10

76
62
56
26
100

Hot Wired
Star Cluster
Slow Poke
Ideal

Global Lightening

25 50 85 100

0.14

0.12 5 0.01

0.05Number of
Operators

Speed of Launch
Platform

Number of
Different
Payloads

Significant
capability

gap

Small
capability

gap

Swing
Weight

Swing
Weight

Measure
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Figure 12.6 Performing weight sensitivity analysis.

We recommend performing weight sensitivity analysis on the value measures
that have been identified as being controversial during the weight assessment across
the range of interest using the swing weights. Time permitting, we also recommend
varying the weight ±0.1 on the remaining measure weights.

Next we consider how to perform weights sensitivity in Microsoft® Excel.

12.5.2 Sensitivity Analysis on Weights Using Excel

Weights sensitivity can easily be performed using the table function and graphical
plots in Excel. We return to the Rocket Problem. Figure 12.6 repeats the swing
weight matrix from Chapter 10, Figures 10.14 and 10.15. Suppose that stakeholders
had difficulty assessing the swing weight for the “speed of the launch platform.”
Some stakeholders thought that the weight was too high and should be much less,
and some thought it could be as highly weighted as distance from target. Suppose
we decide to vary the swing weight currently set at 85 out of 365 (= measure
weight of 0.23) from 0 to 100 (the highest swing weight). The measure weight
would then vary from 0 to 0.26.

We can perform this analysis in six steps using Excel. First, we use the weights in
the swing weight matrix in Figure 12.6 to calculate solution value in a worksheet of
our spreadsheet. Second, we construct the table in the middle of Figure 12.6. Across
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Figure 12.7 Swing weight sensitivity for Speed of Platform.

the top of the table we cell reference the swing weight name we are analyzing. In
the second row, we put the swing weight range from 0 to 100 in several increments.
Third, in the left-hand side of the table we cell reference the solution names and the
cells used to calculate the solution value using the swing weight matrix assessments
and the additive value model. Fourth, in Excel 2007 we select the “Data,” “What If
Analysis,” and then “Data Table.” Fifth, we cell reference the swing weight matrix
cell with 85 in the Row Input cell in the Data Table and click on “OK.” The Data
Table generates the table in the bottom of Figure 12.6. Sixth, we plot the swing
weight range versus solution value as shown in Figure 12.7.

Looking at Figure 12.7, we see that Global Lightning is always the highest value
alternative regardless of the swing weight changing from 0 to 100. Therefore, we
conclude that the preferred solution is not sensitive to the weight assessment of the
speed of platform value measure. However, suppose we create a new case without
Global Lightning and with an original swing weight assessment of 10 instead of
85. In this hypothetical case, the preferred solution would be Star Cluster for swing
weight values below approximately 5 and Hot Wired for swing weight above 5. In
this case, we would conclude that the preferred solution is sensitive to the weight
assessment of the speed of platform value measure.

Swing weights are only one source of uncertainty that requires sensitivity anal-
ysis. A second source arises from our uncertainty about the solution scores on the
value measures. We turn to that discussion now.

12.6 ANALYSES OF UNCERTAINTY AND RISK

In the previous section, we considered sensitivity analysis to our weight assess-
ments. In this section we analyze the uncertainty about the scores of the candidate
solutions. In the additive value model equation there are three elements: the weights,
the value functions, and scores. To this point in this chapter we have assumed that



ANALYSES OF UNCERTAINTY AND RISK 413

the weights and value functions are known with certainty and the scores are deter-
ministic. In many systems engineering and engineering management problems, new
systems are being developed whose future performance (i.e., value measure scores)
may be uncertain. In Chapter 3, risk is defined as a probabilistic event that, if it
occurs, will cause unwanted change in the cost, schedule, or value return (e.g.,
technical performance) of an engineering system. In programmatic terms, perfor-
mance uncertainty may be a major source of technical risk that could also provide
schedule and cost risk.

In the rocket problem, the scores of some solutions on the value measures may
be uncertain if operational or test data in operational environments is unavailable.
In this chapter, probability distributions are used to assess our uncertainty about
these scores and the events that can impact these scores. In the rocket problem, the
impact of the uncertain scores could be a lower value than we would expect if we
had used deterministic scores.

Uncertainties can impact one or more solution scores. The simplest case being
considered is that each uncertainty impacts only one value measure score of one
solution. We will call these independent scoring uncertainties and we can directly
assess a distribution on each independent score. A more complex situation occurs
when one uncertain event impacts the scores on the value measures of two or more
solutions. We will call these dependent scoring uncertainties since the scores of
the solutions depend on the outcome of an uncertain event.

An example of an independent uncertainty would be uncertainty concerning
the accuracy of the inertial guidance used by Slow Poke (see Figure 11.5). Since
Slow Poke is the only rocket using inertial guidance, this would be an independent
uncertainty. In Section 12.6.1, we analyze the impact of independent uncertainties
using Monte Carlo simulation. In Section 12.7.1, we analysis the impact of depen-
dent uncertainties using decision trees [6]. An example of a dependent uncertainty
would be a technical uncertainty with the effectiveness of fins. Since all solutions
use fins (see Figure 11.5), a technical problem with fins could impact the range
and accuracy of all the rockets.

In some analyses, we may need to consider alternative scenarios to capture
our uncertainty about the future. When we consider multiple scenarios, we have
some analysis options. We can consider all the scenarios and then develop one value
model that captures the future planning space of the scenarios. This is the most com-
mon analysis approach. Alternatively, we could develop weights, value functions,
and scores for each scenario. Clearly, this would require a lot of stakeholder time
to develop multiple models and multiple scores. Since weights have a larger impact
than value functions and scores, some studies have assessed different weights for
each scenario and then displayed range in alternative value across all scenarios.
One of the early studies using this approach was the Air Force 2025 study [7].

12.6.1 Risk Analysis—Conduct Monte Carlo Simulation on Measure Scores

When developing our raw data matrix, we identified a mean or expected score for
each measure for each candidate solution. We did not identify a range of scores,
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but rather a single score that allowed us to calculate a total value for our candidate
solutions. Oftentimes, this single score does not represent what we know—or, more
precisely, what we do not know —of the measure.

In our rocket example, we developed scores for the thrust of the rocket and the
accuracy of the rocket. However, uncertainty concerning technological performance
of the rocket could cause the measure scores to vary, making a reasonably accurate
final score unattainable until actual testing is completed in a later life cycle stage.
For our continued analysis, we could use the mean or the mode associated with
these measures, but as indicators of central tendency and common occurrence, they
are ineffective as indicators of uncertainty.

This uncertainty in our measure scores gets propagated into the total value of
each candidate solution through the value model. If this uncertainty is significant, it
can affect the profile of the cost–value tradeoff. Using a single total value for each
candidate solution masks this uncertainty. An appropriate sensitivity analysis would
model the uncertainty present in these measure scores enabling us to estimate the
extent of total value uncertainty.

Previously, our sensitivity analysis examined the impact that changes in a single
value model element (weight) had on the total value for candidate solutions. Here,
our interest is in assessing the impact of simultaneous uncertainty in the measure
scores so that we can examine their combined effect on the uncertainty of total
value. The most appropriate tool for this is Monte Carlo simulation.

There are many software packages which can be of great assistance in this anal-
ysis. Oracle® Crystal Ball [8] and Risk™ [9] are two of the more popular modeling
environments for estimating the effects of uncertainty and risk in decision mak-
ing. Both of these applications are completely integrated for use with Microsoft®
Excel, which has the appeal of not having to leave the environment in which the
value model was created.

Illustrating this type of sensitivity analysis with Crystal Ball, we use triangular
probability distributions to model the uncertainty associated with each of the six
shaded measures listed in Figure 12.8. The choice of distribution to use for model-
ing uncertainty depends on the information elicited from key stakeholders. Without

Figure 12.8 Six measures with triangular probability distributions.
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Figure 12.9 Triangular distribution for Global Lightning accuracy score.

a likeliest measure estimate, any value between some upper and lower measure
score would occur with equal likelihood, motivating us to use a uniform distribu-
tion to model the uncertainty. Since this is not the case, the triangular distribution
is more appropriate.

An example of the triangular distribution for Global Lightning’s accuracy score
is shown in Figure 12.9. The minimum accuracy of 1 meter and the maximum
accuracy of 3 meters set the lower and upper limits of the distribution, respectively.
The likeliest score being 2 m sets the peak location for the triangular distribution.

The triangular distribution is commonly used to model uncertainty in Monte
Carlo simulations. It requires only three parameters: a lower and upper bound
to set the limits of the distribution, along with a likeliest score to establish the
peak location.

For this Monte Carlo simulation we used 1000 runs to produce data with which
we could estimate the variability in total value for the candidate solutions. For
each run, the software samples each of the six triangular distributions to obtain a
random estimate of each measure score and then calculates the total value of the
six candidate solutions. When the simulation is complete, the software calculates
a probability distribution on the value of each candidate solution. The probability
distribution results for all six candidate solutions are shown in Figure 12.10. Two of
the solutions, baseline and ideal, had no uncertain measure scores. Therefore, there
is probability equal to 1.0 for each of the values. Although one of the candidate
solutions, Hot Wired, had uncertainty associated with its grade measure score, the
combination of a small interval between lower and upper bounds in its triangular
distribution (46 to 60) and the low measure weight in the value model (0.01)

impose negligible variability in its total value. Thus there is very little uncertainty
being propagated into this solution’s value.

The other three solutions, Slow Poke, Star Cluster, and Global Lightning, contain
significant amounts of uncertainty as indicated by the variability in their total value
resulting from this Monte Carlo simulation. Figure 12.10 shows a very important
result: Global Lightning has the highest value but the most uncertainty. However,
even with this uncertainty, Global Lightning provides a higher value than every
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Figure 12.10 Monte Carlo simulation results.

solution except the ideal candidate solution. Its total value distribution does not
overlap with any other, indicating that it deterministically dominates the other
candidate solutions [6]. “Deterministic dominance” means that the worst outcome
of the dominating solution is better than the best outcome of the dominated solution.
This means that even in the face of measure uncertainty, Global Lightning can be
expected to return the highest total value.

When comparing the total value distributions from a Monte Carlo simulation
sensitivity analysis, Distribution A deterministically dominates Distribution B
if for every possible total value, the probability of getting a value that high is
always better in A than in B .

Monte Carlo simulation shows the effects of uncertainty about the scores on
candidate solution values.

The next key question that the systems engineer should ask is which measure
score uncertainty is making the most contribution to the variance observed in the
Global Lightning value. Using Crystal Ball, we can answer this question using the
Contribution to Variance Diagram shown in Figure 12.11. The measure score that
creates the most uncertainty in Global Lightning value is the speed of the platform.

Figure 12.11 Global lightning contribution to variance.
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It contributes about 53% of the variance. The systems engineer should conduct
this sensitivity analysis on as many measure scores for the candidate solutions as
required to ensure that the recommendation is robust for the known uncertainties.
This provides the decision maker the confidence to make the system decision.

Although we have scored all of our candidate solutions and have examined
sensitivity of their values to changes in weights and affects of uncertainty on
the score, we are not ready to move to a recommendation yet. We first must
try to develop even better solutions first using a process known as value-focused
thinking [10].

12.7 USE VALUE-FOCUSED THINKING TO IMPROVE SOLUTIONS

Though we have scored all of our candidate solutions and have at least one that has
scored the highest, it would be very rare indeed to have our highest value candidate
solution be a perfect 100. That would mean that the candidate solution scored the
highest possible for each measure. Though this is unlikely in practice, identifying
an ideal solution is certainly our goal. After scoring our candidate solutions, we
need to seek an even better solution.

Develop Better Solutions To seek a better candidate solution, we return to
our value model. The stacked bar chart in Excel provides an excellent means of
doing this. Figure 12.12 illustrates the fundamental concepts involved with applying
value-focused thinking during this phase of the SDP.

In the hypothetical situation shown, the baseline is being compared with three
candidate solutions. Looking at the individual measure values, we ask a couple

Figure 12.12 Value-focused thinking within the SDP.
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of key questions. In what candidate solution do we come closest to achieving the
stakeholder ideal scores? In applying value-focused thinking we first attempt to
improve the best candidate solution by observing what is possible in the other
candidate solutions. Assembling the maximum value measure scores into a single
option produces an improved candidate solution. Is it possible to combine the
known system elements from the different candidate solutions in this manner? What
would this improved system solution look like? If it is not possible to combine the
known elements generating the observed measure value levels in this manner, is
there a new way of achieving a similar level of performance?

In a similar manner as described in Section 12.4.3, we notice that even this
improved candidate solution falls short of the ideal levels as expressed by the
stakeholders. Closing this gap will quite possibly require new design activities
focusing on the candidate solution improvements that would need to be made in
order to attain a better score for each measure.

It is also valuable to examine the individual measure value gaps when trying
to improve candidate system solutions. Returning to the rocket design problem,
Figure 12.13 shows the candidate solution stacked bar chart comparison without
an improved solution. As a concept check, try assembling an improved candi-
date solution for this systems decision problem. By examining Figure 12.13 (and
Table 12.1), we can see that to improve Global Lightning we need to improve the
scores for grade, number of people, and thrust.

In order to attain an ideal score on the “% grade a platform can traverse”
measure, we see that a 60% grade achieves an ideal score. What would the platform
have to be to traverse a 60% grade? Can the existing platform be modified to
achieve this? Does this require an entirely new platform be designed? Applying

Figure 12.13 Candidate solution stacked bar chart.
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value-focused thinking in this manner requires that we examine all the measures
and determine what needs to be done to get closer to the ideal solution.

Once having identified the improved score for each measure, the project team
works through the tradeoffs required to make any improved solution feasible.
Armed with the new improved solutions, it is then time to rescore them.

Rescore the Improved Solutions When rescoring, the systems engineer can and
should use scoring methodologies previously used in the process. Though we have
now looked at each possible solution and analyzed the sensitivity of our process
and measures, we still have to look at one other very important factor, risk, which
we cannot completely eliminate. We discussed the various types of risks in Chapter
3. Here we examine how to mitigate some of the risks remaining from previous
work.

12.7.1 Decision Analysis of Dependent Risks

Two major sources of uncertainty in systems development are technology develop-
ment challenges and the potential actions of competitors or adversaries. Suppose
for the rocket problem that two concerns are identified late in the solution design
phase that could impact operational performance. The first concern is a technical
concern and the second concern is a potential adversary threat.

Suppose that the engineers identify a technical concern with the new fin material
that is planned to be used for both the Global Lightning and Star Cluster system
solutions. This is a dependent uncertainty since the durability of the fins during
flight has a direct impact on the range of the two candidate solutions. After working
with the material and missile performance engineers, the systems engineer assesses
the data shown in Table 12.4. If the fin material is durable, the range will achieve
the original score. However, if there is some flight erosion of the fins, the range
could decrease for both solutions.

Suppose that the intelligence agencies identify a potential future adversary threat
that could result in degraded accuracy of guidance systems that use the Global
Positioning System (GPS). Again, this is a dependent uncertainty since the accuracy
of Global Lightning and Star Cluster will depend on the outcome of this event.
After working with the navigation and missile performance engineers, the systems
engineer assesses the data shown in Table 12.5.

We can use a decision tree to analyze the risk of dependent (and also indepen-
dent) uncertainties. We use Precision Tree®, [11] a Microsoft® Excel add-in, to

TABLE 12.4 Fin Material Performance Uncertainty

Range Score

Fin Material Probability Global Lightning Star Cluster

Durable 0.7 99.5 55.4
Erosion 0.3 80.0 40.0
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TABLE 12.5 Global Positioning System (GPS) Performance Uncertainty

Accuracy Score

GPS Degrade Probability Global Lightning Star Cluster

No Degrade 0.6 1.97 3.5
Degrade 0.4 4.0 7.0

perform the decision analysis. Decision trees are described in most decision anal-
ysis texts (e.g., reference 6), but they are typically used for single objective value
and single objective utility. We use a decision tree with the multiple objective value
model to determine the impact of the uncertainties on the preferences for Global
Lightning and Star Cluster.

In Figure 12.14, the first node in the decision tree is a decision node, the second
node is the Fin Material uncertainty, and the third node is the GPS Degrade uncer-
tainty. Figure 12.15 shows the value calculations that are appended to the eight
final branches of the decision tree. The value calculations are unchanged for the
first five value measures. The value calculations for the last two value measures use
the scores from Tables 12.4 and 12.5. The best decision is still Global Lightning,
but the solution’s expected value is now reduced from 76.3 to 71.9.
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Figure 12.14 Decision tree for dependent uncertainty risk analysis.
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Figure 12.15 Value matrix for decision tree.

Figure 12.16 shows the cumulative risk profiles for this situation. When we
consider the two dependent uncertainties, we see a more complete picture of the risk
of the two solutions. Since the cumulative risk profile of Global Lightning is down
and to the right of Star Cluster, we conclude that Global Lightning stochastically
dominates Star Cluster [6]. However, from the decision tree (and the cumulative
risk profile) we see that there is a 12% probability that Global Lightning will have
a value of 51.8 which is less than the original value of Star Cluster before we
considered the two dependent uncertainties.

A decision maker would now be interested in knowing the impact of our assump-
tions about the two uncertainties. If we vary the probability that the Fin is durable
from 50% to 100%, the expected value of Global Lightning ranges from 70 to 75
as shown in Figure 12.17. The decision trees, cumulative risk profiles, and sensi-
tivity analysis are easily generated using Precision Tree®. Additional sensitivity
analysis techniques—for example, two-way sensitivity—are also available in the
within the software application.

This concludes our discussion of sensitivity analysis and uncertainty analysis
that has focused on value. Next, we turn to cost analysis. Later we will consider
value versus cost tradeoffs.
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12.8 CONDUCT COST ANALYSIS

In the Solution Design phase, after the alternatives were identified we began
to develop the cost model by identifying the potential cost components and the
life cycle costs using the principles and techniques described in Chapter 5. Cost
analysts, system engineers, and various component engineers may have used the
preliminary cost models to perform cost trades for system components or elements
to improve the candidate solutions. The outputs of the Solution Design phase are
the candidate solutions.

In this Decision Making phase, we continue our cost modeling and develop
life cycle cost estimates for each of the candidate solutions. The systems engineer
should know more about the candidate solutions at this point than when the cost
components were initially developed. Typically we use two types of life cycle cost
(LCC) approaches. Preparing budget estimates for a complete program typically
entails preparing full LCC estimates. If detailed budget estimates are not needed,
then delta LCC models are more appropriate. Delta LCC models need only estimate
the solution cost deltas and not the total life cycle costs. Regardless of which
approach is used, this phase is the time to draw on previous cost models and expand
these models to provide additional coverage of a fuller range of costs. The key tools
for cost analysts to identify the cost elements are the life cycle stages and work
breakdown structures for each stage. Chapter 5 provides additional information
about cost analysis tools and techniques such as production learning curve models
that will be useful in later stages.

Once the systems engineer has ensured that the cost model is complete, the
costs are computed for each candidate solution. Cost risks are just as important to
consider as performance risks. Monte Carlo simulation can (and perhaps should)
be conducted with the cost model to assess the potential cost uncertainty just as
was accomplished with the value model when assessing value uncertainty. Chapter
5 describes this technique in detail.

The life cycle cost model can also be very useful in the Solution Implementation
phase of the SDP. The system costs will need to be planned, executed, monitored,
and controlled. The LCC model can provide a baseline for the initial plan. Cost
monitoring and cost management are important implementation tasks. This will be
discussed further in Chapter 13, “Solution Implementation.”

12.9 CONDUCT COST/BENEFIT ANALYSIS

Armed with the cost data, it is time to plot the cost against the benefit, or value,
of each candidate solution. This approach is also known as using cost as an inde-
pendent variable. It highlights to the decision maker and the stakeholders the cost
versus value tradeoffs. There are instances when the candidate solution with the
highest value costs significantly more than the other candidate solutions that it may
not be cost effective to select that solution for implementation.
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Figure 12.18 Candidate solution cost/benefit (value) plot.

Decision makers want to know the value provided for resources.

The objective is to show the decision maker the tradeoff between higher costs
and higher values. This is best accomplished using a graphical representation.
Figure 12.18 shows the cost/benefit chart for our rocket example. This plot is a
great means to quickly convey to a decision maker the tradeoffs. From the graph, for
example, the decision maker can see that he can choose the Star Cluster candidate
solution which would have less value than the Global Lightning candidate solution
but have a lower cost. On the other hand, the decision maker would never choose
the Hot Wired or Slow Poke solutions because they have less value and higher costs
than other available solutions. These two solutions are dominated . A dominated
solution has the same value as, or a value lower than, that of another candidate
solution but at greater cost than the candidate solution. Many times it is useful to
put a value band (or cost band) on the chart to reflect the uncertainties.

12.10 DECISION-FOCUSED TRANSFORMATION (DFT)

When we developed the quantitative model in Chapter 10, we defined value
measures based on preferences across wide, or global, ranges. This allows the
systems design team to reap the benefits of identifying additional objectives during
the Problem Definition phase and developing improved alternatives during the
Solution Design phase [10]. As mentioned in Section 12.3.6, we should revisit the
value measure ranges and associated swing weights. In practice, we often find that
the candidate solutions do not span the entire global ranges specified on the value
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measures. The Decision-Focused Transformation [12] provides a methodology to
revise value functions and swing weights prior to communication of analysis results
without any additional consultation with stakeholders. When appropriate, the
Decision-Focused Transformation offers the benefit of enhanced communication of
analysis results by eliminating consideration of the common and unavailable value
through rescaling of the value functions. Additionally, it revises our swing weights
to reflect importance across these new value measure ranges. The transformation
preserves the rank-ordering of the candidate solutions and the major differences
of the nondominated candidate solutions. Through this, communication of results
with stakeholders is enhanced, thereby increasing decision clarity.

12.10.1 Transformation Equations

The Decision-Focused Transformation is used as we prepare to present analysis to
stakeholders. We have a set of alternatives, A, and their single-dimensional value,
vi (xij ), on global value measures i = 1, . . . , n . Additionally, we have measure
weights, wi , for all value measures. The magnitude of the value scale, S , may cover
any range, but many use 0–1, 0–10, or 0–100. We are able to calculate v(xj ), or
the global value of alternative j ∈ A using the additive value model described in
Section 10.4.4. Table 12.6 provides a summary of the distinctions, descriptions,
and equations used in the Decision-Focused Transformation.

In our rocket problem, we perform the necessary calculations shown in
Table 12.6 to find that the common value is 7.2%, the unavailable value is 9.3%,
and the discriminatory value is 83.5%. In Table 12.7, we see that discriminatory
value is the sum of the discriminatory power of the value measures. This means
that tradeoffs only occur within 83.5% of our original value-focused decision
space. Using the last equation in Table 12.6, we are able to easily calculate the
transformed total decision value of our candidate solutions. We also provide the
transformation of measure weights in Table 12.7 and single-dimensional value in
Table 12.8 to illustrate the transformation of the value model.

In Table 12.8, we first note that we used the equation v′(xj ) = ∑n
i=1 w′

i v
′
i (xij )

from Table 12.6 to calculate total decision value. We could also use v′(xj ) =
1

Vd
(v(xj ) − Vc) without having to calculate decision measure weights or single-

dimensional decision value. In the transformed single-dimensional decision value,
the Hypothetical Worst is made up of the worst performances on each value measure
and the Hypothetical Best is made up of the best performances on each value
measure. The Hypothetical Best alternative is similar in concept to the “improved
candidate” shown in Figure 12.12. These two hypothetical alternatives now bound
our decision trade-space. By looking for scores of 0.0 in the transformed score
data, we see that the Baseline provides equal to the worst performance on Speed of
Platform, Percent Grade, Thrust, Number of Payloads, and Distance from Target.
On the other hand, decision value of 100.0 indicates that the Global Lightning
is the best performer on Speed of Platform, Number of Payloads, Distance from
Target, and Range. When graphed in a stacked-bar chart, the differences in this
data become clearer.
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TABLE 12.7 Transformation to Decision Weights

Speed of Percent Number of Number of Distance
DFT Platform Grade Operators Thrust Payloads from Target Range
Element (kph) (%) (#) (lb) (#) (m) (km)

maxj vi (xij ) 77.0 88.0 90.0 99.7 100.0 90.0 96.7
minj vi (xij ) 14.0 1.4 5.0 0.0 10.0 0.0 13.5
ri 63.0 86.6 85.0 99.7 90.0 90.0 83.2
wi 0.23 0.01 0.06 0.12 0.17 0.27 0.14
di 14.67 1.19 4.66 12.29 14.79 24.66 11.39
w′

i 0.18 1.01 0.06 0.15 0.18 0.29 0.14

Discriminatory Value Vd = 83.5

12.10.2 Visual Demonstration of Decision-Focused Transformation

With the transformation complete at the single-dimensional value function and
measure weight level, we can see the effect of the decision-focused transformation
on our rocket problem in Figure 12.19. In boxes 1 and 2, we display the original
stacked bar chart and cost/benefit chart similar to Figures 12.13 and 12.18. In
this new stacked bar chart, we also show hypothetical best/worst alternatives as
defined by the best/worst performance of our candidate solutions on each single-
dimensional value measure. In box 3, we display the decision-focused stacked-
bar chart. The hypothetical worst now has a value of 0.0 and the hypothetical
best has a value of 100.0. The transformation removed common and unavailable
value. In box 4, we display the updated cost/benefit chart after the decision-focused
transformation.

12.10.3 Cost/Benefit Analysis and Removal of Candidate Solutions

With the candidate solutions under consideration, we might initially conclude that
our value model is relatively well-scaled in that the discriminatory value is large
at 83.5% and the effect of the transformation does not drastically enhance our
ability to communicate the differences between our alternatives. The decision-
focused transformation is still useful when the decision is made to reduce the
candidate solution set based on dominance. In our rocket problem, the Hot Wired
and Slow Poke are dominated. Although an analyst does not make the decision
to remove solutions, typically dominated solutions (Hot Wired and Slow Poke)
are eliminated during final presentations to the decision maker. When DFT is
implemented in software, we can remove these alternatives in real-time and update
the transformed model. If the dominated candidate solutions are either the best or
worst sole performer on any value measure, then our decision trade space will be
further narrowed beyond the original transformation. As shown in Figure 12.20,
we can consider the differences between the three remaining alternatives (Baseline,
Star Cluster, and Global Lightning).
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1. Value-Focused Thinking (VFT) Stacked Bar Chart
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2. Value-Focused Thinking (VFT) Cost/ Benefit Chart
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3. Decision-Focused Transform (DFT) Stacked Bar Chart
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4. Decision-Focused Transform (DFT) Cost/ Benefit Chart
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Figure 12.19 Value-focused and decision-focused results.
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Figure 12.20 Decision-focused results after removal of dominated solutions.

With the dominated solutions (Hot Wired and Slow Poke) removed, we see
that the Baseline is the worst performer on all measures other than the number of
operators value measure. The absence of a bar indicates that a candidate solution
is the worst performer in the remaining set. Since Star Cluster provides gains over
the Baseline on several value measures for a relatively small increase in cost, it
might be reasonable to believe that the decision maker would decide to remove
the Baseline from consideration. If so, we can easily update the Decision-Focused
model without the Baseline as shown in Figure 12.21. This second update leaves
us with only two remaining solutions, the Star Cluster and Global Lighting.

Any time that we remove additional candidate solutions, we perform another
distinct iteration of the Decision-Focused Transformation based on the common,
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Figure 12.21 Decision-Focused results after removal of dominated and Baseline
solutions.

unavailable, and discriminatory value of the reduced solution set. Now that we have
only two remaining alternatives in our Decision-Focused model, we are able to see
the tradeoffs clearly. Global Lightning costs more, but provides decision value on
Speed of Launch Platform, Number of Different Payloads, Accuracy (Distance from
Target), and Effective Range value measures. Star Cluster is less expensive and does
provide decision value on Grade Platform Can Traverse, Number of Operators, and
Thrust of the Rocket value measures. Although Star Cluster performs better on
Grade Platform can Traverse, the difference in decision value is minor. Based on
the small variation in performance between the two alternatives, the Grade Platform
can Traverse measure has been reduced significantly in weight to the point where
it nearly drops from our analysis; this measure does not have much discriminatory
power. Discriminatory power, and the resulting decision measure weights, vividly
display how measure weights depend on the importance of swinging across the
established range of the value measures [12].

Additionally, we also observe that Global Lightning now has a decision value of
74.7 and Star Cluster now has a decision value of 25.3. With only two alternatives
remaining, each alternative contributes to the hypothetical best for differing value
measures. Their value scores now sum to 100.0, and the value scores are only
based on the relative strengths between the two solutions. At a deeper theoretical
level, this highlights the concept that the numeric value depends on the size of
the decision trade-space. When we have a large value space initially, we see less
differentiation between solutions. If we narrowly define our preferences based on
a smaller set of candidate solutions, the model will display greater differentiation.

In Figure 12.21, the decision maker is presented with the simplest possible form
of results and is able to consider the tradeoffs between the final two solutions
with greater clarity. In the process of applying Value-Focused Thinking to build
a qualitative and then quantitative model, we retain the benefits of generating
additional alternatives and uncovering hidden objectives along with other benefits
[1, 10]. By applying the Decision-Focused Transformation with a fixed set of
solutions, we facilitate communication and clarity concerning the value and cost
tradeoffs as the set is reduced, thus reinforcing commitment to action. In sum, we
use Value-Focused Thinking to understand and model the complexity inherent in the
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situation and the Decision-Focused Transformation to simplify the understanding
of tradeoffs as we move to decide.

Since Decision-Focused Transformation is a tool designed to enhance commu-
nication, we should consider the circumstances under which we would use the
transformation and when it may not be useful. Dees et al. [12] prescribe that
the transformation is most useful when both common and unavailable value are
large (resulting in small discriminatory value) and when multiple nondominated
alternatives exist. Additionally, we have shown above that the transformation is
useful as we reduce the set of nondominated solutions. However, the analyst
using Decision-Focused Transformation must communicate the size of the reduced
decision trade-space each time the transformation is applied. Common value and
unavailable value do not provide any distinction between our alternatives and cloud
our ability to understand tradeoffs, but understanding their magnitudes is important.
Figure 12.22 displays the magnitude of the common, unavailable, and discrimina-
tory value after each iteration in which we removed alternatives.

As shown in Figure 12.22, we had tradeoffs in 83.5% of our value trade-space
in our original Value-Focused model. When we removed the dominated alterna-
tives, the discriminatory value reduced slightly to 79%. On the top end, we see
more (12.9%) unavailable value because Hot Wired is the sole best performer on
Percent Grade and Slow Poke is the sole best performer on Number of Operators.
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Figure 12.22 Common, Discriminatory, and Unavailable Value as alternatives are
removed.
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On the bottom, we see more (8.1%) common value as Hot Wired is the sole worst
performer on Range and Slow Poke is the sole worst performer on Speed of Plat-
form. In Figure 12.20, we showed that removal of the dominated alternatives along
with a second iteration of the Decision-Focused Transformation produces a clearer
picture of the tradeoffs than the original Value-Focused model.

Also in Figure 12.22, we show that the discriminatory value reduces to 43.2%
when we further eliminate the Baseline and perform a final iteration of the Decision-
Focused Transformation with only Global Lightning and Star Cluster. Unavailable
value remains the same at 12.9%, but common value significantly increases to
43.9% as the Baseline is the sole worst remaining performer on Speed of Platform,
Percent Grade, Thrust, Number of Payloads, Distance from Target, and Range.
As we reduced the decision trade-space to 43.2% of the original size through the
transformation and removal of alternatives, we must ensure that the decision maker
understands we are comparing differences between solutions in a narrower band.
In Figure 12.21, we offered the simplest possible tradeoffs between the final two
candidate solutions in 43.2% of our original trade-space.

Low/high common value either indicates that the alternatives are all poor/good or
that they are very different/similar. Similarly, low/high unavailable value indicates
either that the alternatives are all good/poor or that expectations may be low/high
[12]. The Decision-Focused Transformation is most useful in complex problems
when there is both high common and unavailable value which imply a small
discriminatory value, or decision trade-space. As discriminatory value becomes
smaller, the alternatives have more similar total global value, and communicating
the size of the reduced decision trade-space becomes more important.

This completes the systems engineer’s analysis, but not the work. Before the
systems engineer can move to the next phase in the systems decision process or
the overall life cycle process, it is time to tie all the work together in a written
and/or oral presentation and obtain a decision.

12.11 PREPARE RECOMMENDATION REPORT AND PRESENTATION

After all this painstaking work to develop a recommendation, it is now time to put
it all together in a report or a presentation for the decision maker and stakeholders.
This is a very critical step in the process. Outstanding analytical work can be quickly
dismissed by a decision maker when the presentation is overly complicated or too
simplistic. The perceived professionalism of a written report or oral presentation
can convince a decision maker of the validity of a recommendation, confuse the
decision maker into inaction, or motivate them to find a better systems engineer.

There is no one set order for developing the report or making a presentation.
Though some decision makers request a decision briefing and then want a follow-
up report that includes the decision and implementation plan, most decision makers
request a final decision briefing accompanied by a detailed report. The implementa-
tion plan is then developed separately. We assume that this latter case is addressing
what follows. While we do make several specific suggestions concerning the for-
mat of a presentation to increase its usefulness to the decision maker, our primary



PREPARE RECOMMENDATION REPORT AND PRESENTATION 433

objective here is to provide general guidance on important factors that give a report
and presentation the greatest chance of success.

12.11.1 Develop Report

Organizations will often establish a standard format for written technical reports.
Standardizing the content and format lessens the burden on an analyst who has
to prepare the report and makes it easier for decision makers to locate specific
items of interest in the report. Regardless of the existence or absence of a specific
format, there are some basic principles in the development of a technical report
for a decision maker. Reports should include an executive summary, main body,
and appendices (as necessary). These are in order in the report and in the order of
detail.

The key to a successful technical report is a clear, concise executive summary.

Executive Summary The executive summary is designed to provide a brief
overview of the content of the report. It provides the decision maker with enough
supporting facts to make a decision without having to read the entire report. It
should include the objective of the report (often to obtain a decision), the most
compelling evidence to support a decision, and a quick overview of the methodol-
ogy used. The best executive summaries can be crafted to fit on a single page. It
should very rarely be longer than 10% of the overall length of the main body or
over five pages, whichever is less. Additional details are provided in the body of
the technical report.

Main Body The main body of the report is designed to be a much more detailed
explanation of the study. Here the systems engineer must tell the story of what
the analysis means to the decision maker and key stakeholders. This is a technical
report. The writing should be very concise and restricted to the important parts of
the analysis which support the recommendation. It should be organized to allow
the decision maker and key stakeholders to follow the analysis from the initial
problem statement until the recommended decision. Rarely should the systems
engineer include steps not taken. For example, if the analysis did not lend itself
to operational testing, the analyst should not include a paragraph on operational
testing even if the organization’s standard report format calls for such a paragraph.
The only exception would be if the absence of this step has a significant impact
on the recommendation (e.g., in risk mitigation).

The main body should be detailed enough for understanding the analysis con-
ducted and how it supports the decision, but should refrain from being so detailed
that the analysis obscures the recommendation.

Appendices The appendices of the report should include detailed formulations
of models, simulation code, and data. These are rarely of interest to the decision
maker, unless he or she is extremely technical or there are questions in the analysis,
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but are very useful to other analysts or stakeholders. A decision maker may ask
other analysts to comment on your report, in which case, these appendices are very
important.

The final crucial part of any written work is the documentation and references to
any support received or researched in the analysis. Proper documentation provides
two things. First, it provides credibility to the work as it shows support by previous
respected work. Second, and most important, it supports the integrity of the analyst.
Nothing destroys an analysis as quickly as questionable documentation and even
experienced systems engineers cannot easily recover from integrity problems.

12.11.2 Develop Presentation

The single most important consideration when developing a presentation is under-
standing what the decision maker needs in the presentation in order to make a
decision. Written reports are commonly tailored to the type of problem being
addressed and accepted report format of an organization. Oral presentations must
be tailored to the decision maker. They must include the detail required to make
a decision and to capture and hold the interest of the decision maker throughout
the presentation. There are some general guidelines to follow when constructing a
presentation used to obtain a decision.

The most successful presentations stay on message and stay within time limits.

Opening The opening should set the tone for the remainder of the presentation.
The presenter should immediately state the purpose of the presentation to focus the
expectations of the decision maker. In this case, the purpose is to obtain a decision.
Immediately following the purpose, the presenter should provide the decision maker
with enough background on the problem to frame and focus their attention on the
topic being presented. Although the topic may be fresh in the mind of the presenter,
the decision maker may have just left a situation involving a topic entirely different
than the one at hand. The presenter should explain why the problem and the current
presentation are important to the decision maker.

The final part of the opening is the recommendation. This is known as “the
Bottom-Line Up Front” (BLUF). This provides the decision maker with both a
good idea of where the presentation is heading and the recommended solution
decision. Knowing the final recommendation helps the decision maker focus on
the questions critical to the decision that he or she will make.

Presentation of Analysis The presenter should start the description of the anal-
ysis from an accepted point of common knowledge. This might be a summary of
the previous meeting or even going back to the original problem statement. This
allows the decision maker to feel knowledgeable and comfortable at the start of
the discussion of the analysis.

From there, the briefing should take the decision maker through the process
at a detail required to maintain his or her interest and understanding until the
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recommendation is reached. Some decision makers are very detail-oriented and
want the formulations and the data. Some want only highlights. In the absence
of prior knowledge, the presenter should present limited details and have backup
information ready to address specific questions.

The presentation should logically flow from the start point until an ultimate
conclusion. This keeps the decision maker knowledgeable and comfortable. A
knowledgeable and comfortable decision maker will be much more likely to sup-
port an analysis and make a decision at the end of a presentation than a decision
maker who is overwhelmed with information and confused. This decision maker
is more likely to put off a decision rather than make a wrong decision.

A good presenter will know exactly how much time the decision maker has
available and will keep the briefing shorter than the time allotted. This allows
more time for questions, and a busy decision maker will appreciate the extra time.
Do not assume that the decision maker will allocate extra time for this presentation
because he or she may leave prior to making a decision. Always have a one chart
summary if the decision maker has to shorten the time.

Always have a one chart summary in case the decision maker has to shorten
the time.

Concluding the Presentation After presenting a concise and convincing argu-
ment, the presenter should restate the recommendation and ask for a decision. When
a presenter states at the start of the presentation that the purpose is to obtain a
decision, the decision maker will be prepared for this request. The decision maker
might want to put off the decision; and, if so, the presenter should politely ask
when a decision might be forthcoming. Though some decision makers do not like
to be pressed, when the timing of the decision is critical (e.g., in the progress of a
manufacturing or development process), it is worth the effort to press the issue.

Whether the decision maker makes a decision or not, the presenter should con-
tinue with the future actions required based on the decision or lack thereof. Since
the decision may significantly change the information prepared in advance of the
presentation, the presenter should be prepared to adjust the plans as necessary.

Some final thoughts on briefings:

• Do Not Read the Slides . Nothing detracts from a presentation and infuriates
an audience as quickly. Summarize the slide or the chart.

• Have Simple Slides and Quick Thoughts . A slide or concept in a presentation
that tries to convey too much information often loses the audience and conveys
little.

• Transition the Decision Maker to Focus on the Problem Topic Very Early in
the Presentation . Yours is not the only problem on their mind.

• Be Careful with the Use of Pointers . These can often distract the audience
from the presentation, especially if the presenter is nervous!
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• Keep Text Font Size Consistent Throughout the Presentation. Using larger font
sizes has an effect similar to that of capitalizing letters in e-mail: giving the
impression of yelling.

• Dress Professionally . The presenter should always be more formal than the
decision maker, but not overly so.

• Speak Professionally . Do not use quaint or colloquial phrases or try to be too
funny. The briefing is designed to obtain a decision, not audition for stand-up.

• Stay on Message. Do not introduce tangential material that is not essential to
the decision.

• End in Control of the Presentation in a Way That Lets the Decision Maker
Know Where the Project Is at, Where It Is Going, When Deliverables Should
Be Expected, and What Actions Are Required of the Decision Maker in Order
to Make the Project a Success . It is a parting shot to reframe the presentation
content before you lose the decision maker’s attention.

Using a Storyline Approach One straightforward method for organizing infor-
mation and presenting it effectively using is called the storyline method. There are
two principles invoked when creating a presentation using this approach: horizontal
integration of the story and vertical integration of support. Conceptualizing each
presentation slide as a single page of a book, the area at the top of the slide typically
reserved for a slide title is used to “tell the story” of the presentation content from
start to finish using a single sentence on each slide. Done correctly, the decision
maker should be able to read across the top of every slide and understand the main
messages that the system team wants to convey. This effect is known as achieving
horizontal integration in the sense that if all the slides were laid out on a table in
order, the presentation storyline could be read by reading horizontally across the
slides.

The main body of each slide is then used to present key evidence (e.g., text,
graphics, mathematics, simulation results, etc.) supporting the storyline sentence
present in the slide title area. This is known as achieving vertical integration of the
presentation material. It is “vertical” in the sense that the typical audience member
will logically look to the title area first, encountering the storyline statement, and
then “drill down” into the supporting evidence below the statement to understand
the logical basis for the statement. Figure 12.23 illustrates a comparison between
the storyline approach and a typical default presentation format that uses simple
labels as slide titles in Microsoft® PowerPoint.

One attractive feature of this method is that it forces a presenter to clearly address
the salient points needing to be made, the logic connecting these points, and the
key elements of convincing evidence that the statement is factually based in its
claim. This frees the presenter to add value during the presentation by providing
the audience with insights and reasoning that complement what they are seeing
instead of reading the content of the slides to the audience, which is considered
bad practice.
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The storyline method delivers two additional benefits that add to its appeal
for presentations supporting systems decision making. First, it is not uncommon
for decision briefings to be circulated widely throughout an organization after the
presentation concludes. Vertical and horizontal integration helps prevent individuals
who were not present for the presentation from misinterpreting the message because
the main points are clearly present along with their supporting evidence. Similarly,
the storyline method enables slide handouts to function as stand-alone references
for the presentation at a later date.

Secondly, slides created using this method tell the intended story. The resulting
presentation can serve as a logical template for creating a technical report on the
topic as well. Using the presentation in this fashion requires each slide to be first
placed on a single page in a document. Next, one elaborates on the title line
statement and describes to the reader the evidence providing vertical integration
support to the statement. Any graphics or images required to make the important
points clear are retained as figures and charts in the technical report. Any slide
images that contain purely textual information will eventually be deleted, replaced
by the expanded description crafted in the report body. Adding any necessary
references and section organization nearly completes the report.

Lastly, a storyline approach is very helpful to “story board” the flow of the
presentation prior to implementing it in software. One way of doing this when
classroom or conference facilities are available is as follows. Estimating as a rule
of thumb that every slide will consume approximately a minute of presentation
time on average, draw an empty box (placeholder slide) for each minute of the
presentation. Below each slide, block out and identify groups of slides that will
contain the general content of the presentation as the team intends it to unfold.
These contents consist of, but are not limited to: title slide/team identification,
agenda, current project timeline, bottom-line up-front (optional but encouraged),
problem background and description, methodology, modeling, results and analysis,
conclusions, recommendations, areas for further improvement, updated timeline,
references (optional). The logical organization of these placeholder slides aligns
with the horizontal integration of the slides when the presentation is complete.

Next, identify the content of each slide (in general terms, not specific detail)
needed to support the storyline. The idea here is to see the presentation from a sin-
gle, macroscopic perspective in the hope that by doing so any gaps in logic, analysis,
content, and so on, will be revealed. Finally, by examining the information the team
actually possesses to support the storyline, the team’s workflow can be adjusted as
necessary to fill-in any missing information prior to the presentation being given.

Presentation software is not the only choice for conducting effective presen-
tations. Very successful briefings can be conducted using butcher charts, simple
paper slides, or even chalk. The key is that the presentation is professional and it is
concise. A decision maker will appreciate a presentation much more if it conveys
a simple message than if the words come flying in from the side and there are
explosions and movies. Many experts suggest that slides or charts should include
no more than three ideas and have fewer than four very short lines per slide, chart,
or board space.
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12.12 PREPARE FOR SOLUTION IMPLEMENTATION

In this chapter, we have worked through the decision making phase of the system
decision process. We started with the important items developed in the previous
phases of the process, the revised problem statement, the requirements, the value
model, some cost models, the candidate solutions and some previous results of
the initial analysis from the modeling and simulation and testing efforts. After
reviewing these important elements of our analysis to ensure they are still relevant,
we were ready to proceed.

We identified the data we were going to use to complete the raw data matrix.
We then used the value model to convert the raw data to the values and obtained
the value for each candidate solution. After evaluating the risks, the sensitivity of
our analysis and the costs of our candidate solutions, and developing improved
solutions, we were ready to develop a recommendation.

After developing a recommendation, we prepared written reports and oral pre-
sentations in order to obtain a decision from the decision maker. We now have
to determine what we are going to do with the solution decision. Depending on
where in the system life cycle the process has been employed, the systems engi-
neer must now develop a plan to implement the solution decision. This leads to
the next and final step in the systems decision process: solution implementation.
The systems engineer will find that the easy part of the process has been done. The
implementation is the difficult part of process.

12.13 ILLUSTRATIVE EXAMPLE: SYSTEMS ENGINEERING
CURRICULUM MANAGEMENT SYSTEM (CMS)—DECISION
MAKING

Robert Kewley, Ph.D. U.S. Military Academy

Decision Making

Once they had alternative solutions from the solution design phase of the
system concept decision, the design team had to score those solutions against
the values developed during the problem definition phase in order to come
up with a recommended decision to present to the department leadership, the
customer, for funding. In order to score each candidate solution, the design
team used research from the solution design phase to evaluate each objective
using the measures of effectiveness. The raw data matrix in Figure 12.24
shows the results of this subjective assessment.

The constructive scores had the following values:

−1 Worse than current system

0 Same as current system
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Figure 12.24 Raw data matrix for CMS system concept decision.

+1 Marginal improvement to current system

+2 Some improvement to current system

+3 Significant improvement to current system

In order to determine the total value of each candidate solution, these
raw data scores had to be converted to value scores (on a scale of 0 to
10) using the value functions developed in the value modeling step of the
problem definition phase. The results of this transformation are shown in
Figure 12.25.

In order to get a total value for each alternative, the design team calculated
the value of each candidate solution using the additive value model [Equation
(9.1)]. Figure 12.26 shows a graph of these results.

This analysis shows that the content management system for Vendor A
is the best solution for providing IT support to the curriculum management
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functions in the Department of Systems Engineering. A closer look at the
measures of effectiveness shows that the usability and collaboration capa-
bilities of content management systems give them significantly more value
than other forms of development. This is primarily due to built-in capabilities
for file management, discussion, survey response, and e-mail. Furthermore,
Vendor A provides an advantage over Vendor B with respect to instructor
ease of use, flexibility, and integration. The design team assessed Vendor A’s
product to provide more drag-and-drop functionality, more user customiza-
tion features, shorter development time to tweak or add features, and a better
capability to integrate with other Academy-wide IT systems.

Figure 12.25 Value matrix for CMS system concept decision.

Because usability is such a significant factor in the total value, the design
team performed sensitivity analysis to see how the scores might change if this
factor were not weighted so heavily. This analysis calculated the resulting
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total value if the importance of usability in swing weighting were medium
or low, instead of high. The resulting swing weighting values would be 75
and 20, instead of 100. Figure 12.27 shows the results of this analysis. The
ordering of the alternatives did not change as collaboration importance ranged
from very important to important to less important. This gives increased con-
fidence in the recommendation. Similar analysis was done for other measures
of effectiveness.

Figure 12.26 Solution scoring for CMS system concept decision.

Figure 12.27 Sensitivity analysis for importance of usability.
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Based on the scoring results, the design team recommended that the
department head authorize the purchase of content management software,
database software, and development tools from Vendor A so that they could
begin development of the proposed system. As the project progressed, they
would attempt to integrate capstone students into the development process.
This recommendation is based on the fact that content management tools
support both information and collaboration with features like file manage-
ment, discussion, survey response, and e-mail. Vendor A’s features provide
an advantage over Vendor B with respect to instructor ease of use, flexibility,
and integration. The department head, who had been a part of the process
from the problem definition phase, agreed with the recommendation and
approved the system concept, the software purchase, and the development
timeline.

12.14 EXERCISES

12.1. What important things brought forward from the previous phases in the
SDP should a systems engineer review prior to the start of the decision-
making step? What should the systems engineer ensure about them prior
to moving forward?

Situation . Assume you are the member of a systems design team tasked
with designing baggage handling system for the new Baghdad International
Airport.

12.2. One measure your team identifies is “Handling Time” or the time to process
a bag from the plane to the passenger in the terminal. Describe a method
to evaluate this measure for each of the four different ways of scoring
alternatives. Identify the strengths and weaknesses of each method.
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Situation . Your team developed the value curves shown below in previous
steps of the process. You have now ducted the scoring of all the alternatives
and completed the raw data matrix shown below.

12.3. Given the value curves and the raw data matrix above, develop the value
matrix for these candidate solutions.

12.4. Given the weights for each measure in the table below, calculate the value
for each candidate solution.

Measure Weight

Handling time 0.37
Reliability 0.28
Capacity 0.22
Routine maintenance time 0.13

Situation . The Hi-Tech candidate solution calls for the use of very
advanced technologies. Some of these technologies are not yet
commercially viable (still in development.)

12.5. Is the above statement about the technologies of the Hi Tech candidate
solution an example of risk or uncertainty? How would a systems engineer
address this in the analysis?

Situation . During the scoring of the candidate solutions, the handling
time for the Hi Tech solution and the capacity of the manual solution,
though shown above in the raw data matrix as deterministic, were really
stochastic.

12.6. Is the above statement about the variability of the measure scores an
example of risk or uncertainty? If the handling time for the Hi-Tech
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solution and the capacity for the manual solution both followed triangle
distributions ([1.1, 2.1, 3.1] and [60, 75, 90], respectively), how should a
systems engineer address this variability?

12.7. Given the sensitivity chart shown below, how should a systems engineer
present the sensitivity of the top-level function “Manage Baggage”?
(Note: The values in this chart do not completely correspond to the
previous numbers in this example as the entire value model is not
presented.)

12.8. Use Decision-Focused Transformation to better communicate the value
tradeoffs of the nondominated candidate solutions. Is DFT helpful for this
problem? Why or why not?

12.9. Given the costs shown below for each candidate solution and the values
determined in Exercise 12.4, above, develop the cost versus value graph.
Identify the dominated solutions determined in the graph.

Candidate Solution Cost (millions)

Ideal $150
High tech $120
Low tech $95
Mixed $75
Manual $45
Baseline $15

12.10. Based on all the analysis conducted in the previous exercises for this
chapter and especially the cost versus value graph, make a recommenda-
tion to a decision maker and justify the recommendation in one or two
paragraphs.
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12.11. Prepare a one-page executive summary for the decision maker on your
analysis of this baggage handling system. Also, develop a top-level outline
of the slides you will prepare for the decision briefing that you will present
to the decision maker on the analysis conducted above. Assume you only
have 20 minutes and you have not presented anything to this decision
maker since the approval of your revised problem statement.
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