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1. INTRODUCTION
The design and improvement of the performance of manufacturing and service systems requires that
we have efficient ways by which we can (1) predict the performance of the systems and (2) identify
the effects of key design parameters on the system performance. Manufacturing and service systems
have to cope with a wide range of variability, uncertainty, and disturbances. Different customers
require different tasks to be performed, people and machines can vary in their time to perform
standardized tasks, machines can break down unexpectedly, repair can prove more complicated than
anticipated. So we need approaches to predicting the performance that take into account this uncer-
tainty and variability and also help us reduce their adverse impacts. Queueing models are particularly
useful in describing variability and predicting its impact on performance. This chapter contains an
overview of the key models that are relevant to analysis of manufacturing and service systems. The
focus of these models is on predicting throughput, inventory levels, queue lengths, and service levels
after allowing for disturbances such as machine breakdowns, human operator performance variability,
and quality problems.

Queueing models can be used at the system-design stage to rapidly explore alternatives and see
the sensitivity to parameter values. The models can also be of great value in assessing the performance
of systems once they are installed because they enable the sources of loss of productivity to be
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identified. Models provide understanding and insights of complex production systems and enable one
to obtain answers to a variety of ‘‘what-if’’ questions with little effort.

Our focus in this chapter will be on manufacturing and service systems where each job or customer
is distinct. Most service systems have to deal with the requirements of individual customers. In
manufacturing, each job is distinct in the mechanical, electrical, and electronics industries making
products such as cars, refrigerators, electric generators, and computers. Systems that process fluids,
like those found in the chemical and metallurgical industries, will not be considered, although some-
times in these industries fluids are processed in distinct batches or packets and, if such a packet is
taken as the unit of manufacture, then the system can be considered to process discrete jobs. For
simplicity, we will call an item, part, subassembly, or assembly processed by a machine or workstation
in manufacturing a job. In service applications, we will call each order or person a customer.

While each job or customer is distinct, different jobs or customers can be in all respects identical
and in particular have the same processing requirements. If the system only processes one type of
job or customer, then some aspects of its design and operation will be simplified because all jobs or
customers can then be handled the same way. However, if the system processes many different types
of jobs or customers, instructions for each type will be required and control will tend to be more
complex. Particularly in service systems, it is often not known what the processing requirements of
a customer will be until after the customer arrives and some diagnosis can be carried out. Even in
manufacturing, quality problems can result in the processing requirements of a job changing after
processing has begun. Models have to be able to represent this evolution of knowledge about proc-
essing requirements and how the information is used to modify instructions on what has to be done.

1.1. Models

Traditionally, manufacturing and service system designers relied on experience and rules of thumb
in order to identify the effect of design parameters on the performance. However, the increasing cost
and complexity of modern systems, and the often lengthy time required to bring them up to their
designed performance targets, have resulted in designers using formal models of the system to assess
performance.

1.1.1. Basic Approach to Modeling

The process of modeling involves the following steps:

1. Identifying the issues to be addressed: Ascertain the needs of the user. What decisions is the
model required to support? These can range from the very specific, such as how large a specific
storage location should be, to the somewhat vague, such as whether it is possible to identify
when a particular way of operating the system is optimal.

2. Learning about the system: Identify the components of the system, such as the people, ma-
chines, material handling, storage and the data collection and control system. Determine the
characteristics of the jobs or customers and the target volumes, quality, and cost. This step can
involve close contact with the system designers and a review of any existing models to identify
their capability and their shortcomings.

3. Choosing a modeling approach: Various types of modeling approaches can be used, ranging
from formal mathematical models through computer simulations to the development of a ‘‘toy’’
system in which toy parts or people physically move from one toy machine to another. The
choice of modeling approach is determined by the time and cost budget for model development
and the anticipated way in which the model will be used.

4. Developing and testing the model: This step requires obtaining data on the parameters of the
model, and often the lack of desirable data forces the model to be substantially simplified.

5. Developing a model interface for the user: If the model is to be of value in making decisions,
it has to be provided with some interface so that it can be used by managers. This requires
the modeler either to embody the model in a decision support system or to present the model
and its implications in a way that managers can understand.

6. Verifying and validating the model: The model has to be checked to see that it is a reasonably
correct representation of the reality it seeks to represent. Verification is the process of ensuring
that the model results are correct for the assumptions made in developing the model. Validation
is the process of ensuring that the model is an accurate representation of the real system. This
may also involve convincing the user that the model is adequate for the decision he or she
requires it to support.

7. Experimenting with the model: This requires exploring the impact of changes in model para-
meters and developing understanding of the factors influencing performance of the system so
that the manager can be confident in the decisions made using the model.

8. Presenting the results: Using the model, the manager should come up with a recommended
course of action. This recommendation may have to be presented to higher-level management
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and the role of the model in aiding the decision explained. Alternatively, the model and the
results of its use will be presented in a report or paper that, apart from describing the model
itself, should explain what the model can do, what it cannot do, and how accurate are its
predictions.

1.1.2. Types of Models

For systems processing discrete jobs or customers, there are three types of models in common use:
Physical models represent the real system by another physical system, in which jobs or customers

move from one machine or service center to another and the machines or service centers perform
processing operations on the jobs or customers. The major difference to the real system is that the
model uses a different dimensional scale, so a large system will occupy a table top. Physical models
can use toy-sized components, but they can be provided with a control system that employs the same
logic as the real system. Physical models are excellent as a means of educating management and
workers about the control of the system, but they do not lend themselves for assessing the long-run
behavior of the system, as it is difficult to represent the statistical properties of events such as machine
failures or worker absenteeism.

Simulation models represent the events that could occur as a system operates by a sequence of
steps in a computer program (see Chapters 93–96). This means that the logical relationships that
exist between events can be described in detail. The probabilistic nature of many events, such as
machine failure, can be represented by sampling from a distribution representing the pattern of
occurrence of the event, for example, the distribution of the time between machine failures. Thus, in
order to represent the typical behavior of the system, it is necessary to run the simulation model for
a sufficiently long time that all events can occur a reasonable number of times. Simulation models
can be provided with an interactive graphic display to demonstrate the movement of jobs or custom-
ers. This can be of great value in communicating the assumptions of the model to engineers and
others.

Analytical models describe the system using mathematical or symbolic relationships. These are
then used to derive a formula or define an algorithm or computational procedure by which the
performance measures of the system can be calculated. Analytical models can also be used to dem-
onstrate properties of various operating rules and control strategies. Sometimes it is not possible,
within a reasonable amount of computer time or space, to obtain the performance measure from the
relationships describing the system without making further assumptions that modify these relation-
ships. The resulting model is thus approximate rather than exact. Testing the approximation may then
require a simulation model, so approximate models are useful only if they are easy to use and provide
insight into what determines the system behavior.

1.1.3. Why Model?

Models can be developed for a variety of reasons, in particular:

• Understanding: The model is used in order to explain why and how. The model is intended to
convey insight. Sometimes the model just indicates the direction of influence of some variable
on performance, that is, as the variable increases in value does performance improve? Alter-
natively, the model can be quite complex but with the major function of explaining why the
system behaves in certain ways.

• Learning: As well as providing insight, a model may be intended to teach managers or workers
about the factors that determine performance. The model may omit many features of the real
system and focus on those aspects that are considered crucial for those people responsible for
effective operation of the system.

• Improvement: The model is used to improve system design and operation. Changes in parameters
and rules can be explored, and factors critical for achieving performance targets can be iden-
tified. To make sure that conclusions drawn from the model will apply to the real system, such
models pay particular emphasis to the adequacy with which they describe the system behavior.

• Optimization models: Given a model that predicts performance as a function of various para-
meters, an optimization model determines the optimal combination of these parameters. This
usually means that the optimization problem is formulated as a mathematical programming
problem, generally with a mixture of integer and continuous variables.

• Decision making: The model is to be used to aid decisions about either the design or operation
of the system. The model has to be able to discriminate the effects of different courses of action
and project their impact over time.

1.1.4. Requirements of Models

Models are based on certain assumptions about the system and its components and how the system
is going to be operated. Then there are the assumptions about the nature of the disturbances that will
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impact the system and the range of responses to these disturbances. The hierarchy of control and the
flow of information also have to be represented in the model.

• Complexity vs. simplicity: Modeling involves compromises in deciding how much detail to
represent. A large amount of detail means that the model should be a more precise representation
of reality, but the disadvantages are that the model will be more difficult to verify and validate,
be harder for users to understand, and take longer to develop. A simple model may not represent
the system adequately and thus may give inaccurate predictions and omit key decisions or useful
responses to disturbances.

• Flexibility: A model may be used to support decision making as the system evolves over time.
That is, from initial concept through planning, detailed design, installation, and operation, there
is a need for models to support decisions. While no one single model will support all decisions,
it is desirable for a model to be useful at a number of different stages in system evolution. This
means that the model should permit changes in the system modeled. Some of these changes
may relate to the structure of the system, such as the number of machines or service represen-
tatives, the way in which jobs or customers move through the system, or the way in which the
control hierarchy is set up. Other changes may relate to the values of parameters such as the
frequency of machine failures or the demand rate. A model or a modeling approach has to be
evaluated with respect to the ease of making both these sorts of changes.

• Data requirements: While there is often a great deal of data available in manufacturing or
service, it is rare that the data are in the form required by the model. At the planning stage,
there is often doubt as to the applicability of data collected from different systems in different
environments, while when the system is operational, the data may well only apply over a limited
range of operating conditions. Thus, a model should use the least amount of data required in
order to make adequate predictions, and an important component of the validation of a model
is assessing the sensitivity of the model to errors in the data.

• Transparency: Since the model has to be accepted by its users, it is desirable that the assump-
tions and procedures used in the model be reasonably transparent to others beside the model
developer. The developer should be able to convince the user that the model is a reasonably
accurate representation of reality.

• Efficiency: Models can consume significant resources, both in their development and in their
use. Modeling approaches differ in their requirements on the knowledge, skill, and elapsed time
required for development. Since most models will be implemented on a computer, such issues
as running time and storage requirements can also be important.

• User interface: If a model is going to be of real value, it should be usable by managers rather
than only by the model developer. A user interface is essential in order to guide the user in the
correct use of the model, ensuring that it is clear what data should be provided and avoiding
any ambiguity in interpreting the results.

1.2. Queueing Models

Queueing models are particularly useful for determining the following performance measures of a
system:

• Capacity or throughput: This is the maximum rate at which the system can accept jobs or
customers over some long time interval. We will use the symbol TH to denote it, and it is
usually measured in jobs or customers per hour (or some other suitable time interval). Individual
components of the system will, of course, have a higher short-term capacity than TH, but over
the long run they will lose capacity because of machine breakdowns or worker absences. Ca-
pacity will also be lost because of interaction between the different parts of the system. For
example, too few pallets will reduce work flow through a machine.

• Flow Time or Lead Time: The flow time, sometimes called the lead time in manufacturing, is
the time from when a job or customer arrives at the system until the job or customer departs
the system. It will be greater than the actual processing time because jobs are held in inventory
buffers and customers wait in queues. Queueing models usually focus on determining the av-
erage flow time, but it is usually also possible to determine the variance and higher moments.

• Inventories and queue lengths: It is often important to know where inventories and queues are
distributed through the system. The average total flow time and the average total queue length
are connected by Little’s law:

l � �w

where is the average queue length, is the average flow time, and � is the average rate atl w
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which jobs or customers flow through the system. So given either queue length or flow time,
the other performance measure can be readily determined.

• Service level: The service level can be measured in a variety of different ways, such as the
fraction of demands met immediately or the average time to fill a customer demand. Service
level is a particularly important performance measure when finished product inventories are kept
and it is necessary to trade off the inventory investment with the penalties of delay in meeting
customer demand.

1.2.1. Using Queueing Models

Queueing models are particularly useful in designing and improving system performance. In partic-
ular, they are of great value for addressing the following issues:

1. Investigating alternative configurations: There are usually alternative ways of allocating tasks
to machines or people, and each alternative will result in different patterns of work flow.
Queueing models are particularly valuable in rapidly exploring a wide range of alternatives
and seeing how system performance is modified.

2. Exploring the impact of parameters set by management: Typically, management have to choose
values for such parameters as inventory buffer capacities, the number of kanbans, or base stock
levels. Queueing models enable their impact on performance measures such as throughput or
service level to be found. If costs are available, then it is possible to determine the values that
optimize performance.

3. Comparing alternative scheduling and work-allocation rules: Queueing models can be used
to compare different scheduling rules. They can also be used to explore the way in which
performance is changed as more information about jobs or customers is acquired and that
information used to modify the routing and allocation of jobs or customers to machines or
servers.

4. Understanding the impact of variability: Typically, less variability improves performance. But
since reducing variability can be costly, it is desirable to know by how much performance is
improved. Variability reduction is typically the aim of quality management efforts, and
queueing models can help focus that effort.

1.3. Modeling Manufacturing and Service Systems

Queueing theory is described in Chapter 83. To apply it to modeling manufacturing or service sys-
tems, it is necessary to develop an understanding of the key features of the system and how these
translate into queueing models. Considerable expertise is necessary. Often, as the system becomes
more complex, it is necessary to develop approximations, and these have to be tested by extensive
simulations. So a number of software packages have been developed that incorporate tested queueing
models and approximations. These packages have user interfaces that guide the user through the
selection of the appropriate model and allow the user to specify parameters values.

Alternatively, most queueing models can be easily incorporated into spreadsheets because they
are either formulas or fairly straightforward iterative calculations.

Before giving the details of typical models, it is useful to describe briefly how the main features
of various manufacturing and service systems are viewed as queues.

1.3.1. Manufacturing Systems

1.3.1.1. Job Shops and Flow Lines The two traditional forms of organizing manufacturing
systems are the job shop and the flow line. The job shop consists of a variety of different types of
machines, some of which can perform operations on different types of jobs, although this may require
some setup or changeover time between job types. Material handling is such that different types of
jobs can visit machines in different sequences. In a queueing model, the job shop is viewed as a
network of queues, with each machine or machine center regarded as a server. Job routing determines
the movement of jobs between the different servers. Rather than tracking individual jobs in the
queueing model, it is usual to represent all the different jobs by a small number of job types or
classes. By contrast, the flow line requires all jobs to visit machines and work centers in the same
sequence, thus simplifying material handling. The simple material handling, combined with the stan-
dard routing, makes it easier to control work flow and instruct machines and workers on their tasks
and thus enables high volumes to be produced economically. The queueing model thus consists of a
number of queues in series. However, buffer space between machines is often limited, resulting in
blocking or starving of machines, and this has to be represented by the model.

1.3.1.2. Transfer Lines Many flow lines produce only a single type of product, and with in-
creasing volume it becomes attractive to automate individual machines and replace human operators
by automatic devices and machines. The automatic transfer line goes one step further. Not only are
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the machines and the material handling from one machine to the next automated, but all machines
are linked so that they begin their tasks simultaneously and thus material movement is synchronized.
In this way, the number of jobs in process can be kept small and extremely high productivity is
potentially possible. If any machine should fail, then the tight linkage means that the whole line
stops. To overcome this, the line may be divided up into sections, with buffers between the sections.
The queueing model has to capture this linkage and the impact of buffers.

1.3.1.3. Flexible Transfer Lines Initially, when automatic transfer lines came into widespread
use in the 1950s, the instructions on how to perform the tasks at a machine were embodied in physical
information storage devices such as cams, jigs, and other fixtures. This has been called ‘‘hard auto-
mation,’’ and obviously it made it difficult to change instructions. However, as electronic devices for
storage and processing of information were developed, combined with numerical control (i.e., trans-
ducers that convert digital information into physical motion of tools), changing the instructions on
performing tasks became simpler. This resulted in the development of automated flexible transfer
lines and flexible flow lines, distinguished by whether synchronized movement of jobs was retained
or not. If job movement is not synchronized, then it is essential to provide some storage space between
machines, otherwise job movement will always be determined by the slowest machine. Flexible
transfer lines and flexible flow lines can manufacture more variants of a product than traditional
automatic transfer lines, but unless the variation between jobs is very small, there may still be a
requirement to change tools between jobs. The queueing model now has to describe the movement
of the different job types through the system.

1.3.1.4. Flexible Manufacturing Systems Transfer lines are essentially automated flow lines,
and thus all jobs have to visit all the machines in the same sequence. If numerically controlled
machines are combined with a material-handling system that enables different jobs to visit machines
in different sequences, then the resulting system is known as a flexible manufacturing system (FMS).
Such systems were first implemented in the 1970s for machining tasks, so FMS sometimes implies
a flexible machining system. An FMS is essentially an automated job shop. It can produce a reason-
able range of products, although initially this range was limited by the ability to store or deliver the
required tools to individual machines. Usually parts are mounted on pallets and the number of pallets
is limited, so the queueing model represents the system as a network of queues in which the total
number of customers is limited by the number of pallets.

1.3.1.5. Flexible Assembly Systems Assembly tasks are difficult to automate economically un-
less the tasks have unusual characteristics such as size, weight, or temperature or chemical or radiation
hazards. However, beginning in the clothing and shoe industries and then spreading to the electronic
industry in the early 1980s, it was recognized that flexible assembly systems with automated job
movement to assembly, inspection, and test stations, linked to automated job-identification systems,
resulted in significant improvement in work flow and control in assembly systems, producing a variety
of different jobs, even though many individual tasks are still performed by human operators. Some
flexible assembly systems enable jobs to move between any pair of workstations, while others, such
as those introduced in the mid-1980s by the automobile industry to replace the traditional assembly
line, have a generally series structure but with paralleling of workstations and some feedback loops
so that jobs can be readily reprocessed if they do not meet required quality standards. Again, the
number of work carriers may be limited, and there may be requirements to maintain sequence of
jobs as they go through parallel work stations. Flexible assembly systems sometimes store all work
in progress centrally and assign it to work stations as they become available. Alternatively, jobs may
circulate through the system on conveyors. Queueing models have to be able to represent job cir-
culation, storage, and processing.

1.3.2. Service Systems

As yet, there is no established approach for categorizing the different configurations of service sys-
tems, although there are a variety of approaches proposed (Schmenner 1986, Silvestro et al. 1992).
From the perspective of developing queueing models, perhaps the most useful approach is to focus
on the range and features of the tasks assigned to the people providing service (Buzacott 2000).

1.3.2.1. Narrow-Range Tasks If the system is configured so that each individual server only
performs a narrow range of tasks, then this usually means that a number of different servers are
required in order to perform all the required tasks for a customer. This means that the system will
often be similar to a manufacturing flow line and so can be represented by queues in series. Of
course, if there is some flexibility in the sequence in which tasks are done, then the system becomes
more like a manufacturing job shop and can be represented by a network of queues.

1.3.2.2. Broad-Range Tasks Alternatively, individual servers can be assigned a broad range of
tasks. This means that they are often able to do all the tasks required by a specific customer. However,
in order to cope with increasing volume of customers, many servers are required. The system can
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then be represented as a number of servers in parallel. There are a variety of ways in which customers
can be allocated to servers; for example, some servers may specialize on particular types of customers;
alternatively, customers can be allocated to servers according to some allocation rule, such as allocate
to free servers in order of customer arrivals or allocate according to a round-robin or cyclical rule
(first arrival, to server 1, next to server 2, next to server 1, next to server 2, and so on).

1.3.2.3. Specialized Diagnosis In many service situations the tasks to be done on or for a
customer are not known until the customer arrives and some diagnosis is carried out. As a result, it
is sometimes desirable to have a first stage of service that determines the service tasks required and
then allocates customers to specialized service providers capable of performing the required tasks.
The appropriate queueing model now consists of a network of queues in which customer flow out
of diagnosis to a specific specialized facility is random, with probability equal to the frequency of
the facility being required by the diagnosis. In some situations, multiple diagnostic steps are required,
depending on whether a step is able to determine the service requirements.

1.3.3. Supply Chains and Logistic Systems

A developing field for applying queueing models is in determining service levels and inventories in
supply chains. For modeling purposes, the supply chain is viewed as a network of cells, where in
each cell manufacturing, transport, inspection, and other functions are performed. Cells are connected
by material flow from raw material through parts manufacture through assembly, test, and distribution
through warehouses and retail outlets to customers. However, cells are also connected by information
flow from customer orders through retailer orders, warehouse shipment instructions, production sched-
ules, part requisitions, and raw material requests. Because material flow occurs only as a result of
requisitions and orders, it is necessary to include in the queueing model not only the representation
of material flow but also the representation of information flow and how the two interact. Certain
types of coordination schemes for controlling work flow use advance information—for example,
forecasts of receipts of customer orders are used in Material Requirements Planning—and it is then
necessary to represent this in the model. We will illustrate the combined modeling of material flow
and information flow by some simple models.

1.4. Description of Available Models

The remainder of this chapter will be devoted to a description of some of the available analytical
models of manufacturing and service systems and supply chains. The discussion will emphasize
analytical models that yield a formula-type result, as such results are most readily implementable.
When no formula exists, we will outline the general principles of the computational algorithms. We
will also illustrate a number of approximate approaches for determining performance.

1.4.1. Assumptions of Models

Every model is based on certain assumptions about the composition of the system, the work flow
through it, and the availability of resources, such as the number of operators, the number of repair
crews, and the way in which these resources are allocated when there are competing demands for
them. These assumptions describe the essential features of the system. Then there are further as-
sumptions that relate to the nature of disturbances to the system operation, such as the distribution
of time between successive failures of a machine, the distribution of time to repair a machine, the
distribution of time to perform a task, and the pattern of occurrence of defective parts. In some
models, the results depend critically on these distributions, while in others the mean of the distribution
is all that is required. Usually it is easier to derive results for certain distributions than for others; in
particular, it is possible to derive explicit formulas for the performance of some systems when the
associated distributions are exponential or geometric, but not for other distributions. Fortunately, in
many cases the results are not particularly sensitive to the form of the distribution or, at least, they
give the right general shape of the relationship of the system design parameters to the system per-
formance measures. Thus, the results can be used to give general insight. Almost all analytical models
make the following assumptions:

1. Distributions are stationary (i.e., process parameters do not change with time or cumulative
output).

2. Successive events of a particular type occur at intervals that are independent of each other
(i.e., there is no serial correlation).

3. Events at one machine or service center are independent of events at another machine.

These assumptions are often not strictly correct in reality. However, it would be difficult to derive
results that would relax them. In most real systems, when the assumptions fail, the system would be
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considered out of control and managerial action would be taken to restore control (e.g., a significant
worsening in quality with time would demand managerial intervention).

2. SINGLE-STAGE SYSTEMS
In a single-stage system all work required by a job or a customer is done by one service facility.
However, this facility may consist of a number of servers or machines in parallel, and system per-
formance will depend on how jobs or customers are allocated to the machines or servers.

We distinguish between two situations. One is that where no work is done prior to a job or
customer’s arrival. The second is where jobs are done prior to arrival of a demand, or work is done
on anticipated customer requirements prior to the customer arriving.

2.1. Make-to-Order Manufacturing or Service with No Tasks Done Prior to
Customer Arrival

2.1.1. Single-Server System

The system is then equivalent to a single-server queueing system for which numerous results are
available (see sections 4.2 to 4.5 of Chapter 83). With Poisson arrivals, the performance measures
are usually obtainable from fairly simple formulae. However, for general arrival times and general
service times, it is usually necessary to resort to bounds and approximations, although such results
are often remarkably accurate when the server utilization is reasonably high (see Daley et al. (1992)
for a comprehensive description of various bounds and approximations). Suppose that the mean time
between arrivals is 1 /� and the squared coefficient of variation (scv � variance /mean2) of the time
between arrivals is The service time of a job has mean 1 /� and scv of Let � � � /�. Then2 2C . C .a S

a good general upper bound on the number of jobs in the system is

2 2 2�(2 � �)C � � Ca SE[N ] � � � (1)
2(1 � �)

while for interarrival times that are DMRL, i.e., decreasing mean residual life, or in other words, as
the time since the last arrival increases, the expected time to the next arrival becomes less, a lower
bound is

2 2 2�C � �(1 � �) � � Ca S � � � E[N ] (2)
2(1 � �)

Note that the difference between these upper and lower bounds is /2 � �, since with2�(C � 1)a

DMRL arrivals 2C �1.a

An approximation for the mean number of jobs in the system, n̂, that gives good results for
relatively high utilizations is the following:

2 2 2 2 2� (1 � C ) (C � � C )S a Sn̂ � � � (3)� �� �2 21 � � C 2(1 � �)S

At low utilizations, none of the approximations or bounds that just use information on the mean and
variance of the interarrival times and service times are particularly good when the criterion is the
percentage error. This is because the performance of the queue tends to be determined by the bur-
stiness of arrivals, a property not captured by the second moment.

For some situations, where all that is required is to get insight into the impact of variability in
interarrival times and service times at high utilizations, it is possible to use the heavy traffic result

2 2lim 2(1 � �)E[N ] � C � C (4)a S
� →1

2.1.2. Multiple Servers

2.1.2.1. Identical Servers Suppose there are c parallel servers with identical capabilities. The
mean time between arrival of jobs is 1 /� and the mean time to serve a job is 1 /�. Jobs wait in a
single queue and the first job in the queue is allocated to the first free server. Let � � � /c�. Then
with general arrivals and general service time distributions there are no exact results. One approach
is to approximate the system by a G /G / 1 queue and then modify the performance measures by the
relationship between M /M /c and M /M / 1 results. When the multiple server system is represented by
a G /G / 1 queue, the arrival process at the queueing system is unchanged but the service time of the
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single server equivalent to the c parallel servers is scaled by a factor of 1 /c. That is, if the service
time at any one of the c servers had mean , variance , and squared coefficient of variation (scv)2s � S

� the equivalent single server has service time with mean /c, variance c2, and scv2 2 2 2C � /s , s � /S S S

� Then the number of jobs in service and waiting can be approximated by2C .S

E[L]M / M / cn̂ � (n̂ � �) � c� (5)G / G / c G / G / 1E[L]M / M / 1

where is an approximation for the number of jobs in service and waiting in the approximatingn̂G / G / 1

G /G / 1 system. E[L]M / M / c is given by a well-known queueing theory result

c(c�) �
E[L] � p(0)� �M / M / c 2c! (1 � �)

where p(0) � 1 / (c�)k /k! � (c�)c / (1 � �)c!}. Also note that E[L]M / M / 1 � �2 / (1 � �)2.c�1{�k�0

2.1.2.2. Nonidentical servers Assume that all jobs have essentially the same work content.
However, machines or servers differ in the time that it takes for them to perform the required work.
Suppose that there are c servers or machines and the time required to perform the required work for
a job or customer by server j, j � 1,2, . . . , c, is a random variable Sj with mean s .j

2.1.2.3. Throughput Then the following table shows the throughput for a number of different
rules for allocating jobs to machines or customers to servers.

Allocation rule TH

First free server 1 /c� sj�1 j

To server j with probability pj minj 1 /p sj j

Round robin or cyclic minj c /sj

Note that these results depend only on the mean of the Sj. Also note that the first free server rule
gives the greatest throughput, although the random allocation can reach the same throughput if pj is
chosen, so � 1 / 1 / If, however, pj � 1 /c for all j, then random allocation and cycliccs p � s .j j u�1 u

allocation give the same throughput. In service systems, it is usual that servers differ in their capa-
bilities even though they perform the same tasks. It can be seen that these differences will have
significant impact on throughput unless it is feasible to use the first-free-server rule.

Suppose the time between arrivals has mean 1 /� and squared coefficient of variation (scv) 2C .a

With the cyclic allocation rule, the time between arrivals at a given server will have mean c /� and
scv of c. With random allocation, the time between arrivals at server j has mean 1 /pj�j and scv2C /a

of 1 � pj � Thus, if pj � 1 /c, the mean time between arrivals at a server are the same but2p C .j a

the random allocation has higher scv of arrivals and hence will have longer queues.

2.2. Make-to-Stock Manufacturing Systems or Service Systems where Work Is Done in
Advance of Customer Arrival

Assume throughout this subsection that there is a single server.

2.2.1. Exponential Service Time, Poisson Demands

Suppose the target stock level is set as z. Then, as soon as a demand arrives, it is satisfied by an
item taken from inventory. A job is then released to the machine or server to begin manufacturing
or serving the replenishment. Mean service time of a job is � 1 /�.s

2.2.1.1. Backlogged Demands In a system where unmet demands are backlogged, it follows
that jobs will arrive at the machine in exactly the same way as demand arrives. Hence the queue
length at the machine is the same as the queue length in a make-to-order system, with the same
pattern or arrivals of demands and the same service time distribution at machines. However, if N is
the length of the queue, then the inventory in the output store will be max{z � N,0} while the size
of the backlog will be max{0,N � z}. Hence it follows that the expected backlog E[B] is given by
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z�1�
E[B] � (6)

1 � �

and the expected delay in meeting a demand is (�z / (1 � �)). The probability a demand cannot bes
met immediately will be �z, so the service level, the fraction of demand met from stock, is 1 � �z.

2.2.1.2. Lost Sales Alternatively, suppose that demands that cannot be met from stock are lost.
Now SL, the fraction of demand met from stock, is given by

z1 � �
SL � (7)

z�11 � �

2.2.2. Single Machine with Interruptible Demand (Stopped Arrival Queue)

Suppose now that as soon as the store is empty, the demand process is turned off. It is turned on
again once there is an item in the store. The arrival and service of jobs at the machine is now
equivalent to a stopped arrival queue, that is, a queue in which the arrival process turns off once the
queue length reaches z. Now the service level is defined by the ratio of the number of demands met
to the number that would have been generated if the arrival process were never turned off. This is
equal to the fraction of time that the inventory level in the store is greater than zero. With exponential
arrivals and exponential service time, the service level is the same as the lost sales case. However,
when the interarrival process is general, then the results are somewhat different. Consider a G /G / 1
queue with arrivals equal to the arrival process of demands and service equal to the machine service
time. Let n̂ be an approximation for the queue length in this queue and � its traffic intensity. Then
define � by � � (n̂ � �) / n̂. If � � 1, then define � � 1 /�R where �R � (n̂R � �R) / n̂R and n̂R is the
average queue length in a G /G / 1 queue with arrivals having a distribution equal to the service
process and service distribution equal to the interarrival distribution in the original system. �R is
defined as the ratio of the mean interarrival time of demands to the mean service time (i.e., �R � 1
/�). Then a good approximation for the service level in this system is given by

z�11 � ��
SL � , � � 1

2 z�11 � � �

1 � (z � 1)�
SL � , � � 1 (8)

2 � (z � 1)�

where � � lim�→1 d� /d�. For example, if the heavy traffic approximation (4) is used, � � 2 /
and so when � � 1,2 2(C � C )a S

2 2C � C � 2(z � 1)a SSL � (8)
2 22(C � C � z � 1)a S

2.2.3. Multiclass Backlogged Demand

Suppose now that there are r types of items produced on a common single machine. The demand
rate for type i, i � 1, . . . , r, is �i . The service time distribution is identical for all types and has
an exponential distribution with mean 1 /�. Suppose that there is a target stock level of zi for type i.
Then define by � �i / (� � �j�i�j). The service level for type i is then given by�̂ �̂i i

ziSL � 1 � �̂ (10)i i

2.2.4. Multiclass Lost Sales

Again there are r classes with the target stock zi for class i, i � 1,2, . . . , r. Demand rate for class
i is �i while all types are produced on a single machine with the same service time distribution. It
is possible to show that the probability of observing the number of jobs of each type in the machine
queue of n1, n2, . . . , ni, . . . , nr is given by

rr� ni�1 i�1 nip(n) � p(n , n , . . . , n , . . . , n ) � G(Z) � , 0 � n � z ; i � 1, . . . , r�� �1 2 i r i i in , . . . , n1 r i�1

(11)

where the normalizing constant G(Z ) is determined by
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z z r1 r r� ni�1 i niG(Z) � G(z , z , . . . , z ) � ��� � (12)� � �� �1 2 r in , . . . , nn �0 n �0 1 r i�11 r

Note that ( ni /n1, . . . , nr) is the multinomial coefficient, that is the number of ways to allocater�i�1

ni items to r cells in which cell i, i � 1, 2, . . . , r, contains ni items.r�i�1

The service level for type i items is given by

z z1 r

SL � � 1 � ��� ��� p(n)� � �� �i i
n �0 n �z n �01 i i r

G(z , z , . . . , z , z � 1, z , . . . , z )1 2 i�1 i i�1 r� � , i � 1, . . . , r (13)i G(Z)

2.2.5. Produce to Stock with Advance Information

Suppose that it is possible to obtain information about future demands in advance. That is, the arrival
of the nth demand, n � 1, 2, . . . , at time t is signaled at time t � �. If the target or initial stock of
finished products is zero, then the item to meet the demand at time t can be released for manufacture
at time t � �. Now if a target stock z of finished products is held, release of an item to manufacture
will still take place at time t � �, but the nth demand, which arrives at time t, will actually be met
by an item released for manufacture prior to time t � � and triggered by the advice of demand n �
z. Suppose service times are exponential with parameter � and advices about future demands arrivals
are Poisson with rate �. Let � � � /�. Then the service level SL, i.e., the fraction of demands that
are met from stock, is given by (Buzacott and Shanthikumar 1994).

z ���(1��)SL � 1 � � e (14)

and the average delay in meeting a demand is given by

z�
��� (1��)w /s � e (15)

1 � �

The average inventory is given by

�
z ��� (1��)i � z � �� � (1 � � e ) (16)

1 � �

3. FLOW LINES AND SERIES SYSTEMS

3.1. Introduction

Flow lines and series systems can be divided up into two broad classes, based on their influence on
the worker: paced and unpaced. In a paced system the time allowed to perform a task is limited and
once this time is up the job or customer can no longer be worked on, so it is possible that the task
may not be completed. In an unpaced system there is no maximum time limit imposed on the time
for the worker to perform the task.

Paced systems lose throughput because of the incomplete processing of jobs or customers, while
unpaced systems lose throughput because of the variability of task times.

3.2. Models of Paced Systems

In a paced system, the tolerance time, �, the maximum time available to perform the tasks at any
workstation, is set. Thus if Ti, the time required by the worker at station i to perform their required
tasks, exceeds �, the tasks will be incomplete and defective products will result. Hence the probability
Q(�) that a product will not contain any defects is

m

Q(�) � P{T � �, T � �, . . . , T � �} � P{T � �} (17)�1 2 m i
i�1

To meet a given quality target Q, the probability that the product is nondefective should be at least
Q. So the minimum tolerance time is the solution to

1 / mF (�) � Q (18)i

One of the managerial controls in a paced system is the tolerance time �, which is related to the line
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speed. Too short a tolerance time means that the quality is low, while too high a tolerance time
reduces the utilization of the workers and so lowers productivity. For example, if m � 10 and the
quality target Q � 0.98 then Fi(�) must be at least 0.998. This means that if task times were expo-
nential, and with the same distribution at all stations, the tolerance time � has to be set at 6.2 � the
mean processing time of a job at a station. If task times have a normal distribution with mean � and
standard deviation �, then the tolerance time will have to be set as � � � � 2.9�. It is clear that
this would lead to a substantial loss in labor productivity unless the variability of task times can be
kept small.

Note that for Q close to 1, Fi(�) is approximately given by

1 � Q
1 � F (�) � (19)i m

The gross output rate will be 1 /� but the system throughput of nondefectives will be

Q(�)
TH � (20)

�

3.3. Models of Unpaced Lines

The unpaced line consists of m stages. Once a job is completed at stage i, it moves on to stage i �
1, although it may pass through an intermediate buffer of capacity bi, i � 1, 2, . . . , m � 1, where
capacity is made up of the space for jobs in process at the stage plus the space in the buffer.

3.3.1. Infinite Buffer Systems

Suppose that there is one machine or server at each stage. The processing time of a job at stage i is
exponential with mean 1 /�i. Jobs or customers arrive at the system according to a Poisson process
with rate �. In an infinite buffer system, we have

1
TH � min (21)� �

�i i

and if � � TH and �i � � /�i, then the distribution of Ni, the inventory at station i, is given by

kiP(N � k ) � � (1 � � )i i i i

It follows that the average inventory at stage i is given by

�iE[N ] �i 1 � �i

and hence the total inventory is given byn

m �in � (22)�
1 � �i�1 i

3.4. Two-Stage Flow Lines

Consider a flow line that consists of two stages separated by a buffer of capacity z. Each stage
consists of a single server, so b � z � 1.

3.5. Exponential Service Times

Assume that the service time at each stage is exponentially distributed with mean 1 /�i, i � 1,2. Let
� � �1 /�2. Then, using a Markov model, it is possible to show that the throughput of this system
is given by

b�1(1 � � )
TH � � � � 11 b�21 � � )

(b � 1)
� � � � 1 (23)2 b � 2

Alternatively, write
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TH � � (1 � B(� , � , b � 1)) � � (1 � I(� , � , b � 1))1 1 2 2 1 2

where

b�1� (1 � �)
B(� , � , b � 1) � � � 11 2 b�21 � �

1
� � � 1 (24)

b � 2

1 � �
I (� , � , b � 1) � � � 11 2 b�21 � �

1
� � � 1 (25)

b � 2

Note that 1 /TH is the mean time between parts arriving at the line and equals the mean time between
parts leaving the line. That is, the system behaves as if it were equivalent to a single machine with
mean service time 1 /�* given by the two equivalent expressions

1 1 1
� � B(� , � , b) (26)1 2�* � �1 2

1 1
� � I(� , � , b) (27)1 2� �2 1

3.6. General Service Times

If the service times at the two stations are general, then a good approximation can be obtained by
viewing the system as a stopped arrival queue, where stage 1 corresponds to the arrival process and
stage 2 corresponds to the service process (Buzacott et al. 1995). Suppose the service time at stage
i is a random variable Si, i � 1, 2. Define � � E[S2] /E[S1], �R � 1 /�, and � � 1 /E[S1]. If the buffer
capacity is z, then the maximum number of jobs in the system is z � 2 and b � z � 1. Then the
approximation is

b(1 � �� )
TH � � � � 1

2 b1 � � �
2 2C � C � 2bS1 S2� � � � 1 (28)

2 22(C � C � b)S1 S2

with

� � (n̂ � �) / n̂ � � 1
ˆ� n̂ / (n � � ) � � 1R R R

where n̂ is the approximate average number of jobs in a G /G / 1 queueing system with arrival dis-
tribution S1 and service distribution S2, while n̂R is the approximate average number of jobs in a G /
G / 1 queueing system with arrival distribution S2 and service distribution S1. The two moment ap-
proximations given above can be used to find n̂ or n̂R as appropriate. Table 1 shows the accuracy of
the approximation for the case where S1 and S2 have Erlang-3 distributions.

3.7. Three-Stage Flow Lines

Consider a three-stage flow line with finite buffer storage space. The number of spaces in the buffer
i between stages i � 1 and i is z1. Set bi � zi � 1. Assume that the service time at each stage is
exponentially distributed with mean 1 /�i, i � 1, . . . , m.

Such a system is best analyzed using a Markov process model. Then the state of the system is
defined by {n2, n3}, where ni is the number of jobs in the system that have been processed by station
i � 1 but have not yet completed processing by station i, i � 2, 3. The state space S � {(n2,n3): 0
� n2 � b2 � 1, 0 � n3 � b3 � 1, n2 � n3 � b2 � b3 � 1}. Note that when ni � bi � 1, stage i �
1 is blocked by stage i. Let p � (p(n2, n3), (n2, n3) � S) be the stationary probability vector of this
Markov process. The steady-state balance equations for p, obtained by equating the rate of leaving
a state with the rate of entering the state, are given by



QUEUEING MODELS OF MANUFACTURING AND SERVICE SYSTEMS 1641

TABLE 1 Adequacy of Throughput Approximation � 1 /3, � 1 /32 2C CS1 S2

� TH /�

b

1 2 3 4 5

0.5 Sim. 0.9432 0.9928 0.9989 0.9999 1.0000
approx. 0.9462 0.9895 0.9978 0.9996 0.9999

0.8 Sim. 0.8390 0.9348 0.9704 0.9864 0.9938
approx. 0.8658 0.9411 0.9710 0.9850 0.9920

1.0 Sim. 0.7595 0.8583 0.9002 0.9250 0.9395
approx. 0.8000 0.8750 0.9091 0.9286 0.9412

1.25 Sim. 0.6729 0.7475 0.7744 0.7882 0.7954
approx. 0.6926 0.7529 0.7768 0.7880 0.7937

2.0 Sim. 0.4723 0.4976 0.5013 0.4991 0.5002
approx. 0.4731 0.4947 0.4989 0.4998 0.5000

From Buzacott and Shanthikuma, � 1993. Reprinted by permission of Prentice-Hall Inc., Upper Saddle River, NJ.

� p(0, 0) � � p(0, 1)1 3

(� � � )p(0, n ) � � p(1, n � 1) � � p(0, n � 1), 1 � n � b1 3 3 2 3 3 3 3 3

(� � � )p(0, b � 1)� � p(1, b )1 3 3 2 3

(� � � )p(n , 0) � � p(n � 1, 0) � � p(n , 1), 1 � n � b1 2 2 1 2 3 2 2 2

(� � � � � )p(n , n � � p(n � 1, n ) � � p(n � 1, n � 1) � � p(n , n � 1),1 2 3 2 3 1 2 3 2 2 3 3 2 3

1 � n � b , 1 � n �b2 2 3 3

(� � � )p(n , b � 1) � � p(n � 1, b � 1) � � p(n � 1, b ), 1 � n � b � 11 3 2 3 1 2 3 2 2 3 2 2

� p(b , b � 1) � � p(b � 1, b � 1) � � p(b � 1, b )3 2 3 1 2 3 2 2 3

� p(b � 1, 0) � � p(b , 0) � � p(b � 1, 1)2 2 1 2 3 2

(� � � )p(b � 1, n ) � � p(b , n ) � � p(b � 1, n � 1), 1 � n � b � 12 3 2 3 1 2 3 3 2 3 3 3

(� � � )p(b � 1, b ) � � p(b , b )2 3 2 3 1 2 3

These 	S	 � (b2 � 1)(b3 � 1) � 1 equations along with the normalizing equation

p(n ,n ) � 1� 2 3
(n ,n )�S2 3

can be solved for p. Unfortunately, they do not possess a formula type solution.
With present computing facilities, direct solution of the equations using a standard procedure is

probably as easy a method to use as any other. However, as b2 and b3 increase, it would be desirable
to make use of the fact that the coefficient matrix has a large number of zero entries and thus a
sparse matrix solution procedure would be appropriate. Once p has been computed, the throughput
can be obtained by

b �12

TH � � 1 � p(n , 0)�� �3 2
n �02

For the special case of no (extra) buffer capacity (i.e., b2 � 1, b3 � 1), an explicit formula for the
throughput can be obtained. It is

2 2 2 2 21 � (� � � ) (� � � )(� � � � � ) � � �2 1 3 1 3 1 2 3 1 3TH(� , � , � ) � 1 �
� � ��1 2 3 3 2 2� � � (� � � )(� � � ) (� � � ) � � (� � � � � � )2 1 3 1 2 2 3 1 3 2 1 1 3 3

(29)

This approach of setting up and solving a Markov model can be used for other similar systems
with exponential service times. Typically, the number of equations to be solved increases rapidly
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with the number of stages and the size of the buffers, so while straightforward it becomes increasingly
difficult to use.

3.8. Multiple-Stage Flow Lines with Exponential Processing Times

The flow line is modeled by a tandem queueing system with m stages and with finite buffer capacities
b2, . . . , bm with bi � zi � 1, where zi is the number of spaces in buffer i, and exponentially distributed
processing times with mean 1 /�i, i � 1,2, . . . , m. The jobs arrive at the flow line according to a
Poisson process with rate �.

We use this situation to illustrate a particular approach to developing approximate models of
manufacturing and service system performance that is of wide applicability.

The basis of the approximate approach is to consider stage i as if it were isolated from the rest
of the system, and so we model it as an M /M / 1 /bi � 1 queue. Jobs are assumed to arrive as a
Poisson process with rate and service is exponentially distributed with rate �id, so the probability�̂i

that an arriving job is blocked is given by �id, bi � 1), where �id, bi�1) is given by Eq.ˆ ˆB(� , B(� ,i i

(24). Observe that if � � TH, the job departure rate for stage i is �. Thus,

ˆ ˆ� (1 � B(� , � , b � 1)) � � (30)i i id i

Also, considering stage i � 1 as a two-stage flow line, using Eq. (26) we approximate �id by

1 1 1 ˆ� � B(� , � , b ), i � 1, . . . , m � 1 (31)i�1 i�1d i�1� � �id i i�1d

and �md � �m. That is, we have the recursive relations (30) and (31) to solve for i � 1, . . . , m�̂ ,i
� 1 with the initial condition �md � �m. Note that for (30) to have a solution, we require �id � �,
i � 1, . . . , m � 1. The mean number of jobs in the system and at the different stages can be
approximated by and (N̂i, i � 1, . . . , m) delivered by the following algorithm. Let N̂m / M / 1 / b(�,� Ni i

�, b) be the mean number of customers in an M /M / 1 /b queueing system with arrival rate �, service
rate �, and buffer capacity b. If � � � /�,

b�1� (b � 1)�
N̂ (�, �, b) � �M / M / 1 / b b�11 � � 1 � �

3.8.1. Algorithm 1: Work-in-Process (Finite Buffer Flow Lines: Single Servers,
Exponential Processing Times)

Step 1: Set �md � �m.
Step 2: For i � m, . . . , 2,

if �id � �, then the system is unstable, go to step 4;
else, solve (1 � B �id, bi � 1)0 � � forˆ ˆ ˆ� (� , �i i i

Set 1 /�i�1d � 1 /�i�1 � 1 /�id B( �id, bi).�̂ ,i
Compute N1 � N̂M / M / 1 / b �id, bi � 1).ˆ(� ,i

Step 3: Compute N1 � N̂M / M / 1(� /�1d).
Step 4: Stop.

In step 2 we need to solve the nonlinear equation (1 � B �, b � 1)) � � for the unknownˆ ˆ� (�,
when � � �. Since (1 � B( �, b�1)) is increasing and concave in the following iterativeˆ ˆ ˆ ˆ� � �, �,

scheme

(k�1) (k�2) (k�2) (k�2)ˆ ˆ ˆ ˆ(� � � )(� � � (1 � B(� , �, b � 1)))
(k) (k�2)ˆ ˆ� � � � , k � 2, . . . ,

(k�1) (k�1) (k�2) )k�2)ˆ ˆ ˆ ˆ� (1 � B(� , �, b � 1)) � � (1 � B(� , �, b � 1))

starting with � 0; � �, will monotonically converge to the solution.(0) (1)ˆ ˆ� �
In algorithm 1 we see that if � � �id for any i, i � 1, . . . , m, the system is unstable. Let �* �

max{� : �id 	 �, i � 1, . . . , m}. We will use �* as our approximate throughput of the flow line.
It can be verified that the following iterative scheme will converge and provide �*. Let
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1 � �
I(�, �, b) �

b�11 � �

be the steady-state probability that the server is idle in an M /M / 1 /b queueing system with arrival
rate �, service rate �, and buffer capacity b.

3.8.2. Algorithm 2: Throughput (Finite Buffer Flow Lines: Single Servers, Exponential
Processing Times)

Step 1: Set �1u � �1; �id � �i, i � 2, . . . , m.
Step 2: For i � 2, . . . , m, compute

1 /�iu � 1 /�i � 1 /�i
1u I(�i
1u, �id, bi)
Step 3: For i � m, . . . , 2, compute

1 /�i
1d � 1 /�i
1 � 1 /�id B(�i
1u, �id, bi)
Step 4: If 	�1(1 � B(�1, �2d, b2 � 1)) � �m(1 � I(�m
1u, �m, bm � 1))	 � �, set �* � �1(1 �

B(�1, �2d, b2 � 1)) and stop. Otherwise go to step 2.

3.9. General Service Time Approximation

Suppose that the service times at the stages are random variables Sj, j � 1, . . . , m. Let 1 /�j and
be the mean and squared coefficient of variation of the service time at stage j. Suppose the buffer2C Sj

capacity between stage j � 1 and j is zj, j � 2, . . . , m.
The basis of the approximation is to analyze each stage j, j � 2, . . . , m as a GI /GI / I /zj � 2

stopped arrival queue. The effective arrival process and service times at stage j, j � 2, . . . , m will
be chosen so that they effectively reflect the upstream and downstream portions of the flow line,
where upstream means the overall effect of stages 1, . . . , j � 1 and downstream means the overall
effect of stages j, . . . , m. Let (1 /�j
1u, denote the mean and scv of the effective input or2C )Sj�1u

arrival process to stage j when turned on (i.e., when stage j � 1 is not blocked because the queue is
full), and let (1 /�jd, be the mean and scv of the effective service or output process at stage j2C )Sjd

(i.e., when stage j is not starved because the stage is empty). Also let THj be the throughput of the
stage j stopped arrival queue, obtained using a GI /GI / 1 /bj � 1 stopped arrival queue approximation
with input parameters (1 /�j
1u, and service parameters (1 /�jd,2 2C ) C ).S Sj�1u jd

There are useful equations relating �ju and �jd. Consider stage j. The time between the k � 1th
and kth job departures from stage j can be written as

(j) (j) (j) (j)T � I � S � H (32)k k k k

where is the idle time of stage j waiting for the next job to arrive and is the holding or(j) (j)I Hk k

blocking time of the job while it waits for queue space in the buffer at stage j � 1. Next observe
that � is the effective service time experienced by a job in the stopped arrival queue cor-(j) (j)S Hk k

responding to stage j, that is � � 1 /�jd. Also note that � is the effective interarrival(j) (j) (j) (j)E[S H ] I Sk k k k

time in the stopped arrival queue corresponding to stage j � 1, that is, � � 1 /�ju. Also,(j) (j)E[I S ]k k

is the mean interdeparture time from the original system and 1 /THj�1 is from the decomposed(j)E[T ]k

system. In order for 1 /THj�1 to be correct, we must have � 1 /THj�1. Thus, rewriting (32),(j)E[T ]k

(j) (j) (j) (j) (j) (j)S � H � S � T � (I � S )]k k k k k k

and taking expectations, we obtain

1 1 1 1
� � �

� � TH �jd j j�1 ju

Note that the average blocking time of stage j is 1 /THj�1 � 1 /�ju.
Similarly, by considering the time between successive job inputs to stage j � 1 it can be shown

that

1 1 1 1
� � �

� � TH �j�1u j�1 j�1 j�1d

That is, we get the following set of 2(m � 1) equations
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1 1 1 1
� � � , j � 2, . . . , m � 1 (33)

� � TH �jd j j�1 ju

1 1
�

� �md m

1 1
�

� �1u 1

1 1 1 1
� � � , j � 1, . . . , m � 2 (34)

� � TH �j�1u j�1 j�1 j�1d

Given the and the (see below as to alternative approaches for determining these quantities),2 2C CS Sju jd

the above 2(m � 1) equations plus the m � 1 equations to determine THj, j � 2, . . . , m, the
throughput of each stopped arrival queue from the mean and scv of the (equivalent) arrival and
service processes, give 3(m � 1) equations in the 3(m � 1) variables THj, �j�1u and �jd, j � 2, . . .
, m. These equations can be solved recursively.

3.9.1. Algorithm 3: Throughput (Finite Buffer Flow Lines: Single Servers, General
Processing Times)

Step 0: Set � �j, j � 2, . . . , m.(0)�jd

Step 1: For k � 1, 2, . . . and for j � 1, . . . , m � 1, calculate (i) using the GI /GI / 1 /(k)TH j�1

bj�1 � 1 stopped arrival queue approximation with input parameters and service(k) 2(1 /� , C )ju Sju

parameters (ii) using(k�1) 2 (k)(1 /� ,C ), �j�1d S j�1uj�1d

1 1 1 1
� � � , j � 1, . . . , m � 2,

(k) (k) (k�1)� � TH �j�1u j�1 j�1 j�1d

and (iii) using(k)�jd

1 1 1 1
� � � , j � 2, . . . , m � 1

(k) (k) (k)� � TH �jd j j�1 ju

Step 2: Stop once

(k) (k�1)	TH � TH 	 � �m m

It can easily be verified that at convergence � for all i � j.(k) (k)TH THi j

3.9.2. Squared Coefficient of Variation Recursions

So far it has not been specified how to calculate the scv and Two approaches are possible.2 2C C .S Sju jd

The simplest, approximation (a), is to set

2 2C � C , j � 1, . . . , m � 1S Sju j

2 2C � C , j � 2, . . . , mS Sjd j

This approximation considers only the immediate upstream and downstream stations and ignores the
impact of possible blocking or starving on the variance of the equivalent service times or arrival
times.

The other approach [see Buzacott et al. 1995, approximation (b)] tries to take account of the
impact of possible blocking and starving on the variance of the service times. It uses the following
set of 2(m � 2) equations by which the scv’s can be determined

2 2 2E[S ] � E[S ] � � (E[S ] � 2E[S ]E[S ]), j � 2, . . . , m � 1jd j j�1d j�1d j j�1d

with � and �j�1d defined by2 2E[S ] E[S ]md m
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TABLE 2 Four Stage Throughput with Exponential Service Times

Parameters

�i

1 2 3 4

zi

2 3 4

TH

Exact

App.

(a) (b)

1 1.1 1.2 1.3 1 1 1 0.710 0.689 0.700
1 1.2 1.4 1.6 1 1 1 0.765 0.746 0.756
1 1.5 2 2.5 1 1 1 0.861 0.850 0.855
1 2 3 4 1 1 1 0.929 0.925 0.927

From Buzacott et al. 1995. Reproduced with permission of Kluwer Academic Publishers.

1 1
� � � � , j � 2, . . . , m � 1.� �j�1d j�1d TH �j�1 ju

and

2 2 2E[S ] � E[S ] � � (E[S ] � 2E[S ]E[S ]) j � 2, . . . , m � 1ju j ju j�1u j j�1u

with � and2 2E[S ] E[S ]1u 1

1 1
� � � � j � 2, . . . , m � 1� �ju j�1u TH �j jd

Table 2 illustrates the approximation for a four-stage system where the service times are exponentially
distributed. Note that the case (a) approximation is now identical to algorithm 2 given above for the
throughput of an exponential flow line.

4. TRANSFER LINES
In a transfer line, movement of jobs at all stations in a section of the line is synchronized. Thus,
transfer can only begin when the slowest station has completed its operation. If no station fails, then
the mean time between successive transfers is the cycle time, �. The cycle time will consist of the
maximum time to perform operations at a station in the section, plus the time required for transfer.
The gross production rate is 1 /�. The net production rate is TH and is less than the gross production
rate because of line stoppages due to station or transfer mechanism failure. Note that if any station
in the section fails and thus its operation is not completed, then no transfer will occur and all stations
in the section will be forced down. The extent to which this section stoppage will affect other sections
of the line depends on the degree of integrated linkage and control between sections. If no inventory
can be kept between sections, then the rest of the line will be forced down almost immediately. In
lines with many stations, there is much equipment that can break down, so the net production rate
can be much less than the gross production rate. The efficiency of the transfer line is defined by

net production rate
 � � TH�

gross production rate

One means of increasing the net production rate of a transfer line and reducing the impact of stop-
pages is to insert in-process storage or a bank between the two sections of the line. A bank has the
effect of decoupling the two sections of the line, allowing each section to operate independently.

4.1. Models

4.1.1. Transfer Lines with No Inventory Banks

Consider a transfer line with m stages or stations. The station failures can be either time dependent
(failure is possible when the station is idling) or operation dependent (failure only occurs when the
station is working on a part).

4.1.2. Time-Dependent Failures

Suppose the stations can fail even when they are idling. Let the mean time to failure, and repair
times of stage i, be i and i respectively, for i � 1, 2, . . . , m. With no inventory bank, all stationsU D
in the line stop as soon as any station fails. Then it follows that
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m
T � A (35)� i

i�1

where

ŪiTA � i � 1, . . . , mi ¯ ¯U � Di i

4.1.3. Operation-Dependent Failures

Suppose that stations can fail only when they are working on a part. Let i be the mean number ofT
cycles station i operates between failures, i be the mean downtime of station i, and � be the averageD
cycle time when the line is running and � i / ( i�). Then the line consisting just of station i wouldox D Ti

have efficiency

T̄ 1ioA � � i � 1, . . . , mi o¯ ¯T � D /� 1 � xi i i

Then it can be shown that

1
 � (36)

m o1 � � xi�1 i

If, however, the part in process at the instant of failure must be scrapped, then

m ¯� (1 � 1 /T )i�1 i � (37)
o i�1 ¯1 � � mx � (1 � 1 /T )i�1 i j�1 j

If only a fraction qi of the failures result in scrapping of the part, then

m ¯� (1 � q /T )i�1 i i
� � (38)

m o i�1 ¯1 � � x � (1 � q /T )i�1 i j�1 j j

4.1.4. Systems Separated by Infinite Inventory Banks

Suppose the stages in an m-stage transfer line are separated by inventory banks of infinite capacity.
Let the mean time to failure and repair times of stage i be i and i respectively, for i � 1, . . . ,U D
m. Define

D̄ix � i � 1, . . . , mi Ūi

4.1.4.1. No Parts Scrapped The efficiency of the line is

1
 � min i � 1, . . . , m (39)� �1 � xi

4.1.4.2. Scrapping of Parts Suppose when station i fails, the part being processed is scrapped,
with probability qi, i � 1, . . . , m. Then

m ¯1 � q /Tk k
 � min (40)�� � ��1 � x1�j�m k�j j

4.1.5. Two-Stage Synchronized Line with Finite Capacity Inventory Banks

Consider a series transfer line with two stations, one finite intermediate inventory bank with capacity
z and synchronized part transfer. Suppose

ai � P(station i is failed at time n � 1	station i is working at time n)
âi � P(station i is failed at time n � 1	station i is either blocked or idle at time n)
bi � P(station i is up at time n � 1	station i is down at time n) i � 1, 2
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âi is zero if failures are operation dependent, and equal to ai if failures are time dependent.
Then a discrete time Markov chain model with the system observed just prior to the beginning

of transfer can be used to show that the line efficiency is given by

z1 � r*�
(z) � a b � b a (41)1 2 1 2z1 � x � (1 � x )r*�1 2

where xi � ai /bi, that is, 1 / (1 � xi) is the efficiency of station i if it operates on its own,

(â � b )(â � � a � )1 1 2 1 2 1r* � (42)
(â � b )(â � � a � )2 2 1 2 1 2

� �1 2� � (43)
� �1 2

and

� � a � a � a a � b a1 1 2 1 2 1 2

� � a � a � a a � a b2 1 2 1 2 1 2

� � b � b � b b � a b1 1 2 1 2 1 2

� � b � b � b b � b a . (44)2 1 2 1 2 1 2

4.1.5.1. Balanced Stages (Case Where a1b2 � b1a2) This means that x1 � x2 � x̂, �1 � �2 �
�, �2 � �2 � �, � � 1 and x̂ � � /�. Then it can be shown that

â � b � â � b � (â � b )(â � b ) � (â � b )(â � b )z(1 � x̂)1 1 2 2 1 1 2 2 1 1 2 2(z) �
2(â � b � â � b )(1 � x̂) � (â � b )(â � b )(x̂(b � b ) /b b � (z � 1)(1 � x̂) )1 1 2 2 1 1 2 2 1 2 1 2

(45)

Note that if â1 � â2 � â, b1 � b2 � b, that is, the stations are identical,

2 � b � â � (b � â)z(1 � x̂)
(z) � (46)

22(1 � 2x̂ � x̂â /b) � (b � â)(z � 1)(1 � x̂)

4.1.6. Operation-Dependent and Time-Dependent Failures

Two limiting cases are of interest: (1) operation-dependent failures: â1 � â2 � 0, and (2) time-
dependent failures: â1 � a1, â2 � a2. For operation-dependent failures and identical stations,

2 � b � bz(1 � x̂)
(z) � (47)

22(1 � 2x̂) � b(z � 1)(1 � x̂)

and for time-dependent failures

22 � b(1 � x̂) � bz(1 � x̂)
(z) � (48)

2 32(1 � x̂) � b(z � 1)(1 � x̂)

4.1.6.1. Failure-Transfer Coefficients The quantities �(z) and ��(z) defined next are the failure
transfer coefficients.

�(z) � Pr{bank is empty	station 1 is failed} (49)

��(z) � Pr{bank is full	station 2 is failed} (50)

These quantities will be used later to describe an approximation for the efficiency of m-stage transfer
lines. Later we will use �(z, a1, b1, a2, b2) and ��(z, a1, b1, a2, b2) for �(z) and ��(z) respectively to
show explicitly the failure and repair probabilities of the two stages.

It can be shown that
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1 � r*
�(z) � , x � x ,1 2z1 � r*�

b � b � b b1 2 1 2� , x � x � x̂ (51)1 2b � b � b b � zb b (1 � x̂)1 2 1 2 1 2

and

z� (1 � r*)
��(z) � , x � x ,1 2z1 � r*�

b � b � b b1 2 1 2� , x � x � x̂ (52)1 2b � b � b b � zb b (1 � x̂)1 2 1 2 2 2

They can be expressed in an alternative way that provides further insight into their meaning.
For other two-stage transfer line models, see Buzacott and Shanthikumar (1993).

4.2. Multiple-Stage Transfer Lines

Consider a transfer line with m stages and m � 1 banks of capacities z1, z2, . . . , zm
1. The number
of cycles of operation before failure and the repair times all have geometric distributions with mean
1 /ai and 1 /bi respectively for stage i, I � 1, . . . , m. The parameters of stage i are then (ai, bi).

4.2.1. Approximation

The basic concept of the approximation approach is the recognition that viewed from any inventory
bank the line appears to have two stages, with the arrivals at the bank determined by the upstream
stages and the departures from the bank determined by the downstream stages. If the upstream stages
are replaced by a single equivalent station and the downstream stages are replaced by a single
equivalent station, then, viewed from the bank, the system appears to consist of the bank and two
stations. If the equivalent stations have time to failure and repair time distributions for which the two
station system can be solved, then the throughput of the system can be determined. The approximation
arises because, even when the individual stages have distributions that in a two-station system would
be solvable, grouping the upstream or downstream stages results in the grouped stages no longer
having the same form of distributions of time to failure and time to repair as their constituent stages.
However, in order to use the known two-stage results, it is necessary to approximate the actual
distributions by distributions for which the two-stage system has a solution.

The specifics of the approximation procedure will be described for a system where each stage j,
j � 1, . . . , m has geometric operation-dependent time to failure with failure probability aj and
geometric repair time with repair probability bj. However, the procedure can easily be adapted to the
case where the stages have geometric time to failure and identical deterministic repair time withD
all banks having a capacity such that zj � lj where lj is an integer. Viewed from bank j, the upstreamD
stages will be assumed to have a geometric time to failure with failure probability and geometricUaj

repair time with repair probability while the downstream stages will be assumed to have geometricUb ,j

time to failure with failure probability and geometric repair time with repair probabilityD Da b .j�1 j�1

These parameters are given by

U D Ua � a � (1 � a )a � , 2 � j � m � 1j j j j�1 j�1, j

U Ua a bj j�1 j�1U U Db � a � � 1 � a , 2 � j � m
� � ��j j j�1, j jU D U D Ub b b � b � b bj j�1 j j�1 j j�1

Ua � a1 1

Ub � b1 1

D U Da � a � (1 � a )a � � , 0 � j � m � 2,j�1 j�1 j�1 j�2 j�2 j�2,j�1

D Da a bj�1 j�2 j�2D D Ub � a � � 1 � a ,
� � ��j�1 j�1 j�2,j�1 j�1D U D U Db b b � b � b bj�1 j�2 j�1 j�2 j�1 j�2

1 � j � m � 2
Da � am m

Db � bm m
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where

U U D D� � �(z , a , b , a , b )j�1,j j�1 j�1 j�1 j j

and

U U D D� � ��(z , a , b , a , b )j�1, j j j j j�1 j�1

There are thus 4m � 2 equations in 4m � 2 unknowns. Let j � 1, . . . , m) be aU U D D(a , b , a , b ,j j J j

solution to these equations. Then it can be shown that the efficiency of the twoU U D D(z ,a ,b ,a ,b )j j j j�1 j�1

stage line is the same for all j � 1, . . . , m � 1. Specifically, we have

1
O U U D D :� � (z , a , b , a , b )j j j j�1 j�1U U1 � a /bm m

1
I�  :� , j � 1, . . . , m � 1 (53)

D D1 � a /b1 1

Since the equations are nonlinear, they are best solved using an iterative technique, where con-
vergence is checked by determining whether I � O.

4.2.2. Algorithm 4: Multistage Transfer Line

Step 0: Set k � 1, � aj, � bj, j � 2, . . . , m.D Da (0) b (0)j j

Step 1: Set � a1, � b1. For j � 1, 2, . . . , m � 1, analyze the two stage transfer lineU Ua (k) b (k)1 1

with parameters and (k � 1), (k � 1)) and determine and (k).U U D D U U(a (k),b (k)) (a b a (k) bj j j�1 j�1 j�1 j�1

Step 2: Set � am, � bm. For j � m � 1, m � 2, . . . , 1 analyze the two-stage transferD Da (k) b (k)m m

line with parameters and and determine andD D U U D D(a (k), b (k)) (a (k),b (k)) a (k) b (k).j�1 j�1 j j j j

Step 3: Calculate O � 1 / (1 � and I � 1 / (1 � If 	O � I	 � � stop,U U D Da (k) /b (k)) a (k) /b (k)).m m 1 1

otherwise set k � k �1 and go to step 1.

The convergence of this algorithm is shown in Buzacott and Shanthikumar (1993). Convergence
to a solution is usually very rapid, and the solution is usually very close to the exact line efficiency.
Table 3 shows exact and approximate results for a number of three-stage lines. There are some
situations where convergence of the algorithm is very slow, such as, in some three station systems
where the failure probability of the middle stage is much less than that of the outer stages (case 6
in Table 3). If all the bj are identical and equal to b and the aj’s are sufficiently small that it is
unlikely more than one stage is failed at any time, then the above 4(m � 1) equations can be reduced
to the following 2(m � 1) equations by seting � � b for 1 � j � m � 1:U Db bj j�1

U U ˆa � a � a � , 2 � j � mj j j�1 j�1,j

D D ˆa � a � a � , 0 � j � m � 2j�1 j�1 j�2 j�2,j�1

Ua � a1 1

Da � a (54)m m

Here

U Dˆ ˆ� � �(z , a , b, a , b)j�1,j j�1 j�1 j

U Dˆ ˆ� � ��(z , a , b, a , b),j�1,j j j j�1

ˆ ˆ��(z, a , b, a , b) � �(z, a , b, a , b) (55)1 2 2 1

and

1 � a /a2 1�̂(z, a , b, a , b) �1 2 za a � a � a b2 1 2 11 � � �a a � a � a b1 1 2 2
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TABLE 3 Throughput of Three-Station Systems

Case a1 a2 a3 b1 b2 b3 z1 z2  exact  approx

1 0.03 0.05 0.02 0.20 0.20 0.20 15 15 0.777846 0.777759
2 0.01 0.02 0.005 0.20 0.10 0.15 15 3 0.814949 0.814970
3 0.7 0.9 0.6 0.3 0.4 0.9 7 5 0.285463 0.285463
4 0.9 0.05 0.6 0.4 0.4 0.4 10 10 0.307692 0.307692
5 0.001 0.0003 0.005 0.7 0.02 0.3 8 4 0.970335 0.970337
6 0.6 0.04 0.6 0.8 0.4 0.8 9 9 0.565423 0.571365

From Buzacott and Shanthikumar � 1993. Reprinted by permission of Prentice-Hall Inc., Upper Saddle River, NJ.

When a1 � a2,

1
�̂(z, a, b, a, b) �

zb
1 �

2 � b

The efficiency of the line can be found from O � 1 / or I � 1 / or byU D(1 � a /b) (1 � a /b),m 1

determining the efficiency of any of the two stage lines with parameters b) and andU D(a , (a , b)j j�1

inventory bank capacity zj by the efficiency formula

1
U D̂(z , a , b, a , b) � (56)j j j�1 U Dˆ1 � (a � � a ) /bj j, j�1 j�1

It is not difficult to show that the same efficiency is obtained for all j. That is,

U D U D̂(z , a , b, a , b) � ̂(z , a , b, a , b), j � 1, . . . , m � 2 (57)j j j�1 j�1 j�1 j�2

Therefore, the preceding m � 2 equations may be used to replace (m � 2) of those specified above
for and and still solve for j � 1, . . . , m � 1}.U D U Da ’s a ’s {(a , a ),j j�1 j j�1

5. DYNAMIC JOB SHOPS
The models in this section were originally developed to describe job shops in manufacturing, but
they are also applicable to service systems where customers take different routes through the system,
depending on their service requirements or diagnosis. So while we will use the language of manu-
facturing job shops, the reader can easily replace this with comparable language from service appli-
cations.

5.1. Open Jackson Queueing Network Model
A single class of jobs arrive at the job shop according to a Poisson process with arrival rate �. The
fraction of jobs that will join machine center i on their arrival is �i, i � 1, . . . , m. �i � 1).m(�i�1

The fraction of jobs that complete service at machine center i that will directly go to machine center
j is pij. Then 1 � pij is the fraction of jobs among those completing service at machine centerm�i�1

i, that will directly leave the system. Of course, at least for one or more i � 1, . . . , m, 1 � pij
m�j�1

� 0 so that all jobs entering the system will eventually leave the system. The service times of jobs
at machine center i are i.i.d. exponential random variables with mean 1 /�i, i � 1, . . . , m. All the
service times and the arrival times are mutually independent.

The rate at which a job is processed at machine center i when there are n jobs is assumed to be
�iri(n) � 0, 1, . . . . This allows us to represent, as special cases, single or multiple machines in
parallel at the machine center i. Specifically if there are ci machines in parallel at machine center i,
we set ri(n) � min{n,ci}, n � 0, 1, . . . ; i � 1, . . . , m. Leaving this representation as a general
function ri allows one to model the effect of the number of jobs in a machine center on the worker
efficiency.

Assume that the job shop uses service protocols such as first come first served or last come first
served that are independent of the job service time requirements.

We model this system by a Markovian open queueing network (i.e., Jackson open queueing
network) where jobs are routed from one service center to another according to a transfer probability
matrix P � (pij),, j�1...,m. Let Ni(t) be the number of jobs at machine center i at time t; i � 1, . . . , m
and N(t) � {N1(t), . . . , Nm(t)}. Then N(t) is a continuous time Markov process on Define them

N .�

stationary distribution of N by p(n) � limt→�P{N(t) � n}, n � Then it can be shown (seem
N .�

Jackson (1963))
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m
mp(n) � p (n ), ǹ � N (58)� i i �

i�1

where if the �i, i � 1, . . . , m are the solution to the set of linear equations

m

� � �� � � p j � 1, . . . , m (59)�i i j ji
j�1

then

p (n ) � p (0)ƒ (n ) n � 0,1, . . . , i � 1, . . . , m (60)i i i i i i

ƒ (n � 1)�i i i
ƒ (0) � 1; ƒ (n ) � , n � 1, 2, . . . ; i � 1, . . . , m (61)i i i i� r (n )i i i

�

p (0) � 1 ƒ (n ), i � 1, . . . , m (62)�
i i i
n �0i

Note that �j is the rate of job arrivals (including both internal and external arrivals) to the machine
center j, j � 1, . . . , m. Furthermore, note that pi(.) is the same as the stationary distribution of the
number of jobs in an M /M(n) /1 queueing system, with arrival rate �i and state-dependent service
rate �iri(ni), when there ni jobs in it, ni � 0,1, . . . Therefore, the results given in Chapter 83 for the
M /M / 1 and M /M /c queueing systems can be directly applied to this queueing network model.
Particularly when there is only a single machine at each machine center (i.e. ci � 1, i � 1, . . . , m),
we have

m
n mip(n) � (1 � � )� , n � N (63)� i i �

i�1

where �i � �i /�i � 1, i � 1, . . . , m. In this case, the average number of jobs in machine center i
is

�iE[N ] � , i � 1, . . . , m (64)i 1 � �i

and the total number of jobs in the job shop is

m �iE[N ] � (65)�
1 � �i�1 i

Applying Little’s formula, one then obtains the average flow time of an arbitrary job as

m1 �iE[T ] � (66)�
� 1 � �i�1 i

Since �i � �vi, where vi is the expected number of visits made to machine center i by an arbitrary
job before it leaves the system, (66) can be
rewritten as

m

E[T ] � v E[T ] (67)� i i
i�1

where

1 �iE[T ] � (68)i � 1 � �i i

is the average flow time of an arbitrary job in machine center i each time it visits machine center i,
i � 1, . . . , m.

The independence of N1, . . . , Nm allows one to compute the variance of the total number of jobs
in the job shop. Particularly since var(Ni) � �i / (1 � �i)2, i � 1, . . . , m, we have
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m �ivar(N ) � (69)� 2(1 � � )i�1 i

Even though the stationary number of jobs in the machine centers is statistically independent, which
we used in obtaining (69), the stationary flow time of arbitrary jobs through the different machine
centers is, in general, not independent. Consequently, we cannot obtain a simple expression for the
variance of the flow time of an arbitrary job. In Buzacott and Shanthikumar (1993), a good approx-
imation for this variance is given.

5.2. Multiple-Job-Class Open Jackson Queueing Network Model

In some situations, aggregation of all job types into a single job class is unacceptable in a queueing
network model. We concentrate on situations where the operation /machine sequence is different for
different classes of jobs, but the service requirements of the different classes at any machine center
are probabilistically almost the same. In addition, we will assume that jobs are selected for service
according to a First-Come-First-Served service protocol.

Class l jobs arrive at the job shop according to Poisson process with rate �(l), l � 1, . . . , r. All
these r arrival processes are mutually independent. The fraction of class l jobs that join machine i is

� 1) and the fraction of class l jobs among those class l jobs that complete service at(l) m (l)� (� �i i�1 i

machine center i, that proceed directly to machine center j as a class k job, is i, j � 1, 2,(l)(k)p ,ij

. . . ; l,k � 1,2, . . . , r. For each l (l � 1, . . . , r) we assume that there exist at least one or more
i such that � 1 so that class l jobs that enter the system will eventually leave the system.r m (l,k)� � pk�1 i�1 ij

The service time of a class l job at machine center i is exponentially distributed with mean 1 /�i, i
� 1, . . . , m. Jobs are served at a rate ri(ni) at machine center i when there are ni jobs, ri(0) � 0,
ri(ni) � 0, ni � 1, 2, . . . Note that this service rate is independent of the number of individual classes
of jobs, but depends only on the total number. The arrival, service, and job transfers from one machine
center to another are mutually independent. Assuming that each job is transferred from one machine
center to another and from one class to another, according to a transfer probability matrix

we model this job shop by a multiple-job-class open Jackson queueing network.(l )(k) l,k�1, . . . , r(p )ij i, j�1, . . . , m

Let Ni(t) be the number of jobs at machine center i at time t and be the class index of theX (t)i:j

job in the jth position of the queue at machine center i, j � 1, . . . , Ni(t); i � 1, . . . , m. We assume
that the job in the first position is in service, being served at a rate ri(ni) when Ni(t) � ni, i � 1,
. . . , m. Then {X(t) � (Xi: j(t), j � 1, . . . , Ni(t), i � 1, . . . , m), t 	 0} is a continuous-time
Markov process. Let q(x) � limt→�P{X(t) � x} be the stationary probability distribution of X. Then
it can be shown that

m

q(x) � q (x ) (70)� i i
i�1

and

n (x )i i:s1 �
q (x ) � , i � 1, . . . , m (71)�i i �� ƒ (n) � r (s)s�1n�0 i i i

with l � 1, . . . , r; j � 1, . . . , m the solution to(l)� ,j

m r
(l) (l) (l) (k) (k)(l)� � � � � � p , l � 1, . . . , r; i � 1, . . . , m (72)� �i i j ji

j�1 k�1

and �j � ƒi(0) � 1, and ƒi(ni) � ƒi(ni � 1)�i /�iri(n); n � 1,2, . . . , m.r (l)� � ,l�1 j

We can now use (70) to obtain the joint probability distribution of N, the number of jobs of each
class at each machine center. Let p(n) � P{N � n} and pi(ni) � P{Ni � ni}. Here ni � (1) (2)(n , n ,i i

. . . , and is the number of class l jobs at machine center i. Then one has(r) (l)n ) ni i

(l)nir (l) ƒ (n )� i in ii rp (n ) � , n � N (73)�� � � �i i i �(1) (r) �n , . . . , n � � ƒ (n)i i l�1 i n�0 i

where ni � r (l)� n .l�1 i

Therefore the joint distribution of N is
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(l)nim r (l) ƒ (n )� i in ii r�mp(n) � , n � N (74)� �� � � � � � �(1) (r) �n , . . . , n � � ƒ (n)i�1 i i l�1 i n�0 i

Observe that ƒi(ni) / ƒi(n), ni � 0,1,.... is the probability distribution of the number of customers��n�0

in an M /M(n) /1 queueing system with arrival rate �i and state-dependent service rate �iri(�). On the
other hand

(l)nir (l)�n ii �� � � �(1) (r)n ,���,n �i i l�1 i

is the multinomial probability of choosing of type l items according to a probability �i, l �(l) (l)n � /i i

1, . . . , r. Therefore, the joint distribution of the number of jobs at the different machine centers is
the same as that in a single-job-class queueing network with arrival rate �i to machine center i � 1,
. . . , m. We may therefore solve the open queueing network model with single class and obtain the
joint distribution of the number of jobs of different classes at different machines using a multinomial
sampling with probability /�i for class l jobs (l � 1, . . . , r) at machine center i (i � 1, . . . ,(l)�i

m).
For a machine center that has only one machine, we have

(l)nir (l)�n ii n rip (n ) � (1 � � )� , n � N (75)�� � � �i i i i i �(1) (r)n ,���,n �i i l�1 i

where �i � �i /�i � 1. For ci � �� we have

(l) (l)r (l) n ��ii(� ) ei rp (n ) � , n � N (76)�i i i �(l)n !l�1 i

where � �i, l � 1, . . . , r. The number of jobs of different classes at a machine center with(l) (l)� � /i i

infinitely many machines are independent. In the other cases this need not be true. As we will see
next, the marginal distribution of any class of job, say l, at any machine center with a single machine,
say i, is exactly the same as that in an M /M / 1 queue with arrival rate and service rate �i �(l)�i

Then it can be shown thatr (s)� � .s�1;s�l i

(l)(l) (l) (l) (l) ni (l)P{N � n } � (1 � �̂ )(�̂ ) , n � 0,1, . . . (77)i i i i i

where

(l) (l)� �i i(l)�̂ � �i (l) r (k)1 � � � � � � � �i i i k�1,k�l i

and � �i. Therefore, if we are interested only in studying the flow performance of a particular(l) (l)� � /i i

class of job, say l, in a job shop with single or infinite machine centers, all we have to do is redefine
the service rates of the single-machine machine center (say i) by �i � and analyze ar (k)� �k�1,k�l i

single open queueing network with only class l jobs and the modified service rates. We cannot,
however, do this job class decomposition when there are machine centers with a limited number of
parallel machines.

We have seen how the number of jobs of different classes in single- and infinite-machine machine
centers decomposes. Next we will make an observation about the effect of aggregating the number
of jobs at different-infinite machine machine centers. Let I � {1, . . . , m} be the set of machine
centers that have infinitely many machines. Then one finds that

(l) (l)r �� (l) ni ie (� )i(l) (l)P{N � n , l � 1, . . . , r; i � I} � � �i i (l)n !i�I l�1 i

Then it is easily verified that

(l) (l)r �� (l) nIe (� )I(l) (l)P N � n , l � 1, . . . , r � (78)� �� �i (l)n !i�I l�1

where � �i�I l � 1, . . . , r. Therefore, if we are interested only in the total number of jobs(l) (l)� � ,I i
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of different classes in the set I of machine centers, we may aggregate all these 	I	 machine centers
into one infinite-machine machine center.

It should be noted that the results discussed here for the infinite-machine machine centers hold
true even if the distributions of the service times are general.

5.2.1. Incorporating Transport and Material Handling in the Jackson-Type Job Shop
Model

Consider the material-handling configuration where each link (i, j ) that connects machine centers i
and j(i, j � 1, . . . , m;i � j ) has a sufficient number of transporters or a conveyor system such that
when a job completes processing at machine center i, it can immediately begin movement from
machine center i to its destination. The average time taken to transfer a job from machine center i
to machine center j is 1 /�(i, j), i, j � 1, . . . , m; i � j. Suppose the job transfers from one machine
center to another are represented by a job transfer probability matrix P � (pij)i, j�1, . . . ,m. If we now
incorporate the transporters on each link (i, j ) as a service center, the job transfer probabilities are

� pii, � pij and � 1, i, j � 1, . . . , m; i � j. All other transfer probabilities are zero.p� p� p�ii i,(i, j) (i, j),j

Here (i, j ) represents the service center corresponding to the transporters on link (i, j ),i, j � 1, . . . ,
m; i � j. If we model this system by an open Jackson queueing network, as described earlier, we
find that the stationary distribution of the number of jobs in the machine centers (n), and the number
of jobs in the transporters (l), is given by

m m m
2m m �mp(n,l) � p (n ) p (l ), n � N ,l � N (79)� � �� �i i (i, j) (i, j) � �

i�1 i�1 j�1; j�1

where pi(ni) � ƒi(ni pi(0), pi(0) � 1 / ƒi(ni), and ƒi(ni) � �iƒi(ni � 1) /�iri(ni), ƒi(0) � 1; i � 1,��n �0i

. . . , m,

��(i, j) l(i, j)e �(i, j)
p (l ) � , i, j � 0, 1, . . . ; i � j (80)(i, j) (i, j) l !(i, j)

and �(i, j) � � �ipij / i � j,i, j � 1, . . . , m. Here ni is the number of jobs in machine� /� � ,(i, j) (i, j) (i, j)

center i and is the number of jobs in transit from machine center i to j, i � j, i, j � 1, . . . , m.l(i, j)

Observe that if pij � 0 then � 0 and the number of jobs in transit on link (i, j) is also zero, as�(i, j)

it should be. If we are only interested in the total number of jobs in transit, we find that

��̂ lP{l jobs are in transit} � e �̂ / l!, l � 0,1,... (81)

where

m m

�̂ � � p /�� �i ij (i, j)
i�1 j�1; j�1

and is the mean number of jobs in transit. Applying Little’s law, one sees that the additional average�̂
time spent by an arbitrary job in the shop due to material handling is

m m m m v1 (i, j)ˆE[T ] � � p /� � (82)� � � �i ij (i, j)� �i�1 j�1; j�i i�1 j�1; j�1 (i, j)

where is the expected number of times an arbitrary job is moved along the link (i, j ), i � j; j �v(i, j)

1, . . . , m. Now observe that the distribution of the number of jobs at different machine centers
given in (79) is independent of the transportation times. Hence we see that the number of jobs at
different machine centers is unaffected by the actual transportation time. All it does is to add an
additional amount E[T̂ ] to the average flow time of an arbitrary job.

5.3. General Service Times

The modeling of open queueing networks with general service times, is discussed in Chapter 83,
Section 7.2. The basis of the approximation is to assume that the queue length distributions at the
different service centers are independent, that is,
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m
MˆP{N � n ,i � 1, . . . , m} � P{N � n }, n � N (83)�i i i i �

i�1

m

ˆE[N ] � E[N ] (84)� i
i�1

and

m

ˆE[T ] � v E[T ] (85)� i i
i�1

where Ni is the number of jobs at machine center i, N � Ni is the total number of jobs in them�i�1

system, and T is the flow time of an arbitrary job. vi is the average number of visits made to a service
center by an arbitrary job.

Each service center i, i � 1, . . . , m is modeled by a GI /GI /ci queue. The parameters of this
queue will be (�i, �i, ci), where �i and are the mean arrival rate and squared coefficient2 2 2C , C , Ca s ai i

of variation of the time between arrivals at service center i, �i and are the mean service rate and2C Si

squared coefficient of variation of the service time of a job at service center i. Then, using some
appropriate approximation, the mean number of jobs at service center i, n̂i(�i, �i, ci) and the2 2C , C ,a Si i

mean flow time of a job at service center i, T̂(�i, �i, ci) are estimated.2 2C , C ,a Si i

Given the job transfer probability matrix, P � (pij), then the �i are the solution to the equations

m

� � �� � � p , i � 1, . . . , m�i i j ji
j�1

and vi � �i /�, i � 1, . . . , m.
The are determined by observing that if is the squared coefficient of variation of departures2 2C Ca di j

from service center j, then with probabilistic routing, the stream of jobs from service center j will
arrive at service center i with a squared coefficient of variation given by2C ,aj

2 2C � 1 � p � p Ca ji ji dji j

Jobs coming from outside the system will arrive in a stream with squared coefficient of variation
� 1 � �i � �i This job stream will merge with job streams coming from other service centers2 2C C .a a0j

and from outside the system. Approximately, the squared coefficient of variation of arrivals at service
center i, is given by2C ,ai

m1
2 2 2C � � C � �� C (86)�� �a j a i ai ji 0i� j�1i

5.3.1. Approximations for n̂i and 2C di

In implementing the decomposition approach, a variety of ways of approximating n̂i and have2C di

been used. It can be shown (Buzacott and Shanthikumar 1993) that in a GI /G / 1 queue, and E[N]2C d

are related by

2 2 2 2C � C � 2� C � 2�(1 � �) � 2(1 � �)E[N ] (87)d a S

so it would seem reasonable to assume that if ci � 1, the approximated and the approximation2C di

n̂i are connected by the same relationship as Eq. (87).
The choice of approximation n̂i is largely determined by the purpose of the modeling. If the

purpose is to arrive at performance predictions that will agree closely with simulation results, then a
more complex approximation is used. However, if the purpose of the approximation is to compare a
number of different system designs, then simpler approximations are usually quite adequate to get
the necessary insight. Whitt (1983) and Shanthikumar and Buzacott (1981) used relatively complex
approximations because their purpose was to demonstrate that in many situations the approximate
decomposition approach yields remarkably accurate predictions. Harrison and Nguyen (1990) suggest
that, in fact, a simple heavy-traffic approximation is often quite adequate. As a general rule, the more
there is some randomness in job routings the more accurate the approximations are. The QNA
approximations are given in Chapter 83, so we give here are two other approaches:
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1. Buzacott and Shanthikumar (1993): For c � 1 this sets

2 2 2 2 2� (1 � C ) C � � CS a S2 2ˆE[N (�, C , �, C , 1)] � � � (88)� � � �a S 2 21 � � C 2(1 � �)S

2. Harrison and Nguyen (1990): Assume c � 1. Their approximation is

2 2 2� (C � C )i a Si i2 2ˆE[N(� , C , � , C , 1)] � � � (89)i a i S ii i 2(1 � �i

where �i � �i /�i and they set

2 2C � Cd Si i

We would, however, recommend setting using Eq. (87), that is,2C di

2 2 2 2 2C � (1 � � )C � � C (90)d i a i Si i i

An even simpler approximation is to set

2 2C � Ca Si i2 2ˆE[N (� , C , � , C , 1)] � � � (91)i a i S ii i 2( � � )i

and

2 2C � C (92)d Si i

This approximation is particularly useful for gaining insight into alternative ways of allocating
tasks to workers in service systems, for example, should workers have a broad range of tasks in a
system or should they specialize (Buzacott 1996).

6. FLEXIBLE MACHINING SYSTEMS
The key feature of a flexible machining system that must be represented in queueing models is the
limited number of pallets or work holders available for holding jobs in process. This means that the
number of jobs in process cannot exceed the number of pallets.

6.1. Single-Class Closed Jackson Queueing Network Model

Consider a flexible machining system consisting of m machine centers (1, . . . , m) and a load /unload
station ‘‘0.’’ There are n parts of a single (probably aggregated) class of parts that circulate from one
service center to another according to a transfer probability matrix P � (pij) We will.i,j�0, . . . , m

assume that all self transitions have been eliminated so that pii � 0, i � 1, . . . , m. The service
requirements of parts at service center i are i.i.d. exponential random variables with mean 1 /�i, i �
0, . . . , m. The sequence of service requirements at the different service centers is mutually inde-
pendent. The rate at which unit service requirement of a part is processed at a machine center i when
there are k parts is assumed to be ri(k), k � 1, . . . , n; i � 0, . . . , m. This allows us to represent,
as special cases, single or multiple servers in parallel at each service center. The parts at each service
center are served according to a first-come-first-served service protocol.

Let Ni(t) be the number of parts at service center i at time t, i � 0, 1, . . . , m and let N(t) �
{N0(t), . . . , Nm(t)}. Then {N(t), t 	 0} is a continuous-time Markov process on the state space Sn,
where

m�1
S � {k : k � N , 	k	 � l}, l � 1, 2, . . .l �

S � {0, . . . , 0} (93)0

Define the stationary distribution of N by p(k) � limt→� P{N(t) � k}, k � Sn. Then it can be shown
that (e.g., see Gordon and Newell (1967))

m1
p(k) � p (k ), k � S (94)� i i nG(n) i�0

where
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kivip (k ) � , k � 0, . . . , n; i � 0, . . . , m (95)i i iki � r (j)� j�1 i i

vi, i � 1, . . . , m is the solution to

m

v � v p , i � 1, . . . , m (96)�i j ji
j�0

with v0 � 1 and

m kiviG(n) � (97)� � ki � r ( j)�k�S i�0n j�1 i i

Let Yi be a generic random variable representing the stationary distribution of the number of parts
in an M /M(n) /1 queueing system with arrival rate �i � �vi and state-dependent service rate �iri(ki)
when there are ki parts in the system (ki � 1, 2, . . .). � can be any value that guarantees the existence
of a stationary distribution for the M /M(n) /1 queue. For example, if ri(ki) � min{ki, ci}, that is, we
have ci parallel servers at service center i, then we require that �i � �ici or equivalently � � �ici /
vi. It is easily verified that

P{N � k} � P{Y � k	 	Y	 � n}, k � S (98)n

where Y0, . . . , Ym are independent. It is also clear that the distribution of Y is the stationary
distribution of an open Jackson queueing network with a set of service centers {0, . . . , m}, and an
arbitrary part visiting service center i, on the average vi number of times before it leaves the system
(i � 1, . . . , m) and the load /unload center twice (� 2v0). The service rate at service center i is
�iri(ki) when there are ki parts for i � 1, . . . , m and 2�0r0(k0) when there are k0 parts at the load /
unload service center. Note that the average load or unload times are 1 /2�0 while the combined load/
unload operation (incorporated as a single operation) in the closed queueing network model requires
an average of 1 /�0 units of time. The external part arrival rate is �. Note that this open Jackson
network could be our model for the FMS if we had free inflow of raw parts into the system at rate
�. Therefore, the distribution of the number of parts in the closed queueing network model is the
same as that in an open queueing network model, provided we observe the open queueing network
only when there are a total of n parts in it.

Therefore, the probability distribution of the number of parts in an open queueing network model
can be used to compute the probability distribution of the number of parts in the closed queueing
network. To do this, we need to compute the convolution of the probability distributions P{Yi � ki}
� P{Yi � 0} (�vi / / ri ( j), i � 0, . . . , m. The following algorithm will compute thisk ki i� ) �i j�1

convolution and the stationary distribution of the number of parts in the closed queueing network.

6.1.1. Algorithm 5: Convolution Algorithm

Step 1: Set pi(0) � 1, i � 0, . . . , m.
Step 2: For i � 0, . . . , m and k � 0, . . . , n � 1, set

vip (k � 1) � p (k)i i � r (k � 1)i i

Step 3: Set � p0(k), k � 0, . . . , n.p̂(k)
For i � 1, . . . , m and for k � 0, . . . , n, set

k

q̂(k) � p̂(l)p (k � l)� i
l�0

For k � 0, . . . , n, set

p̂(k) � q̂(k)

Step 4: p(k) � 1/ pi(ki), k � Sn.mq̂(n) � i�0

Step 5: Stop.
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Let TH(n) be the throughput rate of this closed queueing network. This is the rate at which parts
are loaded /unloaded at the load /unload service center, that is, TH(n) � E[�0r0(N0)]. Using (98), we
see that

TH(n) � E[� r (Y )	 	Y	 � n]0 0 0

� r (k )P{Y � k}0 0 0� . (99)�
P{	Y	 � n}k�Sn

Since �0r0(k0)P{Y0 � k0} � �P{Y0 � k0 � 1}, k0 	 1 and r0(0) � 0, we get from (99)

P{Y � k�}
TH(n) � � �

P{	Y	 � n}k��Sn�1

P{	Y	 � n � 1}
� � . (100)

P{	Y	 � n}

Equivalently,

�P{	Y	 � n � 1} � TH(n)P{	Y	 � n}, n � 1, 2, . . . (101)

Hence we see that the total number of parts in the open queueing network is the same in distri-
bution as that in an M /M(n) /1 queueing system with arrival rates � and state dependent service rates
TH(n), n � 1, 2, . . . For the purpose of analyzing the aggregate behavior of the total number of
parts in the system, we can aggregate the whole FMS and replace it by an equivalent single-stage
server with state dependent service rates equal to the production rates.

Next we will look at another property of the closed queueing network process {N(t), t 	 0} that
will help us to efficiently compute the production capacity of the flexible machining system. Denote
by ei a vector that is all zeroes except for a one in position i. Let be the nth time epoch at which(i)� n

an arrival occurs at service center i. We are interested in

(i) (i)p (k) � lim P{N(� ) � k � e }, k � Sn i n�1
n→�

the probability distribution of number of parts at different service centers seen by an arbitrary arrival
at its arrival epoch to service center i. Sn�1 contains all possible states that could be seen by any part
excluding itself.

The rate at which an arrival to service center i sees the system state k at its arrival epoch is
p(k � ej)�jrj(kj � 1)pji. The rate at which parts arrive at service center i is p(k �m m� � �j�0 k�S j�0n�1

ej)�jrj(kj � 1)pji. Then it can be shown that

kivlm�l�0 kl � r (j)�j�1 l l(i)p (k) � , k � S (102)n�1klvlm� �k��S l�0 kn�1 l � r (j)�j�1 l l

Observe that p(i)(k) is exactly the same as the stationary distribution of the number of parts in
the closed queueing network with a total of n � 1 parts. Furthermore, this probability distribution is
independent of the service center i. Since we will be using this relationship between the closed
queueing network with n and n � 1 parts in it to compute the performance measures, we will use
an index n to associate the total number of parts to its performance measures. Earlier, we saw how
to obtain the joint probability distribution p(k), k � Sn. However, in most applications it may be
sufficient to compute the marginal probability distribution pi(ki;n), ki � 0, . . . , n; its average (i.e.,
the average number of parts at service center i), E[Ni(n)], the average sojourn time of an arbitrary
part in service center i, E[Ti(n)], i � 0, . . . , m, and the throughput TH(n). Then TH(n) �
�0E[r0(N0(n))] is the rate at which parts are being loaded /unloaded at the load /unload service center.
Using a simple recursive algorithm over the values of n, we can compute these performance measures
with considerably less computational effort than required by the convolution algorithm described
earlier.

The rate at which parts arrive at service center i is viTH(n). Since the probability that an arrival
at service center i sees ki � 1 parts in service center i is pi(ki � 1; n � 1), the rate of upcrossings
from the compound state {k�:k� � Sn, � ki � 1} is viTH(n)pi(ki � 1; n � 1). Equating this to thek�i
rate of downcrossings (�iri(ki)pi(ki;n)) into this compound state, we get
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vip (k ; n) � TH(n)p (k � 1; n � 1), k � 1, . . . , ni i i i i� r (k )i i i

n

p (0; n) � 1 � p (k ; n), n � 1, 2, . . . (103)�i i i
k �1i

From (103) and Little’s results we find that

n�1 (k � 1)vi iE[N (n)] � TH(n) p (k ; n � 1) (104)�i i i� r (k � 1)k �0i i i i

and

n�1 k � 1iE[T (n)] � p (k ; n � 1) (105)�i i i� r (k � 1)k �0i i i i

Since E[Ni(n)] � n, we obtainm�i�0

n
TH(n) � (106)m v E[T (n)]�i�0 i i

Equations (103)–(106) provide a recursive relationship for pi(�; n) and TH(n). As an initial value for
this recursion observe that pi(0; 0) � 1, i � 0, . . . , m. Then TH(1) � 1 / vi /�iri(1). An algorithmm�i�0

to compute these performance measures using this recursion is presented next:

6.1.2. Algorithm 6: Marginal Distribution Analysis Algorithm

Step 1: Set pi(0; 0) � 1, i � 0, . . . , m.
Step 2: For l � 1, . . . , n, compute

l�1 k � 1iE[T (l)] � p (k ; l � 1); i � 0, . . . , m�i i i� r (k � 1)k �0i i i i

m

TH(l) � l v E[T (l)]�
� �i i
i�0

E[N (l)] � v TH(l)E[T (l)], i � 0, . . . , mi i i

v TH(l)ip (k ; l) � p (k � 1; l � 1), k � 1, . . . , l; i � 0, . . . , mi i i i i� r (k )i i i

l

p (0; l) � 1 � p (k ; l), i � 0, . . . , m�i i i
k �1i

Step 3: Stop.

When we have only a single server at a service center i (i.e., ci � 1) the computational effort
required for the marginal distribution analysis can be reduced by the following observation E[Ti(n)]
� {E[Ni(n � 1)] � 1} /�i. Particularly if each service center has only a single server (i.e. ci � 1,
i � 0, . . . , m), the following mean value analysis algorithm provides an efficient way to compute
the system performance measures.

6.1.3. Algorithm 7: Mean Value Analysis Algorithm

Step 1: Set E[Ni(0)] � 0, i � 0, . . . , m.
Step 2: For l � 1, . . . , n, compute

E[T (l)] � {E[N (l � 1)] � 1} /� , i � 0, . . . , mi i i

m

TH(l) � l / v E[T (l)] ,�� �i i
i�0

E[N (l)] � v TH(l)E[T (l)], i � 0, . . . , mi i i
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Step 3: Stop.

6.1.4. Properties of the Throughput

The production rate TH(n) has some useful properties in terms of the influence of the number of
servers ci at service center i, and the workload � vi /�i assigned to service center i. To indicate�̂i

this dependence, the production rate is represented by c, n)TH(�̂,

Property 1: c, n) is increasing and concave in n.TH(�̂,
Property 2: c, n) is increasing and concave in ci, i � 0, . . . , m.TH(�̂,
Property 3: c, n) is decreasing and convex in each i � 0, . . . , m.TH(�̂, �̂ ,i
Property 4: If c0 � c1 � � � � � cm then, if work load can be reallocated between service centers,

the production rate is maximized by having the same work load at all service centers.

6.2. Modeling the Effects of Dedicated Material-Handling Systems

Suppose we have material-handling systems available for each link connecting any two service cen-
ters, such that no queueing delays take place during part movement. The only time expended on
moving parts is the travel time. Let 1 /�(i, j) be the average travel time of a part on the link (i, j), i, j
� 0, . . . , m. Now, treating such a link (i, j) as a service center with infinitely many servers, one
sees that vij � vi pij and E[Tij(n)] � 1 /�(i, j), i, j � 0, . . . , m. Incorporating this in the MVA algorithm,
we get the following algorithm to compute the system performance with material-handling effects.

6.2.1. Algorithm 8: MVA with Material Handling

Step 1: Let E[Ni(0)] � 0, i � 0, . . . , m.
Step 2: For l � 1, . . . , n, compute

E[T (l)] � {E[N (l � 1)] � 1} /� , i � 0, . . . , mi i i

m m m

TH(l) � l v E[T (l)] � v p /�� � �
� �i i i ij (ij)
i�0 i�0 j�0

E[N (l)] � v TH(l)E[T (l)], i � 0, . . . , mi i i

Step 3: Stop.

6.3. General Single-Class Closed Queueing Network Model

Usually service times will not be exponential. We now present an approximation by which perform-
ance measures of closed queueing networks can be found. Because the approximation extends the
mean value analysis algorithm, it can only be used if there is just one server at each machine center.
For an approximate algorithm that can be used when there are multiple servers at a machine center,
see Buzacott and Shanthikumar (1993). The extended MVA algorithm is based on the following:
each arrival to service center i will see, at the instant of its arrival, the part in service, if any, requiring
an average of /2E[Si] additional processing time to complete its service. This mimics the prop-2E[S ]i

erty of an M /G / 1 queueing system. With this, and the assumption that an arrival with n parts in the
system sees the time average behavior of a system with n � 1 parts, we have

E[T (n)] � {E[N (n � 1)] � v TH(n � 1)E[S ] � 1}E[S ]i i i i i
2� v TH(n � 1)E[S ] /2, i � 0, . . . , m (107)i i

The above relationship is then applied in the following algorithm.

6.3.1. Algorithm 9: Extended Mean Value Analysis (EMVA)

Step 1: Set E[Ni(0)] � 0, i � 0, . . . , m; TH(0) � 0.
Step 2: For l � 1, . . . , n, compute

E[T (l)] � {E[N (l � 1)] � v TH(l � 1)E[S ] � 1}E[S ]i i i i i

2� v TH(l � 1)E[S ] /2, i � 0, . . . , mi i

m

TH(l) � l v E[T (l)]�
� �i i
i�0

E[N (l)] � v TH(l)E[T (l)], i � 0, . . . , mi i i
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Step 3: Stop.

6.4. Multiple-Class Model

An FMS is often required to process multiple part types where each part type requires a unique pallet
type. Let ns be the number of pallets for type s parts, s � 1, . . . , p. Suppose the service time
distribution for all part types at service center i, i � 1, . . . , m is the same for all part types and is
exponential with mean 1 /�i. Assume that parts are served at a service center in first-come-first-served
sequence. Suppose the routing of class s parts between service centers of the FMS is described by
the probability matrix Let be the solution to(s) (s)p . vij i

m
(s) (s) (s)v � v p (108)�i j ji

j�0

with � 1, for each s � 1, . . . , p. Then is the expected number of times a class s part visits(s) (s)v v0 i

service center i during its sojourn in the system.
Then again it is possible to show that the queue length distributions are product form and is thus

possible to determine the performance measures. If there is just one machine at each service center,
then the mean value analysis algorithm can be adapted to find the performance measures. Define
n � (n1, n2, . . . , np) and n � es � (n1, n2, . . . , ns � 1, . . . , np). Then the expected time that a
class s job spends at station i, E[Ti,s(n)] and the expected number of jobs of class s at station i,
E[Ni,s(n)] are related by E[Ti,s(n)] � (E[Ni,s(n � es)] � 1) /�i. The algorithm is as follows.

6.4.1. Algorithm 10: Multiclass MVA

Step 1: Set E[Ni,s(l)] � 0, ls � 0; s � 1, . . . , p; i � 0, . . . , m.
Step 2: For l1 � 0, . . . , n1; . . . ; lp � 0, . . . , np repeat step 3.
Step 3: For i � 0, . . . , m and s � 1, . . . , p, compute

E[T (l)] � {E[N (l � e )] � 1} /�i,s i,s s i

m
(s)TH (l) � l v E[T (l)]}�
�s s i i,s

i�0

(s)E[N (l)] � v TH (l)E[T (l)]i,s i s i,s

Step 4: Stop.

6.4.2. Properties of the Throughput Rate

The throughput function of the multiple-class closed Jackson queueing network possesses some prop-
erties that are, at first, somewhat surprising.

Property 1: THs(n) is increasing in ns for each s (s � 1, . . . , p).
Property 2: THl(n) need not increase (and may decrease) in ns for s � l, s, l � 1, . . . , p.
Property 3: TH(n) � THs(n) need not increase (and may decrease) in ns, s � 1, . . . , p.p�s�1

Properties 2 and 3 mean that the selection of parts to be processed in an FMS requires extreme care.
Note that these properties are in part due to the assumption of first-come-first-served sequence at
service centers, so their effect can be reduced by more sophisticated scheduling.

6.4.3. General Service Time Distributions

It is possible to heuristically adapt the multiclass MVA algorithm for situations where the service
times are not exponential. Let E[Ni,s(l)] be the average number of class s parts at service center i
when the total number of class s parts in the network is ls, s � 1, . . . , p. Let l � es � (l1, . . . ,
ls�1, ls � 1, ls�1, . . . , lp). Also let E[Ti,s(l)] be the average flow time of a class s part through service
center i and THs(l) be the throughput rate of class s parts. Then the rate at which parts arrive at
service center i is

p
(s)� (l) � v TH (l), i � 0, . . . , m�i i s

s�1

The basic idea is to adapt the equation describing the expected time a class s part spends at station
i as follows:
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(s)E[T (l � e )] � E[S ]i,s s i
p

(ŝ) (ŝ) (ŝ)� (E[N (l)] � � (l)E[S (l)])E[S� i,ŝ i i i
ŝ�1

2E[S (l)]i� � (l) , i � 0, . . . , m (109)i 2

where

p1
(ŝ) (ŝ)E[S (l)] � � (l)E[S ], i � 0, . . . , m�i i i� (l) ŝ�1i

and

p1
2 (ŝ) (ŝ) 2E[S (l)] � � (l)E[S ) ], i � 0, . . . , m�i i i� (l) ŝ)�1i

are the first and second moments of the service time of an arbitrary part at service center i. Since
E[Ni,s(l � es) � THs(l � es) E[Ti,s(l � es)] � ls � 1, one hasm m (s)� � vi�0 i�0 i

l � 1sTH (l � e ) � . (110)s s m (s)v E[T (l � e )]�i�0 i i,s s

The above equations now provide a recursive scheme to compute THs(n), s � 1, . . . , p starting
with THs(0) � 0, s � 1, . . . , p. The following algorithm computes the approximate performance
measures.

6.4.4. Algorithm 11: Extended Multiclass MVA

Step 1: Set E[Ni,s(l)] � 0, THs(l) � 0, �1 � � 0, s, ŝ � 1, . . . , p; i � 0, . . . , m.lŝ

Step 2: For l1 � 0, . . . , n1; l2 � 0, . . . , n2; . . . ; lp � 0, . . . , np repeat step 3.
Step 3: For i � 0, . . . , m; s � 1, . . . , p and ls � ns � 1, compute

(s) (s)� (l) � v TH (l)i i s

p
(s)� (l) � � (l)�i i

s�1

and E[Ti,s(l � es)] by (109). Then compute THs(l � es) by (110) and

(s)E[N (l � e ] � v TH (l � e )/E[T (l � e )]i,s s i s s i,s s

Step 4: Stop.

7. PRODUCTION COORDINATION
We now consider queueing models that can be used to model the control of workflow in manufac-
turing and logistic systems. What is different about these models is that it is necessary to model both
the flow of information and the flow of material and how information is transformed into material
or parts. So although the underlying model is usually that of a multiclass open or closed queue, the
models have some unusual features. We consider manufacturing and logistic systems consisting of a
number m of cells or stages. We restrict our discussion to the situation where each cell produces just
one type of part and where the cells are arranged in series 1, 2, . . . , m and thus part flow is 1 →
2 → � � � → m. When cell j completes processing, it puts completed parts in store j. Store j also serves
as the input store to cell j � 1. If cell j � 1 were separated geographically from cell j, then it would
be necessary to add in a transport cell between j and j � 1. Final demand is met from store m. When
store m is empty then demand can not be met immediately. We consider only the case where unmet
demand is backlogged. We are interested in using queueing models to find the service level, that is,
the fraction of demand met from stock pND, or the expected delay in meeting demand E[�]. We will
ignore any possibility of batching and assume that work flow and work release is controlled on a
part-by-part basis.
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7.1. Base Stock Control

In base stock control there are target stock levels zj set for the store j. If a demand occurs, information
about the occurrence of the demand is immediately sent to each cell. On receipt of the information,
a request for a part is sent to the input store, store j � 1. If no parts are available, then requests
would queue until a part becomes available. Once the part is removed from store j � 1, it is then
released to the production cell for processing. On completion of processing, the completed part is
put in store j. Denote by Nj(t) the number of parts released to the production cell j at time t and not
yet completed, (t) the number of requests for parts waiting at the input store j � 1, and(r) (e)N N (t)j�1 j

the number of parts that would be required to bring the inventory in store j up to zj. If store j is
empty and there is a backlog of waiting requests of size , then(r)N (t)j

(e) (r) (r)N (t) � z � N (t), N (t) � 1, 2, . . .j j j j

In a base stock system the immediate signaling of all demands to all cells means that

(e) (r)N (t) 	 N (t) � N (t)j j j�1

Suppose demands occur as a Poisson stream with parameter �. Then the rate at which requests for
parts will arrive at store j � 1, j � 2, . . . , m � 1, is �. In fact, because the requests at different
stores are triggered by the same demand, these requests at different cells will be correlated. Our
approximation ignores this.

The basis of the base stock model is to model the behavior of each cell and each store and to
take into account the way in which they are linked.

7.1.1. Cell Model

The cell j queueing model represents the arrival of the demand at the cell, its transmittal as a request
to the input store j � 1, the release of the part from the input store to the cell j, and the delivery of
the part from the cell to the output store j. That is, we model how the arriving information on the
occurrence of a demand is converted to a finished part in the output store. The queueing model
consists of two queues in series, where the first queue is where the requests queue at store j � 1 and
the second queue is where parts queue for processing in cell j. We are also interested in the arrivals
of finished parts at the output store j, although parts do not queue to enter the store. Since the input
stream to the first queue is Poisson with parameter �, we will approximate its output stream of
releases to the cell by a Poisson stream with parameter �. So if the cell has single or multiple servers
or some network of servers, it can be modeled as an open Jackson queueing network and its stationary
queue length distribution p{Nj � n}, n � 0, 1, . . . , found.

Requests that arrive at store j � 1 when it is not empty do not queue and the part can be
immediately released to cell j. However, requests that arrive when the store is empty have to wait
until a part arrives at the store from cell j � 1. It follows that the request queue characteristics will
be determined from the inventory shortfall in the store

(r) (e)p{N � n} � p{N � n � z } n � 1, 2, . . .j�1 j�1 j�1

zj�1

(r) (e)p{N � 0} � p{N � u} (111)�j�1 j�1
u�0

Since we assume that the queue lengths at the two queues are product form, we have that

n
(e) (r)p{N � n} � p{N � u}p{N � n � u}, n � 0, 1, . . . (112)�j j�1 j

u�0

At store 1 we have that

(r)p{N � n} � p{N � n � z }, n � 1, 2, . . .1 1 1

z1

(r)p{N � 0} � p{N � u}�1 1
u�0

Thus, by considering store 1, store 2, . . . , store m, in sequence using Eqs. (111) and (112) we can
determine the � n}, n � 0, 1, . . . ; j � 1, 2, . . . , m. Hence,(r)p{N j
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TABLE 4 pND and E[�] for a Two-Cell Base Stock System with z1 � z2 � 2

�2 pND

�1

0.3 0.5 0.7 0.9 E[�]

�1

0.3 0.5 0.7 0.9

0.3 Sim. 0.903 0.850 0.682 0.314 Sim. 0.045 0.122 0.657 5.63
approx. 0.899 0.840 0.670 0.298 approx. 0.047 0.131 0.702 6.21

0.5 Sim. 0.747 0.705 0.567 0.259 Sim. 0.258 0.349 0.950 6.07
approx. 0.739 0.687 0.544 0.240 approx. 0.264 0.375 1.016 6.66

0.7 Sim. 0.512 0.487 0.396 0.181 Sim. 1.15 1.25 1.90 7.22
approx. 0.502 0.465 0.366 0.160 approx. 1.17 1.31 2.04 7.86

0.9 Sim. 0.195 0.188 0.155 0.071 Sim. 6.94 7.05 7.76 13.3
approx. 0.188 0.172 0.135 0.059 approx. 7.32 7.51 8.35 14.4

From Buzacott et al. 1992. Reproduced with permission of Springer-Verlag.

(r)p � p{N � 0}ND m

�
(r)E[�] � np{N � n} (113)� m

n�0

7.1.2. Single Server in Each Cell

If each cell consists of a single server with exponential processing time having mean 1 /�j, j �
1, . . . , m then it is possible to develop a very simple recursive calculation. Let �j � � /�j , and we
also assume that the �j, j � 1, . . . , m, are all different. We postulate then that

j
(r) (j) np{N � n} � c � (1 � � ), n � 1, 2, . . . ; j � 1, . . . , m�j u u u

u�1

j
(r) (j)p{N � 0} � 1 � � c , j � 1, . . . , m�j u u

u�1

It follows that

(1 � � )jz �1j(j) (j�1)c � c � , u � 1, 2, . . . , j � 1; j � 2, . . . , mu u u � � �u j

j�1 (1 � � )j(j) zj (j�1)c � � 1 � c � , j � 2, . . . , m�� �j j u u � � �u�1 u j

(1) z1c � � (114)1 1

Equations (114) define a recursive scheme by which the can be determined.(j)c u

The service level measures are then given by

m
(m)p � 1 � � c (115)�ND u u

u�1

m �u(m)E[�] � c (116)� u 1 � �u�1 u

Table 4 compares the approximations with simulation results for pND and E[�], respectively, for a
system with z1 � 2 and z2 � 2 for a variety of values of �1 and �2. The approximation tends to
underestimate pND and overestimate E[�] because of the assumption that arrivals at the machine
queue are Poisson. In fact, they are less variable than Poisson. The approximation can be extended
to systems where demand is notified in advance (Buzacott et al. 1992), that is, to MRP-like systems.

7.2. Kanban Control

In kanban control, there are kj kanban cards associated with cell j, j � 1, . . . , m. A cell j kanban
card waits in store j until it is triggered by the arrival at the store of a cell j � 1 kanban card. The
cell j kanban card then moves back to store j � 1, where it waits until parts are available. As soon
as parts are available, then the kanban card and the associated part are released to cell j for processing.
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On completion of processing by cell j, the finished part and the kanban move to store j, where they
will wait until the next cell j � 1 kanban arrives. That is, movement of a cell j kanban is from store
j to store j � 1 to cell j to store j again. Thus the queueing model of a kanban controlled system
consists of a multiclass queue with m � 1 classes of customers. Class j customers represent the cell
j kanbans, j � 1, . . . , m, and class m�1 customers represent customer demands. Class j customers
circulate in the closed loop: store j → store j � 1 → cell j → store j, j � 1, . . . , m; while class
m � 1 customers enter the system, go to store m, and then leave the system. Assume that cus-
tomer demand is Poisson with parameter �. It will also be assumed that the cell consists of a single
machine, and service times in the cells have exponential distributions with parameter �j for cell j,
j � 1, . . . , m.

To determine the system performance, it is necessary to model the circulation of class j customers
and to model the interrelationship between the service of class j customers at store j and the service
of class j � 1 customers at store j.

7.2.1. Store Model

Consider store j. Store inventory increases when a part and its associated stage j kanban arrive from
cell j. Store inventory decreases when a stage j � 1 kanban arrives at the store and triggers the
release of a part to cell j � 1. The maximum backlog of unmet demands at store j is kj�1 so, defining

as the inventory shortfall, the inventory position at store j is kj � with � 0, 1, . . . , kj,(e) (e) (e)n n nj j j

. . . , kj � kj�1. For a given the quantities and are determined by(e) (p) (r)n , n nj j j

(e) (e)k � n n � 0, 1, . . . , k(p) j j j jn � �j (e)0 n � k � 1, . . . , k � kj j j j�1

and

(e)0 n � 0, 1, . . . , kj j(r)n � �j (e) (e)n � k n � k � 1, . . . , k � kj j j j j j�1

Note that � 	 0. is the number of stage j � 1 kanbans waiting at store j, while is(r) (p) (r) (p)n n n nj j j j

the number of stage j kanbans waiting at the store (which is identical to the number of parts in the
store).

Let �j:u be the rate at which stage j kanbans arrive at store j from cell j when there are(p) (p)(n ) nj j

stage j kanbans at store j. Similarly, let �j:d be the rate at which stage j � 1 kanbans arrive at(r)(n )j

store j from store j � 1 when there are stage j � 1 kanbans at store j.(r)nj

It follows that, for a given such that 0 � � kj � 1, the rate of increase to � 1 is(e) (e) (e)n n nj j j

�j:d(0) while, for such that 1 � � kj, the rate of decrease to � 1 is �j:u(kj � Similarly,(e) (e) (e) (e)n n n n ).j j j j

for such that kj � � kj � kj�1 � 1, the rate of increase to � 1 is �j:d( � kj), and, for(e) (e) (e) (e)n n n nj j j j

such that kj � 1 � � kj � kj�1, the rate of decrease is �j:u(0).(e) (e)n nj j

It follows that the probability distribution of is given by(e)nj

k �1j � (k � v � 1)(e)�v�n j:u jj
(e)p (k ) n � 0, 1, . . . , k � 1j j j j(e)kj�nj� (0)j:d(e) (e)p (n ) � (117)n �k b�1j jj j � (v)�v�0 j:d
(e) p (k ) n � k � 1, . . . , k � k(e) j j j j j j�1n �kj j� (0)j:u

and pj(kj) is determined by pj( � 1.k �k (e)j j�1� n )(e)n �0 jj

When a stage j � 1 kanban arrives at store j from store j � 1 then it will find no other stage j
� 1 kanbans waiting if, just prior to its arrival, � kj. However, even though it finds no stage j(e)nj

� 1 kanbans waiting, it will have to wait for a part if, just prior to its arrival, � kj. Hence qj:u,(e)nj

the probability that an arriving stage j � 1 kanban finds no other stage j � 1 kanban waiting yet has
to wait itself is given by

� (e) (e)q � p {n � k 	0 � n � k }j:u j j j j j

where denotes the probabilities at instants of arrival of stage j � 1 kanbans. We assume that�pj

� and set� (e) (e)p (n ) p (n )j j j j

(e)p (n � k )j j j
q �j:u kj (e)p (n � u)�u�0 j j
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Once there are waiting stage j � 1 kanbans � kj, so the rate at which they will be served will(e)nj

be given by �j:u � �j:u(0), irrespective of the number of waiting stage j � 1 kanbans.
Similarly, considering the arrivals of stage j kanbans at store j from cell j, the probability qj:d that

an arriving stage j kanban finds no other stage j kanban waiting, yet has to wait itself, is given by

� (e) (e)q � p {n � k 	k � n � k }j:d j j j j j j�1

where denotes the probabilities at the instants of arrival of stage j kanbans. Again we assume that�pj

� and so� (e) (e)p (n ) p (n )j j j j

(e)p (n � k )j j j
q �j:d k �kj j�1 (e)p (n � u)�u�k j jj

Since � kj if there are waiting stage j kanbans, the rate at which waiting stage j kanbans will be(e)nj

served will be given by �j:d � �j:d(0), irrespective of the number of waiting stage j kanbans.

7.2.2. Cell Model

Assume that the cell consists of a single server who serves customers at rate �j. Alternatively, with
minor change in the analysis, the cell can be any open queueing network with a product form solution.
Then the closed queueing network representing the circulation of stage j kanbans (or class j custom-
ers) will have a product form solution with

(p) (r)n n j nj j�11 1 1(p) (p) (p)(r) (r) (r)p(n , n , n ) � K. f (n ) f (n ), n � n � n � k (118)� � � � � �j j j�1 p j r j�1 j j j�1 j� � �j j:d j�1:u

and

1, � � 0
f (�) � �p q � � 1, . . . , kj:d j

1, � � 0
f (�) � �r q � � 1, . . . , kj�1:u j

and K is a normalizing constant
Class m � 1 customers only queue at store m, so we have

(r)nm1
(r) (r) (r)p(n ) � K f (n ), n � 0, 1, . . . (119)� �m r m m�m:u

Also note that �m:d � �.

7.2.3. Connection between Store Model and Cell Model

Lastly, it is necessary to find the �j:u and the �j:d To find �j:u we determine the through-(p) (r) (p)(n ) (n ). (n )j j j

put of the two service center closed queue consisting of store j � 1 and cell j. Hence,

(p)G*(k � n � 1)u j j(p) (p)� (n ) � , n � 0, 1, . . . , k � 1 (120)jw:u j j j(p)G*(k � n )u j j

where

(r) (r)��n n� j�1 j�11 1
(r)G*(�) � f (n )� � � � �u r j�1

(r) � �n j j�1:dj�1�0

Similarly, by determining the throughput in the closed queue consisting of cell j � 1 and store j �
1, we have

(r)G*(k � n � 1)d j�1 j(r) (r)� (n ) � , n � 0, 1, . . . , k � 1 (121)j:d j j j�1(r)G*(k � n )d j�1 j

where
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TABLE 5 Comparison of Approximation and Simulation for pND for a Kanban System with
k1 � k2 � 2

�1

0.1 0.3 0.5 0.7 0.9

0.1 Approx. 0.990 0.982 0.937 0.796 0.447
sim. 0.990 0.981 0.927 0.750 0.350

0.3 Approx. 0.910 0.898 0.846 0.707 0.378
sim. 0.911 0.902 0.847 0.677 0.301

�2 0.5 Approx. 0.750 0.737 0.678 0.530 0.201
sim. 0.752 0.744 0.692 0.532 0.182

0.7 Approx. 0.510 0.496 0.435 0.282 ***
sim. 0.515 0.507 0.454 0.300 ***

0.9 Approx. 0.190 0.177 0.117 *** ***
sim. 0.196 0.187 0.131 *** ***

***: unstable.
From Buzacott and Shantikumar � 1993. Reprinted by permission of Prentice-Hall Inc., Upper Saddle River, NJ.

TABLE 6 Comparison of Approximation and Simulation for E[�] for a Kanban System
with k1 � k2 � 2

�1

0.1 0.3 0.5 0.7 0.9

0.1 Approx. 0.001 0.003 0.029 0.242 2.20
sim. 0.001 0.006 0.067 0.549 5.418

0.3 Approx. 0.039 0.047 0.102 0.376 2.52
sim. 0.039 0.046 0.127 0.689 6.064

�2 0.5 Approx. 0.251 0.276 0.419 1.02 6.73
sim. 0.251 0.266 0.402 1.23 10.5

0.7 Approx. 1.14 1.22 1.68 3.90 ***
sim. 1.14 1.19 1.55 3.70 ***

0.9 Approx. 7.30 7.97 13.49 *** ***
sim. 6.94 7.45 11.4 *** ***

***: unstable
From Buzacott and Shantikumar � 1993. Reprinted by permission of Prentice-Hall Inc., Upper Saddle River, NJ.

(p) (p)��n n� j�1 j�11 1 (p)G*(�) � f (n )� � � � �d p j�1
(p) � �n j�1 j�1:dj�1�0

A recursive scheme can then be developed to solve the equations. Set all �j:d(u) � �, then begin
by observing that all �1:u(v) � �1. Determine q1:u, then �2:u(v), q2:u and so on, until stage m � 1 is
reached. Then, for stage m, determine qm:d} and �m:d(w), then qm�1:d, �m�1:d(w), and so on. Repeat this
downstream and upstream iterative process until the parameters converge.

7.2.4. Performance Measures

Define �mu � � /�m:u. Then

(1 � q )(1 � � )m:u mup � (122)ND 1 � (1 � q )�m:u mu

and

�mu�E[�] � (1 � p ) (123)ND1 � �mu

Tables 5 and 6 compare the performance measures calculated using this approximation for a two-
stage system with k1 � k2 � 2 for a variety of different values of �1 and �2.
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CONCLUSIONS
This chapter has focused on using queueing models for performance analysis. It is largely based on
the authors’ book (Buzacott and Shanthikumar 1993). Other books focusing on performance models
of manufacturing systems are Viswanadham and Narahari (1992) and Altiok (1997). Models can also
be used for determining the optimal control and scheduling of manufacturing and service systems.
See Gershwin (1994) and the papers in Yin and Zhang (1996) for numerous examples.
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