
1718

CHAPTER 63
Scheduling and Dispatching

MICHAEL PINEDO AND SRIDHAR SESHADRI
New York University

1. INTRODUCTION 1718

2. FRAMEWORK AND MODELS 1719

2.1. Models and Notation 1719

2.2. Overview of Past Research
Directions 1722
2.2.1. Determining

Computational
Complexity 1722

2.2.2. Development of
(Efficient)
Algorithms 1722

2.2.3. Worst-Case Analysis
of Heuristics 1722

3. DISPATCHING TECHNIQUES 1723

3.1. Basic Dispatching Rules 1723
3.1.1. The WSPT Rule 1723
3.1.2. The EDD Rule 1723
3.1.3. The LPT Rule 1723
3.1.4. The SST Rule 1724
3.1.5. The CP Rule 1724

3.2. Composite Dispatching Rules 1724
3.2.1. The Apparent Tardiness

Cost Heuristic 1724

4. SCHEDULING TECHNIQUES 1725

4.1. Mathematical Programming
Formulations 1725

4.2. Dynamic Programming 1726
4.2.1. Numerical Example 1727

4.3. Branch and Bound 1728
4.3.1. Numerical Example 1728

4.4. Decomposition Heuristics 1729

4.5. Local Search 1731

4.6. Multiple Objectives 1732

5. SCHEDULING PROBLEMS IN
PRACTICE 1732

5.1. Real-Life Scheduling Problems
vs. Theoretical Models 1732

5.2. Scheduling in the Packaging
Industry 1733

5.3. Scheduling in the
Semiconductor Industry 1733

5.4. Scheduling in the Automotive
Industry 1734

5.5. Scheduling in the Aviation
Industry 1734

6. DEVELOPMENT OF
SCHEDULING SYSTEMS 1735

6.1. General Structure of
Scheduling Systems 1735

6.2. Schedule Generation 1736

6.3. Software Development and
Implementation 1737

7. CONCLUDING REMARKS 1738

REFERENCES 1739

ADDITIONAL READING 1740

1. INTRODUCTION
Detailed scheduling of the various elements of a production system is crucial to the efficiency and
control of operations. Orders have to be released and have to be translated into one or more jobs
with associated due dates. The jobs often have to be processed by the machines of a workcenter in
a given order or sequence. Queueing may occur when jobs have to wait for processing on machines

Handbook of Industrial Engineering: Technology and Operations Management, Third Edition.
Edited by Gavriel Salvendy  Copyright © 2001 John Wiley & Sons, Inc.



SCHEDULING AND DISPATCHING 1719

that are busy; preemptions may occur when high-priority jobs arrive at busy machines and have to
proceed at once.

The scheduling and dispatching process has to interface with several other functions in the or-
ganization. On the one hand, it is affected by the production planning process, which handles medium-
and long-term planning for the entire organization. Production planning takes inventory levels,
forecasts, and resource requirements into account in order to do some form of optimization at a
higher level. Any decision taken by this planning function may have an impact on scheduling and
dispatching. On the other hand, scheduling also receives input from shop-floor control. Events that
happen on the shop-floor have to be taken into account because they may have a considerable impact
on the schedules.

What follows mainly focuses on the detailed scheduling of the jobs. Given a collection of jobs
that have to be processed in a given machine environment, the problem is to schedule the jobs,
subject to given constraints, in such a way that one or more performance criteria are optimized.
Various forms of uncertainties, such as random job-processing times, machines subject to breakdown,
and rush orders, may have to be dealt with.

This chapter is organized as follows. Section 2 presents some general notation as well as a
mathematical framework that is used in the theory of scheduling and dispatching. The subsequent
sections focus first on dispatching techniques and then on scheduling procedures. There are two
reasons for following this approach: first, dispatching rules are typically easier to explain than sched-
uling procedures, and second, scheduling procedures often use dispatching rules as subroutines within
a more elaborate framework. Understanding the workings of a scheduling procedure thus typically
requires a certain knowledge of dispatching rules. Section 3 therefore gives an overview of the theory
that has been developed with regard to dispatching. It covers basic dispatching rules as well as
composite dispatching rules. Section 4 subsequently focuses on the main techniques applied to sched-
uling; it also describes a number of empirical procedures that have proven to be useful in current
scheduling systems. Section 5 focuses on scheduling and dispatching problems in practice; it dis-
cusses a variety of industrial environments where scheduling is of critical importance. Section 6 first
discusses the general structure of scheduling systems and then gives a description of the major trends
in the development of industrial scheduling systems during the last two decades. Section 7 contains
a discussion of the difficulties encountered in the implementation of these systems (see Figure 1).

Sections 3 and 4 are somewhat technical; 5 and 6 are more descriptive and basically self-contained.
The less technically inclined reader may prefer to read these last two sections first.

2. FRAMEWORK AND MODELS

2.1. Models and Notation

In the past four decades, a significant amount of theoretical research has been done in scheduling as
well as in dispatching. Along the way, a notation has evolved that succinctly captures the structure
of most machine scheduling models studied in the literature. A short description of this framework
and notation is presented here (see Lawler et al. 1989; Pinedo 1995).

The number of jobs is denoted by n and the number of machines by m. The subscript j refers to
a job, while the subscript i refers to a machine. The following data are associated with job j:

pij � the processing time of job j on machine i; if job j is only to be processed on one machine or
if it has the same processing times on each one of the machines it has (or is allowed) to be
processed on, the subscript i is omitted.

rj � release date of job j.
dj � the due date of job j.
wj � the weight (importance) of job j.

A sequencing or scheduling problem is described by a triplet �����, where � describes the machine
environment, � the processing characteristics and constraints, and � the objective to be minimized.
Examples of the possible (exclusive) entries in the �-field are:

1 � a single machine.
Pm � m identical machines in parallel; a job may be processed on any one of the m machines, it

does not matter which one.
Fm � a flow shop of m machines; that is, m machines in series. A job after completion at one

machine joins the queue at the next machine. All queues operate under the first-in-first-out
discipline, that is, a job cannot ‘‘pass’’ another while waiting in a queue.

Jm � a job shop of m machines; in such a shop each job has its own route through the various
machines and a job may visit a machine more than once.



1720 MANAGEMENT, PLANNING, DESIGN, AND CONTROL

Section 1

Introduction

Section 5

Scheduling Problems
in Practice

Section 2

Framework and
Models

Section 3

Dispatching
Techniques

Section 4

Scheduling
Techniques

Section 6

Development of
Scheduling Systems

Section 7

Concluding
Remarks

Figure 1 Outline of This Chapter.

Examples of entries in the �-field are:

rj � the release date of job j; job j may not start its processing before this date. If no rj appears
in this field, all rj are assumed to be 0.

sjk � the sequence dependent setup time between jobs j and k; s0k denotes the setup time for job
k in case job k is first in the sequence, while sj0 denotes the clean-up time after job j in case
job j is last in the sequence (of course, s0k and sj0 may be zero). If no sjk appears in the
�-field, all setup times are assumed to be 0.

prec � the precedence constraints among the jobs. If no prec appears, there are no precedence
constraints.

prmp � preemptions are allowed. If prmp does not appear, preemptions are not allowed.

Most other entries that may appear in the �-field are self-explanatory. The �-field may have multiple
entries or may be completely empty. Due dates, in contrast with release dates, are not specified in
this field; the ojective implies whether or not the jobs have due dates.

The objective is always a function of the completion times of the jobs, which are, of course,
schedule dependent. The completion time of job j is denoted by Cj. Examples of possible objective
functions to be minimized are:



SCHEDULING AND DISPATCHING 1721

Figure 2 Hybrids of Flow Shops and Parallel Machines.

Cmax � the makespan, defined as max(C1, . . . , Cn), which is equivalent to the completion time of
the last job to leave the system. A minimum makespan usually implies a good utilization
of the machine(s).

Lmax � the maximum lateness, which is defined as max(L1, . . . , Ln), where Lj equals Cj � dj.
�wjCj � the sum of the weighted completion times of the n jobs.
�wjTj � the sum of the weighted tardinesses, where the tardiness of job j, Tj, is defined as

max(Cj � dj,0).
�wjUj � the weighted number of tardy jobs, with Uj being 1 if Cj � dj and 0 otherwise.

The following examples illustrate the notation:

1�sjk�Cmax denotes a single machine with n jobs subject to sequence-dependent setup times; the
objective is to minimize the makespan. It is well known that this problem is equivalent to the
so-called traveling salesman problem in which a salesman has to tour n cities in such a way
that the total distance traveled is minimized.

Pm�rj,sjk��wjTj denotes m identical machines in parallel, n jobs with different release dates, dif-
ferent due dates, and different weights. The jobs are subject to sequence-dependent setup times
and the objective is to find a sequence that minimizes the sum of the weighted tardinesses.

Fm�pij � pj��wjCj denotes a so-called proportionate flow shop with m machines, i.e., m machines
in series, with the processing times of job j on all m machines identical and equal to pj (which
is the reason this flow shop is called proportionate); the objective is to find the order in which
the n jobs go through the system so that the sum of the weighted completion times is mini-
mized.

Jm�Cmax denotes a job shop with m machines; the objective is to minimize the makespan.

Of course, there are many scheduling models that are not captured by this framework. Many
situations in the real world have machine environments that do not fit the framework. For example,
various researchers have recently begun to study hybrids between flow shops and parallel machines.
In one such hybrid, there are a number of stages in series, with each stage consisting of a number
of machines in parallel. Jobs progress from stage to stage, and at each stage each job has to be
processed on one of the parallel machines. This machine environment has been given various names
in recent years: generalized flow shop, flexible flow shop, compound flow shop. Alternatively, one
can consider a number of parallel flow shops, each having a single machine at every stage. When a
job is assigned to a particular flow shop, it is not allowed to switch in the middle of the process to
another flow shop (see Figure 2).



1722 MANAGEMENT, PLANNING, DESIGN, AND CONTROL

All objective functions mentioned above are so-called regular performance measures. Regular
performance measures are functions that are nondecreasing in C1, . . . , Cn. Recently researchers
have begun to pay attention to objective functions that are not regular. For example, when job j has
due date dj, there may be, besides a tardiness penalty, also an earliness penalty; the larger the deviation
from the due date, in either direction, the larger the penalty. The objective may be the sum of earliness
penalties and tardiness penalties.

The framework has been primarily designed for models with a single objective because most of
the research has been concentrated on such models. Currently, researchers are studying models with
multiple objectives as well, but a standard notation with regard to such models has not been developed
yet.

Various other features in scheduling, not mentioned above, have been studied and analyzed in the
past, such as finite buffers, blocking, and recirculation. A standard notation for these features still
needs to be developed.

2.2. Overview of Past Research Directions

The research in deterministic scheduling problems has followed a number of different directions (see
Pinedo 1995). Three areas have received considerable attention:

2.2.1. Determining Computational Complexity

For some problems so-called polynomial time algorithms are known to exist. A polynomial time
algorithm implies that the number of computational steps (which is proportional to the amount of
computer time) needed to find a schedule which achieves the optimum value of the objective function
is a polynomial function of the parameters of the problem (e.g., the number of jobs, n and /or the
number of machines, m). A polynomial time algorithm may require, for example, a number of steps
that is on the order of n3 or n4. There are problems, however, for which no polynomial time algorithm
is known to exist. These problems are the so-called NP-hard problems. The most efficient algorithms
for these problems are exponential in the parameters of the problems. Such algorithms may require,
for example, a number of steps that is on the order of 3n or 4n.

Determining whether or not a scheduling problem can be solved in polynomial time typically
involves proving that the given problem is in some sense equivalent to a problem already known to
be NP-hard. For example, the 1�sjk�Cmax problem is NP-hard because it is equivalent to the traveling
salesman problem, which is known to be NP-hard.

2.2.2. Development of (Efficient) Algorithms

For problems that are solvable in polynomial time, it is usually relatively easy to find efficient
algorithms. For the simplest of these problems, a simple sort is all that is required. For example, it
may only be necessary to order the jobs in increasing order of their due dates (the so-called earliest
due date rule [EDD]) or in decreasing order of the wj /pj ratios (the so-called weighted shortest
processing time [WSPT] first rule. For more complicated polynomial time problems, more sophisti-
cated techniques such as dynamic programming are required.

For the NP-hard problems, it is always significantly harder to find a good algorithm. One usually
resorts to heuristics, which may give reasonably good schedules. When a more accurate solution is
required, a more sophisticated technique (which also uses more computer time) such as branch and
bound or lagrangean relaxation is usually employed. When only the optimal solution will do, the
most likely approach would be to develop an (exponential time) algorithm based on dynamic pro-
gramming or branch and bound.

2.2.3. Worst-Case Analysis of Heuristics

Solutions that are optimal for the easier problems often turn out to be good heuristics for the more
complicated NP-hard problems. Examples of simple heuristics are the earliest due date (EDD) rule,
the weighted shortest processing time first (WSPT) rule, the longest processing time first (LPT) rule,
the shortest setup time first (SST) rule, and the critical path (CP) rule. The SST rule is of importance
when the jobs are subject to sequence-dependent setup times; following the completion of a job, this
rule consistently selects as the next job the one with the smallest setup time. The critical path (CP)
rule is of importance when the jobs are subject to precedence constraints; following the completion
of a job, this rule always selects as the next job the job that is at the head of the chain of jobs (one
having to follow another) that contains the largest amount of processing.

It is of interest to know the worst-case behavior of such heuristics when applied on an NP-hard
scheduling problem; that is, to have an upper bound on the ratio of the value of the objective function
obtained via the heuristic divided by the true optimal value. This upper bound often, but not always,
lies between 1 and 2. Besides giving an indication of how bad the result of a given heuristic may
turn out to be, a worst-case analysis also gives an indication of the types of problem data for which
the heuristic does not work well.



SCHEDULING AND DISPATCHING 1723

The next two sections deal, in particular, with heuristics and algorithms. At times a problem may
be said to be NP-hard; however, no details will be given on how this is determined.

3. DISPATCHING TECHNIQUES

3.1. Basic Dispatching Rules

The five priority rules mentioned in the previous section, WSPT, EDD, LPT, SST, and CP, are fairly
important. They provide optimal sequences in some very simple cases and serve as heuristics for
more complicated scheduling models. It is useful to know the properties of these priority rules when
designing a complicated computer-based scheduling system. Different modules in such a system may
use at given times one of these rules to sequence a subset of the jobs. Or a composite priority rule
may be constructed by combining two or more of these simple priority rules in order to minimize a
mixture of various objectives. A more in-depth discussion of these five simple priority rules follows.

3.1.1. The WSPT Rule

The weighted shortest processing time first rule, which schedules the jobs in decreasing order of
wj /pj, actually minimizes the sum of the weighted completion times on a single machine (see Smith
1956), that is, 1��wjCj. However, for slightly more complicated problems, such as 1�rj��wjCj, or
1�rj,prmp��wjCj, or Pm��wjCj, the WSPT rule (or any variant of the WSPT rule that takes preemptions
into account) does not necessarily result in the optimal solution. These three problems are actually
NP-hard. The WSPT rule is nevertheless a very good heuristic. A worst-case analysis shows that for
Pm��wjCj :

1 � �2�w C (WSPT)j j
� � 1.207

�w C (OPT) 2j j

where �wjCj(WSPT) (�wjCj(OPT)) denotes the value of the objective function under the WSPT
(OPT) rule (see Kawaguchi and Kyan 1986). For the special case where all jobs have equal weights,
that is wj � 1 for j � 1, . . . , n, the WSPT rule reduces to the shortest processing time first (SPT)
rule. It is well known that the SPT rule minimizes the total completion time on parallel machines
(Pm��Cj).

3.1.2. The EDD Rule

The earliest due date rule, which schedules the jobs in increasing order of their due dates, minimizes
the maximum lateness on a single machine (see Jackson 1955), that is, 1�Lmax, as well as in a
proportionate flow shop, that is, Fm�pij � pj�Lmax. However, it does not provide an optimal solution
for other due date-related problems, such as 1��Tj. Instances of 1��Tj with

�T (EDD)j
� n

�T (OPT)j

can be found easily. This implies that the EDD rule at times may result in a solution that is far from
optimal. The EDD rule is usually not used as a heuristic by itself, but rather as part of a composite
heuristic (such as the so-called ATC rule, which is discussed later in this section).

3.1.3. The LPT Rule

The longest processing time first rule, which schedules the jobs in decreasing order of pj, is used as
a heuristic for the Pm�Cmax problem, which is known to be NP-hard. The importance of the makespan
objective lies in the fact that a small makespan is a sign of a good job balance (partition) over the
various machines. In order to find a schedule with a relatively small makespan, one orders the jobs
in decreasing order of their processing times and puts the jobs on the machines, whenever one is
freed, in that order. A worst-case analysis of this heuristic shows that

C (LPT) 4 1max � �
C (OPT) 3 3mmax

See Graham (1969). This implies that at all times this heuristic performs reasonably well. The LPT
heuristic has been used in industrial scheduling systems in order to provide a reasonable balance of
the workload over the different machines. After the partition has been determined by the LPT rule,
the jobs assigned to any given machine can be resequenced. Resequencing a machine clearly does
not affect the balance and may be done to minimize a secondary objective.



1724 MANAGEMENT, PLANNING, DESIGN, AND CONTROL

3.1.4. The SST Rule

The shortest setup time first rule, when a machine is freed after completing job j, selects as the next
job the one with the smallest setup time sjk. It is used as a heuristic for the 1�sjk�Cmax problem, which,
as said above, is equivalent to the traveling salesman problem. The traveling salesman leaving a city
for the city closest by (the nearest neighbor) is equivalent to sequencing jobs based on the smallest
sequence-dependent setup time. The 1�sjk�Cmax problem is known to be NP-hard even when the so-
called triangle inequality holds. This inequality implies that sjk � skl � sjl for all j, k, and l. It can
be shown easily that for the 1�sjk�Cmax problem, even in case the triangle inequality holds, the ratio

C (SST)max

C (OPT)max

can become arbitrarily large (see Rosenkrantz et al. 1977). The SST rule in practice is often used in
composite heuristics.

3.1.5. The CP Rule

The critical path rule always selects as the next job the one that is at the head of the chain of jobs
that contains the largest amount of processing. It is often used as a heuristic for the Pm�prec�Cmax

problem, which is known to be NP-hard. The heuristic actually yields the minimum makespan in
case all jobs have identical processing times and the precedence constraints are in the form of a tree
(tree-like precedence constraints imply that either all jobs have at most one sucessor or all jobs have
at most one predecessor). A worst-case analysis shows that for the Pm�prec,pj � 1�Cmax problem with
arbitrary precedence constraints:

C (CP) 1max � 2 �
C (OPT) m � 1max

See Chen and Liu (1975). The CP rule is used also when other objective functions have to be
minimized. It plays an important role in composite heuristics as well.

3.2. Composite Dispatching Rules

3.2.1. The Apparent Tardiness Cost Heuristic

The problem 1��wjTj is of importance in many practical situations. Jobs frequently have different
weights (priorities) as well as different due dates (committed shipping dates) with the sum of the
weighted tardinesses as the objective to be minimized. This objective is strongly correlated with loss
of goodwill. It is well known that this problem is NP-hard even with a single machine. So it is
important to have a heuristic that provides a reasonably good schedule with little computational
effort. Some heuristics come immediately to mind, namely, the WSPT rule (which is optimal when
all release dates and due dates are zero) and the EDD rule (which is optimal when all due dates are
sufficiently large and spread out). It is clear that a heuristic or priority rule is needed which in one
form or another combines these two heuristics. The apparent tardiness cost (ATC) heuristic is such
a priority rule (Vepsalainen and Morton 1987). Under this priority rule, the jobs are scheduled one
by one; that is, every time the machine is freed, a priority index is computed for all the remaining
jobs that are available for processing. The job with the highest priority index is then selected to go
next. This priority index is a function of the time the current job completes, say t, as well as the pj,
the wj , and the dj of all remaining jobs. The index is defined as

w max(d � p � t,0)j j j
I (t) � exp �� �j p Kp̄j

where K is a scaling parameter which is determined empirically, p̄ is the average of the processing
times of the remaining jobs, and max(dj � pj � t,0) is the slack of job j. If K is chosen very large,
the ATC rule reduces to the WSPT rule. On the other hand, if K is chosen very close to zero, the
rule reduces to the WSPT rule among the overdue jobs when there are overdue jobs; when there are
no overdue jobs, it gives priority to the job with the least slack. In order to obtain good schedules,
the parameter K has to be chosen very carefully. This can be done by first making a detailed analysis
of the particular scheduling instance under consideration. There are several ways to characterize
scheduling instances. One is through a due date tightness factor �, which is defined as



SCHEDULING AND DISPATCHING 1725

d
� � 1 �

Cmax

where is the average of the due dates. Another way is through a due date range factor R, which isd
defined as

d � dmax minR �
Cmax

It actually pays to evaluate the � and the R of the instance under consideration and choose the scaling
parameter K based on these values. A significant amount of research has been done that establishes
the relationship between the look-ahead parameter K and the �, the R, and the machine environment.

Thus, when one wishes to minimize �wjTj in a more complicated machine environment, one first
characterizes the particular problem instance through a number of factors. Then one determines the
value of the look-ahead parameter K as a function of these characterizing factors as well as of the
particular machine environment. After fixing K, one applies the rule.

Several generalizations of the ATC rule have been developed in order to take into account release
dates as well as sequence dependent setup times. These generalizations require the initial computation
of a number of factors. These factors, together with the particular machine environment, can then be
used to determine a number of the parameters (see Lee et al. 1997).

Simple heuristics such as the five described above provide adequate results only for the simplest
scheduling problems. Real-world scheduling problems usually require techniques that are significantly
more sophisticated than a myopic priority rule that just orders the jobs according to a function of
one or two parameters. There are various ways of formulating scheduling problems as well as various
types of solution procedures. These are discussed next.

4. SCHEDULING TECHNIQUES

4.1. Mathematical Programming Formulations

Many scheduling problems can be formulated as linear programs or other forms of mathematical
programs.

Scheduling problems that allow preemptions are often easier than problems that do not allow
preemptions. The problems that allow preemptions can often be solved in polynomial time. Consider,
for example, the problem Pm�prmp�Cmax. Job j may be processed on any one of the m machines; it
may be preempted and may continue its processing on another machine at another time. A schedule
that minimizes the makespan can be obtained by first solving the following linear program (LP):

minimize Cmax

subject to

m

x � p , j � 1, . . . , n� ij j
i�1

m

x � C , j � 1, . . . , n� ij max
i�1

n

x � C , i � 1, . . . , m� ij max
j�1

x � 0, i � 1, . . . , m, j � 1, . . . , nij

The variable xij represent the total time spent by job j on machine i. The LP can be solved in
polynomial time, but the solution of the LP does not prescribe an actual schedule; it merely prescribes
how much time job j should spend on machine i. However, with this information a schedule can
easily (in polynomial time) be constructed. This LP formulation for the Pm�prmp�Cmax problem is
given for illustration purposes only. Actually, many schedules that minimize the makespan are easy
to find and all these schedules result in a makespan

C � max(p , . . . , p ,�p /m).max 1 n j

One of the schedules that minimize the makespan is the preemptive longest remaining processing



1726 MANAGEMENT, PLANNING, DESIGN, AND CONTROL

time first (preemptive LPT) schedule. According to this schedule, at every point in time, the m jobs
with the largest remaining processing times have to be processed on the m machines. This schedule
requires, of course, a large number of preemptions; there are other optimal schedules that do not
require as many preemptions.

The formulation described above can be generalized to include the model where the processing
time of a job may depend on the machine on which it is processed. Again, job j needs processing
on only one machine and any one will do. However, if job j is processed on machine i its processing
time is pij.

Linear programming formulations are often possible either when preemptions are allowed or when
all processing times are identical (i.e., pj � 1, j � 1, . . . , n). Scheduling problems with all processing
times identical often reduce to the so-called assignment problem, for which there exists a linear
programming formulation.

When a problem is NP-hard, a linear programming formulation is, of course, not possible. How-
ever, NP-hard scheduling problems can often be formulated as integer programs or other more com-
plicated forms of mathematical programs. Consider, for example, the Jm�Cmax problem. Let pij denote
the processing time of job j on machine i, let yij denote the starting time of this operation, and let
the set N denote the set of all (i, j ) operations. This set may be viewed as a set of nodes in a directed
graph. Let the set A denote the set of all precedence (routing) constraints (i, j ) � (k, j ) that require
job j to be processed on machine i before it is processed on machine k, that is, operation (i, j )
precedes operation (k, j ). This set may be viewed as a set of arcs in a directed graph that has nodes
N. The following mathematical program minimizes the makespan:

minimize Cmax

subject to

y � y � p for all (i, j ) � (k, j ) � Akj ij ij

C � y � p for all (i, j ) � Nmax ij ij

y � y � p or y � y � p for all (i,l ),(i, j ), i � 1, . . . , mij il il il ij ij

y � 0 for all (i, j ) � Nij

The third set of constraints is often called the disjunctive arc constraints and represent the fact that
some ordering must exist among operations of different jobs that are processed on the same machine.
Because of these constraints, this problem is sometimes referred to as the disjunctive programming
problem.

That an NP-hard scheduling problem can be formulated as an integer programming problem or
a disjunctive programming problem does not imply that there is a standard solution procedure avail-
able that will work satisfactorily. For most NP-hard scheduling problems solution procedures have
to be tailor made. Two general techniques are widely used, namely dynamic programming and branch
and bound. In what follows, these two techniques are applied to two well-known NP-hard problems.
Dynamic programming is applied to 1��Tj and branch and bound to Fm�Cmax.

4.2. Dynamic Programming

Dynamic programming is an optimization technique that is particularly well suited for scheduling
problems with makespans that are schedule independent, such as, single-machine problems without
setups, proportionate flow shops, and problems with all processing times being identical. It can also
be applied on scheduling problems with makespans that do depend on the sequence.

For the 1��Tj problem the forward dynamic programming technique is used (see Held and Karp
1962). The following observation is crucial. If the sequence j1, j2, . . . , jn, a given permutation of
1, . . . , n, is optimal for the problem under consideration, then the subsequence j1, j2, . . . , jk, where
k � n, has to be optimal for the smaller k-job problem, which contains only jobs j1, j2, . . . , jk. Let
S denote a subset of the n jobs and let G(S ) denote the minimum value of the objective function if
only the jobs in S are to be scheduled. It is easy to see that the recursive relationship

G(S ) � min (G(S � { j}) � max p � d ,0)�� �l j
j�S l�S

has to hold. The second term on the right-hand side of this expression represents the tardiness of job
j. This recursive relationship, which in the dynamic programming literature often is referred to as
the principle of optimality, makes it possible to solve the scheduling problem in the following manner.
First, all sequencing problems that contain only a single one of the n jobs are solved. There are n



SCHEDULING AND DISPATCHING 1727

such problems. Clearly, these problems require no optimization. However, the values of the objective
functions G(S ) still have to be computed. If such a one-job scheduling problem consists of job j,
then

G(S ) � G({ j}) � max(p � d , 0)j j

After these n values have been computed, all sequencing problems containing two of the original n
jobs are solved (there are n(n � 1) /2 such scheduling problems); the optimal order as well as the
values of the objective functions have to be determined. The recursive relationship and the results
for the one-job problems make it possible to solve these two-job problems efficiently. That is, if
S � { j, k}, then

G({ j, k}) � min(G({k}) � max(p � p � d ,0), G({ j}) � max(p � p � d ,0)).k j j j k k

Then all sequencing problems containing three of the n jobs have to be analyzed. Again, the recursive
relationship and the results for the two-job problems make it possible to solve these three-job prob-
lems efficiently. Then all four-job problems need to be analyzed, and so on.

It is easy to see that this technique is more efficient than complete enumeration. Actually, one
can reduce the amount of computation even more by using dominance rules or elimination criteria
(see Emmons 1969). For the 1��Tj the following dominance rule exists: If there is a pair of jobs j
and k such that pj � pk and dj � dk, then there exists an optimal sequence with job j appearing in
the sequence before job k. This rule makes it possible to reduce the amount of computation since it
is not necessary to evaluate any sequence where job k appears before job j. (However, it still is not
possible to find a polynomial time algorithm for this problem, since it is known to be NP-hard.)

4.2.1. Numerical Example

Consider three jobs with processing times p1 � 6, p2 � 10, p3 � 8 and due dates d1 � 13, d2 � 8,
d3 � 15.

First, consider all sequencing problems that consist of a single job. If S consists of either job 1
or job 3, then G(S ) � 0 because these jobs would be completed before their due dates. If S consists
of job 2, then

G(S ) � 10 � 8 � 2

Next, consider all problems that consist of two jobs. There are three possible sets S, namely {1,
2}, {1, 3} and {2, 3}. Each one of the three problems has to be evaluated twice (because each job
has to be given the chance to be the last one of the set to be completed). If S � {1, 2}, then the last
job of S is completed at p1 � p2 � 16. If job 1 is the last one of the set to be completed, then
T1 � 3 and

G(S � {1}) � G({2}) � 2

If job 2 is the last one to be completed, then T2 � 8 and

G(S � {2}) � G({1}) � 0

So

G({1, 2}) � min(2 � 3, 0 � 8) � 5

The optimal order is first job 2 and then job 1. In the same way it can be determined that
G({1, 3}) � 0 and that in this case job 1 should precede job 3. The computations for set {2,3} yield
G({2, 3}) � 5 and that job 2 should precede job 3.

Now consider all problems that consist of three jobs. There is only one such set, namely {1, 2,
3}. This set has to be evaluated three times because any one of the three jobs may be the last one
to finish. From the fact that p1 � p2 � p3 � 24, it follows that if job 1 is the last one to finish,
T1 � 11; if job 2 is the last one, then T2 � 16; if job 3 is the last one, then T3 � 9. So

G({1, 2, 3}) � min(G({1, 2}) � T , G({2, 3}) � T , G({1, 3}) � T )3 1 2

� min(5 � 9, 5 � 11, 0 � 16) � 14

From these computations it is concluded that the optimal order is 2,1,3 and that the minimum value
of the objective function is 14.



1728 MANAGEMENT, PLANNING, DESIGN, AND CONTROL

Actually, from the elimination criteria it could have been established in advance that job 1 has
to precede job 3. The use of this piece of information throughout the procedure would have reduced
the number of computational steps significantly.

4.3. Branch and Bound

In the scheduling field, the branch and bound technique appears to be more widely used than dynamic
programming. The technique is basically an enumeration process that attempts to eliminate, through
a bounding process, as many sequences as possible from consideration. The bounding process is very
problem specific. Here the technique is applied to the Fm�Cmax problem (see Ignall and Schrage
1965).

The branching process may be described as follows: A tree is built with a number of nodes at
each level of the tree. The top level, level 1, of the tree consists of a single node, called the root. At
this level the sequence is completely unspecified, that is, no job has a position in the sequence yet.
This root has n branches that go down to the second level. The n nodes at the second level are
characterized by the first job in the sequence, that is, at each node one particular job is assigned to
the first position in the sequence and the positions of the n � 1 remaining jobs are still unspecified.
Each node at level 2 has n � 1 branches emanating to the third level, with each node at the third
level characterized by the jobs in positions 1 and 2 of the sequence. At each subsequent level there
will be more nodes with fewer branches emanating to the next level.

The bounding process attempts to develop at any given node a lower bound on the objective
functions of all sequences that start with the jobs specified at this node. A node at level k � 1 has
k jobs specified, say jobs j1, j2, . . . , jk; of the remaining n � k jobs the positions still must be
determined. Let S denote these n � k jobs and let denote the time job jk departs machine i inCi, jk
the Fm�Cmax example. In order to find one lower bound for all sequences which start with j1, j2,
. . . , jk, observe that the first machine of the flow shop is always processing a job until the last job
leaves the first machine. At best this last job goes through the remaining machines, after leaving the
first machine, without having to wait for processing at any one of the remaining machines; thus,

n m

C � p � min p � LB� �� �max 1j ij 1
j�1 j�S i�2

The first term of the lower bound represents the time the last job is completed on machine 1; the
second term is the minimum time required for the last job to go through the remaining m � 1
machines. A second lower bound can be obtained by assuming that the second machine is continu-
ously busy after and that the last job to leave the second machine goes through the remainingC2, jk
machines without having to wait for processing at any one of these machines. Thus,

m

C � C � p � min p � LB� �� �max 2, j 2j ij 2k
j�S j�S i�3

In this way it is possible to obtain m lower bounds. The last bound is

C � C � p � LB�max m, j mj mk
j�S

The lower bound to use is the maximum of these m lower bounds.
The search for the optimal sequence now goes as follows. One starts out with an initial sequence,

which has to be chosen in a somewhat intelligent way (e.g., through a heuristic) and computes its
Cmax. The better the initial sequence, the faster the branch and bound technique works. The procedure
requires branching down the tree until a node is hit with a lower bound that is higher than the Cmax

of the best sequence found so far. This node is ‘‘then fathomed’’ and its offspring need not be
considered. The search is then resumed from another node that appears to be promising (possibly
because of a low lower bound at a node somewhat close to the root). When one finds a sequence
with a Cmax that is lower than the existing sequence one already has, one retains the new sequence
and discards the other. The search is terminated when all nodes of the tree have been considered
explicitly or implicitly (i.e., through fathoming).

4.3.1. Numerical Example

Consider three machines and three jobs. The processing times of job 1 are p11 � 8, p21 � 4, p31 �
5, of job 2, p12 � 1, p22 � 6, p32 � 3 and of job 3, p13 � 1, p23 � 9, p33 � 5. An initial solution
has to be obtained in order to have a bound to start out with. One can argue that it makes sense to



SCHEDULING AND DISPATCHING 1729

1,.,. 2,.,.

 .,.,.

3,.,.

3,1,2 3,2,1

LB = 30 LB = 25 LB = 23

Figure 3 Branch and Bound Tree.

let job 3 go first because it has a very small processing time on machine 1 and a very long processing
time on machine 2. Choose sequence 3,2,1 as the initial sequence. Computing its makespan yields
25. This value is used as the initial bound. There are three nodes at level 2. The first node represents
all sequences that start with job 1 in the first position (i.e., node (1,.,.) in Figure 3). Computing the
bounds that are associated with this node yields:

LB � 8 � 1 � 1 � min(6 � 3, 9 � 5) � 191

LB � 8 � 4 � 6 � 9 � min(3,5) � 302

LB � 8 � 4 � 5 � 3 � 5 � 253

So the lower bound at node (1,.,.) is 30. Because this lower bound is higher than the makespan
of our initial sequence, it does not make any sense to evaluate the offspring of this node. Node (1,.,.)
is thus fathomed. Evaluating node (2,.,.) and computing in a similar way a lower bound yields a
value of 25. Because a sequence with a makespan of 25 is already known it is not necessary to
evaluate the offspring of this node either; node (2,.,.) is therefore fathomed as well. Evaluating node
(3,.,.) and computing a lower bound for this node yields a value of 23. Because this bound is lower
than the makespan of the current sequence, the offspring of this node has to be evaluated; there may
be a sequence with job 3 in the first position that has a makespan that is lower than the makespan
of the current sequence. Evaluation of level 3, which turns out to be the last level, reveals that there
are only two nodes at this level, namely nodes (3,1,2) and (3,2,1). Computing the makespan of
sequence 3,1,2 yields a makespan of 23. This sequence is therefore optimal.

4.4. Decomposition Heuristics

In this section and the next, empirical techniques are presented that have proven to be useful in
practice. These empirical techniques, or at least their underlying ideas, have been used in many
existing industrial scheduling systems.

The technique discussed in this section has been designed for the Jm�Cmax problem, which has
received an enormous amount of attention in the literature. One of the most successful heuristic
procedures developed for this problem is the shifting bottleneck heuristic (see Adams et al. 1988).
A description of the procedure requires an alternative formulation of the problem.

Consider a directed graph G � (N, A, B). The nodes N correspond to all the operations to be
done on the n jobs. The (solid) arcs A represent the precedence relationships between the various
operations of the jobs. The disjunctive (broken) arcs B form m cliques of double arcs, one clique for
each machine; the operations that are connected to one another in a clique have to be done on the
same machine. All arcs, including the disjunctive ones, emanating from a node have as length the
processing time of the operation at that node. In addition, there is a source and a sink, which are
dummy nodes. The source (sink) has arcs emanating to (coming from) all the first (last) operations
of the jobs. The arcs emanating from the source have length zero (see Figure 4).

A feasible schedule corresponds to a selection of one disjunctive arc from every pair in such a
way that the resulting directed graph is acyclic. This implies, then, that each selection from a clique
has to be acyclic. Such a selection, thus, determines the sequence in which the operations are to be
performed on that machine. The length of such a schedule is, then, determined by the longest path



1730 MANAGEMENT, PLANNING, DESIGN, AND CONTROL

Source Sink

0

0

0

10 7

8 3 5 6

4 7

3

4

Figure 4 Disjunctive Graph of Job Shop with Three Jobs and Four Machines.

(i.e., the critical path) from source to sink. The problem is to find the selections of disjunctive arcs
which minimize the length of the longest path. The shifting bottleneck procedure now works as
follows.

Let M denote the set of all m machines. Assume that for a subset of the machines, say M0, the
selections of disjunctive arcs have been determined. That is, job sequences on these machines have
been determined. An additional machine has to be added to this subset and the sequence in which
the operations are to be processed on this machine needs to be specified. To determine which machine
should be the next one to be included in M0, an attempt is made to determine which machine (among
the ones still to be scheduled) causes in one sense or another the severest problems. In order to do
this, the original directed graph is modified by deleting all disjunctive arcs of the machines still to
be scheduled (i.e., machines in the set M � M0) and keeping only the relevant disjunctive arcs of
the machines already in M0 (one from every pair). Call this graph G�. Deleting all disjunctive arcs
of a specific machine implies that the associated operations, which originally were supposed to be
done on the machine one after another, now can be done in parallel at any point in time (as if each
one of these operations has its own private machine). The graph G� has one or more critical paths
as well as a makespan associated with it. Call this makespan Cmax(M0).

Assume now that each operation j to be scheduled on machine i, i � M � M0, has to be processed
in a time window of which the release dates and due dates are determined by the critical (longest)
paths in G�. Consider each one of the machines in M � M0 as a separate 1�rj�Lmax problem where
the maximum lateness has to be minimized (actually, the 1�rj�Lmax problem is NP-hard, but algorithms
have been developed for this problem that perform reasonably well). After these single machine
problems are solved, it has to be determined which one of these single machine problems has the
largest maximum lateness. This machine, in a sense, is the ‘‘bottleneck’’ among the remaining ma-
chines still to be scheduled and therefore the one to be added next to M0. Label this machine k, call
its maximum lateness Lmax(k), and schedule it according to the optimal solution obtained. If the
corresponding disjunctive arcs, which specify the sequence of operations on machine k, are inserted
in graph G�, then the makespan increases by at least Lmax(k), that is,

C (M � k) � C (M ) � L (k).max 0 max 0 max

Before the procedure is repeated and which machine to schedule next is decided, an additional
step of resequencing each one of the machines in M0 needs to be done. That is, a machine is taken
out of the set M0 � k, say machine l. A graph G� has to be constructed in the same way as graph
G� was constructed including now the disjunctive arcs which specify the sequence of operations on
machine k and excluding the disjunctive arcs associated with machine l; machine l has to be rese-
quenced by solving the corresponding 1�rj�Lmax problem with the release and due dates determined
by the critical paths in graph G�. After this resequencing is done for each one of the machines in
the original set M0, the entire procedure is repeated in order to add another machine to the current
set M0 � k.

The structure of this heuristic shows the relationship between the bottleneck concept and the more
combinatorial concepts such as the critical (longest) path and the maximum lateness. A critical path
indicates the location and timing of a bottleneck. The maximum lateness indicates the amount with
which the makespan increases if a machine is added to the set of machines already scheduled.

Extensive numerical research has shown that this heuristic is extremely effective. Applied on a
particular test problem with 10 machines and 10 jobs, which had remained unsolved for more than
20 years, the heuristic obtained a very good solution after only a couple of minutes of CPU time.
This solution turned out to be optimal after a branch and bound approach, applied to the problem,



SCHEDULING AND DISPATCHING 1731

obtained the same result and verified its optimality. The branch and bound approach, in contrast to
the heuristic, needed many hours of CPU time. The disadvantage of the heuristic is, of course, that
whether an optimal solution actually has been reached can never be known for sure.

4.5. Local Search

Simulated annealing and taboo search are two techniques that can be viewed as generalizations of
the iterative improvement approach to combinatorial optimization problems.

Simulated annealing originated in a different field: it was first developed as a simulation model
for describing a physical annealing process for condensed matter. The application of simulated an-
nealing to scheduling requires a certain amount of structure (see Matsuo et al. 1989). At stage k of
the process, there is a solution for the scheduling problem; for a single-machine problem this solution
is merely a given sequence (permutation) of the jobs, say �p. Let G(�p) denote the value of the
objective function using this solution. For this solution a neighborhood can be defined. If the solution
is just a permutation of the n jobs, then the neighborhood could be defined as all permutations that
can be obtained by interchanging a pair of adjacent jobs (which implies that the neighborhood then
consists of n � 1 different sequences). Clearly, the structure of the neighborhood can be made more
complicated and is a design issue. In order to be allowed to move from solution �p to solution �q,
which is an element of the neighborhood of solution �p an acceptance probability

G(� ) � G(� )q p
P (k) � min 1,exp �� � 	
pq �k

is defined, where k is the so-called stage of the search and �1 � �2 . . . The stage is a level in which
the same acceptance probability is used, and �k is a control parameter. This �k tends to zero as k
increases, which implies that the acceptance probability for a move to a worse solution is lower at
a later stage in the process. From the definition of the acceptance probability, it also follows that the
worse a neighbouring solution is, the lower the acceptance probability is.

The simulated annealing procedure now works as follows. At each stage a series of neighborhood
searches is done. A search can be done in a random way or in a organized (possibly sequential) way.
A neighbor is compared with the ‘‘seed’’ (current) solution. When the value of the objective function
of the neighbor is less than the value of the objective of the seed, the neighbor is automatically
accepted and becomes the new seed. If the value of the objective of the neighbor is higher than the
one of the seed, the neighbor is accepted as the new seed with a probability that is determined by
the acceptance probability. However, the best solution obtained so far is always being kept in memory.
In practice, several stopping criteria are used for this procedure. One way is to let the procedure run
for a given (prespecified) number of iterations. Another is to let the procedure run until for a given
number of iterations no improvement has been obtained.

Taboo search is in many ways similar to simulated annealing. The procedure moves again from
one solution to another, with the next solution being possibly worse than the preceding solution. For
each solution (or sequence) a neighborhood is defined, possibly in exactly the same way as it is
defined for simulated annealing. The reason for allowing a solution to be worse than the previous
one is to give the procedure the opportunity to move away from a local minimum and have a chance
to find a lower minimum. The mechanism that guides the moves is different from the one in simulated
annealing (see Glover 1990). At any stage of the process a so-called taboo list is being kept. This
list contains the moves to the neighboring solutions the procedure is not allowed to make. This list
has a fixed number of entries (this number usually lies between 5 and 9). Every time a move is
made, the reverse move is put at the top of the taboo list; all other entries are pushed one position
down and the bottom entry is deleted. The reason for putting the reverse move in the list is to avoid
a move back to a local minimum that has been visited before. The search for a neighbor to which
the procedure is allowed to move to is a design issue. This can, just as in simulated annealing, be
done in a random way or in an organized (sequential) way.

The use of simulated annealing and taboo search has its advantages and disadvantages. One
advantage is that it can be applied to a problem without having to know much about the structural
properties of the problem. It can be coded very easily and it gives solutions that are usually fairly
good. However, the amount of computation time needed to obtain such a solution tends to be relatively
long in comparison with more rigorous problem-specific approaches.

Simulated annealing as well as taboo search are often used in the following manner. First an
attempt is made to find a reasonably good initial solution for a problem via a heuristic. After this
has been done, either a simulated annealing or a taboo search procedure is used as a postprocessor
in order to search for an even better solution. The postprocessor is then run for a given amount of
time.



1732 MANAGEMENT, PLANNING, DESIGN, AND CONTROL

Σ Cj

Cmax

15

30

100 200

α1

α2

Figure 5 Trade-off Curve between Makespan and Flow Time.

4.6. Multiple Objectives

Little of the theoretical research done in the past has dealt with multiple-objective models. There are,
however, several approaches for dealing with such problems. We illustrate one approach here through
an example (see McCormick and Pinedo 1995).

Consider the problem Pm�prmp��1�Cj � �2Cmax; that is, there are m identical machines in parallel
with preemptions allowed and as the objective the minimization of a weighted sum of makespan and
flow time. It can be shown fairly easily that the shortest processing time first (SPT) rule minimizes
�Cj on parallel machines, while the preemptive longest remaining processing time first (preemptive
LPT) rule minimizes Cmax. Because these two rules are quite different, it is not immediately obvious
what type of rule minimizes a mixture of these two objectives.

The problem can be analyzed by transforming one of the objectives into a constraint; that is,
consider the problem where the flow time has to be minimized subject to the makespan being smaller
than or equal to a given deadline d. This problem turns out to have a fairly simple solution. Without
loss of generality, it may be assumed that p1 � p2 � . . . � pn. The scheduler schedules the jobs
according to SPT until time d � pn. At this point in time this largest job must be started on one of
the machines, preempting the largest job among the ones being processed at that moment. The
scheduler then continues using SPT until the second-largest job must be started, that is, at d � pn�1.
At this point in time the largest job being processed, not including job pn, is preempted by job n �
1, and so on. It is easy to compute the value of the objective function, given Cmax � d. Through a
parametric analysis on d, one can determine the minimum flow time as a function of the makespan.
This function is decreasing convex and piecewise linear with a number of breakpoints (see Figure
5).

The values of �1 and �2 determine at which breakpoint the optimal solution lies.
In general, when there are a number of objectives to be minimized, the following heuristic ap-

proach can be used. Select as the first (principal) objective to minimize one that is important (that
is, has a large weight) as well as sensitive to the schedule. While one optimizes this objective, one
continuously keeps the other objective functions (which are of lesser importance) in mind. For ex-
ample, whenever a tie needs to be broken, it is broken in a way that is beneficial for a secondary
objective. After having completed the optimization procedure for the first objective, one proceeds
with considering a second objective, and so on.

5. SCHEDULING PROBLEMS IN PRACTICE
This section focuses on a number of application areas where dispatching and scheduling techniques
are of importance.

5.1. Real-Life Scheduling Problems vs. Theoretical Models

Real-life scheduling problems usually are very different from the mathematical models studied by
researchers in academia and industrial research centers. It is difficult to categorize all differences
between the real problems and the theoretical models, as each real-life scheduling problem has its
own idiosyncrasies. Nevertheless, a number of these differences do stand out and are worth men-
tioning.

Theoretical models usually assume that there are n jobs to be scheduled and that after these n
jobs are scheduled the problem is solved. In real life there may be at any point in time n jobs in the
system, but every day (week or month) new jobs are added. Scheduling the current n jobs has to be



SCHEDULING AND DISPATCHING 1733

done without having a perfect knowledge of what will happen in the near future. However, some
provisions have to be made in order to be prepared for the unexpected. The dynamic nature of
scheduling problem may therefore require, for example, slack times to be built into the schedule.

The models usually do not emphasize the resequencing problem. In real life the following problem
often occurs. There exists a schedule that was generated based on certain assumptions; now an
(unexpected) event has occurred that requires either major or minor modifications in the existing
schedule. The rescheduling process, which is sometimes referred to as reactive scheduling, may have
to satisfy certain constraints. For example, one may wish to keep the changes in the existing schedule
at a minimum, even if an optimal schedule cannot be achieved this way.

The models usually do not consider preferences. In a model, a job either can or cannot be
processed on a given machine. In reality, it often occurs that a job can be scheduled on a given
machine but that there is a preference (for one reason or another) not to schedule it on the machine
in question; scheduling it on the machine in question would only be done in case of an emergency.

Most of the theoretical research has been focused on models with a single objective. In real life
there are, of course, a large number of objectives to deal with. Not only are there many objectives,
but their respective weights may vary over time and may even depend on the particular person in
charge.

In spite of the many differences between real-life scheduling problems and the mathematical
models discussed in the previous sections, the general consensus is that the theoretical research done
in the past has not been a complete waste of time. It has provided valuable insights into many
scheduling problems, and these insights have proven to be useful in the development of a large
number of scheduling systems.

5.2. Scheduling in the Packaging Industry

Consider a factory that produces paper bags for cement, dog food, charcoal, and so on. A scheduling
system for such a factory has to be based on a flexible flow-shop model (see Adler et al. 1993). That
is, there are a number of stages in series (for example, printing, glueing, and sewing) and at each
stage there are a number of machines in parallel. The machines at any given stage may not be
identical. Some machines may be more modern than others and may run at a higher speed or may
be able to handle more complicated jobs than other machines. The main objectives are to meet the
committed shipping dates as much as possible while minimizing the setup times on the machines.
The algorithmic procedures adopted in such a system have to follow a number of steps.

First, the procedure goes through a bottleneck-identification process. At least one of the stages is
a bottleneck. The identification of the bottleneck(s) can be done manually (specified by the user) or
computed using all machine and job data. Then the procedure computes time windows during which
jobs have to be processed at the bottleneck stage. The earliest time a job is allowed to start at a
bottleneck stage depends on its current status upstream, while the latest time a job is allowed to be
finished depends on its committed shipping date as well as on the amount of processing that is needed
downstream. The current status upstream of a job may be either the stage the job currently is being
processed at or the time the raw material (paper board) is expected to arrive at the facility and the
job can be started at the first stage.

After this has been done, the procedure computes the various machine capacities at the bottleneck
stage. For each machine it is computed how the capacity compares with the amount of processing
that has to be done on it (that is, jobs that cannot be processed on any other machine) and with the
amount of processing that can be done on it (that is, jobs that can be processed on other machines
as well). This computation is done for various time periods (one week ahead, two weeks ahead, etc.).

Now scheduling of machines at the bottleneck stage can be done based on the information com-
piled in the previous steps. This schedule attempts to process all jobs within their respective windows
while minimizing setup times. The procedure used here is a generalization of the ATC rule, which
includes setup times. After the machines at the bottleneck stage have been scheduled, the machines
at all other stages can be scheduled. The order in which the jobs go through the machines upstream
and downstream of the bottleneck stage is somewhat similar to the order in which the jobs go through
the bottleneck stage, with minor adjustments to improve on setup times or accommodate for machine
preferences.

5.3. Scheduling in the Semiconductor Industry

In recent years a great amount of work has been done on wafer fabrication scheduling (see Hadavi
and Voigt 1987). The reason for this activity is that equipment as well as products are extremely
expensive. There is a great deal of randomness in the process; machines break down often and
processing times are random. The machine environment can be considered as a job shop or as a
flowshop with recirculation.

A system in such an environment has to create high-level production plans as well as more and
more detailed scheduling plans. The timing of the generation of these detailed schedules depends on
the urgency or the importance of the jobs in question.



1734 MANAGEMENT, PLANNING, DESIGN, AND CONTROL

While a large number of existing scheduling systems rely on good heuristics for solving the actual
current scheduling problems (that is, reacting to real-time problems on the shop floor), some systems
may take the more rational approach of preventive scheduling (that is, scheduling to avoid as many
future problems as possible while at the same time optimizing the performance). In order to do so,
such a system has to rely on a job-release mechanism that has a global view of the factory. Such a
job-release mechanism attempts to achieve a maximal level of machine utilization and a minimal
number of job delays. It may attempt to achieve this by monitoring a job parameter such as the
continuity index, which measures how and when the job will be processed if released as proposed.
The continuity index of a job is affected by bottleneck work centers, inventory shortages, tool avail-
ability, and so on. Based on these estimates, job releases are planned as much as possible to alleviate
the prospective bottlenecks. This tends to minimize cycle times, which is one of the main objectives
in VLSI development lines.

The sequencer and shop-floor control module of a scheduling system may track the work in
progress as well as the status of the machines. It performs reactive scheduling functions based on
this informtion. Such a module may be based on the axiom of locality, which implies that if an
unexpected event occurs, an effort is made to limit, as much as possible, the number of changes in
the existing schedules when correcting the problem.

The ReDS system developed by Siemens AG uses the real-time shop-floor data for another pur-
pose as well (besides rescheduling). It uses the data in the form of a long-term feedback in order to
make adjustments in the heuristics employed. This learning mechanism enables a scheduling system
to mold itself over time into the shape of the factory in which it is operating.

5.4. Scheduling in the Automotive Industry

In the automotive industry, production scheduling ranges from job-shop scheduling in parts /
components assembly to detailed job sequencing in automobile assembly. In automobile assembly,
job sequencing and assembly line balancing are two concepts that are very closely related (see Burns
and Daganzo 1987; Yano and Bolat 1990). This is largely due to two characteristics. First, most
automobile assembly lines are mixed-model assembly lines with different processing time require-
ments for a large number of different models. In this case, different models of jobs may at times
differ only in the options they carry and at other times may constitute completely different bodies.
Secondly, most automobile assembly lines are paced, that is, jobs are processed at a constant rate
that is determined by different model mixes and processing time requirements.

After the assembly line rate is determined, the operations with longer processing times are gen-
erally performed in sufficiently long sections of the line. This is possible because a large part of the
assembly process is manually operated. However, job sequencing is now complicated because of the
fact that the different operations performed on the different models require that similar jobs be
adequately spaced in the sequence such that a proper balance of workload is achieved. Poor sequenc-
ing could result in reduced production and possibly quality problems. For example, suppose 10% of
the jobs (cars) need a sunroof. Suppose that for a typical operation, to be done on every job, the
processing time is p. The processing time for installing a sunroof is 3p since the amount of time it
takes to install a sunroof is significant. The sunroof operation is designed to hold five jobs, with each
job spending a total time of 6p in the operation (i.e., jobs are processed at a rate of 5 /6p). However,
this implies that if there are three or more consecutive jobs requiring a sunroof, the operation is
overloaded. An attempt is therefore made to place jobs with sunroofs as far apart as possible (i.e.,
approximately every tenth job) because otherwise the operation might be delayed and quality prob-
lems might occur if the workers do not have sufficient time to perform the operation properly.

Thus, the assembly line has to be sequenced in a way that more or less balances the workload at
all operations, especially at those that in one form or another are critical. The operations most likely
to be critical are those with a workload that tends to vary significantly from job to job.

Job sequencing is further complicated by the requirements that certain jobs be grouped together.
For example, the paint process requires that each time the color of a job changes, the previous paint
color must be purged from the spray gun to avoid paint overspray. Minimizing the paint purges can
help reduce the paint cost, and therefore it is desirable to group jobs with the same color together
in the job sequence. Also, to coordinate a better shipping schedule for finished automobiles, jobs
shipped to the same destination should be grouped roughly in the same time interval.

Several large car manufacturers have developed integrated scheduling systems that take all the
above requirements into account. Several systems are being used on a daily basis.

5.5. Scheduling in the Aviation Industry

In the aviation industry, many scheduling problems arise, such as crew scheduling, maintenance
scheduling, and so on. In this section, a system is described that assigns airplanes to gates at an
airport (see Brazile and Swigger 1988). Such scheduling systems have been developed to assign
airplanes to gates at various airports in the United States, Europe, and Japan.



SCHEDULING AND DISPATCHING 1735

The problem can be viewed as a scheduling problem with machines in parallel. The gates represent
the machines and the airplanes represent the jobs. The jobs have release dates that are the arrival
times of the planes. These release dates are subject to random factors, such as weather and equipment
failure. Any given job needs to be processed on one of the machines; the processing time is equivalent
to the turnaround time of the plane. Some jobs can only be processed on a specific subset of the
machines; for example, large planes can only go to specific gates while small planes may go to any
one of the gates. The objective is to find a feasible assignment of jobs to machines.

Some of the systems are knowledge-based systems that attempt to find a feasible schedule through
constraint satisfaction. They contain rules that guide the search and are capable of producing the trail
of the rules used in reaching the conclusion. These systems may operate in one or two modes. In
one mode, the static mode, it produces a daily schedule, which is followed only if everything goes
as planned (which, of course, hardly ever happens). In the second mode, the dynamic mode, the
system reassigns the gates in real time as information about changes in arrival and departure times
becomes available.

Various different types of constraints with regard to the gate-assignment process can be formu-
lated. There are ‘‘hard’’ constraints; for example, certain gates simply cannot accomodate 747s. There
are ‘‘soft’’ constraints, which do allow exceptions; for example, domestic flights do not necessarily
always have to arrive at and depart from domestic gates. There are ‘‘convenience’’ constraints; for
example, planes that are scheduled to remain many hours at the terminal preferably should not be
moved from one gate to another.

To arrive at an assignment, a system may search its way through two types of rules, permissive
rules and conflict rules. Permissive rules determine whether it is appropiate to consider a particular
gate for a particular flight. For example, when a plane is not continuing the same day, using a remote
gate is acceptable. Conflict rules basically embody in the program the hard constraints mentioned
before.

Systems may use a number of priority rules in their assignment of flights to gates. They first
assign flights and gates that are the most constrained and the hardest to assign. Because only a small
number of gates are capable of handling 747s, the wide-bodied aircraft are assigned first. Certain
gates are so close to one another that planes cannot taxi in but have to be towed in. These gates
have the lowest priority in the assignment.

Gate assignments are made when no rules are violated. If a feasible assignment is obtained in
one pass, the process terminates. If the system does not find a feasible assignment in one pass, it
automatically deactivates certain optional rules and tries again.

A system’s second mode (the reassignment mode) operates as follows. It receives the most recent
data concerning the current status of arriving and departing flights from the airline’s database. When
deviations are larger than given treshold values, the system checks whether the changes are creating
conflicts. If there is a conflict, the system attempts to create a new schedule with a minimum number
of changes. At times it may invoke the help of the scheduler.

6. DEVELOPMENT OF SCHEDULING SYSTEMS

6.1. General Structure of Scheduling Systems

During the last decade, numerous computer-based scheduling systems have been developed, many
of which are currently controlling the scheduling operations in a variety of industries. For a number
of reasons, the implementation of such systems usually turns out to be at least as difficult as the
actual development. The development of these systems has taken place at R&D centers of industrial
corporations as well as at universities (see Kanet and Adelsberger 1987; Adelsberger and Kanet 1989).
Computer-based scheduling systems often consist of three modules:

1. A database management module
2. A schedule-generation module
3. A user interface module

See Figure 6.
All three parts play a crucial role in the functionality of the system. In practice, a significant

amount of effort is usually required to make a factory’s database suitable for input to the system.
Making the database accurate, consistent, and complete often involves the design of a series of tests
the data must pass before they can be used. This module may also have capabilities of manipulating
the data, performing various forms of statistical analysis, and enabling the scheduler to see data in
the form of bar charts or pie charts. The schedule-generation module involves the formulation of a
suitable model, the formulation of objective functions and /or constraints, and (possibly) the devel-
opment of the algorithms. The user interface module is very important, especially with regard to the
implementation process. Without a good user interface, there is a good chance that, regardless of its



1736 MANAGEMENT, PLANNING, DESIGN, AND CONTROL

Database Management

Automatic Schedule
Generator

Schedule                  Performance
      Editor   Evaluation

Graphics Interface

Order Master File
Shop Floor

Data Collection System

User

Figure 6 Configuration of a Scheduling System.

scheduling capabilities, the system will never be used. This user interface often takes the form of an
electronic Gantt chart with tables and graphs that enable the scheduler to edit the schedule generated
by the system and take last-minute information into account (see Figure 7). When the scheduler edits
the schedule generated by the system, he or she is usually able to follow the impact of his or her
changes on the various measures of performance as well as compare several schedules with one
another and perform an extensive what-if analysis.

6.2. Schedule Generation

There are several schools of thought with regard to schedule generation. Two of these deserve further
discussion. One, which is predominantly used by industrial engineers and operations researchers,
could be called the algorithmic approach. The other, which is often used by computer scientists and
artificial intelligence experts, is usually called the knowledge-based approach (see Kanet and Adels-
berger 1987). Recently, these two approaches have started to converge towards one another and the
differences have become more blurry. Some hybrid systems developed in the recent past use a knowl-
edge base as well as fairly sophisticated heuristics.

The first approach usually requires a mathematical formulation of the problem, which includes
objectives and constraints. The algorithm could be based on any one of the techniques or combination
of techniques presented in Sections 3 and 4. The ‘‘goodness’’ of the solution is based on the values
of the objectives and performance criteria under the given schedule. This form of schedule generation
often may consist of three segments. In the first segment a certain amount of preprocessing is done.
In this segment the problem instance is analyzed and a number of statistics are compiled, such as
the average processing time, the maximum processing time, the due date tightness. The second
segment consists of the actual algorithms and heuristics. The structure of the algorithm or heuristic
may depend on the statistics compiled in the first segment (for example, in the way the look-ahead
parameter K in the ATC rule may depend on the due date tightness and due date range factors). The
third segment may contain a postprocessor. The solution that comes out of the second segment is
fed into a procedure such as simulated annealing or taboo search in order to see whether any im-
provements can be obtained. This type of schedule generation is usually coded in a procedural
language such as Fortran, Pascal, or C.



SCHEDULING AND DISPATCHING 1737

Figure 7 The Gantt Chart Interface of the Lekin System.

The second approach is different from the first in various respects. This approach is often more
concerned with underlying problem structures that cannot easily be described in an analytical format.
In order to incorporate the scheduler’s knowledge into the system, so-called rules and objects are
used. This approach is used often when it is only necessary to find a feasible solution given the many
constraints or rules; however, because some schedules are ranked ‘‘more preferable’’ than others,
heuristics are used at times in order to obtain a ‘‘preferred’’ schedule. Through an inference engine
the approach attempts to find sequences that do not violate prescribed rules and satisfy stated pref-
erences as much as possible. Whenever a satisfactory solution does not appear to exist or when the
scheduler judges it to difficult to find, the scheduler may reformulate the problem through a relaxation
of the constraints. The relaxation of constraints may actually be done automatically by the system
itself. The programming style used in the development of such systems is usually different from the
ones used under the first approach; systems are usually coded in languages that have so-called object
oriented extensions, such as LISP and C��. These languages emphasize user-defined functions,
which promote a modular programming style.

Both approaches have their advantages and disadvantages. The algorithmic approach clearly has
an edge if (1) the problem allows for a crisp mathematical formulation, (2) the number of jobs
involved is large, (3) the amount of randomness in the environment is minimal, and (4) some form
of optimization has to be done frequently and in real time (it is very common that schedulers have
neither the patience nor the time to wait more than 30 seconds for a schedule to be specified). One
disadvantage of the algorithmic approach is that if the scheduling environment changes (for example,
certain preferences on assignments of jobs to machines), the reprogramming effort may be substantial.
The knowledge-based approach may have an edge if only a feasible schedule is required. Some
system developers believe that changes in the scheduling environment or rules can be incorporated
more easily in a knowledge-based system than in a system that is based on the algorithmic approach.
Others, however, believe that the effort required to modify any system is mainly a function of how
well the code is organized and written; the effort required to modify does not depend that much on
the approach used. One disadvantage of the knowledge-based approach is that obtaining a reasonable
schedule may take a substantial amount of computer time.

6.3. Software Development and Implementation

The last three decades have seen the design and implementation of many scheduling systems. Some
of these systems were application specific and others were generic. Some were developed for research
and experimentation and others were commercial.

A number of scheduling systems have been designed and developed in academia over the last
three decades. Several universities developed research systems or educational systems that were often



1738 MANAGEMENT, PLANNING, DESIGN, AND CONTROL

based on ideas and algorithms that were quite novel. An example of such a system is the Lekin
system, which can be downloaded free of charge from the Web. Some of the academic systems have
been handed over to industry and have led to the start-up of software companies.

The last two decades have witnessed the development of scores of commercial scheduling systems.
There were a few major trends in the design and development of these commercial scheduling
systems.

One trend started in the 1980s when a number of companies began to develop sequencing and
scheduling software. Most of these companies tended to focus in the beginning only on sequencing
and scheduling. They started out with the development of generic scheduling software that was
designed to optimize flow lines or other types of machine environments. Some of these companies
have grown significantly since their inception, such as ILOG, I2, and Manugistics.

These companies, whenever they landed a contract, had to customize their software to the specific
applications. Because they realized that customization of their software customization is a way of
life, they usually tried to keep their schedule generators as generic as possible. The optimization
methodologies they adopted often included:

1. Shifting bottleneck procedures
2. Local search procedures
3. Mathematical programming procedures

These companies, which at the outset were focusing primarily on sequencing and scheduling,
began to branch out in in the 1990s; they started to develop software for supply chain management.
This diversification became necessary because clients typically had a preference for dealing with
vendors that could provide a suite of software modules capable of optimizing the entire supply chain;
clients did not like to have to deal with different vendors and face all kinds of integration problems.

A second major trend in the development of sequencing and scheduling software had its source
in another corner of the software industry. This second trend started to take place in the beginning
of the 1990s. Scheduling software started being developed by companies that at the outset specialized
in ERP systems, such as SAP, Baan, J.D. Edwards, and PeopleSoft. These ERP systems basically
are huge accounting systems that serve as a backbone for all the information requirements in a
company. This backbone can then be used to feed information into all kinds of decision support
systems, such as forecasting systems, inventory control, and sequencing and scheduling. The software
vendors that specialized in ERP systems realized that it was necessary to branch out and develop
decision support systems as well. A number of these companies either bought a scheduling software
company (e.g., Baan bought Berclain), started their in-house scheduling software development (e.g.,
SAP), or established partnerships with scheduling software vendors.

Currently there are more than a hundred scheduling software vendors. Most of these are relatively
small. The bigger players are I2, Cybertec, and Manugistics, all of them offering software for the
entire supply chain. The main ERP vendors, such as SAP, Baan, PeopleSoft, and J.D. Edwards, all
offer sequencing and scheduling packages. Some of their scheduling modules had been developed
internally, whereas other modules were developed through acquisitions of smaller software companies
specializing in scheduling. The algorithmic approaches differ considerably from company to company.
Some companies specialize in local search procedures, while others specialize in mathematical pro-
gramming techniques, and again others in decomposition techniques. Even the preferences for user
interfaces may differ. However, the most popular user interface tends to be the Gantt chart.

7. CONCLUDING REMARKS
During the last two decades, with the advent of the personal computer in the factory, a large number
of scheduling systems has been developed. Currently, many more scheduling systems are under
development. This developmental process has made it clear that a large proportion of the theoretical
research done during the decades past is of limited use in real-world applications. The system de-
velopment that is currently going on in industry is fortunately encouraging theoretical researchers to
tackle scheduling problems that are more relevant to the real world. At various universities in Europe,
Japan, and North America, research is being focused on the development of algorithms as well as
on the development of systems; significant efforts are being made in the integration of these devel-
opments (see McKay et al. 1989).

Even though during the last decade many companies have made large investments in the devel-
opment and implementation of scheduling systems, not that many systems appear to be used used
on a regular basis. Systems, after being implemented, often remain in use only for a limited time;
after a while they are often, for one reason or another, ignored altogether.

In those situations where the systems are in use on a more or less permanent basis, the general
feeling is that the operations do run more smoothly. A system in place usually does not reduce the
time the scheduler spends on the scheduling process. However, a system usually does enable the



SCHEDULING AND DISPATCHING 1739

scheduler to produce better schedules. Using an interactive schedule editor, the scheduler is able to
compare different schedules and easily monitor the various performance measures. Actually, there
are other reasons for smoother operations besides simply better schedules. A scheduling system
imposes more ‘‘discipline’’ on the operations. There are compelling reasons now for keeping an
accurate database. Schedules are printed out neatly and are visible on monitors. This apparently has
an effect on people, encouraging them to actually even obey the schedules.

It would be interesting to know the reasons why some systems have never become implemented
or are never used. In some cases databases are not sufficiently accurate. In other cases the way in
which workers’ productivity is measured is not in agreement with the performance criteria the system
is based upon. User interfaces may not enable the scheduler to resequence quickly in the case of
unexpected events. There may also be an absence of procedures that enable resequencing when the
scheduler is absent (for example, if something unexpected happens during third shift). Finally, systems
may not be given sufficient time to settle or stabilize in their environment (this may require many
months, if not years).

Nevertheless, it appears that in the decade to come an even larger effort will be made in the
development of such systems and that such systems will play an important role in computer-integrated
manufacturing.

REFERENCES

Adams, J., Balas, E., and Zawack, D. (1988), ‘‘The Shifting Bottleneck Procedure for Job Shop
Scheduling,’’ Management Science, Vol. 34, pp. 391–401.

Adelsberger, H. H., and Kanet, J. (1989), ‘‘The Leitstand—A New Tool in Computer-Aided Manu-
facturing Scheduling,’’ Technical Report, College of Commerce and Industry, Clemson University,
Clemson, SC.

Adler, L., Fraiman, N. M., Kobacker, E., Pinedo, M. L., Plotnicoff, J. C., and Wu, T. P. (1993),
‘‘BPSS: A Scheduling System for the Packaging Industry,’’ Operations Research, Vol. 41, pp.
641–648.

Brazile, R. P., and Swigger, K. M. (1988), ‘‘GATES: An Airline Gate Assignment and Tracking
Expert System,’’ IEEE Expert, Vol. 3, No. 2, pp. 33–39.

Burns, L., and Daganzo, C. F. (1987), ‘‘Assembly Line Job Sequencing Principles,’’ International
Journal of Production Research, Vol. 25, pp. 71–99.

Chen, N.-F., and Liu, C. L. (1975), ‘‘On a Class of Scheduling Algorithms for Multiprocessors
Computing Systems,’’ in Parallel Processing, Lecture Notes in Computer Science 24, T. Y. Feng,
Ed., Springer, Berlin, pp. 1–16.

Emmons, H. (1969), ‘‘One-Machine Sequencing to Minimize Certain Functions of Job Tardiness,’’
Operations Research, Vol. 17, pp. 701–715.

Glover, F. (1990), ‘‘Tabu Search: A Tutorial,’’ Interfaces, Vol. 20, Issue 4, pp. 74–94.
Graham, R. (1969), ‘‘Bounds on Multiprocessing Anomalies,’’ SIAM Journal of Applied Mathematics,

Vol. 17, pp. 263–269.
Hadavi, K., and Voigt, K. (1987), ‘‘An Integrated Planning and Scheduling Environment,’’ in Pro-

ceedings of AI in Manufacturing Conference (Long Beach, CA).
Held, M., and Karp, R. M. (1962), ‘‘A Dynamic Programming Approach to Sequencing Problems,’’

Journal of SIAM, Vol. 10, pp. 196–210.
Ignall, E., and Schrage, L. E. (1965), ‘‘Application of the Branch and Bound Technique to Some

Flow-Shop Problems,’’ Operations Research, Vol. 13, pp. 400–412.
Jackson, J. R. (1955), ‘‘Scheduling a Production Line to Minimize Maximum Tardiness,’’ Research

Report 43, Management Science Research Project, University of California, Los Angeles.
Kanet, J., and Adelsberger, H. H. (1987), ‘‘Expert Systems in Production Scheduling,’’ European

Journal of Operational Research, Vol. 29, pp. 51–59.
Kawaguchi, T., and Kyan, S. (1986), ‘‘Worst Case Bound of an LRF Schedule for the Mean Weighted

Flow Time Problem,’’ SIAM Journal of Computing, Vol. 15, pp. 1119–1129.
Lawler, E. L., Lenstra, J. K., Rinnooy Kan, A. H. G., and Shmoys, D. B. (1989), ‘‘Sequencing and

Scheduling: Algorithms and Complexity,’’ Report BS-R8909, Centre for Mathematics and Com-
puter Science, Amsterdam.

Lee, Y.-H., Bhaskaran, K., and Pinedo, M. L. (1997), ‘‘A Heuristic to Minimize the Total Weighted
Tardiness with Sequence Dependent Setups,’’ IIE Transactions, Vol. 29, pp. 45–52.

Matsuo, H., Suh, C. J., and Sullivan, R. S. (1989), ‘‘A Controlled Search Simulated Annealing Method
for the Single Machine Weighted Tardiness Problem,’’ Annals of Operations Research, Vol. 20,
pp. 85–108.



1740 MANAGEMENT, PLANNING, DESIGN, AND CONTROL

McCormick, S. T., and Pinedo, M. L. (1995), ‘‘Scheduling n Independent Jobs on m Uniform Ma-
chines with Both Flow Time and Makespan Objectives: A Parametric Analysis,’’ ORSA Journal
of Computing, Vol. 7, pp. 63–77.

McKay, K. N., Buzacott, J. A., and Safayeni, F. (1989), ‘‘The Schedulers Information System—What
is Going on? Insights for Automated Environments,’’ in Proceedings of the II-COM 1989 Con-
ference (Madrid).

Rosenkrantz, D. J., Stearns, R. E., and Lewis, P. M. (1977), ‘‘Approximate Algorithms for the Trav-
elling Salesman Problem,’’ SIAM Journal of Computing, Vol. 6, pp. 543–558.

Smith, W. E. (1956), ‘‘Various Optimizers for Single Stage Production,’’ Naval Research Logistics
Quarterly, Vol. 3, pp. 59–66.

Vepsalainen, A., and Morton, T. (1987), ‘‘Priority Rules for Job Shops with Weighted Tardiness
Costs,’’ Management Science, Vol. 33, pp. 1035–1047.

Yano, C. A., and Bolat, A. (1990), ‘‘Survey, Development and Applications of Algorithms for Se-
quencing Paced Assembly Lines,’’ Journal of Manufacturing and Operations Management, Vol.
3, pp. 172–198.

ADDITIONAL READING

Baker, K. R., Introduction to Sequencing and Scheduling, John Wiley & Sons, New York, 1974.
Brucker, P., Scheduling Algorithms, 2nd Ed. Springer, Berlin, 1998.
Conway, R. W., Maxwell, W. L., and Miller, R. W., Theory of Scheduling, Addison-Wesley, Reading,

MA, 1967.
Dempster, M. A. H., Lenstra, J. K., and Rinnooy Kan, A. H. G., Eds., Deterministic and Stochastic

Scheduling, Reidel, Dordrecht, 1982.
French, S., Sequencing and Scheduling: An Introduction to the Mathematics of the Job Shop, Hor-

wood, Chichester, 1982.
Pinedo, M., Scheduling: Theory, Algorithms and Systems, Prentice Hall, Englewood Cliffs, NJ, 1995.
Pinedo, M., and Chao, X., Operations Scheduling with Applications in Manufacturing and Services,

Irwin /McGraw-Hill, Boston, 1999.


