
2224

CHAPTER 85
Design of Experiments

H. SAMUEL WANG
Chung Yuan Christian University

CHUNG-PU CHANG
Eureka Consulting Co.

1. INTRODUCTION 2225

1.1. Perspective 2225

1.2. Statistical Experiments 2225

1.3. Basic Definitions 2225

2. PLANNING FOR
EXPERIMENTS 2226

2.1. Program and Activities: Steps
and Checkpoints 2226
2.1.1. Stage 1: PLAN 2226
2.1.2. Stage 2: DO 2226
2.1.3. Stage 3: STUDY 2227
2.1.4. Stage 4: ACT 2227

2.2 Size of Experiments 2227

3. GOOD EXPERIMENTAL
PRACTICES 2228

3.1. Randomization 2228

3.2. Blocking 2228

3.3. Replication 2228

4. PRECAUTIONS FOR
EXPERIMENTAL DESIGNS 2228

4.1. Ten Commandments for
Experimental Designs 2228

5. FUNDAMENTAL DESIGNS AND
CONCEPTS 2229

5.1. A Case: Weight Watch
Program 2229

5.2. Fixed-Effect and Random-
Effect Models 2229

5.3. Completely Randomized
Design (CRD) 2230

5.4. Randomized Complete Block
Design (RCBD) 2230

5.5. Latin Square Designs and
Interactions 2230

5.6. Factorial Design 2230

5.7. 2k and 3k Factorial Designs 2231

5.8. Fractional Factorial Designs 2231

5.9. Orthogonal Arrays 2232

6. ANALYSIS OF A BASIC
DESIGN 2232

6.1. Hypotheses and Models 2232

6.2. ANOVA: Analysis of Variance 2233

6.3. Marginal Averages 2234

6.4. Rationale of ANOVA Analysis 2234

7. SCREENING DESIGNS 2235

7.1. Strategy of Screening Design 2235

7.2. Weight Watch Experiment
Using L8(7) 2235

7.3. ANOVA 2235

7.4. Recommendations 2236

8. PARAMETER DESIGNS 2237

8.1. Strategy of Parameter Design 2237

8.2. Concepts of Parameter Design 2237

8.3. Weight Watch Experiments 2238

9. THE STRATEGIES OF
EXPERIMENTS 2238

10. CONCLUSION 2239

REFERENCES 2239

ADDITIONAL READING 2240

Handbook of Industrial Engineering: Technology and Operations Management, Third Edition.
Edited by Gavriel Salvendy  Copyright © 2001 John Wiley & Sons, Inc.



DESIGN OF EXPERIMENTS 2225

1. INTRODUCTION

1.1. Perspective

Experimentation is common in every aspect of life. As part of a problem-solving program, experi-
ments are carried out in order to observe the effects of changes under a controlled framework.
Through one or more iterations of experiments, adequate knowledge is acquired or confirmed. Know-
how, sometimes coupled with know-why, is gathered and used for decision making. Experiments are
indispensable to the learning process.

The need for learning through experiments is particularly obvious in industry, whether in manu-
facturing or the service sector. Consider the development and marketing of a new drug. After a new
drug is found to be effective for treating a certain kind of cancer, a series of experiments is usually
conducted before the drug is formally marketed. For instance, a laboratory scientist performs exper-
iments to identify other supportive constituents. With the aid of these experimental results, he or she
picks the most effective composition. A manufacturing engineer uses experiments to determine pro-
cess conditions such as pressure, temperature, flow rate, the catalyst quantity, and so forth. Thus the
goal of fabricating quality medicine at the lowest possible cost is achieved. A marketing staff relies
on computer simulation, which in fact is a form of numerical experimentation, to pick the most
profitable marketing strategy. An FDA officer carries out experiments to detect potential adverse
effects on different consumers determined by age, sex, and ethnicity. Experimentation is also impor-
tant to the consumer organization. It is relied upon to compare the effectiveness of this new drug
against others existing in the market.

Other examples illustrating when and where experiments are performed are numerous (Diamond
1989, 1997; John 1998).

1.2. Statistical Experiments (Box et al. 1978; Du Pont Co. 1988)

An experiment is often confused with a trial or a test, which in practice takes no account of exper-
imental errors due to inherent variations. In fact, variations occur in every component and stage of
experimentation, including variation in experiment parameters, due to inaccurate setting of machines
and instruments, in methods and handling, in measurements, and due to analysis.

Moreover, experiments are often run by intuition with factors varied one at a time. This is not
only ineffective costwise, it also causes the risk of reaching incorrect conclusions due to negligence
of the potential interactions among factors

In the following, we are concerned with the design and analysis of experiments based on statistical
considerations. These are often referred to as statistical experiments.

A statistical experiment serves as a means to compare and choose the most effective treatment,
identify significant factors, reveal cause-and-effect mechanisms, and determine optimal process con-
ditions. It therefore plays an important role in quality improvement, productivity increases, cost
saving, and management decisions.

In essence, a statistical experiment implies a systematic varying of process, observation of change
in response, collection and analysis of data, and extraction of information to arrive at a conclusion.
Experiments are designed so that the appropriate decision can be arrived at in the shortest time and
within cost constraints.

1.3. Basic Definitions (Anderson and McLean 1974; Du Pont Co. 1988; Hunter 1998;
Montgomery 1996)

An experimental design is a formal plan for execution of the experiment. It includes the choice of
response, factors, designation of levels, and assignment of blocks as well as application of treatment
on experimental units.

These commonly used terms are defined and explained below:

• Response: A response is the dependent variable that corresponds to the outcome or resulting
effects of interest in the experiment. One or more response variables may be studied simulta-
neously.

• Factors: A factor is a variable contribute to the response. A factor can be controllable or
uncontrollable. It may be quantitative, such as pressure in psi or duration time in minutes. It
may be qualitative, such as different methods, different operators, or different suppliers.

• Levels: The levels are the chosen conditions of the factor under study. They may be quantitative
values such as 5%, 8%, and 10% alcohol concentration. They also take categorical forms such
as supplier A, B, C, and D.

• Blocks: A block is a homogenous portion of the experimental environment or materials that
bears certain variation effects on the response(s). A block may be a batch of material supplied
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by a vendor or products manufactured in a shift on a production floor. The term block is
sometimes associated with factor and called block variable.

• Treatments: A treatment is the condition or a factor associated with a specific level in a specific
experiment.

• Experimental units: Experimental units are the objects or entities that are used for application
of treatments and measurements of resulting effects.

2. PLANNING FOR EXPERIMENTS (Du Pont Co. 1988; Hunter 1998)
A complete experimental process involves five stages: including (1) design, (2) data collection, (3)
data analysis, (4) interpretation of results, and (5) communication of results. In order to achieve an
effective and efficient experimentation, it is of utmost importance to take effort to work out a com-
prehensive experimental plan.

In the planning stage of the experiment, the design of the experiment implies the careful and
thorough consideration of the following issues:

• Global environment of the problem
• Objectives of the study
• Properties to be studied
• Variables to be controlled
• The environment of concern
• Size of experimental units
• Number of experimental runs
• Conduct of the experiments
• Approach for data analysis

Each of the technical, statistical, and administrative aspects of experiments are to be taken into
consideration.

2.1. Program and Activities: Steps and Checkpoints (Du Pont Co. 1988; Hunter 1998)

2.1.1. Stage 1: PLAN

1. Problem Recognition
(a) Formation of task force
(b) Evaluation of strengths, weaknesses, opportunities, and threats
(c) Identification of problem area(s)

2. Statement of problem and objective:
(a) Determination of ultimate goal(s)
(b) Determination of en route objectives
(c) Determination of immediate objectives
(d) Identification of the cost and time constraints

3. Design of experiment:
(a) Definition of experimental units
(b) Determination of response variable(s)
(c) Selection of factors
(d) Determination of factor levels
(e) Appraisal of possible interaction
(f) Choice of design
(g) Definitions of data and effect models
(h) Decision of number of replicates
(i) Setup of execution plan (timetable, sequence schedule, facilities allocation)
(j) Setup of data-collection plan

2.1.2. Stage 2: DO

1. Mission orientation:
(a) Explanation of objectives and tasks to be achieved
(b) Attention to precautions in execution and data recording
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2. Physical preparations:
(a) Preparation of experimental units
(b) Development of methods and facilities needed

3. Execution of experiments:
(a) Execution in accordance with prescribed conditions
(b) Control of schedules
(c) Varying and control of treatments in terms of randomization

4. Observation and measurement:
(a) Surveillance of condition of facilities
(b) Control of measurement procedures

5. Recording:
(a) Recording of program by date, run numbers, etc.
(b) Recording of abnormal situations
(c) Recording of change of designs
(d) Recording of measured data
(e) Recording of data from extra or missing experiments

2.1.3 Stage 3: STUDY

1. Analysis of data:
(a) Diagnosis of data
(b) Application of appropriate statistical methods
(c) Graphical analysis
(d) Checking of model adequacy

2. Interpretation of results:
(a) Identification of substantial factors
(b) Selection of desired levels
(c) Estimation of factor effects
(d) Account for limitations in data acquisition or analysis
(e) Interpretation in terms of statistical, technical, and economical significance

2.1.4. Stage 4: ACT

1. Confirmation of conclusion
2. Presentation of results:

(a) Preparation of report
(b) Use of graphical and tabular forms
(c) Indication of implications for potential applications

3. Recommendations:
(a) For process change
(b) For further experiments
(c) For modification in strategies of experiment

4. Process change and standardization
5. New situation appraisal
6. Preparation for further experiments

2.2. Size of Experiments

Each experimenter should be concerned with the size of the experiment. A large enough experiment
enables the detection of the significant effects of the factors in the response and thus ensures obtaining
some know-how from the study. Yet it must be small enough to ensure that the cost of the experi-
mentation is within the allocated budget and can be completed within the assigned time frame.

The number of experimental runs or experimental units is to be determined beforehand. Its precise
determination involves statistical computation that requires prestated probability of committing type
I and II errors, the desired accuracy in detecting the difference between the means of the responses
resulting from different treatments. Besides, other statistical parameters are also required. As a rule
of thumb, the appropriate size for an experiment is between 8 and 60. For more elaborate evaluation,
consult statistical handbooks (Box et al. 1978; Daniel 1976; Wadsworth 1990; Winer et al. 1991).
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3. GOOD EXPERIMENTAL PRACTICES (Hicks 1982; Montgomery 1996)
In the process of experimentation, there exist two types of errors: random errors and bias errors.
Random error is experimental error for which the numerical values change from one run to another
without a consistent pattern. It can be thought of as inherent noise in measured responses. Bias error
is experimental error for which the numerical values tend to follow a consistent pattern over a number
of experimental runs. It is attributed to an assignable cause. To reduce the effects of both types of
errors, it is strongly adviced that the following good experimental practices be taken into consider-
ation.

Replication, randomization, and blocking, the three measures for ensuring a successful experiment
as presented below, are called the three Fisherean principles of experimental designs. They are at-
tributed to R. A. Fisher, the forerunner of the modern design of experiments.

3.1. Randomization

Randomization is the procedure of assigning the experimental units to various treatments in a purely
chance manner. It is also used for arrangement of the experiments in random order. It is intended to
balance out the effect of uncontrollable variables. Because bias errors are not confused with the effect
of the factors, the quality of data is improved and statistical inferences are made possible.

To achieve randomization, the order of experiment is scrambled so that any bias present will be
mixed up and become a part of the random variation. One of the following options can be taken

The trial numbers can be written on small slips of paper and selected at random.
A table of random numbers can be employed to assign a run order and the trials.

3.2. Blocking

The source of bias error in an experiment may accompany differences among blocks, namely batches
of raw materials, production machine, hours within a day, or seasons of the year. It is necessary to
reduce their influence by proper design of the experiment. Blocking means running the experiment
in a specially chosen subgroup that allows removal of the effect of bias errors that are confounded
with the main factors.

To achieve blocking, the run order is broken up into smaller units so that the bias is negligible
within the block. Note that under these circumstances a separate randomization is needed in each
block.

3.3. Replication

Replication involves the repetition of experimental runs so that more than one observation for each
treatment combination is available for statistical analysis.

The benefit of replication is that the average of several observations comes closer to the true value
than a single observation. Replication helps balance out the bias due to the effect of nuisance factors.
It also helps to detect gross errors in the measurements. It therefore improves the precision of the
statistical inferences.

Different randomization applies to different replications of the experiment.

4. PRECAUTIONS FOR EXPERIMENTAL DESIGNS

4.1. Ten Commandments for Experimental Designs (Gryna and Juran 1993;
Montgomery 1996)

1. Don’t set out without a clear problem definition and objective statement: An unplanned
experiment often ends up in total loss of time and money.

2. Do keep the design and analysis of experiment as simple as possible: A comprehensive but
complicated design of experiment may cost much more and end nowhere.

3. Don’t rely solely on statistical experts: Interaction with subject matter specialists makes pro-
fessional insight invaluable.

4. Don’t underestimate the importance of randomization: The adverse effect of systematic errors
can be of vital importance.

5. Don’t start statistical analysis without first challenging the validity of the data: What can
you expect out of garbage input?

6. Don’t throw away outliers without solid reasoning: Every piece of data stores a hidden story
waiting to be opened.

7. Do make full use of graphical presentations: A picture can be worth more than hundreds of
words.
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TABLE 1 A Balanced Design

DIET D1 D2 D3

y11 y21 y31

y12 y22 y32

y13 y23 y33

TABLE 2 Confounding of Factors

DIET D1 D2 D3

C A O
C A O
C A O

8. Do avoid statistical jargon in conclusion and report writing: Problem language is the only
thing that is universal in a corporation.

9. Don’t blindly follow statistical conclusions without taking into account their practical sig-
nificance and economic considerations: Negligence of the nonstatistical aspects of the ex-
perimental design can prove to be vital.

10. Don’t think that one iteration of a time experiment can solve the problem once and for all:
The outcome of one experiment often provides a direction for further iterations of exploration.

5. FUNDAMENTAL DESIGNS AND CONCEPTS (Anderson and McLean 1974;
Box and Draper 1987; Gryna and Juran 1993; Hunter 1998; Montgomery 1996)
Statistical experiments can have various objectives and constraints. Identifying the most influential
factor(s) or independent variables and their respective effect on the response or dependent variable(s)
is one of the most common objectives. The nature and number of factors of interest, the number of
levels a factor can vary, the limitation in time span and budget, and so forth are some of the common
constraints. Depending on its specific objective and constraints, an experiment can have various
designs. In the following we take a weight-watch program as an example to illustrate various alter-
native designs and their underlying principles.

5.1. A Case: Weight-Watch Program

One response variable of concern is the weight loss (WTLOSS) in kilograms measured in the first
month. The main factor DIET has three levels, that is, options, D1, D2, and D3. Suppose nine persons
volunteer to participate in this experiment program. One natural arrangement is to assign three persons
to each of the three DIETs, as shown in Table 1. Note that this is a balanced design in the sense
that the same number of persons received the same treatment. For a simple design like this, balancing
is not a must but is desired. However, in other cases it is almost a requirement for easy analysis and
guarantees the same degree of precision in estimation of different treatments.

Under this arrangement, one diet is assigned to three volunteers, that is, each has three replications.
Replication is used to estimate the experimental error. It also helps to increase the precision.

5.2. Fixed-Effect and Random-Effect Models

In this experiment, the three DIETs may be the only ones of concern to the experimenter. In this
case it is called a fixed-effect model, and the conclusion drawn is applicable only to these specific
three options. However, situations may arise in which the experimenter is seeking for a conclusion
applicable to all possible DIET options and yet he or she can only handle three options. Then, three
of the available options should be drawn from all possible at random. This is called a random-effect
model. In addition to the difference in the scope of conclusion, different types of effect models also
imply a somewhat different approach of data analysis. In what is to follow, only the fixed-effect
model is considered.

An advertent error can easily occur at this point. Very often, experimental units are assigned to
treatments by convenience. For example, the WTLOSS may vary from one ethnic group to another.
Yet persons of the same ethnic group (ETHNIC) are assigned the same diet. One extreme case could
appear like the one shown in Table 2, where all Caucasians (C) are assigned to D1, all Africans (A)
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TABLE 3 Completely Randomized Design (CRD)

DIET D1 D2 D3

W A A
B B A
W B W

TABLE 4 Randomized Complete Block Design (RCBD)

DIET D1 D2 D3

C A A
A O C
O C O

TABLE 5 Latin Square Design

DIET B W A

D1 D2 D3

D2 D3 D1

D3 D1 D2

to D2, and all Orientals (O) to D3. One problem arises: Whenever one of the DIETs is found to be
more effective than the others, we cannot separate the confounding of the two factors and thus can
hardly claim which is the truly dominant one.

5.3. Completely Randomized Designs (CRD)

To overcome this problem, the experimental units are usually assigned to treatments by randomiza-
tion, that is, in a purely chance manner. This way of completely randomized allocation of DIETs to
volunteers, as shown in Table 3, is called completely randomized design (CRD).

5.4. Randomized Complete Block Design (RCBD)

Another way to guard against any possible bias due to the effect of ETHNIC is to carry out the
experiment by the randomized complete block design (RCBD), as shown in Table 4. Here, each of
the three ethnic groups constitutes a block and receives all of the three treatments in random order.

A RCBD has the advantage of eliminating the contamination of the block factor on the main
factor. It permits the removal of the block effect from the experimental error and thus provides a
more decisive conclusion. Moreover, the effect of the block factor can usually be tested and evaluated.

5.5. Latin Square Designs and Interactions

At this point one may suspect that different amount of EXERCISE, say light (L), medium (M), and
heavy (H), may have different degrees of effect on WTLOSS and should be treated as another block
factor. Under these circumstances, the experiment is often carried out according to the Latin square
design, as shown in Table 5. Note that each DIET is assigned only once to each ETHNIC and only
once to each EXERCISE. It enables the evaluation of three factors with only nine observations.
However, it requires that no interaction exist between the factors.

Two factors are said to have interaction when the effect of one factor varies under the different
levels of another factor. The concept of interaction is illustrated in Figure 1.

5.6. Factorial Designs

Whenever interaction exists between factors, the experiment must be run according to the factorial
design (FD) shown in Table 6 to ensure accurate and precise conclusion. Note that this experiment
covers each of the 27 combinations of the levels of the three factors.

One may note that the factorial design differs from the conventional one-factor-at-a-time approach.
In the latter the experiment is run in several iterations, and in each iteration only one factor is varied
while the others are held constant. As a result, the factorial design allows the test and evaluation of
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Figure 1 Concept of Interaction.

TABLE 6 Factorial Design

DIET (1)

EXERCISE (2)

D1

L M H

D2

L M H

D3

L M H

ETHNIC (3) C y111 y121 y131 y211 y221 y231 y311 y321 y331

O y112 y122 y132 y212 y222 y232 y312 y322 y332

A y113 y123 y133 y213 y223 y233 y313 y323 y333

TABLE 7 Factorial Design (FD)

Run DIET ETHNIC EXERCISE

1 1 1 1
2 2 1 1
3 1 2 1
4 2 2 1
5 1 1 2
6 2 1 2
7 1 2 2
8 2 2 2

the effects of all three factors at one iteration. It is therefore more effective in the sense that it requires
a shorter time to reach a complete conclusion. It also guards against the risk of missing the optimum
of a surface, as is often seen in other approaches.

The FD also has disadvantages. The number of observations increases exponentially with the
number of factors and also with their number of levels.

5.7. 2k and 3k Factorial Designs

As long as the experiment is still in its exploratory stage and one is mainly interested in screening
out the less effective factors, the preceding problem can be partially solved by reducing the number
of levels of each factor to two or three. Under such arrangement, the k-factor FD is then denoted as
2k or 3k FD, respectively. Although the two-level FD (see Table 7) requires a lower number of
observations than its three-level counterpart, it is applicable only when it is believed that none of the
factors has a nonlinear effect on the response.

5.8. Fractional Factorial Designs (FFD)

Further reduction of the number of observations can be achieved by employing the fractional factorial
design (FFD). The notation 2k-p is used to denote a 2p fraction of a 2k fractional design. See Table 8
for the one-half fraction of the 23 FD of the weight-watch experiment.
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TABLE 8 Fractional Factorial Design (FFD)

Run DIET ETHNIC EXERCISE

1 1 1 1
2 1 2 2
3 2 1 2
4 2 2 1

TABLE 9 The Orthogonal Array L8(27)

Factor
Interaction a b a � b c a � b b � c a � b � c

Column 1 2 3 4 5 6 7

1 1 1 1 1 1 1 1
2 1 1 1 2 2 2 2
3 1 2 2 1 1 2 2
4 1 2 2 2 2 1 1
5 2 1 2 1 2 1 2
6 2 1 2 2 1 2 1
7 2 2 1 1 2 2 1
8 2 2 1 2 1 1 2

5.9. Orthogonal Arrays (OA) (Taguchi 1986)

For each FD there exist several alternative FFDs. One specific class of FFDs is called an orthogonal
array (OA), often referred to as the Taguchi method. Reduced to its simplest level in allocating factor-
level combinations, it has become increasingly popular.

Depending on the number of levels and the number of rows, a cluster of different OAs is available
from which to choose.

Shown in Table 9 is one typical two-level OA with eight rows and seven columns, denoted as
L8(27). The subscript denotes the number of rows or the number of factor-level combinations this
OA provides. The lower number between the parentheses stands for the number of factors it should
have, while its superscript stands for the number of columns this OA has or the maximum number
of factors the experimenter is allowed to allocate.

Inside the array, numbers 1 and 2 label the low and high levels of the factors. However, each of
the rows indicates the factor-level combination to be applied to the specific experimental unit. Note
that in each column, both levels 1 and 2 appear an equal number of times. It is also true for all
combinations (1,1), (1,2), (2,1) (2,2) appearing in any two columns. Hence the name ‘‘orthogonal
array.’’

The OA is a balanced design in nature. As a form of fractional factorial design, it has an economic
advantage, and it allows evaluation of main effects and the interactions between factors as well.

Attached to the bottom of the table is the component row, which tells how the main effects and
interaction effects are associated with columns. In other words, if factors A, B, and C are assigned
to columns, 1, 2, and 4, the component row points out that the interactions A X B, A X C, B X C,
and A X B X C, are associated with columns 3, 5, 6, and 7. It can therefore be used as an aid to
allocate factors to the array.

Besides L8(27), other OAs of the two-level family include L4(23), L16(215), and L32(231). Their
counterparts in the three-level family include L9(34) and L27(13).

A set of linear graphs is available for each of the OAs to facilitate allocation of factors and
interactions to columns of the arrays.

6. ANALYSIS OF A BASIC DESIGN (Box et al. 1978; Hicks 1982; Montgomery
1996)

6.1. Hypotheses and Models

In the weight-watch experiment we are concerned with the problem of comparing the effects of three
diets. The hypotheses under test are therefore
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H0: �1 � �2 � �3.
H1: At least one of the three is different from the others.

The true mean of any one treatment can, in fact, be looked upon as the sum of a grand mean �
and the specific effect of the ith treatment �i, that is, �i � � � �i.
The hypotheses under test hence become (Box et al. 1978):

H0: �1 � �2 � �3� 0.
H1: At least one of �i’s is unequal to zero.

Realizing the existence of variation due to environment, experimental units, execution process,
and also measurement errors, any measured WTLOSS taken from the ith DIET group is unlikely
equal to its treatment mean1 and is usually decomposed as (Bhote 1991):

Y � � � �ij i ij

� � � � � �i ij

This equation is usually referred to as the data model. The data model of the measured WTLOSS
data acquired under the CRD setup shown in Table 3 can be represented as

Observation Mean Effect Error

6.53 3.23 �0.11 4 4 4 1 0 �1 1.53 �0.77 �3.11
6.72 2.19 0.35 � 4 4 4 � 1 0 �1 � 1.72 �1.81 �2.65� � � � � � � �3.91 4.72 2.61 4 4 4 1 0 �1 �1.09 0.72 �0.039

To enable valid statistical analysis, the error component �ij is required to follow independent
identical normal distribution of the mean zero and common variance, or iid N(0, � 2).

6.2. ANOVA: Analysis of Variance

The test of the hypotheses uses the analysis of variance (ANOVA) approach, which is based on the
decomposition principle of sum of squares. In other words, the variation of the observations from
the grand average can be decomposed into two components: the variation around their group average,
or the within-group variation, and the variation between the group average, or the between-group
variation.

If the between-group variation is larger than what is expected from the variation that occurs within
the groups, we would suspect that group means �1, �2, �3 are not the same. The F distribution is
used for checking this point.

The F statistic is computed from

SSB/ (k � 1)
F �

SSW/(N � k)

where SSB � sum of squares due to between-group variation.

k n
2� (Y � Y)� � ij

i�1 j�1

where SSW � sum of squares due to within-group variation.
� SSTO � SSB

SSTO �
k n

2(Y � Y)� � ij
i�1 j�1

where k � number of groups
n � number of observations in each group
N � kn

The whole computation procedure is usually summarized in an ANOVA table, as shown in Table
10.

The ANOVA table is provided by almost every statistical software.
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TABLE 10 ANOVA Table for WTLOSS Data in CRD

Source SS dƒ MS Fs

Between DIETs 34.13 2 17.07 8.25
Within DIETs 12.41 6 2.07
Total 46.54 8

Figure 2 Marginal Average Chart with 95% Confidence Interval.

The computed F statistic Fs is now compared to its corresponding critical value at the specified
significance level � � 0.05, that is, F0.05 (2,6) � 5.14. Since Fs � 5.14, we accept H1 and conclude
that at least one of the DIETs is unequal to the others.

6.3. Marginal Averages

By comparing the marginal averages (see Figure 2) of the three DIETs, those of DIET D1 have an
average 5.72, which is significantly larger than DIETs D2 and D3. We are therefore assured that D1

is the most effective program for a keen weight watcher.

6.4. Rationale of ANOVA Analysis

According to the statistical theory, the mean squares SSB/ (k � 1) and SSB/ (N � k) have their
respective expected mean squares (EMS) as (Box et al. 1978):

2 2E(MSB) � � � n� A

2E(MSE) � �

where

k
2 2� � � / (k � 1) for the fixed-effect model�A i

i�1

The test of the hypotheses can also be understood by viewing F approximately, as the ratio of �2

� to � 2. If all �i’s are the same and equal to zero, the ratio E(MSB) /E(MSW) is likely to be2� A

close to 1 and therefore leads us to accept H0. On the other hand, if one of the �i’s is not equal to
the others, the same ratio is likely to take a quantity much greater than 1 and therefore leads us to
accept H1.

For the applicable occasions and the analysis of some basic designs, please refer to the summary
that follows.

Whenever there are more than one source or variation to be compared to, the EMS can be used
as a quick decision aid. As a principle, a designate is always compared with a shorter row having
common elements but one.
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TABLE 11 Orthogonal Array for Weight-Watch Experiment

Factor
Interaction DIET EXR D � E SEX D � S ETH

Column 1 2 3 4 5 6 7
Treatment

Combination
Observed
WTLOSS

1 1 1 1 1 1 1 1 D1MFW 6.21
2 1 1 1 2 2 2 2 D1MMB 8.82
3 1 2 2 1 1 2 2 D1FMB 2.23
4 1 2 2 2 2 1 1 D1HMW 4.85
5 2 1 2 1 2 1 2 D2MFW 1.06
6 2 1 2 2 1 2 1 D2MMB 2.75
7 2 2 1 1 2 2 1 D2HFB 2.75
8 2 2 1 2 1 1 2 D2HMW 9.26

T1 22.11 18.84 27.04 12.25 20.45 21.38 16.56
T2 15.82 19.09 10.89 25.68 17.48 16.55 21.37
SS 4.946 0.008 32.602 22.545 1.103 2.916 2.892

7. SCREENING DESIGNS (Barker 1990; Box et al. 1978; Dean and Voss 1999)

7.1. Strategy of Screening Design (Du Pont Co. 1988)

Many of the factors initially considered in the early stage of an experimental project may have little
or no effect on response. The purpose of a screening experiment is to reduce experimental time and
cost by identifying the factors that deserve thorough investigation in the subsequent stages. Therefore,
in designing an experiment with many factors, it is useful to start with a screening experiment before
going on to the more in-depth studies described in the preceding section.

7.2. Weight-Watch Experiment Using L8(27)

Let us return to the weight-watch experiment to illustrate how an OA such as L8(27) is used to assign
the factor levels. Suppose the factors and their levels of concern at this stage are as listed here.

Factor Level 1 Level 2

DIET DIET 1(D1) DIET 2(D2)
EXERCISE Medium (M) High (H)
SEX Female (F) Male (M)
ETHNIC White (W) Black (B)

Suppose it is anticipated that interaction between DIET and EXERCISE and between DIET and
SEX may exist. With the aid of the component row of the L8(27), we choose to assign the factors
DIET, EXERCISE, SEX, and ETHNIC to columns 1, 2, 4, and 6. The treatment conditions can then
be readily read from the array and are shown in Table 11.

Taking the randomization principle into account, the treatment condition D1LFW, which is de-
coded as DIET 1, low exercise on a white female, and so on should be assigned in a random manner.

7.3. ANOVA

Table 11 also serves as a worksheet for data analysis. Recorded in the far-right column of Table 11
are the WTLOSS data resulting from the assigned treatment combinations. The T1 of any column
stands for the total of all observed data that are associated with level 1. Likewise, T2 stands for the
same types of data for level 2. For example, the T1 for the DIET column is obtained by adding the
four observations corresponding to the l’s in column 1. Hence,

T (DIET) � 6.21 � 8.82 � 2.23 � 4.85 � 22.111

The task of subsequent analysis is to test the null hypotheses that different levels of the factors
DIET, EXERCISE, SEX, and ETHNIC do not have any effect on WTLOSS. It is the same as in
analyzing the CRD data; the ANOVA is used to test the previously mentioned hypotheses. The
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TABLE 12A ANOVA for Weight-Watch Experiment

Source SS DOF MS Fc

DIET 4.95 1 4.95 1.71
EXERCISE 0.01 1 0.01 0.00
SEX 22.54 1 22.54 7.80
ETHNIC 2.92 1 2.92 1.01
Interaction

DIET � EXR 32.60 1 32.60 11.27
DIET � SEX 1.1 1 1.10 0.38

ERROR 2.87 1 2.87
TOTAL 67.01 7

F0.05(1,1) � 161

TABLE 12B ANOVA for Weight Watch Experiment

Source SS DOF MS Fc

DIET 4.95 1 4.95 2.15
EXERCISE 0.01 1 0.01 0.00
SEX 22.54 1 22.54 9.79
Interaction

DIET � EXR 32.60 1 32.60 14.15
ERROR 6.91 3 2.30

TOTAL 67.01 7

F0.05(1,3) � 10.128

variation due to the effect of a specific factor is compared to the variation due to random error. The
sum-of-squares for the ith column and the corresponding F statistic are computed by

2(T � T )1 2SS �i 8

SS /dƒi iF �
SSE /dƒE

where SSE, the sum-of-squares due to errors, is found by summing up the SS’s of the undesignated
columns. For the weight-watch experiment, SSE � SS7. The ANOVA table obtained through this
method is shown in Table 12A.

The computed F statistics are now compared to their common critical value at the specified
significance level, say, � � 0.05, that is, F0.05(1,1) � 161. Since none of these is greater than 161,we
do not have sufficient evidence to conclude that any of the main effects and interactions are significant
at � � 0.05. However, the computed F statistics do reveal that while the interaction DIET � EXR
is relatively larger than the others, the factor SEX and another interaction DIET � SEX are negligible
and thus can be merged with the error term. The resulting ANOVA table is listed in Table 12B.

As the computed F statistics of the interaction DIET � EXR, that is Fc � 14.15 � 10.128 �
F0.05(1,3), we do have sufficient evidence to claim that two DIETs do affect WTLOSS differently at
the two different levels of EXERCISE amount. It also suggests that SEX may have different
WTLOSS. Further examination of the marginal average chart (see Figure 3) reveals that the male
under this experimental setup attains greater WTLOSS than the female. It is noted that DIET 1 has
effect on WTLOSS when it is used with a medium amount of EXERCISE. However, DIET 2 also
produces a sizable WTLOSS when it is used with a higher amount of EXERCISE.

7.4. Recommendations

As mentioned earlier, the OA mainly serves the purpose of screening the vital few from the trivial
many. In order to reach a solid and meaningful conclusion, more thorough confirmatory experiments
are required. Take the weight-watch experiment as an example. It is recommended that the focus be
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Figure 3 Marginal Average Chart with 95% Confidence Level.

placed at this point on only DIET and EXERCISE as the two main factors. Adding a few more levels
may be worthwhile. A replicated two-way factorial design run on both sexes may be the experi-
menter’s best choice. Some statistical tools, such as multiple comparison, confidence interval esti-
mation, residual analysis, normality check, and response surface methodologies, are commonly used.

8. PARAMETER DESIGN (Peace 1989; Phadke 1989; Taguchi and Wu 1980;
Taguchi 1986, 1987)

8.1. Strategy of Parameter Design

Traditionally, when performing an experimental design, the experimenter places his or her focus on
finding the product or process condition that yields the best mean performance. However, this ap-
proach may not satisfy the demands of modern marketing strategies. This strategy requires a robust
product or process that satisfies a wide range of customer interests.

For example, the combination of DIET I and the medium exercise amount in the preceding weight-
watch experiment may, in fact, yield the greatest amount of WTLOSS, though this conclusion is
valid for only some combinations of SEX and ETHNIC. However, a weight-watch service salesperson
is more interested in a program that is robust or resistant to noise factors such as SEX and ETHNIC,
that is, a program that is suitable for all possible combinations of SEX and ETHNIC.

The same is true for a production engineer. In designing a product or process, in addition to the
major parameter settings, noise factors such as manufacturing variation, component tolerance, cus-
tomer use conditions, and product deterioration need to be taken care of. A good product or process
is one that is robust to variations due to these noise factors.

It is this requirement for robustness that prompted Taguchi to develop the concept of parameter
design and produced a great impact on the world of experimental design.

8.2. Concepts of Parameter Designs (Barker 1990; Taguchi and Wu 1980; Taguchi
1986)

In the context of parameter design, the simple response is no longer of major interest. Rather, a
composite performance measure that integrates both the mean and variance of the response plays the
role of a dependent variable. Depending on the nature of the problem under study, various perform-
ance measures are developed for situations including ‘‘the larger the better,’’ ‘‘the smaller the better,’’
and ‘‘the specified target value is the best.’’

The objective of the parameter design is a matter of choosing a product or process condition that
yields the best performance measure. In other words reducing the variation of response from the
target while controlling the mean response toward the target is the ultimate goal of the parameter
design.

These settings are determined by (1) systematically varying the settings of design parameters in
the experiment and (2) comparing the effect of noise factors for each test run.

The parameter design achieves this goal by setting up an inner array and an outer array that
constitute an orthogonal array such as L8(27) or L9(34). This array is assigned with control factor
parameters, while the outer array is also an orthogonal array. This latter array is assigned with noise
factor parameters.
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TABLE 13 Parameter Design for Weight Watch Experiments

Outer Array
Row

Column

1 2 3 4

Column

Row

Inner
1

DIET

Array
2

EXR

1
2
3

3

SEX
ETH

4

1
1
1

1
2
2

2
1
2

2
2
1

Performance
Statistics

Zi

Observed WTLOSS

1 1 1 1 1 y11 y12 y13 y14 Z1

2 1 2 2 2 y21 y22 y23 y24 Z2

3 1 3 3 3 y31 y32 y33 y34 Z3

4 2 1 2 3 y41 y42 y43 y44 Z4

5 2 2 3 1 y51 y52 y53 y54 Z5

6 2 3 1 2 y61 y62 y63 y64 Z6

7 3 1 3 2 y71 y72 y73 y74 Z7

8 3 2 1 1 y81 y82 y83 y84 Z8

9 3 3 2 1 y91 y92 y93 y94 Z9

8.3. Weight-Watch Experiments

Table 13 illustrates how the parameter design is set up for the weight-watch experiment.
Placed in the lower left corner is a L9(34). Columns 1 and 2 are assigned as DIET and EXERCISE,

respectively, both having three levels. Placed in the upper right corner is a transposed outer array
L4(23). In this outer array the transposed column 1 is assigned the noise factor SEX while column 2
is assigned another noise factor ETHNIC. The two arrays are arranged in such a manner that each
of the nine control factor parameter combinations cross all of the four noise factor parameter com-
binations. Thus, a total of 36 observed WTLOSS pieces of date data are obtained and displayed as
shown.

The subsequent analysis of data consists of computing performance statistics based on a formula
such as

n
2Z � (�10)log 1 /n (1 /y )�i i

i�1

for a ‘‘greater-the-better’’ case like this.
The next steps follow the same flow of analysis using an ANOVA table as seen in the preceding

sections.

9. THE STRATEGIES OF EXPERIMENTS (Du Pont Co. 1988)
The practice of experimentation is a matter of problem solving. It is also a learning process rendered
through step-by-step development of know-how as well as know-why. However, it takes sound and
smart strategies to reach this goal effectively and efficiently.

A complete set of strategies consists of three major components: strategy for screening designs,
strategy for parameter designs, and strategy of response surface designs.

The main purpose of the strategy of screening designs is to screen out the significant factors from
various possible factors selected for experiment.

However, in order to keep the cost of experimentation from being too high, two levels for each
factor are used in general. Consequently, 2k orthogonal arrays are most oftenly used in the screening
designs.

The strategy of parameter designs is practiced after the strategy of screening designs. At this
stage, only the factors that are found to be significant are included in the experiments. As the number
of factors is reduced, the experiment is now focused at the finding and determination of the optimal
condition. The 3k orthogonal arrays are commonly used in this stage.
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The strategy of response surface designs takes place after the parameter design strategy. All of
the data collected in the repeatability experiments are then utilized in the database used in conjunction
with the response surface designs.

The elaboration of response surface designs is beyond the scope of this article. For more treatment
of the subject, see Cornell (1990), Khuri and Cornell (1987), and Montgomery (1991).

10. CONCLUSION
The success of experimentation relies on the following issues:

1. Thorough consideration of all technical, statistical, and administrative aspects
2. Sound planning of the experimentation
3. Effective implementation
4. Proper observation of good experimental practices
5. Smart adoption of strategies of experimentation
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