CHAPTER 86

Statistical Inference and Hypothesis Testing

Don T. Phillips
Alberto Garcia-Diaz
Texas A\&M University

1. INTRODUCTION 2241
2. STATISTICAL INFERENCE 2242
3. STATISTICAL HYPOTHESIS TESTING 2243
4. TESTING A MEAN VALUE ($\boldsymbol{\mu}$) WITH $\boldsymbol{\sigma}^{2}$ KNOWN 2244
5. TESTING A MEAN VALUE (μ) WITH σ^{2} UNKNOWN 2248
6. HYPOTHESIS TESTING: SINGLE VARIANCE 2249
7. HYPOTHESIS TESTING: TWO POPULATION MEANS WITH VARIANCES KNOWN 2249
8. HYPOTHESIS TESTING WITHTWO MEANS: POPULATIONVARIANCES UNKNOWN BUTASSUMED EQUAL2250
9. HYPOTHESIS TESTING FOR EQUALITY OF TWO POPULATION VARIANCES 2251
10. EQUALITY OF TWO MEANS WITH VARIANCES UNKNOWN AND NOT EQUAL 2252
11. CONFIDENCE INTERVAL ESTIMATION 2253
12. MAXIMUM-LIKELIHOOD ESTIMATORS 2254
13. TESTING FOR EQUALITY OF MEANS AND VARIANCES FOR K POPULATIONS 2255
13.1. Testing Means 2255
13.2. Testing the Homogeneity of Variances 2255
13.3. Cochran's Test 2255
13.4. Bartlett's Test 2255
13.5. Levene's Test 2256
14. OTHER USES OF HYPOTHESIS TESTING 2256
14.1. Nonparametric Tests 2256
14.2. Goodness of Fit Test 2256
15. HYPOTHESIS TESTING IN THE ANALYSIS OF DESIGNED EXPERIMENTS 2260
15.1. One-Factor Experiments 2260
15.2. After-ANOVA Range Tests 2261
15.3. Factorial Experiments 2262
15.4. Hypothesis Testing in Regression Analysis 2262
REFERENCES 2263

1. INTRODUCTION

One might define the function of applied statistics as the art and science of collecting and processing data in order to make inferences about the parameters of one or more populations associated with random phenomena. These inferences are made in such a way that the conclusions reached are consistent and unbiased. When properly applied and executed, statistical procedures depend entirely on specific methodologies, definitions, and parameters required by the statistical test chosen.

The science of statistics is purely mathematical with probability theory as the cornerstone. Because all statistical methods are based on probability concepts, it is necessary for one to understand the
basic concept of probability measure before undertaking statistical analysis. In order to proceed with the development of procedures for hypothesis testing and estimation, a fundamental knowledge of statistical measures, random variables, probability density functions, and statistical sampling procedures will be assumed.

2. STATISTICAL INFERENCE

Each (and every) random variable has a unique probability distribution. For the most part statisticians deal with the theory of these distributions. Engineers, on the other hand, are mostly interested in finding factual knowledge about certain random phenomena, by way of probability distributions of the variables directly involved, or other related variables.

In basic statistics we learn that probability density functions can be defined by certain constants called distribution parameters. These parameters in turn can be used to characterize random variables through measures of location, shape, and variability of random phenomena. The most important parameters are the mean μ and the variance σ^{2}. The parameter μ is a measure of the center of the distribution (an analogy is the center of gravity of a mass) while σ^{2} is a measure of its spread or range (an analogy being the moment of inertia of a mass). Hence, when we speak of the mean and the variance of a random variable, we refer to two statistical parameters (constants) that greatly characterize or influence the probabilistic behavior of the random variable. The mean or expected value of a random variable x is defined as

$$
\mu=\sum_{x} x p(x) \quad \text { or } \quad \mu=\int_{x} x f(x) d x
$$

where $p(x)$ represents probabilities of a discrete random variable and $f(x)$ represents the probability density function of a continuous random variable. The parameters of interest are embedded in the form of the probability density functions. As an illustration, the variance of a random variable is defined as

$$
\sigma^{2}=\sum_{x}(x-\mu)^{2} p(x) \quad \text { or } \quad \sigma^{2}=\int_{x}(x-\mu)^{2} f(x) d x
$$

In mathematical statistics we can show that many random variables that occur in nature follow the same general form of distribution with differences only in the parameters and the statistical quantities μ and σ^{2} Some of these recurring distributions have been given special names, such as:

Binomial	Beta	Uniform
Hypergeometric	Normal	Cauchy
Poisson	Chi-square	Rayleigh
Geometric	Student's- t	Maxwell
Negative binomial	F distribution	Weibull
Gamma	Exponential	Erlang

Thus, it is not difficult to see why the field of "probability and statistics" is a discipline within itself, nor is it difficult to see why almost every discipline in existence needs a working knowledge of statistics. Random phenomena (variables) exist in all phases of activity.

When one is interested in certain random phenomena, the first requirement seems to be that one develop some means of measuring it. Upon doing so, one often collects a number of observations of the random phenomena. Statistics deals with developing tools and techniques for choosing those observations (a sample) and manipulating them in such a way that useful information is gained about the underlying random variable(s). This information is generally derived from studying probability distributions of the random variables or functions of the random variables. The average (or mean) and/or the variance (or spread) of the probability distribution of the random variable obviously yield useful information.

While the parameters of a statistical distribution are constant, any computation based on the numerical values of the random observations in a sample may yield different quantities from sample to sample. These quantities are known as "statistics." The two most widely used statistics are the mean of a sample of n observations

$$
\bar{x}=\sum_{i=1}^{n} x_{i} / n
$$

and the variance of the sample

$$
S^{2}=\sum_{i=1}^{n} \frac{\left(x_{i}-\bar{x}\right)^{2}}{n-1}
$$

Note that these descriptors are not theoretical in nature but are calculated from a set of n data points.
Mathematical developments have proven that \bar{x} is usually the best single (point) estimate of μ, and S^{2} is usually the best single (point) estimate of σ^{2}. Normally, the nature of these parameters is totally unknown, and statistics is used to draw inferences about their true values.

Since knowledge of the mean and variance is of utmost importance, statistics deals extensively with developing tools and techniques for studying their behavior. Two basic objectives will be dealt with in the remainder of this chapter:

1. Ways of testing to see whether or not some assumed value of μ or σ^{2} is "reasonable" under normal operating or assumed conditions.
2. Ways of using observed values of \bar{x} and S^{2} so that one may state with a given measure of confidence that the population parameters of these estimates fall within a given interval. For example, we can be 95% confident that the interval from I_{1} to I_{2} includes the true value of μ.

The first objective is dealt with using statistical hypothesis testing, while the second one gives rise to confidence interval estimation.

Statistical tools also exist for estimating the difference between, or testing an assumption about, the means or variances of two or more probability distributions. These tools are natural extensions of the tools developed for estimating and testing hypotheses about single populations.

All statistical methods have, as a basis, a sample of n observations on the random phenomena of interest. Such methods require that the random sample (of size n) be "representative" of the outcomes that could occur. Because of this, much is said about making sure that the sample is a random sample. Many statistical calculations become invalid when the data used are not representative.

3. STATISTICAL HYPOTHESIS TESTING

Working with a representative (random) sample of n observations, statisticians have shown that the function $Z=\sqrt{n}(\bar{x}-\mu) / \sigma$ for sufficiently large values of n is a random variable that follows (or has) a normal probability distribution with $\mu=0$ and $\sigma^{2}=1$. This fact is the result of the wellknown central limit theorem, which can be stated as follows (Bowker and Lieberman 1972; Devore 1987; Dougherty 1990; Hogg and Craig 1978):

If \bar{x} is the mean of a random sample of size n taken from a population having a mean μ and a finite variance σ^{2}, then

$$
Z=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}
$$

is a random variable whose probability distribution approaches that of the standard normal distribution ($\mu=0, \sigma^{2}=1$) as n approaches infinity.

This is undoubtedly the most amazing theorem in statistics for it does not require that one know anything about the shape of the probability distribution of the individual observations. It only requires that the distribution of those random observations have a finite mean, μ, and variance, σ^{2}. The standard normal density function is defined as

$$
f(z)=\frac{1}{\sqrt{2 \pi}} e^{-1 / 2 z^{2}} \quad \text { for } \quad-\infty<z<\infty
$$

This distribution is graphically represented in Figure 1.
If we use the notation $Z_{\alpha / 2}\left(-Z_{\alpha / 2}\right)$ to indicate the value of Z corresponding to an area $\alpha / 2$ under the distribution falling to the right (left) of $Z_{\alpha / 2}\left(-Z_{\alpha / 2}\right)$, then we can associate the cross-hatched area shown in Figure 2 with the region in which $100(1-\alpha) \%$ of all random variables, characterized by the standard normal density function $f(Z)$ with mean $\mu_{z}=0$ and variance $\sigma_{z}^{2}=1$, are expected to lie. Within the context of a hypothesis test, this area will be called the acceptance region and the

Figure 1 Standardized Normal Distribution.

Figure 2 Acceptance and Rejection Regions.
tail areas called the rejection region. The points $-Z_{\alpha / 2}$ and $Z_{\alpha / 2}$ will be called the rejection points for reasons which will shortly become evident. Although the underlying probability density function $f(Z)$ might change, these concepts will remain the same. The procedure of statistical hypothesis testing will now be described.

4. TESTING A MEAN VALUE (μ) WITH $\boldsymbol{\sigma}^{\mathbf{2}}$ KNOWN

Given a value of \bar{x} computed using a sample of size n from an infinite population with known mean (μ) and variance $\left(\sigma^{2}\right)$, the probability that the random variable

$$
Z=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}
$$

falls between the points $-Z_{\alpha / 2}$ and $Z_{\alpha / 2}$ is $1-\alpha$. Note that α is a value between zero and one and represents the probability that a random variable \bar{x}, which approximates the mean μ, will naturally fall outside the points $-Z_{\alpha / 2}$ and $Z_{\alpha / 2}$. This interpretation of the natural behavior of the random variable \bar{x}, along with the distribution of the (transformed) variable Z, allows one to structure a
hypothesis test concerning the true mean, μ. Assume that the value of $\alpha=0.05$, and that the following statement is to be tested:

$$
\begin{array}{ll}
H_{0}: \quad \mu=\mu_{0} \\
H_{1}: \quad \mu \neq \mu_{0}
\end{array}
$$

The value μ_{0} is the numerical value of μ which is assumed known or is hypothesized. H_{0} is called the null or primary hypothesis and H_{1} is called the alternative or secondary hypothesis. If a random sample of size n is extracted from the population under study, then

$$
\bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}
$$

can be calculated. Since \bar{x} is the best point estimator of μ, and μ is assumed to be equal to μ_{0} one would expect the random variable

$$
Z=\frac{\bar{x}-\mu_{0}}{\sigma / \sqrt{n}}
$$

to fall between the points $-Z_{\alpha / 2}=-Z_{0.025}$ and $Z_{\alpha / 2}=Z_{0.025} 95 \%$ of the time. The values $-Z_{0.025}$ and $Z_{0.025}$ can be determined by using a standard normal table. We can see that they are equal to ± 1.96. These values are called critical values and obviously depend upon α. Hence, calculation of Z yields a statistic that will cause H_{0} to be believed 95% of the time and H_{1} to be believed only 5% of the time, when H_{0} is actually true. Therefore, α can be interpreted as the magnitude of the error of rejecting the null hypothesis when in fact it is true. This error is often referred to as an error of type I. Additionally, if the null hypothesis is false, there is still a chance that the calculated value of Z will lie between ± 1.96 (when $\alpha=0.05$). This result will cause the decision analyst to accept the null hypothesis when in fact it is false. The magnitude (likelihood) of this error is commonly denoted by β, and this error is called an error of type II. Table 1 characterizes the decision process.

In order to illustrate the basic procedures of statistical hypothesis testing, consider the following example:

An oil investment cartel is considering the purchase of an oil well from Blow Hard, Inc. in Texas. Current owners claim that the well produces on the average 100 barrels of oil per day, with a standard deviation of 10 barrels per day. In order to test this claim, the cartel chooses $\alpha=0.05$ and observes daily production for 16 days. Total production over this period of time is 1690 barrels of oil. Can the owner's claim be disputed?
$\left.\begin{array}{ll}\text { Assumptions: } & \mu=100 \\ & \sigma^{2}=100 \\ & \text { Infinite population } \\ & \alpha=0.05\end{array}\right] \begin{array}{ll} \\ \text { Hypothesis test: } \quad & H_{0}: \mu=100 \\ & H_{1}: \mu \neq 100 \\ \text { Test statistic: } \quad Z-\frac{\bar{x}-\mu}{\sigma / \sqrt{n}} \\ \text { Critical values: } \quad \pm Z_{0.025}= \pm 1.96 \\ \text { Calculated } Z \text { statistic: } \quad Z=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}=\frac{105.63-100}{10 / 4}=2.252\end{array}$
Since the value of $Z=2.252$ is greater than $Z_{\alpha / 2}=1.96$, one would choose to reject H_{0} in favor of

TABLE 1 Decision Based upon Sampling Evidence

True State or Nature	H_{0} True	H_{0} False
Hypothesis H_{0} True	No Error	Type I Error
Hypothesis H_{0} False	Type II Error	No Error

H_{1}. In other words, if H_{0} is true, it is highly unlikely that a sample of size $n=16$ would yield a value of \bar{x} equal to 105.63 , resulting in a value of Z as large as $Z=2.252$. What value of \bar{x} would cause the decision maker to accept H_{0} ?

Since $\pm Z_{\alpha!2}== \pm 1.96$ one can define the following relationship to find the limits of the acceptance region:

$$
\pm 1.96=\frac{\bar{x}_{c}-100}{2.5}
$$

It can be verified that the solution for \bar{x}_{c} is given by $\bar{x}_{c}=95.1$ and $\bar{x}_{c}=104.9$. Therefore, any sample average between these two values will result in the acceptance of H_{0}.

Next, let us assume that the true population mean (daily production rate) is equal to $\mu_{1}=110$ and not 100 . What is the probability that the null hypothesis will be erroneously accepted? Assuming that the variance remains constant, consider the two distributions shown in Figure 3.

Note that the probability that the null hypothesis will be accepted (erroneously) is given by the area marked β in Figure 3. This area can be calculated as follows:

Test statistic: $Z=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}$
Critical value: $Z_{1}=\frac{104.9-110}{2.5}=-2.04$
Type II error: $\beta=P(Z \leq-2.04)$
Using a standard normal table, the probability corresponding to the β area is given by $\beta=0.0217$. Note, however, that the β error should not include that area to the left of $\bar{x}_{c}=95.1$. The probability that \bar{x} will be less than this value given that $\mu=110$ is determined by $P\left(Z \leq Z_{2}\right)$, where

$$
Z_{2}=\frac{95.1-110}{2.5}=-5.96
$$

This probability is almost 0 . Therefore, $\beta=0.0217$ is the correct value to four significant digits. In other words the probability of accepting the null hypothesis when μ is actually $\mu_{1}=110$ is only 0.0217. Note that this probability is actually based on the values $\bar{x}_{c}=95.1$ and $\bar{x}=104.9$, which were uniquely determined by the chosen value of α. Clearly, one would never know what the true population mean (μ) actually is in any meaningful application. Hence, the value of β cannot be calculated except in reference to values of μ different from that specified in the null hypothesis. For this example several values of β were calculated for the alternative values of μ_{1} indicated in Table 2.

For clarity, one should note that in the limit as μ approaches 100 , the probability of a type II error approaches $\beta=1-\alpha$. At the exact point $\mu_{0}=100$, the null hypothesis is true and a type II error does not exist; hence, $\beta=0$ at that single point. Figure 4 graphically depicts the behavior of the β error as a function of the true (unknown) population mean, under the original rejection criterion specified by the null hypothesis and the chosen α error. This curve is called an operating characteristic curve, or simply an OC curve. ${ }^{1}$

Figure 3 Probabilities of Type I and Type II Errors.

TABLE 2 Probability of Type II Error

91	93	95	96	97	Population Mean Values				103	104	105	107	109
					98	99	101	102					
0.025	0.200	0.484	0.641	0.776	0.874	0.932	0.932	0.874	0.776	0.641	0.484	0.200	0.025

The calculations shown in Table 2 were performed relative to an alternative hypothesis that included two rejection points ($-Z_{\alpha / 2}, Z_{\alpha / 2}$). Such a hypothesis test is called a two-tailed hypothesis test.

Consider once again our numerical example. Note that the null hypothesis states that well production is exactly 100 barrels per day. In reality, the purchase of the well would be desirable if the daily production met or exceeded 100 barrels per day. In that case the null and alternative hypotheses would be

Case I:

$$
\begin{array}{ll}
H_{0}: & \mu \geq 100 \\
H_{1}: & \mu<100
\end{array}
$$

or
Case II:

$$
\begin{array}{ll}
H_{0}: \quad \mu \leq 100 \\
H_{1}: \quad \mu>100
\end{array}
$$

Both hypothesis statements reflect the same objective, but there are significant differences in the decision criterion utilized in each hypothesis. The null hypothesis of case I assumes that the well is producing 100 or more barrels per day unless statistical evidence proves otherwise, resulting in rejection of H_{0}. The null hypothesis of case II assumes that the well production is inferior unless production records indicate that daily output is more than 100 barrels per day, which will result in rejection of H_{0}. Both tests are valid and are called one-tailed hypothesis tests under a given type I error. Consider again the original data with $\alpha=0.05$. Table 3 summarizes the calculations for the significance tests associated with cases I and II.

Both test statistics in Table 3 use the value of 100 in calculating a Z value, for it is at this single point that the type I error and the type II errors are the greatest. It should also be noted that the type II error now exists in only one direction, and hence the operating characteristic curve will be one sided. For completeness, one should note that the null hypothesis is an a priori state of nature that one chooses to believe, unless statistical evidence indicates otherwise. In statistics, one does not "prove" the null hypothesis but rather "fail to reject" the hypothesis. These concepts are consistent

Figure 4 Operating Characteristic Curve. Level of significance $=0.05$.

TABLE 3 One-Tail Hypothesis Tests for Means

Procedure	Case I	Case II
Assumptions	$\mu \geq 100$	$\mu \leq 100$
	$\sigma^{2}=100$	$\sigma^{2}=100$
	Normal population	Normal population
	$\alpha=.05$	$\alpha=.05$
Hypothesis test	$H_{0}: \mu \geq 100$	$H_{0}: \mu \leq 100$
	$H_{1}: \mu<100$	$H_{1}: \mu>100$
Test statistic	$Z=(\bar{x}-\mu) /(\sigma / \sqrt{n})$	$Z=(\bar{x}-\mu) /(\sigma / \sqrt{n})$
Critical value	$-Z_{\alpha}=-1.645$	$Z_{\alpha}=1.645$
Calculated value	$Z=2.252$	$Z=2.252$
Conclusion	Accept H_{0}	Reject H_{0}
	Buy the well	Buy the well

with the underlying uncertain (stochastic) nature under which hypothesis testing is conducted. One can never be absolutely certain of statistical inference. Along these same lines of thought, it is critical that the hypothesis test be chosen before statistical sampling and not after. Selection of the test (one or two tailed) and the associated a error should never be chosen a posteriori to "statistically confirm" any belief. Such statistical inference is obviously improper.

In summary, a decision maker can apply either a one-tailed or two-tailed hypothesis test with a chosen type I error probability equal to α. The true probability of type II error (β) is always unknown since the actual population mean is unknown. However, the β risk can be characterized by the construction of an OC curve.

5. TESTING A MEAN VALUE (μ) WITH $\boldsymbol{\sigma}^{2}$ UNKNOWN

Consider again the oil well example. After detailed examination, it was discovered that the theoretical variance (σ^{2}) was really not known but had been "guessed at" by the seller. In order to estimate σ^{2}, the sample of 16 days was used to calculate S^{2} in the following manner:

$$
S^{2}=\frac{\sum_{i-1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}
$$

Using $n=16$, a value of $S^{2}=225$ was calculated. Under the assumption that σ^{2} is unknown, the Z statistic is no longer a valid test statistic. It can be shown that the following test statistic should be used in this case (Bowker and Lieberman 1972; Devore 1987; Hogg and Craig 1978).

$$
t=\frac{\bar{x}-\mu}{S / \sqrt{n}}
$$

This is called simply the student t test statistic. The rejection points $t_{\alpha / 2}$ and $-t_{\alpha / 2}$ for a two-tailed test can be determined from an appropriate t table, but they now depend on a parameter called the "degrees of freedom," which is defined by $d f=n-1$. Consider the original two-tailed hypothesis test under the new assumption (σ^{2} unknown):

Assumptions: σ^{2} unknown
$\mu=100$
Infinite population
Population is normal
$\alpha=0.05$
Hypothesis test: $\quad H_{0}: \quad \mu=100$
$H_{1}: \quad \mu \neq 100$
Test statistic: $t=\frac{\bar{x}-\mu}{S / \sqrt{n}}$

Critical values: $t_{\alpha / 2, d f}=t_{0.025,15}=2.131$
$-t_{\alpha / 2, d f}=-t_{0.025,15}=-2.131$
Calculated t statistic: $\quad t=\frac{105.63-100}{15 / 4}=1.501$
Therefore, the null hypothesis cannot be rejected and one is led to believe that the true well production is actually 100 barrels per day.

This example illustrates the use of the t statistic for testing a hypothesis related to a population mean value (μ) when the variance (σ^{2}) is unknown. As before, both two-tailed and one-tailed tests are possible, whichever the problem situation demands. Rejection limits are set based on a chosen type I (α) error, and operating characteristic curves (OC curves) can be constructed to reflect the associated type II (β) error risk. Finally, one should note that the t test was necessitated due to the fact that σ^{2} was being estimated by S^{2} from a sample of size n. If n is large enough, then one would expect S^{2} to closely approximate σ^{2} and the Z test can be used anyway. For $n \geq 30$ this is generally an acceptable procedure.

6. HYPOTHESIS TESTING: SINGLE VARIANCE

Continuing with the example about oil well production, the potential buyer was quite perplexed at the result obtained from the two-tailed t test, since it differed from that previously obtained via the original two-tailed Z test. An engineer explained that the difference was probably a result of lack of knowledge concerning the population variance, σ^{2}. Since σ^{2} was unknown, the induced uncertainty caused failure to reject the null hypothesis (note that the rejection points were wider).

Reflecting upon this logic, management requested a statistical examination of the sample variance to determine if the original (specified) σ^{2} had indeed changed, since the estimated value of $\sigma^{2}\left(S^{2}\right)$ was greater than the original specified value. The proper statistical test is a chi-square test. The chisquare test is described as follows:

$$
\begin{array}{ll}
\text { Assumptions: } \quad \begin{array}{l}
\sigma^{2}=100 \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\text { Hyfinite population is normal }
\end{array} \\
\text { Hypothesis test: } \begin{array}{ll}
H_{0}: \quad \sigma^{2}=100 \\
& H_{1}: \quad \sigma^{2} \neq 100
\end{array} \\
\text { Test statistic: } \quad \chi^{2}=\frac{(n-1) S^{2}}{\sigma^{2}} \\
\text { Critical values: } \quad \chi_{d f, 1-\alpha / 2}^{2} ; \chi_{d f, \alpha / 2}^{2} \\
\text { Degrees of freedom: } \quad d f=n-1
\end{array}
$$

As in previous tests, the χ^{2} rejection values are both functions of the chosen type 1 error (α) and the sample size $(d f=n-1)$. Critical values are easily obtained from χ^{2} tables. For the numerical example the procedure is as follows:
$\begin{array}{lll}\text { Hypothesis test: } & H_{0} & \sigma^{2}=100 \\ & H_{1} & \sigma^{2} \neq 100\end{array}$
Test statistic: $\quad \chi^{2}=\frac{(n-1) S^{2}}{\sigma^{2}}=\frac{(15)(225)}{100}=33.75$
Critical values: $\quad \chi_{15,0.975}^{2}=6.262, \chi_{15,0.025}^{2}=27.488$
Since $\chi^{2}=33.75$ is greater than the critical value $\chi_{15,0.025}^{2}=27.488$, one is led to believe that the underlying statistical variance of well production has changed from 100 to something else. Of course, based on the value of S^{2}, one might conclude that it has increased to somewhere around 225 . Although further investigation would be up to decision maker (buyer), it appears that a good course of action could be to obtain more sample data and reexamine the entire situation.

7. HYPOTHESIS TESTING: TWO POPULATION MEANS WITH VARIANCES KNOWN

After a rather lengthy discussion, company management reached the decision that the well should be purchased. Due to optimistic market projections, it was decided that a second well should also be purchased if one could be found that produced 100 more barrels per day on the average than the
single established well. Further testing led management to believe that, for comparison purposes, the first well did indeed produce at a rate of 100 barrels per day. At this point Blow Hard, Inc. presented a new well that it claimed produced at a rate of 100 barrels per day more than the first well. Management again insisted on statistical investigation and in order to provide new, current data, a separate independent evaluation was undertaken. Samples from both wells were obtained to compare daily production rates. Blow Hard, Inc. assured the purchasing cartel that the variance in daily production for the first well was actually 240 and for the second well 276.

Additionally, a sample of production records for $n_{1}=12$ days from well 1 and $n_{2}=18$ days from well 2 provided average daily production of $\bar{x}_{1}=102$ and $\bar{x}_{2}=212$ barrels per day, respectively.

Since the variances of production, $\sigma_{1}^{2}=240$ and $\sigma_{2}^{2}=276$, are both assumed known, the proper test statistic is a Z test for the difference in the means of populations. The procedure is as follows:

$$
\begin{aligned}
& \text { Assumptions: } \sigma_{1}^{2} \text { and } \sigma_{2}^{2} \text { known } \\
& \text { Infinite populations } \\
& \text { Normal populations } \\
& \alpha=0.05 \\
& \text { Hypothesis test: } \quad H_{0}: \quad \mu_{2}-\mu_{1}=\delta \\
& H_{1}: \quad \mu_{2}-\mu_{1} \neq \delta \\
& \delta=100 \\
& \text { Test statistic: } Z=\frac{\left(\bar{x}_{2}-\bar{x}_{1}\right)-\left(\mu_{2}-\mu_{1}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}} \\
& \text { Critical values: } \quad-Z_{\alpha / 2}, Z_{\alpha / 2}
\end{aligned}
$$

The numerical calculations are as follows:

$$
\begin{aligned}
H_{0}: \quad \mu_{2}-\mu_{1} & =100 \\
H_{1}: \quad \mu_{2}-\mu_{1} & \neq 100 \\
Z=\frac{\left(\bar{x}_{2}-\bar{x}_{1}\right)-\left(\mu_{2}-\mu_{1}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}} & =\frac{(212-102)-100}{\sqrt{\frac{240}{12}+\frac{276}{18}}} \\
Z=\frac{10}{5.94} & =1.684
\end{aligned}
$$

The critical value for this test is given by $\pm Z_{\alpha / 2}= \pm Z_{0.025}= \pm 1.96$. Hence, there is no statistical evidence to support the rejection of the null hypothesis, and the proper decision would be to purchase both wells under the management interpretation of these results. However, the same clever engineer who questioned the first test results again questioned the validity of using σ_{1}^{2} and σ_{2}^{2} in the calculations. The question was then posed, "Can we perform a similar test without knowing the population variances?" The statistician responded yes as the same example used to calculate \bar{x}_{1} and \bar{x}_{2} could be used to estimate σ_{1}^{2} and σ_{2}^{2} with S_{1}^{2} and S_{2}^{2}, respectively.

8. HYPOTHESIS TESTING WITH TWO MEANS: POPULATION VARIANCES UNKNOWN BUT ASSUMED EQUAL

The test statistic, assumptions, and hypothesis test are as follows:
Assumptions: σ_{1}^{2} and σ_{2}^{2} (both are unknown)
Infinite populations
Normal populations
$\alpha=.05$
Hypothesis test: $\quad H_{0}: \quad \mu_{2}-\mu_{1}=\delta$

$$
H_{1}: \quad \mu_{2}-\mu_{1} \neq \delta
$$

Test statistic: $\quad t=\frac{\left(\bar{x}_{2}-\bar{x}_{1}\right)-\left(\mu_{2}-\mu_{1}\right)}{\sqrt{\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}}} \sqrt{\frac{n_{1} n_{2}\left(n_{1}+n_{2}-2\right)}{n_{1}+n_{2}}}$
Critical values: $\quad-t_{\alpha / 2, d f}, t_{\alpha / 2, d f}$
Degrees of freedom: $d f=n_{1}+n_{2}-2$

Using the same set of data, it was found that $S_{1}^{2}=165$ and $S_{2}^{2}=453$. The calculations related to this example are as follows:

$$
\begin{array}{lll}
\text { Hypothesis test: } & H_{0}: & \mu_{2}-\mu_{1}=100 \\
& H_{1}: & \mu_{2}-\mu_{1} \neq 100
\end{array}
$$

The calculated value of the test statistic is given by

$$
t=\frac{(212-102)-(100)}{\sqrt{11(165)+17(453)}} \sqrt{\frac{(12)(18)(28)}{30}}=1.454
$$

The critical values (rejection points) for this test are $t_{0.025,28}=2.048$ and $-t_{0.025,28}=-2.048$. Since the calculated value of $t=1.454$ is less than the upper rejection value, there is insufficient evidence to reject the null hypothesis. Finally, one should note that under the assumption that $\sigma_{1}^{2}=\sigma_{2}^{2}$, a pooled estimate of the variance is used from a total sample of $N=n_{1}+n_{2}$. As in the single parameter t test, if n_{1} and n_{2} are both greater than 30 , one can simply use the two parameter Z test directly.

Our same clever engineer now observes that these results can be reached only if it can be assumed that the two population variances are equal. At this point, the manager asks our statistician, "Can we test this assumption?" The answer is yes, using an F test for equality of variances.

9. HYPOTHESIS TESTING FOR EQUALITY OF TWO POPULATION VARIANCES

The following assumptions, hypothesis test, and test statistic should be observed when conducting an F test:

Assumptions: Normal populations
Infinite populations
Hypothesis test: $H_{0}: \quad \sigma_{1}^{2}=\sigma_{2}^{2}$
$H_{1}: \quad \sigma_{2}^{2} \neq \sigma_{2}^{2}$
Test statistic: $\quad F=S_{1}^{2} / S_{2}^{2}$
Critical values: $\quad F_{1-\alpha / 2, v_{1}, v_{2}}, F_{\alpha / 2, v_{1}, v_{2}}$
$v_{1}=$ degrees of freedom in numerator
$=n_{1}-1$
$v_{2}=$ degrees of freedom in denominator

$$
=n_{2}-1
$$

The critical values $F_{\alpha / 2, v_{1}, v_{2}}$ for commonly used values of α are easily found in statistical tables. Once these values are obtained, the values of $F_{1-\alpha / 2, v_{1}, v_{2}}$ are easily calculated for the left-hand rejection point according to the following formula

$$
F_{1-\alpha / 2, v_{1}, v_{2}}=\left(F_{\alpha / 2, v_{2}, v_{1}}\right)^{-1}
$$

For example, if S^{2} was calculated using a sample of size $n_{1}=13$ and S_{2}^{2} was calculated using a sample of size $n_{2}=21$; the rejection points for the quantity $F=S_{1}^{2} / S^{2}$ for $\alpha=.10$ would be given by

$$
F_{\alpha / 2, v_{1}, v_{2}}=F_{.05,12,20}=2.28
$$

and

$$
F_{1-\alpha / 2, v_{1}, v_{2}}=\left(F_{0.05,20,12}\right)^{-1}=(2.54)^{-1}=0.394
$$

In order to illustrate the F test, consider the previous example. Recall that $S_{1}^{2}=165, n_{1}=12, S_{2}^{2}=$ 453 , and $n_{2}=18$.

Assumptions: $\quad \alpha=0.10$
Normal populations
$\begin{array}{lll}\text { Hypothesis test: } & H_{0}: & \sigma_{1}^{2}=\sigma_{2}^{2} \\ & H & \sigma_{1}^{2} \neq \sigma_{2}^{2}\end{array}$
Test statistic: $\quad F=S_{1}^{2} / S_{2}^{2}$

Critical values: Using $\alpha=0.10, n_{1}=12, n_{2}=18$, we obtain the critical values shown:

$$
\begin{aligned}
& F_{0.05,11,17}=2.41 \\
& F_{0.95,11,17}=\left(F_{0.05,17,11}\right)^{-1}=0.372
\end{aligned}
$$

Calculated F statistic: $\quad F=S_{1}^{2} / S_{2}^{2}=165 / 453=0.364$
Hence, the null hypothesis would be rejected and one is led to assume that $\sigma_{1}^{2} \neq \sigma_{2}^{2}$. Our astute manager, still seeking statistical evidence, now inquires as to the availability of a statistical test when $\sigma_{1}^{2} \neq \sigma_{2}^{2}$. Fortunately, such a test is available, and is called the t^{\prime} test.

10. EQUALITY OF TWO MEANS WITH VARIANCES UNKNOWN AND NOT EQUAL

The proper statistical test for this procedure is the t^{\prime} test and is based on the following:
Assumptions: $\quad \sigma_{1}^{2} \neq \sigma_{2}^{2}$
Normal populations
Infinite populations
Hypothesis test: $\quad H_{0}: \quad \mu_{1}-\mu_{2}=\delta$

$$
H_{1}: \quad \mu_{1}-\mu_{2} \neq \delta
$$

Test statistic: $t^{\prime}=\frac{\left(\bar{x}_{2}-\bar{x}_{1}\right)-\delta}{\sqrt{\frac{S_{1}^{2}}{n_{1}}+\frac{S_{2}^{2}}{n_{2}}}}$
Critical values: $t_{\alpha / 2, d f}, t_{1-\alpha / 2, d f}$
Degrees of freedom: $d f=\left[\frac{\left(\frac{S_{1}^{2}}{n_{1}}+\frac{S_{2}^{2}}{n_{2}}\right)^{2}}{\frac{\left(\frac{S_{1}^{2}}{n_{1}}\right)^{2}}{n_{1}-1}+\frac{\left(\frac{S_{2}^{2}}{n_{2}}\right)^{2}}{n_{2}-1}}\right]$
For the oil well example, the following calculations illustrate the procedure:
Assumptions: $\quad \sigma_{1}^{2} \neq \sigma_{2}^{2}$
Normal populations
Infinite populations
$\alpha=0.05$
Hypothesis test: $\quad H_{0}: \quad \mu_{2}-\mu_{1}=100$

$$
H_{1}: \quad \mu_{2}-\mu_{1} \neq 100
$$

Critical values: $t_{\alpha / 2, d f},-t_{\alpha / 2, d f}$
Degrees of freedom: $d f=\left[\frac{\left(\frac{165}{12}+\frac{453}{18}\right)^{2}}{\frac{\left(\frac{165}{12}\right)^{2}}{11}+\frac{\left(\frac{453}{18}\right)^{2}}{17}}\right]$

$$
=[27.82]=27
$$

Critical values: $t_{0.025,27}=2.052$

$$
-t_{0.025,27}=-2.052
$$

Calculated t statistic: $\quad t^{\prime}=\frac{(212-102)-100}{\sqrt{\frac{165}{12}+\frac{453}{18}}}=\frac{10}{\sqrt{38.92}}$

$$
t^{\prime}=1.603
$$

Since $t^{\prime}=1.603$ is less than the critical value of $t=2.052$, statistical evidence does not support rejection of the null hypothesis.

11. CONFIDENCE INTERVAL ESTIMATION

A subject closely related to hypothesis testing is that of confidence intervals. The basic concepts are best understood by considering once again the test statistic:

$$
Z=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}
$$

If, as before, we use the notation $Z_{\alpha / 2}$ and $-Z_{\alpha / 2}$ to indicate the values of the random variable Z where $\alpha / 2$ of the area lies to the right of $Z_{\alpha / 2}$ and $\alpha / 2$ to the left of $-Z_{\alpha / 2}$, then the following probability statement must be true:

$$
P\left\{-Z_{\alpha / 2} \leq \frac{\bar{x}-\mu}{\sigma / \sqrt{n}} \leq Z_{\alpha / 2}\right\}=1-\alpha
$$

If we rearrange the inequality in brackets and solve for the true population parameter μ, then we obtain

$$
\bar{x}-Z_{\alpha / 2} \sigma / \sqrt{n} \leq \mu \leq \bar{x}+Z_{\alpha / 2} \sigma / \sqrt{n}
$$

This last expression says that if we take a random sample of n observation on the random phenomenon of interest and calculate the interval,

$$
\bar{x}-Z_{\alpha / 2} \sigma / \sqrt{n} \quad \text { to } \quad \bar{x}+Z_{\alpha / 2} \sigma / \sqrt{n}
$$

we can be $100(1-\alpha) \%$ confident that the interval will include the true mean, μ. In other words, if we repeatedly took samples of size n and calculated the interval from each sample, in the long run $100(1-\alpha) \%$ of the intervals will include μ. The interval is obviously calculated only once, and the resulting values of the endpoints constitute a $100(1-\alpha) \%$ confidence interval estimate of μ. For a numerical illustration consider once again the first example given in this chapter, that is, the single oil well production problem:

```
Assumptions: \(\quad \alpha=0.05\)
\(\sigma^{2}=100\)
Critical values: \(\quad \pm Z_{\alpha / 2}= \pm Z_{0.025}= \pm 1.96\)
Input data: \(\bar{x}=105.63, n=16\)
```

The 95% confidence interval for the true (unknown) population mean (μ) is given by

$$
105.63-(1.96)(5 / 2) \leq \mu \leq 105.63+(1.96)(5 / 2)
$$

or

$$
100.73 \leq \mu \leq 110.53
$$

Note that this interval assumes that one knows σ^{2}, the variance of the random variable. Usually this is not the case, and we have to estimate σ^{2} with S^{2}. If we change the expression for Z accordingly, we get a different distribution. As already mentioned in this chapter,

$$
t=\frac{\bar{x}-\mu}{S / \sqrt{n}}
$$

is a random variable that follows a t distribution.
Now, utilizing the knowledge that we have provided about the t distribution, we write a probability statement similar to the one for the previous case:

$$
P\left\{-t_{\alpha / 2} \leq \frac{\bar{x}-\mu}{S / \sqrt{n}} \leq t_{\alpha / 2}\right\}=1-\alpha
$$

and upon rearranging the inequality in the brackets, we obtain

$$
\bar{x}-t_{\alpha / 2} S / \sqrt{n} \leq \mu \leq \bar{x}+t_{\alpha / 2} S / \sqrt{n}
$$

which is a $100(1-\alpha) \%$ confidence interval estimate of μ when σ is not known.
It should be pointed out that when the sample size from which S is calculated exceeds 30 , it makes little difference whether one uses the normal distribution with $\sigma=S$ or the more precise distribution. The probability distributions of t and Z become the same at $n=\infty$.

If one is interested in calculating a $100(1-\alpha) \%$ confidence interval for the quantity $\mu_{1}-\mu_{2}$, the difference between the means of two different distributions, one would take a random sample from each distribution, n_{1} from the first and n_{2} from the second. From these samples one would calculate \bar{x}_{1} and S_{1}^{2} as well as \bar{x}_{2} and S_{2}^{2}. In a manner identical to that used earlier, the following $100(1-\alpha) \%$ confidence interval could be constructed:

$$
P\left\{\left(\bar{x}_{1}-\bar{x}_{2}\right)-Z_{\alpha / 2} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}}+\frac{\sigma_{2}^{2}}{n_{2}} \leq \mu_{1}-\mu_{2} \leq\left(\bar{x}_{1}-\bar{x}_{2}\right)+Z_{\alpha / 2} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}\right\}=1-\alpha
$$

Clearly, this procedure could be repeated for any test statistic previously discussed in this section. The reader is referred to any of a number of engineering statistics texts for developments of $\chi^{2}, \mathrm{~F}$, and t^{\prime} confidence intervals.

12. MAXIMUM-LIKELIHOOD ESTIMATORS

A well-known procedure for finding estimators of unknown parameters is the method of maximum likelihood (Devore 1987; Dougherty 1990; Hogg and Craig 1978). Maximum-likelihood estimators are consistent and have minimum variance but are not always unbiased. A summary of the procedure follows.

Let X be a random variable with density function $f(x, \theta)$, where the parameter θ is unknown. Given a random sample of independent observations $x_{1}, x_{2}, \ldots, x_{n}$, the likelihood function is defined as

$$
L\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right)=f\left(x_{1}, \theta\right) f\left(x_{2}, \theta\right), \ldots, f\left(x_{n}, \theta\right)
$$

The likelihood function is actually the joint probability density function (for continuous variables) or the joint mass probability function (for discrete variables) of the n random variables. Therefore, the value of θ for which the observed sample would have the highest probability of being extracted, can be found by maximizing the likelihood function over all possible values of the parameter θ. As shown in elementary calculus, this can be achieved by setting the first derivative of the likelihood function with respect to the parameter equal to zero, and then solving for θ :

$$
d L / d \theta=0
$$

The solution to this equation can be more efficiently found by considering the logarithm (base e) of the likelihood function, instead of the function itself:

$$
d \ln L / d \theta=0
$$

To illustrate the fundamental steps of the procedure followed to obtain a maximum-likelihood estimator, we will consider a random variable X having the exponential density function:

$$
f(x ; \theta)=\theta e^{-\theta x}
$$

where x is nonnegative. For a sample size n the likelihood function for this example is given by

$$
L\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\Pi_{i} \theta e^{-\theta x_{i}}
$$

where the index i takes on the values $i=1,2, \ldots, n$. Taking the natural logarithm of the preceding likelihood function, we obtain

$$
\ln L\left(x_{1}, x_{2}, \ldots, x_{n}\right)=n \ln \theta-\theta \sum_{i} x_{i}
$$

After differentiating $\ln L$ with respect to θ, setting the derivative equal to zero, and solving for θ we obtain the final result shown:

$$
\hat{\theta}=n / \sum_{i} x_{i}
$$

which is equal to the inverse of the sample mean. Now let us assume that the random sample consists of the following values for $n=5: 0.9,1.7,0.4,0.3,2.4$. In this case the maximum-likelihood estimator would be equal to $\hat{\theta}=5 / 5.7=0.88$. It can be verified that \bar{x} and $S^{2}=\sum_{i}\left(\mathrm{x}_{i}-\bar{x}\right)^{2} / n$ are maximumlikelihood estimators for the mean and variance, respectively, of a normal distribution (Bowker and Lieberman 1972).

13. TESTING FOR EQUALITY OF MEANS AND VARIANCES FOR K POPULATIONS

13.1. Testing Means

In the case where there are k populations under consideration, and the test of hypothesis is equality of population means, a different type of procedure is necessitated. This area of statistics is called experimental design or analysis of variance. This topic is covered in Chapter 85 of this Handbook.

13.2. Testing the Homogeneity of Variances

A problem frequently encountered in applied statistics is that of testing the equality of variances of several normal populations. Let us assume that we have collected a random sample of size n_{i} from a normal population with mean μ_{i} and variance σ_{i}^{2}, repeating this basic procedure for $i=1,2$, \ldots, k. The hypothesis to be tested in this case can be formulated as

$$
H_{0}: \quad \sigma_{1}^{2}=\sigma_{2}^{2}=\ldots=\sigma_{k}^{2}
$$

As already explained earlier in this chapter, an F test can be used for $k=2$. However, a different procedure is required for larger values of k.

Among several methodologies for testing this hypothesis, the following three are perhaps the best known (Snedecor and Cochran 1980): (a) Cochran's test, (b) Barlett's test, and (c) Levene's test. Each of these methods is described below.

13.3. Cochran's Test

In the case where there are k populations and the test of equality of population variances is required, the most commonly applied test is the Cochran's test for homogeneity of variances.
$\begin{array}{ll}\text { Assumptions: } & \begin{array}{l}\text { Samples are independent } \\ \text { Populations are normal }\end{array} \\ \text { Test statistic: } & R=\frac{\max \left\{S_{1}^{2}, S_{2}^{2}, \ldots, S_{k}^{2}\right\}}{\sum_{i=1}^{k} S_{i}^{2}}\end{array}$

In the relationship defined for the test statistic R, S_{i}^{2} is the unbiased point estimator of σ_{i}^{2} for $i=$ $1,2, \ldots, k$ Each S_{i}^{2} is calculated from a sample of size n. The corresponding test of significance is conducted according to the following rule:

Test rule: Accept the null hypothesis that $\sigma_{1}^{2}=\sigma_{2}^{2}=\ldots=\sigma_{k}^{2}$ if $R \leq R C_{\alpha, n, k}$, where $R C_{\alpha, n, k}$ is a critical value for chosen values of the type I error (α), the sample size (n), and the number of populations (k). Tables of critical values for $\alpha=0.05$ and 0.01 , for values of k up to 120 and n up to 145 , are given in Bowker and Lieberman (1972).

13.4. Barlett's Test

Barlett developed in 1937 a testing procedure that can be used when all sample sizes n_{i} for $i=1$, $2, \ldots, k$, are not equal. The procedure is described as follows, where N indicates the total number of observations collected from the k populations:

Assumptions: Samples are independent Populations are normal
Test statistic: $\quad M=-\frac{1}{c} \Sigma_{i}\left(n_{i}-1\right) \ln \frac{S_{i}^{2}}{S^{2}}$
$S^{2}=\sum_{i}\left(n_{i}-1\right) S_{i}^{2} /(N-k)$
$c=\left(\sum_{i} 1 / f_{i}-1 / f\right) / 3(k-1)+1$

TABLE 4 Sample Calculations for Goodness of Fit
Testing

Sample	O_{i}	e_{i}	$\left(O_{i}-e_{i}\right)^{2} / e_{i}$
1	18	19.4	0.101
2	17	19.4	0.297
3	19	19.4	0.008
4	17	19.4	0.297
5	18	19.4	0.101
6	20	19.4	0.019
Total	-	-	0.823

Test rule: The statistic M has approximately a χ^{2} distribution with $k-1$ degrees of freedom. This approximation is more appropriate for sample sizes larger than 3 . If the observed value of M exceeds the critical value of the chi-square statistic for a level of significance α and $k-1$ degrees of freedom, the hypothesis is rejected.

13.5. Levene's Test

An approximate test, which is less sensitive to the lack of normality in the data than Barlett's test, was developed by H. Levene in 1960. The procedure assumes that all sample sizes are equal to n. This testing method is described as follows:

$$
\begin{array}{ll}
\text { Assumptions: } & \text { Samples are independent } \\
\text { Populations are normal (or approximately normal) } \\
\text { Test statistic: } & F
\end{array}
$$

Test rule: For Levene's test we conduct an analysis of variance (ANOVA) of the absolute deviations from each sample average. Details on the ANOVA procedure are given in another chapter of this handbook. If the observed mean square ratio exceeds the appropriate critical value of the F statistic, we reject the hypothesis that all variances are equal.

14. OTHER USES OF HYPOTHESIS TESTING

Finally, it should be noted that the concepts of type $1(\alpha)$ error, type II (β) error, critical values, OC curves, and one/two-tailed hypothesis tests are common to all hypothesis testing. This chapter has illustrated only tests concerning means and variances since they are most common to industrial engineering. One might also find occasions to test hypotheses in quality control applications, proportions, percentages, and in goodness-of-fit testing. These applications, and others, are well documented in a host of applied engineering textbooks.

14.1. Nonparametric Tests

One should note that for most of the hypothesis tests we have discussed, the assumption of normally distributed random variables is required. In actual practice this may not be justified. One has two choices by which this assumption can be ignored. First, one can obtain enough samples to use a Z test (normal tables) rather than a t test (t tables). If the sample is large enough, then the assumption of normality is not required. However, in the case where larger samples cannot be obtained or cost prohibits larger samples, the use of nonparametric statistical tests is necessitated (Hollander and Wolfe 1973; Lehmann 1975; Marascuilo and McSweeney 1977).

A nonparametric test is one that requires no assumptions regarding the form or shape of the underlying random variables. Usually, all that is required is knowledge of the scale of measurement used in the experiment and whether the random variable is discrete or continuous. The treatment of nonparametric statistics is well beyond the scope of this introductory section. However, the reader should be aware of its role in hypothesis testing. A test frequently used in industrial organizations is the goodness of fit test, which is described in the next section.

14.2. Goodness of Fit Test

The assumption of normality is not an unusual one in problems dealing with hypothesis testing about means. However, it becomes an important one when testing hypotheses about variances. For this reason, before testing the hypotheses, one should verify if there is sufficient statistical evidence indicating that the population is normal. A statistical method used for this purpose is known as "test

TABLE A Cumulative Normal Distribution $\theta(t)=\int_{-\infty}^{t} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x$

t	0.00	0.01	0.02	0.03	0.04
0.0	0.50000	0.50399	0.50798	0.51197	0.51595
0.1	0.53983	0.54379	0.54776	0.55172	0.55567
0.2	0.57926	0.58317	0.58706	0.59095	0.59483
0.3	0.61791	0.62172	0.62551	0.62930	0.63307
0.4	0.65542	0.65910	0.66276	0.66640	0.67003
0.5	0.69146	0.69497	0.69847	0.70194	0.70540
0.6	0.72575	0.72907	0.73237	0.73565	0.73891
0.7	0.75803	0.76115	0.76424	0.76730	0.77035
0.8	0.78814	0.79103	0.79389	0.79673	0.79954
0.9	0.81594	0.81859	0.82121	0.82381	0.82639
1.0	0.84134	0.84375	0.84613	0.84849	0.85083
1.1	0.86433	0.86650	0.86864	0.87076	0.87285
1.2	0.88493	0.88686	0.88877	0.99065	0.89251
1.3	0.90320	0.90490	0.90658	0.90824	0.90988
1.4	0.91924	0.92073	0.92219	0.92364	0.92506
1.5	0.93319	0.93448	0.93574	0.93699	0.93822
1.6	0.94520	0.94630	0.94738	0.94845	0.94950
1.7	0.95543	0.95637	0.95728	0.95818	0.95907
1.8	0.96507	0.96485	0.96562	0.96637	0.96711
1.9	0.97128	0.97193	0.97257	0.97320	0.97381
2.0	0.97725	0.97778	0.97831	0.97882	0.97932
2.1	0.98214	0.98257	0.98300	0.98341	0.98382
2.2	0.98610	0.98645	0.98679	0.98713	0.98745
2.3	0.98928	0.98956	0.98983	0.99010	0.99036
2.4	0.99180	0.99202	0.99224	0.99245	0.99266
2.5	0.99379	0.99396	0.99413	0.99430	0.99446
2.6	0.99534	0.99547	0.99560	0.99573	0.99585
2.7	0.99653	0.99664	0.99674	0.99683	0.99693
2.8	0.99744	0.99752	0.99760	0.99767	0.99774
2.9	0.99813	0.99819	0.99825	0.99831	0.99836
3.0	0.99865	0.99869	0.99874	0.99878	0.99882
3.1	0.99903	0.99906	0.99910	0.99913	0.99916
3.2	0.99931	0.99934	0.99936	0.99938	0.99940
3.3	0.99952	0.99953	0.99955	0.99957	0.99958
3.4	0.99966	0.99968	0.99969	0.99970	0.99971
3.5	0.99977	0.99978	0.99978	0.99979	0.99980
3.6	0.99984	0.99985	0.99985	0.99986	0.99986
3.7	0.99989	0.99990	0.99990	0.99990	0.99991
3.8	0.99993	0.99993	0.99993	0.99994	0.99994
3.9	0.99995	0.99995	0.99996	0.99996	0.99996
0.0	0.51994	0.52392	0.52790	0.53188	0.53586
0.1	0.55962	0.56356	0.56749	0.57142	0.57534
0.2	0.59871	0.60257	0.60642	0.61026	0.61409
0.3	0.63683	0.64058	0.64431	0.64803	0.65173
0.4	0.67364	0.67724	0.68082	0.68438	0.68793
0.5	0.70884	0.71226	0.71566	0.71904	0.72240
0.6	0.74215	0.74537	0.74857	0.75175	0.75490
0.7	0.77337	0.77637	0.77935	0.78230	0.78523
0.8	0.80234	0.80510	0.80785	0.81057	0.81327
0.9	0.82894	0.83147	0.83397	0.83646	0.83891
1.0	0.85314	0.85543	0.85769	0.85993	0.86214
1.1	0.87493	0.87697	0.87900	0.88100	0.88297
1.2	0.89435	0.89616	0.89796	0.89973	0.90147
1.3	0.91149	0.91308	0.91465	0.91621	0.91773
1.4	0.92647	0.92785	0.92922	0.93056	0.93189

TABLE A (Continued)

t	0.00	0.01	0.02	0.03	0.04
1.5	0.93943	0.94062	0.94179	0.94295	0.94408
1.6	0.95053	0.95154	0.95254	0.95352	0.95448
1.7	0.95994	0.96080	0.96164	0.96246	0.96327
1.8	0.96784	0.96856	0.96926	0.96995	0.97062
1.9	0.97441	0.97500	0.97558	0.97615	0.97670
2.0	0.97982	0.98030	0.98077	0.98124	0.98169
2.1	0.98422	0.98461	0.98500	0.98537	0.98574
2.2	0.98778	0.98809	0.98840	0.98870	0.98899
2.3	0.99061	0.99086	0.99111	0.99134	0.99158
2.4	0.99286	0.99305	0.99324	0.99343	0.99361
2.5	0.99461	0.99477	0.99492	0.99506	0.99520
2.6	0.99598	0.99609	0.99621	0.99632	0.99643
2.7	0.99702	0.99711	0.99720	0.99728	0.99736
2.8	0.99781	0.99788	0.99795	0.99801	0.99807
2.9	0.99841	0.99846	0.99851	0.99856	0.99861
3.0	0.99886	0.99889	0.99893	0.99897	0.99900
3.1	0.99918	0.99921	0.99924	0.99926	0.99929
3.2	0.99942	0.99944	0.99946	0.99948	0.99950
3.3	0.99960	0.99961	0.99962	0.99964	0.99965
3.4	0.99972	0.99973	0.99974	0.99975	0.99976
3.5	0.99981	0.99981	0.99982	0.99983	0.99983
3.6	0.99987	0.99987	0.99988	0.99983	0.99989
3.7	0.99991	0.99992	0.99992	0.99992	0.99992
3.8	0.99994	0.99994	0.99995	0.99995	0.99995
3.9	0.99996	0.99996	0.99996	0.99997	0.99997

Source: From W. M. Hines and D. C. Montgomery, Probability and Statistics in Engineering Science, 2nd Ed., John Wiley \& Sons, New York, 1980, pp. 474-475. Reprinted by permission.
of goodness of fit." Actually, this test can be used to verify if a random sample comes from a specified theoretical distribution (such as the binomical, Poisson, uniform, and normal distributions). The procedure can be described as follows:

1. A theoretical distribution is specified in the null hypothesis H_{0}.
2. A level of significance α is assumed.
3. An empirical distribution with m frequency classes is formed with the observations in a random sample of size n. In this distribution O_{i} is the observed frequency (number of observations) in class i, for $i=1,2, \ldots, m$.
4. The test statistic used is defined as

$$
G=\sum_{i=1}^{m}\left(O_{i}-e_{i}\right)^{2} / e_{i}
$$

where e_{i} is the expected frequency for class i according to the theoretical distribution specified in the null hypothesis H_{0}.

It is shown that this test statistic approximately follows a chi-square distribution, with $m-1-r$ degrees of freedom, where r is the number of population parameters estimated by sample statistics.
5. The decision rule is simply stated as follows:

$$
H_{0} \text { is rejected if the calculated value of } G \text { exceeds the critical value } \chi_{m-1-r, \alpha}^{2}
$$

The following numerical example illustrates these steps of the goodness of fit procedure. In a test of industrial welding robots 6 samples of 20 robots each were taken at random. Each robot in the sample operated continuously until it either failed or reached 1000 hr of operation. It is desired to verify if the true proportion of the entire population of robots that can operate over 1000 hr is 0.97 .

TABLE B Percentage Points of the \boldsymbol{t} Distribution

					α						
v^{a}	0.45	0.40	0.35	0.30	0.25	0.125	0.05	0.025	0.0125	0.005	0.0025
1	0.158	0.325	0.510	0.727	1.000	2.414	6.314	12.71	25.45	63.66	127.3
2	0.142	0.289	0.445	0.617	0.817	1.604	2.920	4.303	6.205	9.925	14.09
3	0.137	0.277	0.424	0.584	0.765	1.423	2.353	3.183	4.177	5.841	7.453
4	0.134	0.271	0.414	0.569	0.741	1.344	2.132	2.776	3.495	4.604	5.598
5	0.132	0.267	0.408	0.559	0.727	1.301	2.015	2.571	3.163	4.032	4.773
6	0.131	0.265	0.404	0.553	0.718	1.273	1.943	2.447	2.969	3.707	4.317
7	0.130	0.263	0.402	0.549	0.711	1.254	1.895	2.365	2.841	3.500	4.029
8	0.130	0.262	0.399	0.546	0.706	1.240	1.860	2.306	2.752	3.355	3.833
9	0.129	0.261	0.398	0.543	0.703	1.230	1.833	2.262	2.685	3.250	3.690
10	0.129	0.260	0.397	0.542	0.700	1.221	1.813	2.228	2.634	3.169	3.581
11	0.129	0.260	0.396	0.540	0.697	1.215	1.796	2.201	2.593	3.106	3.500
12	0.128	0.259	0.395	0.539	0.695	1.209	1.782	2.179	2.560	3.055	3.428
13	0.128	0.259	0.394	0.538	0.694	1.204	1.771	2.160	2.533	3.012	3.373
14	0.128	0.258	0.393	0.537	0.692	1.200	1.761	2.145	2.510	2.977	3.326
15	0.128	0.258	0.393	0.536	0.691	1.197	1.753	2.132	2.490	2.947	3.286
20	0.127	0.257	0.391	0.533	0.687	1.185	1.725	2.086	2.423	2.845	3.153
25	0.127	0.256	0.390	0.531	0.684	1.178	1.708	2.060	2.385	2.787	3.078
30	0.127	0.256	0.389	0.530	0.683	1.173	1.697	2.042	2.360	2.750	3.030
40	0.126	0.255	0.388	0.529	0.681	1.167	1.684	2.021	2.329	2.705	2.971
60	0.126	0.254	0.387	0.527	0.679	1.162	1.671	2.000	2.299	2.660	2.915
120	0.126	0.254	0.386	0.526	0.677	1.156	1.658	1.980	2.270	2.617	2.860
∞	0.126	0.253	0.385	0.524	0.674	1.150	1.645	1.960	2.241	2.576	2.807

${ }^{a} v=$ degrees of freedom.
Source: From W. M. Hines and D. C. Montgomery, Probability and Statistics in Engineering Science, 2nd Ed., John Wiley \& Sons, New York, 1980, p. 477. Reprinted by permission.

In other words, we want to test the hypothesis that the number of robots satisfying the specified requirements follows a binomial distribution with parameter equal to 0.97.

The computations for the appropriate chi-square test with $\alpha=0.05, m=6$, and $r=0$ are summarized in Table 4, where O_{i} is the observed number of robots in each sample of 20 operating over 1000 hr , and $e_{i}=(20)(0.97)=19.4$. Since $G=0.823$ is significantly smaller than $\chi_{5,05}^{2}=$ 11.1, we accept the null hypothesis that the true proportion of robots operating continuously over 1000 hr is indeed 0.97 .

Other non-parametric techniques frequently used are:

1. The sign test to compare two treatments. We assume that there are several independent pairs of observations on the two treatments. The hypothesis to be tested states that each difference has a probability distribution having mean equal to zero. For each difference the algebraic sign is noted and then the number of times the less frequent sign is considered as the test statistic. There are specialized tables for the critical value of this quantity once a level of significance is chosen.
2. The Wilcox signed-rank test is used to test the hypothesis that observations come from symmetrical populations having a specified common median. For each observation the hypothesized median is substracted and then all differences are ranked from lowest to highest in order of magnitude, omitting the algebraic sign. The test statistic is the sum of ranks for all differences originally having positive signs. The significance test is performed by means of a statistic known as the signed-rank statistic.
3. Run tests to test the hypothesis that observations have been randomly collected from a single population. In this procedure, positive signs are assigned to observations above the median, and negative signs to those below. If the number of runs associated with plus and minus signs is larger or smaller than expected by chance, the hypothesis is rejected. The critical values for the number of runs comes from specialized tables.

There are entire books devoted to nonparametric statistical testing. We have only tried to alert the reader to several common examples.

TABLE C Percentage Points of the $\boldsymbol{\chi}^{\mathbf{2}}$ Distribution

v^{a}	α	0.995	0.990	0.975	0.950	0.500	0.050	0.025	0.010
1	$0.00+$	$0.00+$	$0.00+$	$0.00+$	0.45	3.84	5.02	6.63	7.88
2	0.01	0.02	0.05	0.10	1.39	5.99	7.38	9.21	10.60
3	0.07	0.11	0.22	0.35	2.37	7.81	9.35	11.34	12.84
4	0.21	0.30	0.48	0.71	3.36	9.49	11.14	13.28	14.86
5	0.41	0.55	0.83	1.15	4.35	11.07	12.83	15.09	16.75
6	0.68	0.87	1.24	1.64	5.35	12.59	14.45	16.81	18.55
7	0.99	1.24	1.69	2.17	6.35	14.07	16.01	18.48	20.28
8	1.34	1.65	2.18	2.73	7.34	15.51	17.53	20.09	21.96
9	1.73	2.09	2.70	3.33	8.34	16.92	19.02	21.67	23.59
10	2.16	2.56	3.25	3.94	9.34	18.31	20.48	23.21	25.19
11	2.60	3.05	3.82	4.57	10.34	19.68	21.92	24.72	26.76
12	3.07	3.57	4.40	5.23	11.34	21.03	23.34	26.22	28.30
13	3.57	4.11	5.01	5.89	12.34	22.36	24.74	27.69	29.82
14	4.07	4.66	5.63	6.57	13.34	23.68	26.12	29.14	31.32
15	4.60	5.23	6.27	7.26	14.34	25.00	27.49	30.58	32.80
16	5.14	5.81	6.91	7.96	15.34	26.30	28.85	32.00	34.27
17	5.70	6.41	7.56	8.67	16.34	27.59	30.19	33.41	35.72
18	6.26	7.01	8.23	9.39	17.34	28.87	31.53	34.81	37.16
19	6.84	7.63	8.91	10.12	18.34	30.14	32.85	36.19	38.58
20	7.43	8.26	9.59	10.85	19.34	31.41	34.17	37.57	40.00
25	10.52	11.52	13.12	14.61	24.23	37.65	40.65	44.31	46.93
30	13.79	14.95	16.79	18.49	29.34	43.77	46.98	50.89	53.67
40	20.71	22.16	24.43	26.51	39.34	55.76	59.34	63.69	66.77
50	27.99	29.71	32.36	34.76	49.33	67.50	71.42	76.15	79.49
60	35.53	37.48	40.48	43.19	59.33	79.08	83.30	88.38	91.95
70	43.28	45.44	48.76	51.74	69.33	90.53	95.07	100.42	104.22
80	51.17	53.54	57.15	60.39	79.33	101.88	106.63	112.33	116.32
90	59.20	61.75	65.65	69.13	89.33	113.14	118.14	124.12	128.30
100	67.33	70.06	74.22	77.93	99.33	124.34	129.56	135.81	140.17

${ }^{a} v=$ degrees of freedom.
Source: From W. M. Hines and D. C. Montgomery, Probability and Statistics in Engineering Science, 2nd Ed., John Wiley \& Sons, New York, 1980, p. 476. Reprinted by permission.

15. HYPOTHESIS TESTING IN THE ANALYSIS OF DESIGNED EXPERIMENTS

15.1. One-Factor Experiments

The simplest experiment corresponds to one factor and no restrictions on randomization. The statistical model of the experiment response is formulated as

$$
Y_{i f}=\mu+\tau_{j}+\varepsilon_{i j}, \quad j=1,2, \ldots, k ; \quad i=1,2, \ldots, n_{j}
$$

where $\mu=$ common effect, $\mu_{j}=$ population mean for j th treatment, and $\tau_{j}=$ effect of j th treatment, defined as $\mu_{j}-\mu$. There are two types of completely randomized one-factor models:

Fixed-effect model, $H_{0}: \tau_{j}=0$, for all j
Random-effect model, $H_{0}: \sigma_{\tau}^{2}=0, \tau_{j}$ distributed as $N\left(0, \sigma_{\tau}^{2}\right)$
The hypothesis testing is carried out in each case by means of an F-test.
Other one-factor experiments can include one or more restrictions on randomization. Examples of these designs are the randomized block design, the Latin square design, the Graeco-Latin square design, and the Youden square design. In all these design the effect of the restrictions on randomization can be tested using F-tests.

TABLE D Percentage Points of the F Distribution $(\alpha=0.10)$

v_{2}	1	2	3	4	5	6	7	8	9
1	39.86	49.50	53.59	55.83	57.24	58.20	58.91	59.44	59.86
2	8.53	9.00	9.16	9.24	9.29	9.33	9.35	9.37	9.38
3	5.54	5.46	5.39	5.34	5.31	5.28	5.27	5.25	5.24
4	4.54	4.32	4.19	4.11	4.05	4.01	3.98	3.95	3.94
5	4.06	3.78	3.62	3.52	3.45	3.40	3.37	3.34	3.32
6	3.78	3.46	3.29	3.18	3.11	3.05	3.01	2.98	2.96
7	3.59	3.26	3.07	2.96	2.88	2.83	2.78	2.75	2.72
8	3.46	3.11	2.92	2.81	2.73	2.67	2.62	2.59	2.56
9	3.36	3.01	2.81	2.69	2.61	2.55	2.51	2.47	2.44
10	3.28	2.92	2.73	2.61	2.52	2.46	2.41	2.38	2.35
11	3.23	2.86	2.66	2.54	2.45	2.39	2.34	2.30	2.27
12	3.13	2.81	2.61	2.48	2.39	2.33	2.28	2.24	2.21
13	3.14	2.76	2.56	2.43	2.35	2.28	2.23	2.20	2.16
14	3.10	2.73	2.52	2.39	2.31	2.24	2.19	2.15	2.12
15	3.07	2.70	2.49	2.36	2.27	2.21	2.16	2.12	2.09
16	3.05	2.67	2.46	2.33	2.24	2.18	2.13	2.09	2.06
17	3.03	2.64	2.44	2.31	2.22	2.15	2.10	2.06	2.03
18	3.01	2.62	2.42	2.29	2.20	2.13	2.08	2.04	2.00
19	2.99	2.61	2.40	2.27	2.18	2.11	2.06	2.02	1.98
20	2.97	2.59	2.38	2.25	2.16	2.09	2.04	2.00	1.96
21	2.96	2.57	2.36	2.23	2.14	2.08	2.02	1.98	1.95
22	2.95	2.56	2.35	2.22	2.13	2.06	2.01	1.97	1.93
23	2.94	2.55	2.34	2.21	2.11	2.05	1.99	1.95	1.92
24	2.93	2.54	2.33	2.19	2.10	2.04	1.98	1.94	1.91
25	2.92	2.53	2.32	2.18	2.09	2.02	1.97	1.93	1.89
26	2.91	2.52	2.31	2.17	2.08	2.01	1.96	1.92	1.88
27	2.90	2.51	2.30	2.17	2.07	2.00	1.95	1.91	1.87
28	2.89	2.50	2.29	2.16	2.06	2.00	1.94	1.90	1.87
29	2.89	2.50	2.28	2.15	2.06	1.99	1.93	1.89	1.86
30	2.88	2.49	2.28	2.14	2.05	1.98	1.93	1.88	1.85
40	2.84	2.44	2.23	2.09	2.00	1.93	1.87	1.83	1.79
60	2.79	2.39	2.18	2.04	1.95	1.87	1.82	1.77	1.74
120	2.75	2.35	2.13	1.99	1.90	1.82	1.77	1.72	1.68
∞	2.71	2.30	2.08	1.94	1.85	1.77	1.72	1.67	1.63

Source: From W. M. Hines and D. C. Montgomery, Probability and Statistics in Engineering Science, 2nd Ed., John Wiley \& Sons, New York, 1980, pp. 482-483. Reprinted by permission.

15.2. After-ANOVA Range Tests

The purpose of the range test is to investigate which pairs of treatments are significantly different to cause H_{0} to be rejected. Consider the sample averages $\bar{Y}_{1}, \bar{Y}_{2}, \ldots, \bar{Y}_{k}$, computed from k random samples drawn from the k populations corresponding to the k levels of the factor. Furthermore, let us assume that $n_{j}=n$ for all j. These sample averages can be rearranged in increasing order of magnitude, from smallest to largest, as $\bar{Y}_{(1)}, \bar{Y}_{(2)}, \ldots, \bar{Y}_{(k)}$. The hypothesis to be tested is formulated as $H_{0}: \mu_{(j)}=\mu_{(i)}$, for any two values of i and j such that $j>i$.
The statistic to be used is the studentized range statistic as $Q_{\text {rf }}=\frac{\bar{Y}_{(i)}-\bar{Y}_{(i)}}{\left(M S_{\text {error }} / n\right)^{1 / 2}}$ where $r=j-i+$ 1 is number of steps (on an ordered scale) associated with the range defined by the i th and the j th treatments, or more specifically, treatments (i) and (j). There are several versions of the range test, the following ones being the most popular. These tests use specialized tables of critical values of the studentized range statistic:

1. Newman-Keusl range test, $r=2, \ldots, k$
2. Tukey's Range Procedure, $r=k$
3. Duncan's Multiple Range Test, $r=2, \ldots, k$

TABLE D (Continued)

10	12	15	20	24	30	40	60	120	∞	v_{2}
60.20	60.71	61.22	61.74	62.00	62.26	62.53	62.79	63.06	63.83	1
9.39	9.41	9.42	9.44	9.45	9.46	9.47	9.47	9.48	9.49	2
5.23	5.22	5.20	5.18	5.18	5.17	5.16	5.15	5.14	5.13	3
3.92	3.90	3.87	3.84	3.83	3.82	3.80	3.79	3.78	3.76	4
3.30	3.27	3.24	3.21	3.19	3.17	3.16	3.14	3.12	3.10	5
2.94	2.90	2.87	2.84	2.82	2.80	2.78	2.76	2.74	2.72	6
2.70	2.67	2.63	2.59	2.58	2.56	2.54	2.51	2.49	2.47	7
2.54	2.50	2.46	2.42	2.40	2.38	2.36	2.34	2.32	2.29	8
2.42	2.38	2.34	2.30	2.28	2.25	2.23	2.21	2.18	2.16	9
2.32	2.28	2.24	2.20	2.18	2.16	2.13	2.11	2.08	2.06	10
2.25	2.21	2.17	2.12	2.10	2.08	2.05	2.03	2.00	1.97	11
2.19	2.15	2.10	2.06	2.04	2.01	1.99	1.96	1.93	1.90	12
2.14	2.10	2.05	2.01	1.98	1.96	1.93	1.90	1.88	1.85	13
2.10	2.05	2.01	1.96	1.94	1.91	1.89	1.86	1.83	1.80	14
2.06	2.02	1.97	1.92	1.90	1.87	1.85	1.82	1.79	1.76	15
2.03	1.99	1.94	1.89	1.87	1.84	1.81	1.78	1.75	1.72	16
2.00	1.96	1.91	1.86	1.84	1.81	1.78	1.75	1.72	1.69	17
1.98	1.93	1.89	1.84	1.81	1.78	1.75	1.72	1.69	1.66	18
1.96	1.91	1.86	1.81	1.79	1.76	1.73	1.70	1.67	1.63	19
1.94	1.89	1.84	1.79	1.77	1.74	1.71	1.68	1.64	1.61	20
1.92	1.88	1.83	1.78	1.75	1.72	1.69	1.66	1.62	1.59	21
1.90	1.86	1.81	1.76	1.73	1.70	1.67	1.64	1.60	1.57	22
1.89	1.84	1.80	1.74	1.72	1.69	1.66	1.62	1.59	1.55	23
1.88	1.83	1.78	1.73	1.70	1.67	1.64	1.61	1.57	1.53	24
1.87	1.82	1.77	1.72	1.69	1.66	1.63	1.59	1.56	1.52	25
1.86	1.81	1.76	1.71	1.68	1.65	1.61	1.58	1.54	1.50	26
1.85	1.80	1.75	1.70	1.67	1.64	1.60	1.57	1.53	1.49	27
1.84	1.79	1.74	1.69	1.66	1.63	1.59	1.56	1.52	1.48	28
1.83	1.78	1.73	1.68	1.65	1.62	1.58	1.55	1.51	1.47	29
1.82	1.77	1.72	1.67	1.64	1.61	1.57	1.54	1.50	1.46	30
1.76	1.71	1.66	1.61	1.57	1.54	1.51	1.47	1.42	1.38	40
1.71	1.66	1.60	1.54	1.51	1.48	1.44	1.40	1.35	1.29	60
1.65	1.60	1.54	1.48	1.45	1.41	1.37	1.32	1.26	1.19	120
1.60	1.55	1.49	1.42	1.33	1.34	1.30	1.24	1.17	1.00	∞

15.3. Factorial Experiments

Instead of assuming that the experimental response can be affected by one factor, a factorial experiment assumes that it is affected by two or more factors, each having an arbitrary number of levels. In a factorial experiment a level combination (one level per factor) is known as an experimental condition. All experimental conditions are sampled, and all observations are collected at random. It is possible to test the significance of each main effect (due to a factor) or and interaction effect (due to a group of factors) by means of an F-test.

15.4. Hypothesis Testing in Regression Analysis

A regression model is a fitting relationship that allows the estimation of a dependent variable or experimental response for given settings of a specified group of independent variables or factors. The parameters of the model are known as regression coefficients. Typical tests include the following:

1. Testing the hypothesis that a regression coefficient is equal to zero. The test statistic is the t statistic.
2. Testing for linearity of regression using an analysis-of-variance technique. The test statistic is the F-statistic.

REFERENCES

Bowker, A. H., and Lieberman, G. J. (1972), Engineering Statistics, 2nd Ed., Prentice-Hall, Englewood Cliffs, NJ.
Devore, J. L. (1987), Probability and Statistics for Engineering and the Sciences, 2nd Ed., Brooks/ Cole, Monterey, CA.
Dougherty, E. R. (1990), Probability and Statistics for the Engineering, Computing, and Physical Sciences, Prentice-Hall, Englewood Cliffs, NJ.
Hogg, R. V., and Craig, A. T. (1978), Introduction to Mathematical Statistics, 4th Ed., Macmillan, New York.
Snedecor, G. W., and Cochran, W. G. (1980), Statistical Methods, 7th Ed., Iowa State University Press, Ames, IA.
Hollander, M., and Wolfe, D. (1973), Nonparametric Statistical Methods, John Wiley \& Sons, New York.
Lehmann, E. (1975), Nonparametrics: Statistical Methods Based on Ranks, Holden-Day, San Francisco.
Marascuilo, L., and McSweeney, M. (1977), Nonparametric and Distribution-Free Methods for the Social Sciences, Brooks/Cole, Monterey, CA.

