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1. INTRODUCTION TO REGRESSION ANALYSIS
Regression analysis is:

A technique for measuring and explaining (reducing unexplained) variability in a system
An aid to understanding interrelationships in complex systems
A process for building a useful model of a system
A method for improving forecasting or prediction
A mechanism for focusing on important phenomena
A system for evaluating theories or beliefs
An aid in formulating new theory
A method for obtaining better control of variation
A technique for estimating equation parameters

Regression modeling involves practical problems, problems of judgment, and a good deal of art.
This chapter is not intended to be a recipe book or a catalog of rules of thumb. It is intended to
introduce the reader to some basic principles involved in statistical modeling while at once exposing
the dangers. In this spirit, this chapter discusses many of the difficulties that may be encountered in
attempting to model systems displaying statistical variation. It is intended to serve as a good blend
of theoretical structure, philosophical outlook, and practical guidance.

1.1. General Linear Model

An equation of the form

P

Y � b X (1)�i j ij
j�0

is sometimes referred to as the general linear model. In this equation, Y is a variable whose behavior
is of interest. It was once common to refer to Y as the dependent variable, taken from the mathematical
concept of a function. In statistical modeling, most authors have come to call Y the response variable.
This is the convention adopted here.

In Eq. (1), Y is a linear additive function of the X variables, which are P in number, P � 1. These
X’s were formerly often referred to as independent variables, again using the mathematical sense.
They are now sometimes called regressors or explanatory variables but are more commonly called
predictors (although prediction may not be the goal). The subscript j denotes which predictor. In this
general form of Eq. (1), there is a dummy variable, X0 � 1 (‘‘dummy’’ because it does not vary),
which is not counted as a predictor but is included in the summation. Its coefficient, b0 is the constant
term or intercept. It is in units of Y. The other regression coefficients, bj ( j � 1 to P), are the slopes
(multipliers of their respective predictors) and are expressed in units of Y /Xj. These bj’s are unknowns
that are to be determined from the analysis. The values obtained are estimates of the ‘‘true’’ unknown
coefficients, �j. Geometrically, Eq. (1) represents a line, a plane, or a hyperplane in P � 1 dimensional
space. This process is known as multiple linear regression (MLR) analysis. The subscript, i, denotes
the series of observations in the sample going from 1 to n. Each observation provides a value for
each of the variables—the predictors and the response—for each of the units or individuals in the
sample. The unit of observation may be, for example, a day, a person, an automobile, a task, an
event, or a batch.
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The X’s can, of course, represent quite complicated transformations of originally observed bits of
information about each unit. Reciprocals, powers, and logs are examples, and so are ratios or products
of two (or more) predictors. It is astounding to witness how often this linear additive equation form
gives a very good representation of the underlying physics that relate the response to the predictors.*
That the variability, that is, the behavior, of so many things in nature can be so well described
(predicted) by this simple summation process is truly profound.

1.2. Utility and Dangers

Variation is the essence of statistical modeling. Variation is the problem. Information is contained in
variation. In fact, without variation, there is no information. The activities of industrial engineers
virtually always involve dealing with variation in multiple-variable systems. The goal may be to
evaluate or explain previous events or to predict or control future events. Modeling a response variable
in such systems is usually complex and difficult. Part of the difficulty arises in most cases because
the data come from the existing system as it normally operates rather than being generated during a
designed experiment. Such data might be called nonexperimental or clinical.

Some major difficulties found in dealing with nonexperimental data result from the interrelation-
ships naturally present among the predictors. The unwanted intercorrelations are avoided in controlled
experiments by keeping the predictors uncorrelated with (orthogonal to) each other. This difficulty
in dealing with clinical data is shared with many other disciplines. In fact, the exception is the analyst
who is able to operate with ‘‘scientific’’ laboratory technique.

The great power of MLR lies in its ability to relate simultaneously the many intercorrelated
predictors to the response—to deal with nonexperimental data. Herein also lies the main source of
danger. Successful modeling of nonexperimental data is a tricky business. But not all the dangers are
associated with the natural intercorrelations of nonexperiments. The variety of ways in which the
analyst can encounter trouble is nearly as great as the variety of problem situations. Perhaps no other
technique suffers more misuse and abuse than regression analysis. Because of this, much criticism
of the general technique is offered by those who apparently do not understand its power or proper
use and who misrepresent it. The dangers can be avoided or treated if they are recognized and
understood. Much of the balance of this chapter deals directly or indirectly with establishing appro-
priate safeguards.

1.3. Importance of Goals

Multiple linear regression should not be a process that follows a fixed, predetermined path or employs
an established ritual for achieving a goal. That is because different goals require different analytic
behavior. As illustrated by this chapter’s opening list, regression goals are various. Before attempting
to model a system, it is important to know what the model is supposed to do. What is the question
the analysis is supposed to answer?

Because we are dealing with practice in industrial engineering, it is important first to make the
distinction between science and decision making (see Healy 1978). The statistical requirements for
establishing scientific truth are much more stringent than for decision making. The manager cannot
wait for the discovery of ultimate truth but must decide today. Ordinarily, the industrial engineer
operates in support of that process and will serve the manager best if the decision process is supported
in a timely manner. This is not to suggest carelessness or disregard for theory. It is to suggest
recognition of the basic fact that the manager will make the decision with or without the potential
help. A responsibly derived, yet imperfect, model can be very much better than no model at all.

Very broadly, the various goals can be put into five categories. These represent a natural evolu-
tionary sequence of four steps, any one of which may be the intended end use.

1. Exploration: fishing, hypothesis finding (see Finch 1979)
2. Specification: hypothesis testing, confirmation of the model form (rarely an end use)
3. Estimation: estimating model parameters with sufficient precision (estimating future events is

referred to in this chapter as ‘‘prediction’’)
4. Prediction: use of the model for anticipation or for ‘‘inverse estimation’’ (calibration)
5. Control: use of the model to prescribe change or to direct or guide policy or the behavior of

a system

* A known underlying causal relationship is not a requirement for useful statistical modeling.
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TABLE 1 Simple Classification of Regression Models

Class Kind Basis

Associative Concomitant, precursory Observation
Physical Empirical

Causal, mechanistic Theory

TABLE 2 Cumulative Relationships of Assumptions to Goals

Goals
Desirable Data
Characteristics Model and Process Characteristics

Exploration Random Y for given X Least-squares fitting
Specification ‘‘Complete’’ X set ‘‘Correct’’ model form
Estimation Spread, balanced X’s b’s normal by central limit

theorem
Prediction and Control Typical X space Specified error distribution

1.4. Kinds of Models

Kinds of models seem to lie more along a continuum and are therefore less easily classified. The
main continuum is closeness to causality. The scale slides from loose empiricism to exact causal
representation (mechanism). How far along the scale the analyst moves may depend on either the
maturity of the corresponding physical discipline or the needs imposed by the goals.

There is another subset where causality is not an issue. These models might be called ‘‘associa-
tive.’’ Here the response and the predictors may both be ‘‘caused’’ by some outside force. They
behave concomitantly. An example is the use of leading indicators in economic models. Another
example is the precursory use of animal characteristics or behavior to predict the severity of the
winter. Presumably no one would claim that the extra hair on the woolly bear caterpillar causes snow
to fall (causation might be suspected in the other direction in such cases if it were not for our belief
that cause must precede in time its effect).

This simple classification scheme thus takes the form shown in Table 1.

1.5. Appropriate Use of Statistics

Statistical measures and diagnostics can and do serve an essential role in regression modeling, but
they must be used appropriately. Their use must be related to goals. In general, any adequate MLR
computer program system will list many statistics that may not be relevant in any given situation.
For example, the multiple correlation coefficient, R, is universally printed. It may be of no interest.
Further, even if it is of interest, its value must be judged in the context of the problem. It depends
on the question. The analyst must know what questions need to be answered and must use relevant
statistical measures accordingly.

1.6. Role of Assumptions

Assumptions are, in most regression articles and texts, listed as a sort of litany to precede the analysis
as if they universally apply. Moreover, they are treated as if they describe the problem setting. They
are really descriptions of the mathematical model whose behavioral properties are known and that is
to be used as an analog to the system under study. Assumptions (model characteristics) relate to
goals just as statistics do. Those that are relevant are rarely ever exactly met by the problem system.
The severity of trouble the analyst may expect because of the remaining differences (‘‘violations of
assumptions’’) is a matter for judgment and experience and cannot be removed from the problem
context.

Table 2 offers a skeleton relationship of assumptions to goals in a hierarchical order (for a more
complete discussion, see Eisenhart 1947). Random residual variation in Y is associated with a host
of small, unimportant (in context) contributions. Notice that the usual assumptions of homoscedas-
ticity and normality are not imposed for specification and estimation. The least-squares estimates of
the regression coefficients provided by MLR are the most efficient, unbiased linear estimates among
all linear estimates for uniform error variance and are still unbiased for nonuniform error variance.
The central limit theorem will give very good protection—just as with ordinary averaging—allowing
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TABLE 3 Hypothetical Data for Modeling Steam Consumption

i
Period

Number
X

(k degree-days)a
Y

(gBtu)b

Fitted
YHAT
(gBtu)

Residual
Y-YHAT
(gBtu)

1 10-1 0.156 7.991 6.990 1.001
2 11-1 0.419 8.589 8.095 0.494
3 12-1 0.658 9.145 9.100 0.045
4 13-1 1.009 11.212 10.575 0.637
5 1-2 1.380 11.754 12.134 �0.380
6 2-2 1.103 11.469 10.970 0.499
7 3-2 1.000 10.584 10.537 0.047
8 4-2 0.703 9.509 9.289 0.220
9 5-2 0.207 7.457 7.204 0.253

10 6-2 0.086 6.989 6.696 0.293
11 7-2 0.024 6.537 6.435 0.102
12 8-2 0.005 4.938 6.355 �1.417
13 9-2 0.026 5.275 6.444 �1.169
14 10-2 0.161 7.452 7.011 0.441
15 11-2 0.307 7.962 7.625 0.337
16 12-2 0.664 8.915 9.125 �0.210
17 13-2 1.039 9.758 10.701 �0.943
18 1-3 1.275 11.183 11.693 �0.510
19 2-3 1.193 11.523 11.348 0.175
20 3-3 0.953 10.426 10.340 0.086
n � 20; �Xi � 12.369; �Yi � 178.67
� � 11.915; � � 1678.7; �XiYi � 128.422 2X Yi i

a k degree-days � 103 degree-days.
b gBtu � giga-British thermal units � 109 Btu.

the normal model to be used with nonnormal data for establishing confidence intervals. Stated char-
acteristics are cumulative descending the table.

2. RELATING TWO VARIABLES
The actual use of the simple (single-predictor) model is rare (real systems are rarely that simple.)
However, for examining the principles involved in regression modeling, the simple model serves well.

For illustration, hypothetical data representing steam consumption (Y ) for a particular building
are modeled here. This response variable was chosen because (1) energy use has universal relevance
and global importance, (2) such a wide variety of goals can be authentically represented in an energy
system, and (3) this same problem setting can be expanded in following sections to represent more
complex modeling ventures. The structure under study might be an office complex, a factory, a
warehouse, a hospital, a hotel, or even a home. For demonstration, only 20 observations are contained
in the sample. Each observation represents a four-week period. Weekly data would be preferred in
most cases, but to cover extremes of weather in only 20 data points, four-week periods were chosen.
The goal is to establish control of steam consumption for this building. ‘‘Excessive’’ use is now
dismissed as being weather related.

At first it is assumed that comfort heating in this building is the major use of steam. Its use
(measured in giga-British thermal units, gBtu), should be reasonably well related to degree-days
(X ). This is measured relative to 65�F (degree-days F /1.8 � degree-days C) and is also reported here
on a per-period basis. The 20 observations are shown in Table 3, with the periods numbered within
year from 1 to 13 and years numbered 1, 2, and 3. The method of least squares will be employed
to relate steam use to degree-days.

Table 3 also shows the fitted values, called YHAT, and the residual fitting errors, called Y-YHAT.
The names and their symbolic forms are discussed following Eq. (3). Diagnostic attention will be
given later to the values in these two columns.

2.1. Least-Squares Method

In MLR, understanding variation is the basis for problem solving. Variation in the response is made
up (theoretically) of two parts:
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1. The systematic variation (signal), which is associated with or is in response to changes in the
predictors

2. Leftover variation (noise), which is called ‘‘residual error’’ or ‘‘experimental error.’’

The distinction is really not so sharp. The leftover error is actually associated with a great many
things that, in practice, might be measured (and included in the model) if analysts had sufficient time,
wisdom, patience, and money. They simply choose not to try to identify all sources of variation.
They will discontinue the search when there seems to be no regular pattern of errors left over and
when either all the reasonable predictors have been adequately tested or the residual error variance
is small enough—again depending on goals. In terms of the true coefficients and residual error of
the theoretical model, the observed response variable may be expressed as

P

Y � � X � � (2)�i j ij i
j�0

where �i is the ‘‘residual error’’ associated with Y and (theoretically) has variance The fitted2� .�

model containing the estimates of the �j’s, then, is

Ŷ � b X (3)�i j ij
j

where the circumflex or ‘‘hat’’ on Y denotes the predicted or estimated value of the response. It is
like an average (where a ‘‘bar’’ is used). In fact, it is the conditional average, given the location in
the space defined by the Xij’s. It is an estimate of the expected or true value of the response for that
location or set of conditions.*

The differences between the observed and fitted values of Y are the residual errors or, simply,
‘‘residuals,’’

ˆe � Y � Y � �̂ (4)i i i i

where ei is an estimate of the ‘‘true error’’ �i. In practice, ei may contain anything the analyst chooses
to omit from the model. It has sample variance

n n
2 2ˆ(Y � Y ) e� �i i i

i�1 i�12 2 2s � s � � � �̂ (5)Y�X e �n � P � 1 n � P � 1

which, for the theoretical case, is an estimate of the ‘‘experimental’’ error variance. The subscript
Y � X (‘‘Y dot X’’) means ‘‘for Y, given the model containing a particular set of X’s.’’ Thus is the2sY�X

sample estimate of the residual variance in Y, given the model.
The least-squares method chooses values for the bj’s of Eq. (3), which are unbiased estimates of

the �j’s of Eq. (2). The least-squares estimates are universally minimum variance unbiased estimates
for normally distributed residual errors and are minimum variance among all linear estimates (linear
combinations of the observed Y’s), regardless of the residual error distribution shape (see Eisenhart
1964). The bj’s (as well as the are linear combinations of the observed Yi’s. The least-squaresŶ ’s)i

method determines the weight given to each Y value. The derivations of the least-squares solution
and /or associated equations used later in this chapter are shown in other sources (see Additional
Reading). In essence, the bj’s are chosen to minimize the numerator of Eq. (5)—the sum of squares
of ei’s of Eq. (4)—hence ‘‘least squares.’’

In returning to the example problem, a geometric interpretation is presented first. Figure 1 is a
plot of steam consumption vs. degree-days from Table 3. The regression coefficient, b1 is represented
by the slope of the least-squares line. It is the tangent of the angle �. The ei’s whose squares are to
be summed to a minimum are distances measured in the Y direction from the points to the line. They
are illustrated by typical distances, e4 and e17.

The least-squares solutions for the simple model are

* It is important to realize that, although the model may be used for predicting future values, Y does not predictŶ
their individual behavior but estimates the conditional average about which those individuals are expected to vary.
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Figure 1 Relationship of Steam Use to Degree Days.

SPXY
b � b � Y � b X (6)1 0 1SSX

where SPXY � the (corrected) sum of products of the XY pairs
SSX � the (corrected) sum of squares of X’s

and �Y X the arithmetic averages (which are also least-squares estimators) of the two variables

These averages and sums (with all sums taken for i � 1 to n) are

X � X /n Y � Y /n� �i i

SPXY* � (X � X)(Y � Y ) � X Y � nXY (7)� �i i i i

2 2 2SSX � (X � X) � X � nX� �i i

Equations (6) and (7) yield the following values for the example:

X � 12.369 /20 � 0.618 Y � 178.67 /20 � 8.93

SPXY � 128.42 � 20(0.618)(8.93) � 17.93
2SSX � 11.915 � 20(0.618) � 4.23

b � 17.93 /4.27 � 4.20 b � 8.93 � 4.20(0.618) � 6.331 0

Equation 3 then takes the form 6.33 � 4.20Xi.Ŷ �i

2.2. Residual Variance

For P � 1, Eq. (5) reduces to s � SSRes / (n � 1), where SSRes is the residual sum of squares2
Y�X

given by

* These are not shown in the computationally easiest form. This form demonstrates meaning.
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SSRes � SSY � SSReg (8)

and where SSY is the (corrected) sum of squares of Y ’s and SSReg is the regression sum of squares.
In Eq. 8, SSY is exactly parallel in form to SSX in Eq. (7), and when divided by its n � 1 DOF, it
yields the Y mean square, which might be used to estimate the variance of Y. Regardless of the
appropriateness of such an interpretation, the expression SSY/(n � 1) is a measure of the raw
variability in the response whose explanation is the goal. The contribution to SSY that is associated
with X is SSReg. This is given by

SSReg � b SPXY (9)1

and is the sum of squared distances from to the regression line as shown by typical distances d4Y
and d17 in Figure 1. For this example,

1 / 2SSY
SSY � 82.55 s � � 2.08� �Y 19

SSReg � (4.20)(17.93) � 75.38

SSRes � 82.55 � 75.38 � 7.17
1 / 2SSRes

s � � 0.631� �Y�X 18

It can be seen that sY�X is only 30% of sY. That is, the regression equation provided a 70% reduction
in variation in Y. Another way to evaluate this residual standard deviation or residual standard error
is to compare it to the mean of Y. In this case it is 100 (0.631 /8.93) � 7.0% of the mean and,
depending on the goal, might represent a satisfactory reduction in variability. Still another way to
measure the association between Y and X, and hence the residual lack of association, is to use the
correlation coefficient that is developed next.

2.3. Correlation

The theoretical concept of correlation arises in conjunction with the bivariate normal distribution
function. That function has five parameters. If the two variables are X and Y, the parameters are the
means (�x , � y ) and the variances of each variate and a measure of covariation, the corre-2 2(� , � )x y

lation coefficient, � (rho). This chapter does not deal with the theoretical bivariate (or multivariate)
normal distribution. However, in practice, the sample correlation coefficient, r, is a useful measure
of linear association. It is a dimensionless ratio ranging from �1.0 (perfect inverse linear agreement)
through zero (orthogonal or linearly unrelated) to �1.0 (perfect direct linear agreement). The value
can be obtained from Eq. (10) and used as an index without any assertion whatever being made
about distribution form.

SPXY sXYr � � (10)X Y 1 / 2[(SSX)(SSY)] s sX Y

The first form of the expression for rXY has the same numerator as b1 in Eq. (6), which shows that
it is just a rescaling of the same basic information. It is easily shown that rXY � b1 sX /sY.* In the
second form in Eq. 10, sXY is the sample covariance (not standard deviation). It has the same sign as
SPXY and r and is SPXY/(n � 1).

The square of r is called the coefficient of determination. It ranges from 0 to 1 and can be
interpreted as the fraction of the variation in Y (with variation represented by SSY) that is accounted
for or ‘‘explained’’ by variation in X. Thus and from Eq. (8):

SSReg SSRes
2r � � 1 � (11)XY SSY SSY

Using Eq. (10) for the example data, rXY � 17.93 / [(4.27)(82.55)]1 / 2 � 0.955; � 0.912. This is2r XY

seen to be equal to the result of Eq. 11, where � 75.38 /82.55 � 0.913 (slight rounding error).2r XY

* The subscript order ‘‘XY ’’ on r is arbitrary; rXY � rYX. But the ratio sX / sY implies that b1 is for ‘‘Y on X.’’ With
sY / sXY b1 would be ‘‘X on Y,’’ with minimization of squared errors taken in the X direction, a different line except
where r � 1.0.
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So variation in X has accounted for 91% of SSY. This is approximately the same as claiming 91%
reduction in the variance of Y (from 2 2s to s ).Y Y�X

2.4. Model Specification

In other circumstances, where the physics and chemistry are not so well understood (e.g., in studying
the ‘‘cause’’ of a disease), the question may focus on the statistical significance of the relationship.
The analyst is attempting to decide whether the relationship seen in the sample is something real or
just the result of chance association. This decision is appropriate along all goal sequences except
where existing theory permits prior specification* of the model.

Model specification is the process of choosing an adequate representation of reality. To decide
this question of reality, the analyst would want a test model for the behavior of the estimator, bj ,
when the association is just chance. One way would be to use the t test model with the null hypothesis
that �j � 0 (or some other appropriate value). The alternative hypothesis might be �j � 0. The t
distribution is appropriate by the central limit theorem. Then

bj
t � (12)j sb j

with the critical value for t of tn�2,	, where 	 represents the specified degree of risk of rejecting a
true null hypothesis (claiming a nonexistent association). The standard errors for b0 and b1 are given
by

1 / 22�X is � s (13)� �b Y�X0 nSSX

sY�Xs � (14)b 1 / 21 (SSX)

For the example data, � 0.236 and � 0.306. The corresponding t ratios are t0 � 26.9 ands s ,b b0 1

t1 � 13.8, indicating, as was ‘‘known’’ in advance, that both constants are statistically well removed
from zero (highly ‘‘significant’’ compared to a critical value of t18,0.05 � 2.10). This information is
put to more appropriate use later in this section. Statgraphics (a statistical software package) output
for this analysis is shown in Figure 2. An intermediate precaution should concern the analyst, that
of model validation.

2.5. Model Validation

The least-squares method has permitted each of the data points to play a role in determining the
constants b0 and b1. It is entirely possible (and nearly always true) that some observations in the data
set contain errors (mistakes) in one or more of the variables or arise from unusual conditions that
the model is not intended to represent. The ‘‘back substitution’’ (obtaining Yi � i , values for theŶ
development data set, as shown in Table 3) may reveal suspicious points. Generally, residual errors
in excess of �2sY�X should be viewed with mild suspicion, although about 1 in 20 is expected to be
in these regions. More sensitive measures will be developed in Section 5. There is an extensive
literature associated with this problem of dealing with ‘‘outliers’’. One discussion that might serve
as a starting point is Barnett (1978).

Perhaps the most useful graphic for examining residuals is a plot of Y-YHAT vs. YHAT. That will
be illustrated later for the multiple regression model. In the simple case, one need not bother. Such
a plot is equivalent to tipping Figure 1 so that the regression line is horizontal. No sophisticated
techniques are required to see that the fit is poor. Ten of the first 11 points lie above the line. It may
be tempting to suggest, say, a quadratic in X to achieve a better fit. However, there is no theoretical
reason to expect curvature in the relationship. More properly, additional predictors might be sought,
as will be shown presently. The development for the simple case is continued later, ignoring the lack
of fit.

One possibility for testing the model’s stability is to validate it on fresh data, that is, by back-
substituting data points that were not used in developing the model.

This method of validation is called external validation. A method known as internal validation
(which is arguably far superior) will be presented in Section 5.

* The distinction between specification and estimation is rarely made. See Hunter and Box (1965) for further
discussion. Also see Healy (1978) regarding significance testing.
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Figure 2 Statgraphics Regression Analysis for Steam vs. Heat.

2.6. Coefficient Estimation

Suppose the model has been specified from existing theory, or by exploration, testing, and validation,
and is judged adequate. Back-substitution residual errors are well behaved. Now, whether the values
of the bj’s themselves are of interest or whether they are simply to be used in the equation for
predicting future values of Y, the precision with which they estimate the �j’s is of concern.* Point
estimates were obtained from Eq. (6), but coefficient estimation is not complete without obtaining
interval estimates. It is not sufficient, where estimation is the goal (or a step on the path to the goal),
just to have ‘‘significant’’ t ratios.

Use of the confidence interval (CI) concept helps to contrast these two steps, specification and
estimation. With 	 � 0.05 risk that the CI will not contain � as is claimed, the interval is

100(1 � 	) CI � 95% CI � b � t s (15)j n�2,0.05 bj

Notice that (with prescribed t) tsb represents the maximum probable error associated with the estimate
of �. This can be expressed as a percentage error (where engineers very often seek estimates that
are within 5 or 10%). Using b as the base (in the absence of knowing � ), let E represent the potential
percentage error associated with a t value of 2, an approximate value that is never more than 2% in
error for dƒ � 30. (For dƒ � 30, substitution of the correct value is advised.) Then

100ts 200sb bE � � (16)
b b

But notice that sb /b is just the inverse of the t ratio calculated from the sample using Eq. (12).

200
E � (17)

t

This implies the need for calculated t values of 20 or even 40 to meet our common expectation of
a 10 or 5%, respectively, error of estimation!

* In general, the requirements for precision will be greatest for control, least for prediction (see Section 3.1.2).
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TABLE 4 95% Prediction and Confidence Limits

X
Predicted

Y

95.00% Prediction Limits

Lower Upper

95.00% Confidence Limits

Lower Upper

0.005 6.35531 4.94046 7.77015 5.86233 6.84828
0.250 7.38503 6.00567 8.76440 7.00572 7.76435
0.500 8.43577 7.07471 9.79683 8.12964 8.74190
0.750 9.48651 8.12495 10.84810 9.17816 9.79485
1.000 10.53720 9.15641 11.91810 10.15260 10.92190
1.250 11.58800 10.16980 13.00610 11.08560 12.09030
1.380 12.13440 10.69010 13.57860 11.56250 12.70620

From Eqs. (14) and (16) it can be seen that the error in estimating the slope is directly proportional
to sY�X and inversely proportional to (SSX)1 / 2. Thus, to achieve a prescribed value of E, either of two
things must be done: (1) an improved (less noisy) model must be found to reduce residual error, or
(2) a larger sample must be obtained to increase SSX (see Crocker 1985 for a more complete
discussion of this issue). In general, precision will improve approximately as the square root of n.

2.7. Interval Estimation for a Point on the Line

The regression equation can be used to estimate the ‘‘true’’ value of the response for some specified
value of the predictor. This is estimating a conditional population mean of Y and is analogous to
estimating (unconditionally) the population mean in a univariate setting. The CI for this case is

ˆ100(1 � 	) CI � Y � t s ˆc n�2,	 Yc
1 / 221 (X � X )cs � s � (18)ˆ � �Yc Y�X n SSX

where the subscript c denotes the condition, the location in X, at which the estimate is to be made.
Notice that the square root of n (again) determines the interval width at the mean of X and that the
interval grows wider the greater distance Xc is from the sample mean.X,

In most texts this CI is presented as a pair of curved lines, implying a confidence band for the
entire line. Equation (18) is meant to be used for one specified location. To sustain 	 as the risk of
not containing the true value, the entire procedure of selecting n observations, computing the coef-
ficients, and so on would need to be followed for each Xc. Wider limits would be needed if the
analyst desired limits for the entire true line. Acton (1959) gives a good discussion of this and many
related concepts.

2.8. Predicting a Future Value

For predicting a future value at Xc, is obtained from the regression equation just as in the CI. HereŶc

it is the estimate of the mean about which individual values are expected to vary. The expression for
prediction limits for a single future value of Y must recognize this extra source of variation associated
with individuals. The interval for prediction is here abbreviated PI and called, for example, a ‘‘95%
PI’’ for 	 � 0.05.

1 / 221 (X � X )cˆ100(1 � 	)PI � Y � t s 1 � � (19)� �c n�2,	 Y�X n SSX

The use of t in this expression implies the additional requirement that the individuals be normally
distributed around the line. If this is not the case, some other constant (possibly with asymmetry)
representing the actual distribution will be substituted for t. Statgraphics output for confidence inter-
vals and predictions limits is shown in Table 4.

Again, this process applies for a single prediction. If some fraction of all future values is to be
included within the limits, the limits would be called tolerance limits. (The reader is referred again
to Crocker 1985 for more detailed discussion.) Table 5 offers selected values of Kc in Eq. (20) for
obtaining tolerance intervals (TI) around the line at � 2sX(K2). Linear interpolationX(K ) and at X1

may be employed to obtain straight-line approximations of the curved tolerance limits. The values
of K were obtained by inverse interpolation of the normal distribution for 0.95 confidence of including
at least 95% of all future values.

ˆ0.95 /95% TI � Y � K s (20)c c Y�X
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TABLE 5 Coefficients for 0.95 /95% Tolerance Limitsa for P � 1

n K1 (at X) K2 (at � 2sx )X n K1 (at X) K2 (at � 2sx)X

5 6.25 8.00 18 2.85 3.14
6 5.01 6.24 20 2.78 3.03
7 4.37 5.32 25 2.65 2.85
8 3.98 4.76 30 2.56 2.72
9 3.71 4.37 40 2.45 2.57

10 3.52 4.09 50 2.38 2.48
12 3.25 3.71 100 2.23 2.28
14 3.07 3.45 200 2.14 2.16
16 2.95 3.27 500 2.07 2.08

a Safe as approximate ‘‘simultaneous’’ limits within the 4sx range.

3. MULTIPLE LINEAR REGRESSION
The ability of today’s computers and software to handle large data sets has provided the analysts
with many opportunities and dangers. Many of these dangers are associated with the intercorrelations
found among the predictor variables in nonexperimental data sets. The predictor matrix is said to be
‘‘ill conditioned’’ or is carelessly referred to as ‘‘multicollinear.’’ (‘‘Multicollinear’’ really means the
polar condition where some of the X ’s enter into linear combinations, resulting in an indeterminant
system. ‘‘Intercorrelation’’ is used here to describe the general case of nonorthogonality among the
predictors.)

The basic relationships and computational forms, represented in matrix notation, are shown here
paralleling the equations of the simple case given earlier (v � n � P � 1).

E(Y) � X� (21)

Y � X� � � (22)
�1b � (X�X) X�Y (23)

(‘‘true’’ Y )

(observed Y )

(bj’s)

(predicted or fitted Y ) Ŷ � Xb
(24)

SSRes � Y �Y � b�X�Y
(25)

p P

SSReg � b�X�Y � b SPX Y� �j j j (26)j�1 j�1

(variance–covariance) �1 2V(b) � [X�X] �̂ (27)�ˆ SSRes
2 2s � �̂ � (28)Y�X � n � P �1

( joint CI for b’s) 2(� � b)�X�X(� � b) 
 (P � 1)s F (29)Y�X ( p�1),v,	

(CI for Ŷ ) �1 1 / 2100(1 � 	) CI � X�b � t s [X �(X�X) X ] (30)c v,	 Y�X c c

(PI) �1 1 / 2100(1 � 	)PI � X�b � t s [X�(X�X) X � 1] (31)c v,	 Y�X c c

3.1. Intercorrelation Effects

In regression modeling, intercorrelation affects the process in three basic ways. These three have
many secondary and corollary consequences, which will be easily perceived if the basic three are
understood. They are:

1. Potentially enlarged variances of the bj’s
2. Intercorrelated estimates of the bj’s
3. Ambiguity in assessing the individual contributions to the regression sums of squares

3.1.1. Potentially Enlarged Variances

In the theoretical case—with ‘‘correct’’ model and fixed residual variance—the variances of the bj’s
will grow larger as intercorrelated predictors are added to the model (see Snee 1973) as a consequence
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of the inverse matrix in Eq. (27). (Notice that estimates of the variances of the bj’s are obtained
because an estimate of residual error variance is used. The true theoretical variances result from using

In many cases in practice also, the s will grow larger with the addition of intercorrelated2 2� ). ’s� b

predictors. This is because the increase due to the inverse matrix will more than offset the decrease
due to a smaller , which results from additional regression sums of squares. However, in practice,2sY�X

is often reduced enough by the extra predictor(s) to offset the intercorrelation effect in the inverse2sY�X

matrix. These considerations are at the heart of the burgeoning variety of (predictor) variables selec-
tion schemes currently appearing in the literature. A brief discussion of this topic will provided later
(see Hocking 1976).

3.1.2. Intercorrelated Estimates

In the left side of Eq. (27), in addition to the diagonal variances, there are off-diagonal covariances
of pairs of bj’s. Just as with correlation between variables in Eq. (10), covariance of bj’s implies
correlation of bj’s. Figure 3 depicts the joint sampling distribution for a pair of positively correlated
bj’s. The distribution results from repeated samplings of n values of Y for a given X matrix. For the
case of P � 2, the correlation of the bj’s is equal in magnitude but opposite in sign to the intercor-
relation of the Xj’s (they tend to be equal and opposite also for P � 2). Notice that the unconditional
sampling range of, for example, b2 (shown by distance A ) is very large compared to the conditional
range of b2 (shown by distance B), given the particular estimate of �1. The important consequence
of these two considerations is that errors in estimating the �j’s tend to be compensating among
intercorrelated predictors. So intercorrelations may adversely affect the precision of estimate of the
�j’s but may have little adverse effect on the use of the model for prediction. This last conclusion
depends, of course, on the intercorrelations among the predictors staying about the same in prediction
as they were in the sample.

3.1.3. Ambiguity in Assessing Contributions

The underlying nature of the problem is easy to comprehend (for an introductory geometric inter-
pretation of these phenomena, see Crocker 1967, 1969). Interpreting the specific consequences in a
particular problem can be extremely complicated. This is true because the ambiguity can be of up
to Pth order. The problem is further complicated by the existence of two basic classes of intercor-
related ambiguity, which, for P � 3, can simultaneously be present in all sorts of hierarchical com-
binations. Here, the surface will only be scratched with an illustration contrasting the two classes for
P � 2, the least complex intercorrelation situation. (See also Sections 3.9 and 6.)

In most references, ‘‘intercorrelated’’ and ‘‘confounded’’ are regarded as synonymous. Actually,
confounding is only one of the two classes just mentioned. The other has not been given a name by
others but is here titled ‘‘resolving.’’ This name was chosen because the separate effects of the two
or more (resolving) predictors are not ‘‘resolved’’ (clearly seen) until they appear in the model
together. The contrast between confounding and resolving is shown in Table 6. The circles at the
bottom left represent the two predictors. Area is proportional to regression sums of squares with
values as shown. The shaded area of overlap represents intercorrelation. The table shows the allocation
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TABLE 6 Demonstration of Intercorrelation Effectsa

Class

Confounding Resolving

Definition
Model order

SSReg1

SSReg2

R 2 � r � r2 2
1Y 2Y

X1 first
10
➆

X2 first
➃
13

R 2 � r � r2 2
1Y 2Y

X1 first
4

�13

X2 first

�10

7

aFor assumed n � 103, SSY � 27, Fj � 10 SSRegj.
For last predictor (circled entries), Fj � t .2

j

of the 17 SSReg units to the two predictors for the two classes and for the two possible orderings
of predictors in the model.

In the confounding case the ambiguous six units are allocated to the first predictor; the second
predictor accounts for the balance. In resolving, the six units are available to the second predictor
only after the first has clarified the picture. Notice that the total information, 17 units, is always the
same. (other features of this table are discussed in subsequent sections as other diagnostic measures
are presented). Relevant to this allocation process, care must be taken in interpreting Eq. (26). This
equation says that the total regression sum of squares can be obtained from the sums of products of
the bj’s with their corresponding SPX jY’s. It does not assert that the individual SSReg j’s can be
found this way. As can be seen from the foregoing discussion, the individual SSReg j’s will depend
on the order of appearance in the model. The total is order independent.

Extreme confounding is frequently encountered in nonexperimental data sets. It is important to
recognize two quite different situations that may arise. Essentially, there is a duplication of infor-
mation (i.e., a redundancy in the system). In one situation it may be that the same information is
presented twice in slightly different forms (such as two different price indexes). This represents model
redundancy and is dealt with by removing the redundant predictor. By contrast, it might be that two
really different effects are present, but because in nature they are highly intercorrelated, their separate
contributions cannot be discriminated statistically. This represents data redundancy and can clearly
present a danger if one or the other predictor is arbitrarily excluded from the model, if estimation is
the goal. An example is the use of R&D and capital expenditures to assess the number of technical
staff needed in a business. Both effects are real, yet it would not be surprising to see them highly
intercorrelated and thus inseparably confounded. This true dilemma motivates the current develop-
ment of biased estimation techniques such as ridge regression (e.g., see Wichern and Churchill 1978)
and will be discussed briefly later.

3.2. Detection of Intercorrelation
Several techniques have been proposed for detecting intercorrelation. These include examination of
the off-diagonal elements of X�X, the examination of eigenvalues of X�X, the use of principal com-
ponents, and the use of variance inflation factors (VIFs). Where VIFs are the diagonal elements of
the (X�X)�1 matrix. Most current regression software will display these VIFs.

The VIF for each estimated coefficient bj can be computed as VIFj � 1 / (1 � is2 2R ), where Rj j

the coefficient of determination obtained from regressing Xj on the other predictor variables. As R2
j

approaches 1 (i.e., nearly linear dependent) the VIF for the estimated coefficient will tend to infinity.
VIFs larger than 10 suggest problems with intercorrelation.

3.3. Meaning of Partial Correlation
For the two-predictor case, the (first-order) partial correlation is given by

r � r r2Y 12 1Yr � (32)2Y�1 2 2 1 / 2[(1 � r )(1 � r )]12 1Y

This gives the correlation of X2 with Y, given X1 (or ‘‘while holding X1 constant ‘‘ or ‘‘while first
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TABLE 7 Coefficients of Determination for Table 6 Values

r 2
1Y r 2

1Y�2 r 2
2Y r 2

2Y�2 R 2
Y�12 r � r2 2

1Y 2Y

Confounding 0.370 0.286 0.481 0.412 0.630 � 0.851
Resolving 0.148 0.500 0.259 0.565 0.630 � 0.407

removing the effect of X ). For a given pair of correlations of X1 and X2 with Y, r12 can influence�1
this expression to be larger or smaller in absolute value than it would be in the orthogonal case
(r12 � 0). When the partial is diminished compared to the orthogonal case, confounding exists. When
the partial is increased, it is resolving. Partial correlations relating to the example in Table 6 would,
in each case, be based on the circled (last-position) values. Ordinary correlations would be based on
the uncircled (first-position) values. The coefficient of determination [Eq. (11)] can be used to rep-
resent these two views. The ordinary r 2 would use Eq. (11) as is. The partial coefficient of deter-
mination would place the circled value in the numerator and the net amount of SSY remaining, after
removing the effect of the first predictor, in the denominator. Table 7 shows these ratios based on
SSY � 27.

3.4. Multiple Correlation

The multiple correlation is represented by R. It is in fact the correlation of with Y, where a linearˆ ˆY Y
combination of the X ’s. Of course, the X ’s may individually have correlations with Y of either sign.
Hence R is arbitrarily defined as being positive. Direct practical interpretation of R is difficult. Two
transformations help to improve interpretation. One is R2. As with the simple model, R2 is the
‘‘coefficient of determination’’ and represents the fraction of SSY accounted for by the model (R2 �
SSReg/SSY). For orthogonal predictors, R2 � X1 and X2 rep-P 2 2 2 2r . For P � 2, if R � r , � r�j�1 j Y 1Y 2Y

resent a resolving pair, where R2� These relationships were2 2r � r , X and X are confounded.1Y 2Y 1 2

shown in Table 6 and evaluated in Table 7. A second transformation is ‘‘%sY removed.’’ The per-
centage reduction in sy is related to R as follows:

1 / 22(1 � R )(n � 1)
% s removed � 100 1 � (33)� � � �y n � P � 1

For a more extensive discussion of R and a graph of Eq. 33, see Crocker 1972. Another related
statistic is the ‘‘adjusted’’ R 2 and is used because the ordinary R 2 will never decrease when a new
predictor is added to the model. The adjusted R 2, is estimated by replacing SSRes and SSY with2R ,
their mean squares (MS). The resulting equation is

2 22 s � s(1 � R )(n � 1) Y Y�X2R � 1 � � (34)
2n � P � 1 s Y

3.5. Relating t and F in Modeling

As shown in Section 2, the t ratio [Eq. (12)] gives the number of standard errors the estimated value
of the coefficient is away from zero. That is still a correct interpretation in the multiple case. It is
still useful in assessing the precision of the estimate as per Eq. (17). The t ratio does not, however,
measure the contribution, the importance, the practical significance, or even the statistical significance
of the associated term in the model! To use this statistic for assessing the contribution of a predictor,
it must be carefully qualified. It answers the question ‘‘What is the impact of the unique contribution
of this predictor?’’ ‘‘Unique’’ is taken here to mean ‘‘impact after resolving.’’ Hence, it is the same
as asking what the impact is for this predictor put last in the model.

For answering scientific questions about truth, this gives the t ratio a conservative interpretation.
In terms of its influence in reducing 	t	 � 1.0 is the break-even value for any one predictor. With2s ,Y�X

	t	 � 1.0, is reduced by including this predictor. To have (unique) statistical significance, 	t	 should2s Y�X

exceed some appropriate critical value. For excellent precision in estimating �,	t	 should be near, say,
20 or 40 (see Section 2.6). The analyst must be wary not to exclude an important term with small t
resulting from confounding. What action is appropriate depends heavily on goals (see Section 1) and
upon intimate system knowledge.

The ordered F ratio for a single predictor is defined by the ratio of mean squares, regression /
residual:
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MSReg SSReg /1j j
F � � (35)j MSRes SSRes / (n � P � 1)

It is called ‘‘ordered’’ because it contains the SSReg of the associated predictor, and this quantity is
order dependent, as illustrated in Table 6. When j � P, Fj � . Thus, the t ratios are all proportional2t j

to the square roots of the respective SSReg obtained for each predictor as if it were in last position.
For the example of Table 6, the denominator of Eq. (35) is (27 � 17) /100 � 0.1. Hence the

ordered F values are the Table 6 entries multiplied by 10, and for the circled values these are t 2. So
it is seen that t ratios are really ‘‘partial’’ t ratios and are best interpreted in terms of their relationship
to last-position SSReg contributions.

3.6. Dealing with Interactions

Sometimes intercorrelation is carelessly referred to as ‘‘interaction.’’ Care should be taken to distin-
guish these two very different concepts. Intercorrelation is a data phenomenon and is not determined
by the form of the regression equation, but rather by the particular set of observed values of the
predictor variables. Interaction is a model characteristic. It is represented in the model by the product
of two or more predictors. It is put there in an attempt to measure interactive behavior in the system
represented by the model. Equation (36) shows an interactive model where X3 � X1X2 represents a
third predictor created from the first two (subscript i is omitted for simplicity).

Ŷ � b � b X � b X � b X (36)0 1 1 2 2 3 3

The meaning of ‘‘interaction’’ is this: The effect of one predictor depends on the value of another
predictor. This is easily seen to be the case for Eq. (36) by factoring either X1 or X2. For illustration,
X1 is used.

Ŷ � b � (b � b X ) X � b X (37)0 1 3 2 1 2 2

Here the coefficient of X1 is (b1 � b3 X2). Therefore, the effect of X1 (its coefficient, b1 � b3 X2)
depends on the value of X2. By symmetry, the reverse is also true.

No special steps need to be taken to evaluate an interaction. Its t ratio will assess its additional
contribution to SSReg, as was previously discussed. However, care is needed in interpreting the
associated main effects. In general, where the X ’s are in their raw original forms, the interaction
term will be highly confounded with the associated main effects—the predictors from which it is
formed. This will tend to depress the t ratios of these main effects even where the interaction con-
tributes a sizable SSReg (thereby reducing This should be of no concern. It is purely an arbitrary2s ).Y�X

scaling problem. If desired, the interaction can be made approximately orthogonal to the main effects
by subtracting their respective means before forming the product. This has no effect on the statistical
assessment of the interaction.

3.7. Basics for Attribute Modeling

Regression modeling is not limited to using quantitative predictors. Any categorization, classification,
or logical distinction can be represented. If there is a single class, no distinction is needed. If there
are two classes, (e.g., male, female), an additional X is provided to give an attribute code to distinguish
the two classes: X � 0 if the individual is in the first class (male), X � 1 for the second (female).
The value chosen is arbitrary, but 0, 1 coding is easiest to interpret. This is ‘‘differential coding,’’
which means that the intercept, b0, will represent the level in Y of the X � 0 group, and the coefficient
for this code will estimate the difference in Y between the two classes.

To measure, for example, differences of each working day compared to Monday (arbitrarily chosen
as the base of comparison), four extra predictors will be needed. Each will be given the value 1 only
if the observation represents the associated day; otherwise it will be given the value 0. In general,
the number of predictors added will be one less than the number of classes (c � 1). In statistically
evaluating the contribution of such a categorical coding scheme, a single test statistic should be used
for the c � 1 DOF. This is because individual (single-DOF) SSReg contributions depend on the
arbitrary choice of the base of comparison and the order. The total, however, is independent of the
choice of base and order. The total can be evaluated using the F ratio as shown in Eq. (38), assuming
that these terms are last in the model.
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P

SSReg / (c �1)� j
j�p�c�2

F � (38)c�1,n�P�1,	 MSRes

Variables selection programs that operate on individual DOF effects are clearly inappropriate for
dealing with categorical structures.

Figure 4 illustrates a model with a single quantitative predictor, a two-class attribute shift, and
an interaction of these two. Equation (36) applies here and implies that the slope in X1 is different
for the two classes.

3.8. Dealing with Covariates

A covariate is a source of variation contributing to SSY that may not be of particular interest but
whose effect must be removed (1) in order to get unbiased estimates of other predictors of interest
and (2) in order to reduce the noise level of the system so that predictors of interest can be more
clearly seen. It may be that a covariate is confounded with a predictor of interest. The use of the t
ratio in evaluating the reality of that predictor’s contribution will then quite properly be conservative—
discounting the information held in common with the covariate.

Where a categorical structure of three or more classes is involved in a covariate situation, special
care must be taken. If the categorical group is the focus of interest, then it must be placed at the end
of the model so that its apparent contribution, evaluated by Eq. (38), will have been reduced according
to confounding with a covariate. If the categorical group is the covariate, then the term with which
it is confounded will have a properly deflated t ratio independent of model position. Hence attribute
code groups can always be safely placed at the end of the model.

3.9. Application to the Example

In the application of the simple model to the data of Table 3, a poor fit was obtained (see Section
2). This motivated an inquiry to find additional predictor variables. The plant engineer suggested
testing steam used in production processes. He also later recalled a change in policy regarding comfort
heating—a change that was coincident with the data set in hand. Table 8 extends the original data
set of Table 3 by adding two more predictors. Production (X2) is in units per period associated with
a process which uses steam for heat in manufacturing. The change in policy is represented by the
attribute code (variable 3), which starts at 0 when the heating level was 72�F (22�C) and goes through
an adjustment (estimated by the engineer) over several periods to the new level of 65�F (18�C). The
policy change should (only) affect the heating coefficient, �1, and so is introduced as an interaction,
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TABLE 8 Example Steam Consumption—Extended Data Set

i
Period

Number

Heat (X1)
k degree-

days
Production (X2)

Units
Policy (V3)
Attributes

X3 � X V3*1
k-degree-days

Steam (Y )
(gBtu)

1 1-10 0.156 413 0.00 0.000 7.991
2 1-11 0.419 396 0.00 0.000 8.589
3 1-12 0.658 385 0.00 0.000 9.145
4 1-13 1.009 243 0.00 0.000 11.212
5 2-01 1.380 391 0.00 0.000 11.754
6 2-02 1.103 407 0.00 0.000 11.469
7 2-03 1.000 411 0.00 0.000 10.584
8 2-04 0.703 379 0.00 0.000 9.509
9 2-05 0.207 402 0.00 0.000 7.457

10 2-06 0.086 406 0.00 0.000 6.989
11 2-07 0.024 383 0.00 0.000 6.537
12 2-08 0.005 227 0.10 0.001 4.938
13 2-09 0.026 265 0.25 0.007 5.275
14 2-10 0.161 384 0.40 0.064 7.452
15 2-11 0.307 400 0.55 0.169 7.962
16 2-12 0.664 379 0.70 0.465 8.915
17 2-13 1.039 354 0.85 0.883 9.758
18 3-01 1.275 392 1.00 1.275 11.183
19 3-02 1.193 412 1.00 1.193 11.523
20 3-03 0.953 408 1.00 0.953 10.426

Figure 5 Representation of the Statgraphics Residual Plot.

X3 � degree-days � policy. This was suggested when the residuals from the two-predictor model
displayed a slight downward trend over time. Essentially, this corrective third predictor is a covariate.

Analysis using Eq. (36) provided residual errors that were examined for pattern and excessive
deviance. Figure 5 shows the residual plot (Y-YHAT vs. YHAT ) produced by Statgraphics for the data
of Table 8 using the P � 3 model and the full data set (n � 20). It may be noted that the residuals
(Y-YHAT ) form an arc over the range of YHAT and that one point (observation 4) plotted just below
P � 3 in the title is distinctly away from the group. This fourth point was found to be at �2.6sY�X

(Additional diagnostics relating to this are discussed in Section 6.) Further investigation revealed the
malfunctioning of a steam trap in the production system. This would account for an indeterminate
excess consumption of steam during the fourth period. Therefore the point was excluded.

Using the remaining 19 observations, the regression analysis was repeated for P � 3 [see Eq.
(36)]. Statgraphics residual plot for this case is shown in Figure 6. The graph no longer displays any
obvious lack of fit, outliers, or nonuniformity of variance. Additional diagnostics for this example
will be displayed in Section 6 after some additional concepts have been introduced.
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Figure 6 Representation of the Statgraphics Residual Plot.

4. RELATING DIAGNOSTIC QUESTIONS TO GOALS

4.1. Motivation

Regression analysis programs offer a great variety of analytic and diagnostic devices to assist the
user. Some statistics that are automatically provided are not always relevant. Sometimes inexperienced
users ask what a particular statistic is supposed to ‘‘do’’ or complain that it ‘‘isn’t any good.’’ Others
try to discover some ritualized procedure that can be ‘‘followed’’ and wonder which are the key
indicators belonging to such a procedure. Still others, seeking simplistic answers to complex ques-
tions, will attempt to impose rules of thumb or employ model selection algorithms. The analyst must
learn to understand the complex relationships between diagnostic devices and analytic goals in order
to make intelligent use of a program. Not all diagnostics need be examined just because they are
there. There is no single, fixed path to follow in doing regression modeling, but rather a complicated
cyclical, evolutionary behavioral process that requires simultaneous examination of many relevant
diagnostics whose interpretation will frequently generate additional questions.

Space does not permit a complete display relating diagnostics and goals. It is hoped that the
following summary of questions diagnostically related to goals will be helpful to the analyst in
choosing (or choosing to examine) appropriate diagnostics. In addition to the five project goal-
categories presented in Section 1, the analyst has two additional goals while performing regression
analysis: data evaluation and model validation. They represent interconnecting analytic steps that
motivate the generation of additional diagnostics.

4.2. Summary of Interrelated Diagnostic Questions

1. Are data typical, of adequate range, properly transformed, and error free (especially those of
high influence)? Is the data sample large enough? Can a more balanced (less intercorrelated)
sample be obtained?

2. Is there evidence of missing predictors or other lack of fit?
3. Is the residual standard deviation small enough to indicate probable model utility?
4. Are intercorrelations substantial? If so, are they reasonable and understood? What effects may

they have on interpretation and decisions with respect to specific goals?
5. Do model coefficients have expected signs and reasonable magnitudes? Are they estimated

with adequate precision?
6. Is there evidence of overfitting or instability?
7. Is the model to be used in regions of predictor space not seen in the development data set?

5. AN INTRODUCTION TO MODERN DIAGNOSTICS
Many modern regression diagnostics are magically intertwined—mathematically and computation-
ally—and derive from a single germ. The germ idea can best be phrased as a question: What changes
occur if a particular observation (one row of the data matrix) is deleted from the data set? Four
aspects of change are of particular interest: change in the residual error of the deleted point and
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changes in the regression surface, regression coefficients, and residual variance. Another closely
related powerful diagnostic is the partial plot (also known as the partial-regression leverage plot).
This involves deleting an X column from the data matrix. These row and column deletion constructs
will be developed next after proposing some special notation.

5.1. Notation

In addition to the notation shown in Sections 2 and 3, the following conventions will be used in this
development:

(i)Ŷi The ith fitted response value using the regression equation derived with the ith observation
row deleted (‘‘Y � YHAT sub i not i ’’)

ei (i) The deleted residual, Yi � (i) (‘‘e sub i not i’’)Ŷi

b(i) (P � 1) � 1 column vector of estimated regression coefficients derived with the ith row
deleted (‘‘b not i ’’)

Xj n � 1 column vector, j th column of X, one predictor
Xi 1 � (P � 1) row vector, ith row of X, one observation’s X ’s

X(i) (n � 1) � (P � 1) matrix of predictor variables excluding the ith observation row
Y � ( j ) n � 1 column vector of residuals in Y found when Y is fitted using all but the jth predictor
Xj �( j ) n � 1 column vector of residuals in Xj found when Xj is fitted using all but the j th predictor
sY�X(i) Residual standard deviation for a model fitted to a data set excluding the ith observation

row

5.2. Getting the Catcher and the Hat

Equation (23) can be rewritten in condensed notation as

b � C�Y (39)

where C� is called the matrix of catchers by Mosteller and Tukey (1977) and is defined as

�1C� � [X�X] X� (40)

So an individual regression coefficient can be found from

b � c Y � C�Y (41)�j ij i j
j

which shows that the estimated coefficients are just linear combinations of the observed responses.
Because each observation potentially contributes differently to this estimation process, each one also
has a potentially different expectation for how well it will be fitted, depending on this leverage. This
in turn gives an expected error variance for Y-HAT for each location in the sample:

2 2s � (1 � H ) s (42)e i Y�Xi

where Hi , the leverage, is the ith diagonal of

H � XC � (43)

Substituting Eqs. (39) and (43) into Eq. (24) gives

Ŷ � Xb � XC �Y � HY (44)

which gives H its name: the ‘‘hat’’ matrix (it puts the hat on Y ). Hi sums to P � 1 and so represents
the ‘‘consumption’’ of fractional DOF associated with individual observations. Hi ranges from 1/n
at the centroid to a maximum of 1.0 for a shift parameter representing a single observation.

Equation (42) expresses the fraction of associated with the residual error around the surface.2s Y�X

The error variance for the surface at the ith location is the complement,

2 2s � H s (45)Ŷ i Y�Xi

[Notice that for the simple case, Hi is just the familiar l /n � (Xi � 2) /SSX of Eq. (18)]. TheX
estimated prediction-error variance for future observations recognizes the potential for influence on
the model measured by the leverage. The consequence is the augmentation of the unit variance by
H; just the reverse of Eq. (42).
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2 2s � s (1 � H ) (46)PREDi Y�X i

5.3. Row Deletion

One way to examine the effect of deleting the ith observation is to relate the deleted residual, ei(i),
to the residual, ei. It seems counterintuitive that this should be simply

eie (i) � (47)i 1 � Hi

because the leverage is dependent only on the X ’s: This relationship is unaffected by the observed
value of Y. It is important to notice, however, that while the ratio of residuals, ei(i) /ei, grows larger
as Hi , the leverage, grows larger, both residuals may be very small. Leverage is a measure of potential
influence; actual influence does indeed depend on observed Y. Unfortunately, some authors treat
leverage and influence as being synonymous. By some, high-influence points are regarded as a great
danger whereas correct high-influence points are to be cherished as the most informative points.
(From very large data sets, leverage can be used for selection of a working subset—analogous to a
designed experiment with extremes and center points.)

A proof of Eq. (47) was given by Allen (1971). Another (perhaps more accessible) path to Eq.
(47) starts with the basic deletion formulas known as the Sherman–Morrison–Woodbury theorem,
illustrated by Rao (1973) in an exercise.

5.4. Internal Validation

Conceptually, n regressions can be performed, each with one of the n observations deleted. From
each regression the residual error for the deleted point can be calculated. This permits the validation
process to be performed on all n observations while using the full available data set to estimate the
regression function. How much more sensible this is than holding out some valuable data (infor-
mation) for external validation! Fortunately, as seen from Eq. (47), only one regression computation
need be performed to obtain all the desired information.

One useful statistic that can be derived from the ei(i) is called PRESS, an acronym for prediction
sum of squares.

2 2ˆPRESS � [Y � Y (i)] � e (i) (48)� �i i i
i i

It is axiomatic that the model that fits the development data set the best (minimum sY�X) will not be
the best prediction model. This is the consequence of the tendency to ‘‘overfit’’ to fit noise. The
minimization of PRESS as a criterion for the choice of a predictive model, as suggested by Allen
(1971), tends to counter this overfitting and is regarded by many as being superior to the CP statistic
(see, e.g., Mallow 1973), whose use is similarly motivated.

5.5. Examining Residual Errors and Influence

A variety of diagnostics for examining individual observations for extreme deviance and extreme
influence can be derived using Hi. Four are chosen here. The following developments [except Eq.
(57)] are given by or derived from the work of Belsley et al. (1980). The first diagnostic, the stan-
dardized residual for the ith observation, is

eit � (49)i 1 / 2s (1 � H )Y�X i

This statistic (sometimes called the ‘‘internalized t ratio’’) is often examined in screening for outliers
(observations that may contain mistakes or may represent unusual conditions). Observations that
generate values exceeding 2.0 in absolute value might be routinely examined.

Other analysts prefer the second of the four, the studentized residual (the ‘‘externalized t ratio’’),

eit (i) � (50)i 1 / 2s (i)(1 � H )Y�X i

where

2 2 1 / 2[(n � P � 1) s � e / (1 � H )]Y�X i is (i) � (51)Y�X 1 / 2(n � P � 2)

[The original SSRes is reduced by the product of ei and ei(i).] Here, one might usefully examine a



REGRESSION AND CORRELATION 2285

listing of the sY�X(i) as well. Here, one might also argue for the use of ei(i) in Eq. (50) with the
prediction form (from Eq. (46) in the denominator. It turns out to be exactly the same thing! For the
predicted point, the predictive location has Hi(i) found by

Hi�1 �H (i) � X [X�X(i)] X � (52)i i i 1 � Hi

which provides the equivalence for the studentized residual. For Gaussian errors the distribution of
ti (i) would closely follow the t distribution with n � P � 2 DOF.

One intuitively appealing measure of influence would be the deleted regression surface shift,
(i). In developing a standardized form of this shift for assessment, it is discovered that theˆ ˆY � Yi i

result is identical to ti , the standardized residual of Eq. (49)! Hence, that statistic may be retained to
provide this additional meaning. And in passing it is noted that the surface shift is

e Hi iˆ ˆY � Y (i) � (53)i i 1 � Hi

An alternative scaling of this difference may be obtained by answering the question ‘‘Compared
to the uncertainty with which the position of the surface has been established at this location, how
big is the shift created by this point’s inclusion?’’ This would use the standard error of the surface
instead of the standard error of the shift in the surface. This scaling, the third measure of influence
/deviance, has been labeled DFITSi, defined as

ˆ ˆY � Y (i)i iDFITS � (54)i s (i)Ŷi

where

1 / 2s (i) � s (i) H (55)Ŷ Y�X ii

Then substituting Eqs. (53) and (55) into (54), DFITSi becomes

1 / 2H ei iDFITS � (56)i (1 � H ) S (i)i Y�X

Cook (1977) developed his index of influence (the fourth examined here) in terms of the shift in
the vector b associated with the deletion of the ith observation [see Eq. (59)]. It is structured so that
the shift can be evaluated using F (P � 1, n � P � 1, 1 � 	) with 1 � 	 � 0.10 giving an upper
bound for ‘‘an uncomplicated analysis,’’ according to Cook. The index can be reduced to the following
form:

1 Hi2COOKD � (t ) (57)i i P � 1 1 � Hi

The third factor in this expression is the surface shift factor of Eq. (53) and is the ‘‘deleted leverage’’
of Eq. (52). It is also the ratio of the two partitioned parts of the residual variance [Eqs. (45) and
(42)]:

2s HYi i� (58)
2s 1 � He ii

This says that the larger the leverage, the larger the uncertainty of the location of the surface, the
more the shrinkage of the residual. In Eq. (57), this ratio amplifies the measure of deviance given
by Squaring DFITS and dividing by P � 1 gives the same measure as Eq. except that (i) is2 2t . ti i

used instead of t 2.i

It is noted in passing—for examining the deletion impact on the regression coefficients—that

C �ei ib � b(i) � (59)
1 � Hi

This result is also derived from the work of Beckman and Trussell (1974) and the basic deletion
formulas discussed after Eq. (47).
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TABLE 9 Printing of Diagnostics for P � 3 n � 20

Row Steam Predicted Residual
Studentized

Residual DFITS COOKD Leverage

1 7.991 7.357 0.634 1.406 0.592 0.083 0.151
2 8.589 8.376 0.213 0.430 0.131 0.005 0.086
3 9.145 9.333 �0.188 �0.378 �0.114 0.003 0.083
4 11.212 9.900 1.312 7.530 7.013 2.744 0.465
5 11.754 12.482 �0.728 �1.921 �1.375 0.405 0.339
6 11.469 11.396 0.073 0.159 0.083 0.002 0.213
7 10.584 10.979 �0.395 �0.858 �0.402 0.041 0.180
8 9.509 9.487 0.022 0.045 0.014 0.000 0.086
9 7.457 7.503 �0.046 �0.095 �0.035 0.000 0.121

10 6.989 7.009 �0.020 �0.041 �0.018 0.000 0.157
11 6.537 6.589 �0.052 �0.107 �0.044 0.001 0.146
12 4.938 5.469 �0.531 �1.440 �1.248 0.365 0.429
13 5.275 5.809 �0.534 �1.271 �0.791 0.151 0.279
14 7.452 7.149 0.303 0.625 0.219 0.123 0.110
15 7.962 7.825 0.137 0.277 0.090 0.002 0.097
16 8.915 9.056 �0.141 �0.282 �0.074 0.001 0.065
17 9.758 10.269 �0.511 �1.131 �0.531 0.069 0.181
18 11.183 11.318 �0.135 �0.318 �0.225 0.013 0.334
19 11.523 11.144 0.379 0.888 0.570 0.082 0.292
20 10.426 10.219 0.207 0.445 0.216 0.122 0.190

5.6. Partial Regression Leverage Plots

A partial plot reveals the underlying relationship between the response and the j th predictor with the
influence of all other predictors removed. That is, it plots Y � ( j) vs. X � ( j). Such a plot may reveal
curvature, discontinuities, extreme influence, or other aberrations often not readily detected by plotting
Y-YHAT or Y � ( j) vs. Xj. This is especially true for resolving predictors. The simple regression of
these residual variables gives the partial regression slope for the j th predictor in the full model—the
usual multiple regression slope not always qualified as being partial. Deviations around this regression
line are the full-model residuals. The correlation of these two residual variables is the (P � 1)st-
order partial correlation of Y with Xj. One need not perform 2P multiple regressions to obtain the
required vectors. Mosteller and Tukey (1977) and Velleman and Welsch (1981) discuss details leading
to the following results. The starting point is the identity

Y � b X � b x � ( j ) � e� k k j j
( j )

ˆ� Y( j ) � b X � ( j ) � e (60)j j

Then ˆY � Y( j ) � Y � ( j ) � b X � ( j ) � e (61)j j

From Eq. (61) it is evident that the ordinate of the partial plot is simply bj Xj � ( j ) � e. The abscissa
is Xj � ( j ). Since the bj and e are available from the complete multiple regression, all that is needed
is Xj � ( j ). This is obtained from

cij[X � ( j )] � (62)j i 2c� kj
k

where the denominator sums of squares of ckj are just the diagonal elements of [X�X]�1.

6. DIAGNOSTICS FOR THE EXAMPLE

6.1. Leverage and Influence

Available space is insufficient to permit demonstrating the partial plots for the example. However,
Table 9 lists the leverages and the four influence diagnostics associated with individual observations
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TABLE 10 Statgraphics Regression Analysis Results for P � 3 n � 20

Multiple Regression Analysis

Dependent variable: Steam

Parameter Estimate
Standard
Error

t
Statistic P-Value

CONSTANT 3.93783000 0.77098700 5.10752 0.0001
Heat 4.30712000 0.29227900 14.73630 0.0000
Production 0.00665141 0.00209879 3.16917 0.0060
Heat � Policy �0.56407600 0.31144900 �1.81114 0.0889

Analysis of Variance

Source
Sum of
Squares Df Mean Square F-Ratio P-Value

Model 78.48270 3 26.160900 102.97 0.0000
Residual 4.06502 16 0.254064
Total (Corr.) 82.5477 19
R-squared � 95.0756 percent
R-squared (adjusted for d.f.) � 94.1522 percent
Standard Error of Est. � 0.504047
Mean absolute error � 0.328052
Durbin-Watson statistic � 2.31226

Unusual Residuals

Row Y
Predicted

Y Residual
Studentized
Residual

4 11.212 9.9 1.312 7.53

Influential Points

Row Leverage
Mahalanobis

Distance DFITS

4 0.464520 14.66730 7.01308
5 0.338859 8.27828 �1.37505

12 0.428938 12.57280 �1.24796

Average leverage of single data point � 0.2

for the example data of Table 8. Observation 4 has the highest leverage (at nearly a half a dƒ
‘‘consumed’’ by this one point) and is also shown by all four diagnostics to have high influence. As
noted earlier, the steam consumption for this observation was found to be anomalous and so the point
was removed from the data set. For contrast, it is noted that observation 12 has nearly as high a
leverage (at the low end of the ranges of both X1 and X2) but fits rather well and so has much smaller
measures of influence (although COOKD12 at 0.365 is above the 0.10 value of F, which is 0.259).
The regression analysis from which these diagnostics were obtained (n � 20, P � 3) is shown in
Table 10 as produced by Statgraphics.

6.2. Final Results

With the fourth observation removed, the P � 3 model was repeated for the n � 19 remaining
periods. The final results are summarized in Tables 11 and 12. The following comments deal with
the main conclusions demonstrated in the table and with some diagnostics not mentioned earlier.

1. The coefficients were judged reasonable in sign and size, and the two main predictors are
estimated with reasonable precision [see Eq. (17)].

2. The covariate third predictor does not show strong influence but was retained in the model to
avoid biasing the estimates of the other coefficients. (The intercept represents the average
consumption of all other steam uses uncorrelated with the model predictors.)

3. The final value for sY�X of 0.238 is the residual standard deviation for this model and data set.
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TABLE 11 Statgraphics Regression Analysis Results for P � 3 n � 19

Multiple Regression Analysis
Dependent variable: Steam

Parameter Estimate
Standard
Error

t
Statistics

P-Value

CONSTANT 1.9782800 0.44763600 4.41940 0.0005
Heat 3.7680100 0.15553200 24.22660 0.0000
Production 0.0122702 0.00124091 9.88810 0.0000
Heat � Policy �0.2403990 0.15328000 �1.56837 0.1376

Analysis of Variance

Source
Sum of
Squares Df Mean Square F-Ratio P-Value

Model 76.232000 3 25.4107000 448.18 0.0000
Residual 0.850463 15 0.0566975

Total (Corr.) 77.0824 18
R-square � 98.8967 percent
R-squared (adjusted for d.f.) � 98.676 percent
Standard Error of Est. � 0.238112
Mean absolute error � 0.188343
Durbin-Watson statistic � 1.96748

95.0% confidence intervals for coefficient estimates (Steam)

Parameter Estimate
Standard
Error

Lower
Limits

Upper
Limit V.I.F.

CONSTANT 3.93783000 0.77098700 2.30341000 5.5722500
Heat 4.30712000 0.29227900 3.68751000 4.9267200 1.43474
Production 0.00665141 0.00209879 0.00220216 0.0111006 1.06577
Heat � Policy �0.56407600 0.31144900 �1.22432000 0.0961673 1.42454

TABLE 12 SSReg Allocation and Diagram for P � 3, n � 19

SSReg Class

Unique
Two-Way confounding
Two-Way confounding
Three-Way confounding

SSRegj Totals

X1

33.28
18.09(2)
12.33(3)
6.65

70.35

X2

5.54
0.20(3)
—
—

5.74

X3

0.14
—
—
—

0.14

4. The first predictor accounts for about 91% of the variability in Y (as measured by ordered
SSReg/SSY). Therefore, it might be tempting to dismiss the use of steam for production (X2)
as unimportant. But X2 accounts for 53% of the average steam use. That use simply does not
vary as severely as weather.

5. The drop from sY � 2.069 to sY�X � 0.238 represents an 88.5% reduction, and with sY�X at less
than 3% of the mean, this model promises to be effective in monitoring consumption.

6. The VIF for each X is shown to help assess the intercorrelation effects.
7. The SSReg total of 76.23 is allocated among the three predictors according to model position.

These SSRegj can also be subdivided according to the effects of intercorrelations of the pre-
dictors. In this uncomplicated system the confounded portions are easily determined to be as
shown in Table 12 by both the diagram and the listing to its left.
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TABLE 13 Statgraphics Output for Regression Model Selection for Steam

Models with Largest Adjusted R-Squared Results

MSE R-Squared
Adjusted
R-Squared Cp

Included
Variables

0.254064 95.0756 94.15220 4.00000 X1 X2 X3
0.288141 94.0660 93.36790 5.28021 X1 X2
0.389220 91.9843 91.04130 12.04360 X1 X3
0.398461 91.3113 90.82860 12.23030 X1
3.484540 28.2389 19.79640 219.15900 X2 X3
3.676710 19.8271 15.37310 244.48900 X3
3.934500 14.2060 9.43971 262.75300 X2
4.344620 0.0000 0.00000 306.90900

7. OTHER REGRESSION TOPICS

7.1. Variable Selection

Variable selection in regression arises when the set of variables to include into the model is not
predetermined. The problem to be addressed is from the list of potential candidates to include in the
model which ones should be included and in what form. The objectives here are to include as many
predictors that can influence the prediction while in addition including as few as possible because
the variance of the prediction increases as the number of predictors increase. Hence the goal of
variable selection is to find an ‘‘appropriate subset’’ regression model.

Several criteria have been proposed to compare and evaluate the adequacy of the subset regression
models. These include using R2, adjusted R2, MSE, Mallows’ Cp, and PRESS. A brief description of
the adjusted R2 method will be provided here. Adjusted R2 was previously defined as

2(1 � R )(n � 1)
2R � 1 � (34)

n � P � 1

The adjusted R2 is used because the ordinary R2 defined earlier will always increase when new terms
are added to the regression model. The adjusted R2 will not necessarily increase as new terms are
added. This helps prevent over fitting the model and determining the ‘‘appropriate subset’’ regression
model. Therefore one criterion associated with determining the appropriate subset model is to max-
imize the adjusted R2. Note that this is equivalent to selecting the model with a minimum MSE.

7.1.1. All Possible Regressions

This procedure involves fitting all possible subset of regression models and choosing the ‘‘best’’
model based on suitable criteria. If we include the intercept in each model and there are q predictors,
then there will be 2q total equations to be fitted. Thus, if the number of predictors is 5, the total
number of equations to be fitted is 32. As can be seen, the number of equations to fit grows rapidly
as the number of predictors increase. In the steam example there are 3 predictor variables and thus
8 possible equations to fit. The results of fitting these 8 equations are shown in Table 13 and Figure
7. The equations have been listed by order of maximum adjusted R2.

For cases where the number of possible equations is large, there are several procedures developed
to evaluate only a small subset of these equations by adding or deleting predictors one at a time.
These procedures can be classified into three groups (1) forward selection, (2) backward elimination,
and (3) stepwise and are briefly described below.

7.1.2. Forward Selection

The procedure begins with the assumption that there are no predictors in the model other than the
intercept. An optimal subset is determined by adding predictors into the model one at time with the
first one to enter being the predictor with the largest simple correlation with the response variable.
This predictor will be entered if it exceeds a predetermined F value (Fin). The second predictor to
enter the model is then determined by the one that has the largest correlation with the response after
adjusting for the effect of the first predictor (i.e., largest partial correlation). This predictor will enter
the model if it exceeds Fin. This process continues until a predictor does not exceed the Fin or when
all predictors have been added to the model.
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Figure 7 Statgraphics Adjusted R2 Plot for Steam.

7.1.3. Backward Elimination

This procedure begins with the full equation fitted and successively drops one predictor out of the
equation at a time. The predictor that is the first candidate to be eliminated is the one with the
smallest contribution to the reduction of the error sum of squares. Based on the full model, a partial
F statistic is computed for each predictor as if it were the last variable to enter the model. The
predictor with the smallest partial F is eliminated if it is less then a predetermined critical F value
(Fout). This process continues until no predictor has a partial F less than Fout.

7.1.4. Stepwise

The stepwise method is basically a combination of the forward selection and backward elimination
methods. Thus, at each stage of the forward selection the possibility of deleting a predictor is also
considered. Therefore, a variable that enters at an earlier stage may later be removed.

For all three methods the final model selected like any regression model should be evaluated to
the regression diagnostics described earlier.

As an illustrative example of the method, the data for the steam example was analyzed using the
forward selection method. The results are shown in Table 14. In this example the first predictor to
enter was heat. Next the predictor production was added to the model. The last predictor, heat �
policy, did not exceed the Fin value and was not included in the final model. However, as discussed
earlier, the covariate third predictor was retained in the model to avoid biasing the estimates of the
other coefficients.

7.2. Ridge Regression

Ridge regression is employed to combat intercorrelation between the regressors. A set of variables
is exactly collinear if one of them is a linear combination of the others. The presence of intercorre-
lation is given by the variance inflection factors (VIF).

As discussed, least squares provides unbiased estimates with minimum variance of all linear
unbiased estimators without upper limit on the variance of the estimators, and if intercorrelation
exists, this may produce large variance. Therefore, in the presence of intercorrelation, a penalty is
paid for the unbiasness property that is usually attained via least squares. Biased estimation proce-
dures attempt to find a biased estimator of a regression coefficient that has smaller variance than the
unbiased coefficient. Ridge regression is a biased estimation procedure to address this. In ridge
regression, the analyst would like to select a bias, k, such that the reduction in variance is greater
than the increase in the squared bias introduced. The ridge regression estimator, br is given by

�1b � (X�X � kI ) X�y (63)r

The choice of k belongs to the analyst and should be chosen where strong evidence shows more
stable estimates or improved prediction. One method suggested by Hoerl and Kennard (1970) is the
use of a ridge trace. The ridge trace is a plot of the br vs. k, usually in the interval (0, 1). For values
close to k � 0, intercorrelation will cause rapid changes in br. The objective is to select a small value
of k where the br’s stabilize.
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TABLE 14 Statgraphics Output of Forward Selection Method for Steam

Multiple Regression Analysis

Dependent variable: Steam

Parameter Estimate
Standard
Error

t
Statistic P-Value

CONSTANT 4.11739000 0.81425000 5.05667 0.0001
Heat 4.03422000 0.26671300 15.12570 0.0000
Production 0.00624244 0.00222214 2.80920 0.0121

Analysis of Variance

Source
Sum of
Squares Df

Mean
Square F-Ratio P-Value

Model 77.6493 2 38.824700 134.74 0.0000
Residual 4.8984 17 0.288141
Total
(Corr.)

82.5477 19

R-squared � 94.066 percent
R-squared (adjusted for d.f.) � 93.3679 percent
Standard Error of Est. � 0.536788
Mean absolute error � 0.34515
Durbin-Watson statistic � 1.82542

Stepwise Regression
Method: forward selection
F-to-enter: 4.0
F-to-remove: 4.0
Step 0:
0 variables in the model. 19 d.f. for error.
R-squared � 0.00% Adjusted R-squared � 0.00% MSE � 4.34462

Step 1:
Adding variable Heat with F-to-enter � 189.166
1 variables in the model. 18 d.f. for error.
R-squared � 91.31% Adjusted R-squared � 90.83% MSE � 0.398461

Step 2:
Adding variable Production with F-to-enter � 7.89159
2 variables in the model. 17 d.f. for error.
R-squared � 94.07% Adjusted R-squared � 93.37% MSE � 0.288141
Final model selected.

8. SOME PRACTICAL CONCERNS
The analyst faces a variety of dangers in practice in addition to those discussed earlier. For example,
there is often pressure to ‘‘keep it simple.’’ The danger is that, by avoiding complexity, the analyst
may be seriously misled or fail to develop an adequate model. Simplicity is not necessarily a virtue.

It is also easy to acquire more faith in a complex regression model than it deserves. Even a good
model is at best a crude approximation of reality. Yet, by being computer born, it takes on a special
aura that may encourage undeserved faith in its utility.

Another danger is the predictive use of a regression model in regions of the joint predictor space
not observed in the development sample, even though within all the observed predictor ranges.
Equation (52) provides one index of the presence of this condition. ‘‘Interpolation’’ seems to fit, as
the result is compared to the distribution of sample leverages.

From initial questions of which variables to collect to the final checking of a suspicious residual,
data management is a major constituent of any modeling venture. The collection and ‘‘scrubbing’’
process very often consumes 70% or more of project funds and elapsed time. It bears repeating that
a data set will rarely ever be free of mistakes. Some process for auditing the data must be devised
at the outset or much effort will be wasted on false starts.
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8.1. Model Use and Maintenance

The model is a waste if it is not used. The person who will have responsibility for its use must be
involved early enough to gain understanding and develop faith. The model’s use must serve an
ongoing function that is desired and expected by the user’s superiors or it will not survive.

Provision must be made for the timely reporting of the predictors. It is of no use to develop a
prediction or control model if the necessary data cannot be obtained in a timely fashion. Results
must then be reported to those who can take action. Good predictions kept in a desk serve no one.

Invariably, in practice, the �’s estimated are not in fact constant but are creeping and shifting
overtime. Additionally, there will inevitably be other systems changes, which, for example, may
require the inclusion of additional predictors. So, if the model is to continue in use, provision must
be made for updating it. Failing this, the model will begin to miss until it loses credibility and its
use is discontinued.

8.2. Helpful Hints in Practice

The following is a summary list of prerequisites for successful use of regression modeling techniques
that an analyst should have and /or use:

1. Reasonably specific goals
2. An understanding of statistical procedures
3. Reasonable familiarity with the system modeled
4. Restraint in transforming variables
5. Facility for adequate diagnostic analysis and data scrubbing
6. A cyclical approach with documentation of decisions and choices made
7. Good judgment instead of model selection algorithms
8. Great care when excluding important predictors that were not permitted to vary
9. Great care when including ‘‘discovered’’ relationships

10. A willingness to validate the model and /or anticipate model instability
11. Recognition of the need for maintenance of the model

Computer Software

Statgraphics, Manugistics, Rockville, MD.
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