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1. INTRODUCTION
Various methods of analysis for economic justification are shown in Chapter 90 based on the as-
sumption that all of the component cash flows for the proposed investment are known and certain.
However, in most cases the amount and timing of these cash flows are estimated, and uncertainties
exist in the estimation process. Furthermore, there is usually more uncertainty with some component
cash flows than others, and some of these component flows affect the economic criteria more than
others. Thus, additional methodologies and concepts are needed for economic analysis when explicit
information on the effects of uncertainties in the timing and amounts of the cash flows is important.
These methodologies and concepts are the focus of this chapter.

Numerous factors contribute to the uncertainties in the estimates of the amount and timing of
component cash flows. Delivery or construction delays, unexpected bottlenecks in new projects,
inflationary or recessionary pressures, labor negotiations, and problems in R&D are but a few ex-
amples of changes that can and do occur to alter the amounts and timing of disbursements and
receipts of monies. Although these possibilities are usually recognized during the early planning
phases of a project, the actual cash flows are uncertain, and there is a risk associated with the resulting
project’s present worth, benefit–cost ratio, or other measure of economic merit being used. Since this
economic risk is as important to the decision maker as the other aspects of economic analysis, explicit
information regarding the risk should be developed as part of the analysis. Approaches to this form
of analysis and some of the relevant techniques are described in this chapter.

A variety of measures have been proposed for dealing with a noncertain operating environment,
that is, where the relevant parameters of the analytical model cannot be assumed with certainty. The
relevant literature is very extensive, and an encyclopedic treatment is beyond the scope of this chapter.
Our discussion will be limited, therefore, to a limited number of concepts related for their popularity
among practitioners and because they are representative of the spectrum of possible approaches to
this issue. We begin with sensitivity analysis, that technique which, surveys show, appears to be most
commonly used in industry.

2. SENSITIVITY ANALYSIS
Sensitivity analysis is the process whereby one or more system input variables are changed and
corresponding changes in the system output, or figure of merit, are observed. If a decision is changed
as a certain input is varied over a reasonable range of possible values, the decision is said to be
sensitive to that input; otherwise it is insensitive.

The term break-even analysis is often used to express the same concept for a single input variable.
Here, the value of the input variable at which the decision is changed is determined. If the break-
even point lies within the range of expected values, the decision is said to be sensitive to that point.
Thus, sensitivity and the break-even point are directly related.

2.1. Numerical Example: Certainty Analysis

A manufacturing firm is considering the introduction of a new product to be produced and sold over
a 15-year period. The initial cost of capital facilities is $100,000; the anticipated net salvage value
at the end of 15 years is $20,000. It is expected that 7000 units will be produced each year at a cost
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of $10 per unit and sold at $12 per unit. The firm’s minimum attractive rate of return (MARR) is
10% per year.

The anticipated ‘‘profitability’’ of this proposed investment can be measured by present worth
(PW) as follows.

PW � Q(r � c)(P /A, i, N ) � P � S(P /F, i, N) (1)

where Q � quantity sold per year
r � revenue per unit
c � cost per unit
P � initial cost of capital facilities
S � net salvage value of capital facilities
N � project life, in years
i � MARR, the discount rate per year

[Note the factor (P /A, i, N) is the functional form of the uniform series present worth factor, the
algebraic form of which is ((1 � i)N � 1) / (i(1 � i)N). Similarly, the functional form of the single
payment present worth factor, (P /F, i, N), represents the algebraic form (1 � i)�N. See Chapter 90
for additional discussion.]

Assuming the ‘‘certainty estimates’’ for these seven parameters as described in the preceding
paragraph, the solution is

PW � 7000($12 � $10)(P /A, 10%, 15) � $100,000 � $20,000(P /F, 10%, 15)

� $14,000(7.606) � $100,000 � $20,000(0.2394)

� $11,273

Since the PW is positive, we conclude that the proposal appears to be economically attractive.
This result, of course, is based on the presumption that all of the parameter values assumed for the
analysis will in fact occur as anticipated.

2.2. Classical Sensitivity Analysis: Single Variable

2.2.1. Algebraic Solution

Suppose there is some reason to question the validity of the assumption concerning the number of
units produced and sold annually. Additional investigation, for example, may suggest that the ‘‘cer-
tainty estimate’’ of 7,000 units per year is questionable; it now appears that this parameter value
could occur anywhere over the range of 6,000 to 7,500 units. With this new information the resulting
range of values for the present worth is

Min PW � 6000($2)(7.606) � $95,212 � �$3,940

Max PW � 7500($2)(7.606) � $95,212 � $18,878

The break-even point can be determined by determining that value of Q � Q0 such that
PW � 0:

PW � 0 � Q ($2)(7.606) � $95,2120

Solving,

Q � $95,212 /$15.212 � 6259 units0

Since the break-even point lies within the range (6000 � 6259 � 7500), the decision is sensitive to
the estimate for Q.

2.2.2. Graphical Presentation

Sensitivity analyses are usually presented in graphical format. Indeed, it is this ‘‘power of pictures’’
that probably accounts for its widespread popularity. The graphical portrayal of sensitivity of PW to
the variable Q in our example is illustrated in Figure 1. The linear function in the figure is the graph
of
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Figure 1 Present Worth as a Function of Number of Units Produced and Sold Annually. (Break-
even � 6259 units)

PW � $15.212Q � $95,212 0 � Q � 9,000

Note the break-even point at Q0 � 6259. Also note that the range for Q is highlighted at Q(min) �
6000 and Q(max) � 7500.

2.2.3. Percent Deviation Graph

An alternative approach is a plot of the figure of merit—here, the present worth (PW)—as a function
of the percent deviation of the variable of interest In the example let pQ � the percent deviation of
Q such that

PW � $15.212(7000)(1 � p ) � $95,212Q

� $11,272 � $106,485p (2)Q

The function is graphed in Figure 2. Also shown in the figure are similar graphs for percent deviation
for revenue per unit (pr), cost per unit (pc), and the number of units produced and sold annually (pQ).

Although percent deviation graphs for one or more variables may be shown in a single illustration,
it should be emphasized that sensitivity to only one variable at a time is being examined. The graph
of PW as a function of pQ, for example, is based on the assumptions that all other variables (r, c, P,
S, N, i) are held constant at their ‘‘certainty estimates.’’ When sensitivity to pr is being examined,
we set Q � 7000. And so on.

One notable advantage of the percent deviation graph is that it makes apparent the relative degree
of sensitivity for the various parameters. The greater the slope (steepness of the function) the more
likely is the decision to be sensitive to that parameter, that is, the break-even point for percent
deviation will be relatively small. In Figure 2 it is apparent that the decision is somewhat more
sensitive to per unit revenue (r) and cost (c) and is relatively insensitive to number of years of service
(N). This conclusion may be misleading, however, because it is based on the presumption of equal
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Figure 2 Present Worth as Function of Percent Deviation in Estimates for r, c, Q, and N.

likelihoods of deviation for the various parameters. To illustrate, we found that the break-even percent
deviations are about �23% for pN and �11% for pQ. But suppose that there is evidence to suggest
that:

Parameter
Certainty
Estimate Range Deviation

Quantity 7000 units 6000 to 7500 �14 to �7%
Life 15 years l0 to 18 �33 to �20%

Thus, it would appear that the decision maker would be well advised to give careful attention to the
assumption concerning service life (N) as well as quantity produced (Q). The point here is that the
range of interest for percent deviation may be different for different parameters.

2.3. Sensitivity to Two Parameters Considered Simultaneously

Suppose that our decision maker in this example is concerned about the sensitivity to the revenue
per unit (r) as well as the number of units produced and sold (Q). Considering these two parameters,
now variables, simultaneously,

PW � Q(r � $l0)(7.606) � $95,212 (3)

As before, assume 6000 � Q � 7500, and assume further that $11.25 � r � $12.50.
One approach to sensitivity analysis for two variables considered simultaneously is to construct

a three-dimensional graph with the x and y axes representing the two variables and the z axis serving
as the figure of merit. The combined function is now a surface and we now have a break-even line.
But three-dimensional graphs are difficult to construct and generally harder to interpret. A useful
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Figure 3 Present Worth as a Function of Units Produced (Q) and Revenue per Unit (r).

alternative is a variant of the two-dimensional graph as illustrated in Figure 3. One of the two variables
is represented along the x axis. The second variable is reflected by a family of curves, specifically,
curves based on the maximum and minimum values of the variable.

The two functions plotted in Figure 3 are

PW � Q($12.50 � $10)(7.606) � $95,212

and

PW � Q($11.25 � $l0)(7.606) � $95,212

These represent the upper and lower bounds of the r variable, respectively. Two additional vertical
lines are drawn at the lower and upper bounds of the Q variable, at 6000 and 7500 units. The polygon
thus formed contains all possible combinations of r and Q, and the maximum and minimum values
of the figure of merit (PW) can be readily determined. The decision is insensitive if the polygon lies
either wholly above the x axis (PW � $0) or wholly below the x axis.

One problem in the interpretation of sensitivity graphs can be illustrated by this numerical ex-
ample. It would appear from Figure 3 that, since the area of the polygon lying above the x axis is
roughly the same as the area lying below the line, the likelihood of making money on this project
(PW � $0) is about the same as the likelihood of losing money. Implicit in this conclusion is the
assumption that all points in the polygon are equally probable. But this is not necessarily the case.
Indeed, it would be reasonable to assume that there is an inverse relationship between price per unit
and quantity sold, so that Q would decrease as r increases. This dependency is not reflected in the
graph.

The simultaneous consideration of sensitivity to two variables can also be displayed in a percent
deviation format. In Figure 4, the percent deviations for each of the variables are shown on the x
and y axes. The function plotted is
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Figure 4 Percent Deviation Graph for Two Variables: Quantity Sold and Revenue per Unit.

PW � 7000(1 � p )[$12(1 � p ) � $l0](7.606) � $95,212 � 0Q r

This is an indifference curve, the locus of all points (pr, pQ) such that PW � $0, which is in fact the
break-even line. The solid portion of the line represents the set of possible outcomes: (�6% � pr �
� 4%) and (�14% � pQ � �7%).

2.4. Sensitivity to More Than Two Parameters

Using the previous example, suppose that, in addition to uncertainty about quantity sold (Q) and
revenue per unit (r), there is also uncertainty as to the cost per unit (c). Suppose that the following
range of values is possible:

Parameter Minimum Most likely Maximum

Quantity 6000 7000 7500
Revenue /unit $11.25 $12.00 $12.50
Cost /unit $ 9.00 $10.00 $11.00

As mentioned previously, a percent deviation graph, as in Figure 2, permits the plotting of the figure
of merit (PW) as a function of the percent deviation from the most likely value for any number of
parameters. However, the interactive effects of the parameter are ignored.

It is possible, of course, to reduce the original problem to a series for two-dimensional graphs.
Here, for example, consider: (1) PW as a function of quantity, assuming C � $9.00, and a family of
curves for r � $11.25 and $12.50; and (2) PW as a function of quantity assuming C � $11.00, and
a family of curves for r � $11.25 and $12.50. This approach suffers from two defects. First, although
a series of smaller problems is solved, we are not testing for the sensitivity of all parameters simul-
taneously. Second, the number of graphs required grows exponentially as the number of uncertain
parameters increases arithmetically.
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A second approach is based on the a fortiori (‘‘strength of the argument’’) principle. If it can be
shown that a certain course of action is indicated regardless of the input assumptions, then it has
been proven, a fortiori, that there can be no other possible outcome. To illustrate, the following is a
computation of both the minimum and maximum possible values for PW, given the ranges for the
input assumptions:

Min PW � 6000($11.25 � $11.00)(7.606) � $95,212 � �$83,803

Max PW � 7500($12.50 � $9.00)(7.606) � $95,212 � $104,446

If both present worths had been negative, we would have proven, a fortiori, that the proposal should
be rejected on economic grounds. Conversely, if both PW values had been positive, an ‘‘accept’’
decision would have been indicated.

Unfortunately, this test of extreme values rarely yields a clear result, and the a fortiori argument
cannot be used. Nevertheless, analysts would be well advised to try this approach before proceeding
further. The calculations can be completed relatively easily, and the few cases for which a clear signal
is indicated more than justify the time involved.

3. RISK ANALYSIS

3.1. Alternative Risk Measures

A number of different statistics have been proposed for the measure of ‘‘riskiness’’ of proposed plans,
programs, and projects. Perhaps the most widely used measure is the variance (or standard deviation)
of the prospective return, where return is generally the present worth, internal rate of return, and so
forth. The variance (� 2) of the distribution for a continuous random variable x is given by

�
2 2� � � (x � �) ƒ(x)dx (4)

��

Large variance signifies large risk; relatively small variance indicates relatively small risk. In general,
everything else being equal, risk is to be minimized.

An alternative view is that the semivariance is a preferred statistic as it focuses on the variability
in negative return, that is, on the reduction of losses. The semivariance (Sh) of a distribution for a
random variable X is given by

h
2S � � (h � x) ƒ(x)dx (5)h

��

Still another measure of risk is the probability of loss, a statistic that measures the probability
that the return will lie below some predetermined critical level, h. The probability of loss (L) for a
continuous random variable is given by

h

L � � ƒ(x)dx (6)
��

Limited space precludes a full discussion of these (and other) risk measures. Therefore, in the
remainder of this section we will limit our remarks to the variance, a statistic that has proven most
popular in use as well as in the literature of engineering economy.

3.2. Determining the Probability Distribution for Present Worth

3.2.1. Expected Present Worth

Consider an uncertain stream of cash flows, Aj, occurring at the end of periods 1, 2, . . . j, . . . , N.
If the project life, N, the discount rate, i, and the amounts and timing of the cash flows are known
with certainty, then

N
�jPW � A (1 � i) (7)� j

j�0

Now suppose that the cash flows are random variables with associated probability or density functions
ƒ(Aj). The PW is a function of random variables, so it is itself a random variable with mean, �p,
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TABLE 1 Numerical Example: Determining the Mean and Variance of PW Given
Probabilistic Cash Flows and 10% Discount Rate—Independent Cash Flows

End
of

Period
j

Cash Flow Estimates

Mean
�j

Variance
�2

j

Present Worth at 10%

�j(1.10)�j � �2j2(1.10)j

0 �$400 $$ 02 �$400.00 $$ 0.0000
1 100 102 90.91 82.6446
2 130 152 107.44 153.6780
3 160 202 120.21 225.7896
4 130 202 88.79 186.6030
5 100 202 62.09 154.2173

Totals $ 69.44 $$802.9325

N
�j� � Exp[PW] � � (1 � i) (8)�p j

j�0

where �j � Exp[Aj] for j � 0, 1, . . . , N.

3.2.2. Variance of Present Worth

The variance of the PW distribution depends upon the degree of correlation between the individual
cash flows. In general

N N�1 N
2 2 �2j j�k� � Var[PW] � � (1 � i) � 2 � � � (1 � i) (9)� � �p j jk j k

j�0 j�0 k�j�1

where �jk is the correlation coefficient between cash flows, Aj and Ak and �j and �k are the standard
deviations of the distribution of Aj and Ak, respectively. This formulation is intractable in practice
because of the difficulty, if not impossibility, in estimating the correlation coefficients. However,
formulations of the variance under the two extreme cases—independent cash flows (�jk � 0) and
perfectly correlated cash flows (�jk � 1)—is helpful, as will be shown.

3.2.2.1. Independent Cash Flows If there is no causative or consequential relationship between
the cash flows, they are said to be independent and

N
2 2 �2j� � � (1 � i) (10)�p j

j�0

A numerical example, summarized in Table 1, illustrates Eqs. (9) and (10). This is a five-period
project life with means (�j) and variances of the cash flows as shown. The results: �p � $69.442(� )j

and �p � � $28.34.�$802.9325

3.2.2.2. Perfectly Correlated Cash Flows Cash flows in any two periods, x and y, are perfectly
correlated if, given that Ax is the actual value of �x � d�x, then

A � � � d�y y y

In words, if random factors cause Ax to deviate from its mean value by d standard deviations, the
same factors will cause Ay to deviate from its mean in the same direction by d standard deviations.
Under these conditions

N
�j� � � (1 � i) (11)�p j

j�0

To illustrate, consider the example summarized in Table 2. Assuming a 10% discount rate, the
expected value of the PW of the five cash flows is $625.92, and the standard deviation of the PW is
$75.82. Note that the expected value of PW is given by Eq. (8) and is independent of the degree of
correlation.
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TABLE 2 Numerical Example: Determining the Mean and Standard Deviation of PW Given
Probabilistic Cash Flows and 10% Discount Rate—Perfectly Correlated Cash Flows

End
of

Period
j

Cash Flows

Mean
�j

Standard
Deviation

�j

Present Worth at 10%

�j(1.0)�j �j(1.10)�j

1 $100 20 $ 90.91 $18.18
2 150 20 123.97 16.53
3 200 20 150.26 15.03
4 200 20 136.60 13.66
5 200 20 124.18 12.42

Totals $625.92 $75.82

3.2.2.3. Combining Independent and Perfectly Correlated Cash Flows Suppose that it is fea-
sible, in a given problem situation, to identify two types of cash flows: those that are statistically
independent and those that are perfectly correlated. In this case the variance of the PW distribution
is the sum of (a) the sum of the variances of the independent cash flows, discounted, and (b) the
sum of the variances of each of the subsets of perfectly correlated cash flows, where the variance of
each subset is the square of the sum of the standard deviations of the cash flows in that subset. That
is,

2N M N
2 2 �2j �j� � � (1 � i) � [� (1 � i) ] (12)� � �� �p j jk

j�0 k�1 j�0

where � �2
j variance of the distribution of the independent Aj’s

�jk � standard deviation of the distribution of the perfect correlated cash flows in subset k, k
� 1, 2, . . . , M

Returning to the previous example (Table 2), suppose that there is a cash flow A0 such that �0 �
�$500 and �0 � $10, and A0 is independent of the positive cash flows in periods 1 through 5. All
cash flows for the proposal are now completely specified, and

5
�j� � � (1.10) � �$500 � $625.93 � $125.93�p j

j�0

� � $10 � $75.82 � $85.82p

Note in this example that M � 1; there is only one subset of perfectly correlated cash flows.

3.3. Cash Flows with Uncertain Timing

3.3.1. Single Cash Flow

Consider a single (impulse) cash flow, F, occurring at time t. If both t and F are deterministic, and
assuming that interest is compounded /discounted continuously at nominal rate r per period, then the
present worth is given by

�nPW � Fe (13)

If the timing, t, is a random variable with probability density function ƒ(t), then

�
�n� � Exp[PW] � F � ƒ(t)e dt (14)p

0

and

�
2 2 �n �n 2� � Var[PW] � F � ƒ(t)e dt � {F[Exp(e )]} (15)p

0

When the cash flow, F, is also a random variable with known �F and then the PW is the product2� ,F
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of two random variables. Determination of �p and results from a straightforward application of2� p

probability theory with respect to products of random variables.

3.3.2. Uncertain Initiation and Duration

Consider a uniform continuous cash flow, A, which begins at time m and continues for an uncertain
duration t. Assume that m and t are statistically independent random variables with known probability
functions ƒ(m) and ƒ(t). It may be shown that

�rm �n� � (A /r)[Exp(e )][1 � Exp(e )]p

and

2 2 �rm �r(m�t)� � (A/r) [Var(e ) � Var(e )] (16)p

To illustrate, consider a uniform cash flow of $1000 per year beginning at some uncertain time
m and continuing for a duration of t years. The delay to initiation is uniformly distributed between
6 months and 1 year. The project duration is gamma distributed with mean of 3 years and standard
deviation of 1 year; the parameters of the gamma distribution yielding these statistics are a � 3 and
b � 9. The nominal interest rate is 10% compounded continuously. It is assumed that the initiation
time and project duration are independent random variables. Our problem is to determine the equiv-
alent present value of these cash flows. (This problem is taken from Park and Sharp-Bette (1990, p.
411)

This problem may be solved by use of integral calculus in connection with Eq. (16). However, it
may be instructive to use Laplace transform methodology to evaluate �p and If a function ƒ(x)2� .p

is considered to be piecewise continuous, then the Laplace transform of the function, written L{ƒ(x)},
is defined as a function F(s) of the variable r by the integral

�
�rx �rx

L{ƒ(x)} � F(r) � � ƒ(x)e dx � Exp(e )
0

over the range of values of r for which the integral exists. For the uniform distribution

�ra �rbe � e
F(x) �

r(b � a)

and for the gamma distribution

�br
F(r) � 1 �� � �	a

Returning to our example, for the uniformly distributed delay time, m,

�0.10(0.5) �0.10(1.0)e � e
�rmExp(e ) � L(r) � � 0.92784m 0.10(1.0 � 0.5)

and

�rm 2Var(e ) � L(2r) � L(r)
�0.2(0.5) �0.2(1.0)e � e

2� � (0.92784)
0.2(1.0 � 0.5)

� 0.86107 � 0.86089 � 0.00018

Similarly, considering the gamma-distributed random variable, t,

�n �9Exp(e ) � L(r) � [1 � (0.10 /3)] � 0.74445t

and

�n �9 2Var(e ) � [1 � (0.20 /3)] � (0.74445)

� 0.559425 � 0.554206 � 0.00522

Next, we must determine
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�r(m�t) �rm �rtVar(e ) � Var(e e )
2 �n 2 �rm �rm �n� L(r) [Var(e ) � L(r) [Var(e )] � [Var(e )][Var(e )]m t

2 2� (0.92784) (0.00522) � (0.74445) (0.00018) � (0.0018)(0.00522)

� 0.00459

Finally, using Eq. (16),

� � ($1,000 /0.10)(0.92784)(1 � 0.74455)p

� $2,371

and

2 2� � ($1,000 /0.10) (0.00018 � 0.00459)p

� $477,000

or

� � $691p

3.4. Uncertain Project Life and Uncertain Cash Flow

Consider the case in which the amounts and timing of cash flows are random variables with known
means and variances, and the project life, also, is a random variable, N. Here, N must be integer
valued and, of course, must be positive. If cash flows are statistically independent,

� N
�j� � Exp[PW] � � (1 � i) p (17)� �� 	p j N

N�1 j�1

where pN is the probability mass function for N. Moreover,

2N k k
2 2� � Var[PW] � Var(X ) � Exp(x ) P � � (18)� � �� � 	 �p j j k p

k�1 j�0 j�0

where

�jExp(X ) � � (1 � i) (19a)j j

2 �2jVar(X ) � � (1 � i) (19b)j j

To illustrate, consider the problem summarized in Table 3. There are three risky, independent, end-
of-year cash flows; the means and variances of their respective probability functions are given in
columns (2) and (3) of Table 3. Project life, N, is also a random variable, with probability mass
function as shown in columns (6) and (7) of the table. A 10% discount rate is assumed. Determination
of the expected present worth, �p, based on Eq. 17, is summarized in the table. Here, �p � �$82.64.
The variance of present worth, based on Eqs. 18 and 19, may be shown to be2� ,p

2� � $121,687 or � � $349p p

3.5. Other Models

There are a variety of other analytical models for assessing risky investments. The randomness
(‘‘riskiness’’) of cash flow amounts, timing, project life, and discount rate are considered singly and/
or in combination. The complexity of the analytical procedure is roughly a function of the number
of variables considered as well as the assumptions concerning mutual independence between random
variables. In almost all cases the mean and variance of the distribution of the figure of merit are of
primary concern. In some instances it is also possible to approximate the statistical distribution as
well. Space limitations preclude an exhaustive review of the extant literature. For further readings
consult the bibliography at the end of this chapter.

3.6. Analysis Based on the Probability Distribution for Present Worth

As before, the mean and variance of the probability distribution for the present worth statistic (PW)
are denoted by �p and respectively. These are measures of central tendency and variability, or2� ,p
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TABLE 3 Numerical Example: Both Cash Flows (Aj) and Project Life (N) Are Random
Variables

End of
Year j

(1)

Mean
�j

(2)

Variance
� 2

j

(3)

Present Worth at 10%

�j (1.10)�j

(4)
� (1.10)�2j2

j

(5)

0 �$1,000 $ 502 �$1,000.00 $ 2,500.00
1 500 1002 454.55 8,264.46
2 800 2002 661.16 27,320.54

Project
Life N

(6)

Probability
pN

(7)

�j (1.10)�j
N�

j�0

(8)

pN �j (1.10)�j
N�

j�0

(9)

0 0.00 �$1,000.00 $ 0
1 0.30 � 545.45 � 163.64
2 0.70 115.71 81.00

Totals 1.00 �$ 82.64

From Park and Sharp-Bette 1990, p. 416.

Figure 5 Cash Rows and Their Probabilities. Example problem from Park and Sharpe-Bette 1990,
p. 419.

dispersion, of the PW distribution. Under certain conditions the underlying probability distribution
may be fully or partially characterized. When such is the case, it may be useful to describe the
riskiness of the figure of merit in terms other than the variance of the distribution; for example, the
probability that the PW will exceed some specified critical level.

3.6.1. Discrete Distribution for Present Worth

Consider a two-period problem as summarized in Figure 5. A cash outlay of $100 occurs at the start
of period 1 ( j � 0). There are two possible discrete cash flows at end of period 1: A1 � $50 with
probability 0.5 or A1 � $70 with probability 0.5. If A1 � $50, there are two possibilities for the cash
flow at end of period 2: either A2 � $60 with probability 0.3 or A2 � $80 with probability 0.7. If A1

� $70, then either A2 � $44 with probability 0.4 or A2 � $90 with probability 0.6. The diagram of
the possible outcomes shown in Figure 5 is sometimes known as a probability tree.

There are four possible present worths (outcomes), each with an associated joint probability.
Assuming a 10% discount rate:
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TABLE 4 Determining the Expected Present Worth

Outcome
(1)

PW at 10%
(2)

Joint
Probability

(3) (4) � (2) � (3) (5) � (2)2 � (3)

1 �$ 4.96 0.15 �$ 0.744 $$ 3.690
2 11.57 0.35 4.050 46.853
3 0 0.20 0 0
4 38.02 0.30 11.406 433.656

Totals 1.00 $14.712 $$484.199

Exp[PW] � $14.712
2Var[PW] � $$484.199 � ($14.712) � $$267.756

� � �Var[PW] � $16.363P

Outcome A0 A1 A2

2
�jA (1.10)� j

j�0 Joint Probability

1 �$100 $50 $60 �$4.96 0.5 � 0.3 � 0.15
2 �100 50 80 11.57 0.5 � 0.7 � 0.35
3 �100 70 44 0 0.5 � 0.4 � 0.20
4 �100 70 90 38.02 0.5 � 0.6 � 0.30

The remainder of the analysis is summarized in Table 4. Note that column (4) reflects the calculation
of Exp[PW] and column (5) reflects the calculation of Exp[(PW)2]. Moreover

2 2 2� � Exp[(PW) ] � [Exp(PW)] (20)p

as discussed previously.
Now, suppose that it is of interest to determine the probability that this investment will be prof-

itable, that is, PW � $0. Only two of the possible outcomes, 2 and 4, meet this requirement, and,
as they are independent events, the sum of their probabilities is

Prob[PW � $0] � Prob[PW � $11.57] � Prob[PW � $38.02]

� 0.35 � 0.30 � 0.65

3.6.2. Using Only the Mean and Variance of the PW Distribution

Tchebycheff’s (sometimes written Chebyshev’s) inequality states that

2Prob[� � k� � X � � � k�] � 1 � 1 /k (21)

where X is any random variable having mean � and variance � 2 and k is a positive constant. This
is a useful relationship when only the mean and variance of the distribution are known. In terms of
an unknown PW distribution with known mean �p and variance 2� ,p

2Prob[� � k� � PW � � � k� ] � 1 � 1 /k (22)p p p p

To illustrate, suppose that the mean and variance of the PW distribution have been determined to be
$800 and ($50)2, respectively. The analyst has been asked to determine the probability that the PW
lies between two values, say, between $600 and $1000. Note here that

� � k� � $800 � k($50) � $600p p

and
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Figure 6 Probability Distribution for Present Worth.

� � k� � $800 � k($50) � $1000p p

from which it is apparent that k � 4. Thus

Prob[$600 � PW � $l000] � 1 � 1 /16 or 0.9375

Put somewhat differently, in the absence of any knowledge as to the shape of the distribution, the
probability is at least 0.9375 that the random variable lies with �2� of the mean.

3.6.3. When the Normal Distribution Can Be Assumed

Consider a stream of risky cash flows Aj occurring at the ends of periods 1, 2, . . . j, . . . N. The
project life N and the discount rate i are known with certainty. The only stochastic variable here is
the amount of the cash flow. The resulting PW is a random variable with mean given by Eq. (8) and,
assuming independent cash flows, with variance given by Eq. (10). Under some general conditions
application of the central limit theorem leads to the result that

N �jPW � 
 � (1 � i)j�0 j
Z � (23)N N 2�
 �j�0 j

is approximately normally distributed, with � � 0 and � � 1, as N approaches infinity. The ‘‘general
condition’’ may be summarized as follows: the terms Aj, taken individually, contribute a negligible
amount to the variance of the sum, and it is unlikely that any single Aj makes a relatively large
contribution to the sum.

The terms Aj may have essentially any distribution. As a general rule of thumb, if the Aj’s are
approximately normally distributed, then the central limit theorem is a very good approximation
when N � 4. If the distribution of the Aj’s has no prominent mode(s), that is, approximately uniformly
distributed, then N � 12 is a reasonable rule of thumb for applicability of the central limit theorem.

To illustrate the application of Eq. (23), consider the numerical example given in Table 1. It was
determined that �p � $69.44 and �p � � $28.34. The probability distribution for PW�$$802.9325
is shown in part (a) of Figure 6; the equivalent standardized normal distribution is shown in part (b).

Consider the question: What is the probability that this proposal will result in a present worth
greater than $50?
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Prob[PW � $50] � 1 � Prob[PW � $50]

$50.00 � $69.44
� 1 � Prob Z �� 	$28.34

� 1 � Prob[Z � �0.686] � 1 � 0.75 � 0.25

An abbreviated version is included here in Table 5.
Consider a second question: What is the probability that this proposal will result in a loss?

$0 � $69.44
Prob[PW � $0] � Prob Z �� 	$28.34

� Prob[Z � �2.45] � 0.01

Note that the probability of a loss is identical here to the probability that the proposal’s internal rate
of return will be less than the minimum attractive rate of return.

3.7. Comparing Risky Proposals

As indicated previously, decision makers are generally risk avoiders. Additional risk, as measured by
the variance of the figure of merit, is to be avoided whenever possible. Thus there are two criteria
to be considered simultaneously: the figure of merit, for example, present worth, as measured by the
expected value (mean, �) of the distribution; and the riskiness of the outcome as measured by the
variance (� 2) of the distribution. The former is to be maximized, and the latter is to be minimized.

Consider two mutually exclusive alternations. Let and (�2, represent the mean and2 2(� , � ) � )1 1 2

variance of alternatives I and II, respectively. The appropriate decision rules are as follows:

If � � � and � � �1 2 1 2Case A: Choose I over II�or � � � and � � �1 2 1 2

If � � � and � � �1 2 1 2Case B: Choose II over I�or � � � and � � �1 2 1 2

If � � � and � � �1 2 1 2Case C: Conclusion ambiguous�or � � � and � � �1 2 1 2

There is no clear conclusion in case C because the riskier alternative is also the one with the
larger expected return. When this situation arises, trade-offs must be made between risk and return.
There is little theoretical guidance short of converting to utility theory (discussed later). Additional
discussion is beyond the scope of this chapter.

4. DECISION THEORY APPLICATIONS
The approach to risk analysis outlined in the previous section is based on the premise that the decision
maker desires to (a) maximize expected return and (b) minimize risk. This section presents some
additional principles of choice that may be appealing under certain conditions. A simple numerical
example is used as a basis for the discussion.

4.1. Problem Statement

The International Manufacturing Company (IMC) is considering five mutually exclusive alternatives
for constructing a new manufacturing plant in a certain Asian country. The cost of each alternative,
stated in terms of present worth (or net present value) of cost, depend on the outcome of negotiations
that are currently under way between IMC, lending agencies, and the government of the host country.
IMC analysts have concluded that four specific mutually exclusive outcomes are possible, and they
have computed the present worth (cost) for each alternative—outcome combination. These are shown
as cell values in the cost matrix in Table 6.

If the future is known with certainty, then the least costly alternative may be selected by any of
the methods presented in Chapter 91. For example, if it is known that outcome s3 will definitely
occur, then a3 should be selected because it will result in the lowest present worth (cost). On the
other hand, if a3 is selected and s4 perversely occurs, choosing a3 will have resulted in the most
costly event.

Assume that sufficient information exists to warrant statements about the relative probabilities of
the possible future outcomes. Specifically, these probabilities (expected relative frequencies) are
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TABLE 6 Cost Matrix for Illustrative Problem (Cell entries are multiples of $1,000,000)

Possible Outcomes

s1 s2 s3 s4

a1 18 11 10 10
a2 16 16 16 16

Alternatives a3 14 14 8 20
a4 9 12 17 16
a5 10 13 17 18

P[s ] � 0.3 P[s ] � 0.21 3

P[s ] � 0.4 P[s ] � 0.12 4

Given this additional information, which alternative should be selected? A number of principles that
may be applied in this situation are discussed later.

A problem statement of this type is known as a decision under risk because the underlying
probability distribution for the future scenarios, or states of nature, is known or can be assumed.
‘‘Risk,’’ in the previous section, was used in a more general sense to characterize the absence of
certainty. The term was used analogously to ‘‘randomness’’ or uncertainty. Here, in a more limited
sense, a problem statement in which the underlying distribution for the sj’s is not known or assumed
is a decision under uncertainty.

4.2. Dominance

Before applying any of the principles of choice, it is first desirable (although not absolutely necessary)
to apply the dominance principle to determine which alternatives, if any, are dominated. If, of two
alternatives, one would never be preferred no matter what future occurs, it is said to be dominated
and may be removed from any further consideration. From the example, consider a4 and a5:

s1 s2 s3 s4

a4 9 12 17 16 (in $ million)
a5 10 13 17 18

Since a5 is always at least as costly as a4, irrespective of which future outcome occurs, a5 may be
ignored in the remaining discussion.

If one alternative dominates all others, it is said to be globally dominant, and the decision maker
need look no further; the optimal solution has been found. Unfortunately, globally dominant alter-
natives are rare. But in any event, the dominance principle is frequently effective in reducing the
number of alternatives to be considered.

4.3. Principles for Decisions under Risk

4.3.1. The Principle of Expectation

The principle of expectation states that the alternative to be selected is the one that has the minimum
expected cost (or maximum expected profit or revenue). In general,

Min E[C(a )] � C(a �s )p (24a)�i i j j
j

or

Max E[R(a )] � R(a �s )p (24b)�i i j j
j

where C(ai�sj) � total cost of alternative ai given that states of nature sj occurs
R(ai�sj) � total net return of alternative ai given that state of nature sj occurs

pj � probability that state sj will occur
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From the example it may be shown that

E[C(a )] � $12,800,000 E(C(a )] � $13,400,0001 3

E[C(a )] � $16,000,000 E[C(a )] � $12,500,0002 4

Here, a4 should be selected because it yields the minimum expected cost.
Principles that depend on determination of expected values by the mathematics of probability

theory are frequently criticized on the grounds that the theory holds only when trials are repeated
many times. It is argued that, for certain types of decisions—for example, whether to finance a major
expansion—expectation is meaningless since this type of decision is not made very often. According
to the counterargument, even if the firm is not faced with a large number of repetitive decisions, it
should apply the principle to many different decisions and thus realize the long-run effects. Moreover,
even if the decision is unique, the only way to approach decisions for which probabilities are known
is to behave as if the decision were a repetitive one and thus minimize expected cost or maximize
expected revenue or profit.

4.3.2. The Principle of Most Probable Future

Assume that the future event to expect is the most likely event. Thus, observing that s2 has the highest
probability of occurring, assume that it will in fact occur. In this case a1 (with present worth (cost)
� $11,000,000 is the least costly of the four available alternatives.

This principle is particularly appealing in cases in which one future is significantly more probable
than all other possibilities.

4.3.3. The Aspiration Level Principle

The aspiration level principle requires the establishment of a goal, or ‘‘level of aspiration.’’ Thus the
alternative that maximizes the probability that the goal will be met or exceeded should be selected.
To illustrate, suppose that the management of IMC wishes to minimize the probability that present
worth (cost) will exceed $15,000,000. (This is identical to the requirement that it maximize the
probability that costs will not exceed $15,000,000.) The probabilities are

Prob[C(a ) � $15,000,000] � 0.31

Prob[C(a ) � $15,000,000] � 0.3 � 0.4 � 0.2 � 0.1 � 1.02

Prob[C(a ) � $15,000,000] � 0.13

Prob[C(a ) � $15,000,000] � �0.2 � 0.1 � 0.34

Thus, the aspiration level will be met if a1 is selected.
Clearly, the selection from mutually exclusive alternatives is a matter of which principle is used

to guide the decision.

4.4. Principles for Decisions under Uncertainty

This section examines a number of principles of choice that may be used when the relative likelihoods
of future states of nature cannot be estimated. These principles will be demonstrated by using the
example problem introduced earlier.

4.4.1. The Minimax (or Maximin) Principle

The minimax principle is pessimistic in the extreme. It assumes that, if any alternative is selected,
the worst possible outcome will occur. The maximum cost associated with each alternative is ex-
amined, and the alternative that minimizes the maximum cost is selected. In general, the mathematical
formulation of the minimax principle is

Min[Max(C )] (25a)ij
i j

where Cij is the cost that results when alternative i is selected and state of nature j occurs. From the
example
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Alternative
(aj)

Max Cij
j

a1 18 (in $ million)
a2 16 (in $ million)
a3 20 (in $ million)
a4 17 (in $ million)

If the minimax principle is adopted, a2 is indicated because it results in minimum costs, assuming
the worst possible conditions.

The mirror image of the minimax principle, the maximin principle, may be applied when the
matrix contains profits or revenue measures. In this case the most pessimistic view suggests that the
alternative to select is the one that maximizes the minimum profit or revenue associated with each
alternative. The mathematical formulation of the maximin principle is

Max[Min(R )] (25b)ij
i j

where Rij is the revenue or profit resulting from the combination of ai and sj.

4.4.2. The Minimin (or Maximax) Principle

The minimin principle is based on the view that the best possible outcome will occur when a given
alternative is selected. It is optimistic in the extreme. The minimum cost associated with each alter-
native is examined, and the alternative that minimizes the minimum cost is selected. The mathematical
formulation is

Min[Min(C )] (26a)ij
i j

From the example

Alternative
(a1)

Min Cij
j

a1 10 (in $ million)
a2 16 (in $ million)
a3 8 (in $ million)
a4 9 (in $ million)

Alternative a3 minimizes the minimum cost.
As a corollary to the minimin principle, the maximax principle is appropriate when the decision

maker is extremely optimistic and the matrix contains measures of profit or revenue. The maximum
profit (or revenue) associated with each alternative is examined, and the alternative that maximizes
the maximum profit (or revenue) is selected. The mathematical formulation is

Max[Max(R )] (26b)ij
i j

4.4.3. The Hurwicz Principle

It may be argued that decision makers need not be either completely optimistic or pessimistic, in
which case the Hurwicz principle permits selection of a position between the two extremes. When
evaluating costs, Cij the Hurwicz criterion for alternative ai is given by

Min H(a ) � �[Min(C )] � (1 � �)[Max(C )] (27a)j ij ij
j j

where � is the ‘‘index of optimism’’ such that 0 � � � 1. Extreme pessimism is defined by � � 0;
extreme optimism is defined by � � 1. The value of � used in any particular analysis is selected by
the decision maker based on subjective judgment. The alternative that minimizes the quantity H(ai)
is the alternative to select.

When evaluating profits or revenues, Rij, the expression for the Hurwicz criterion is
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Figure 7 Sample Problem—Hurwicz Criterion as Function of Index of Optimism.

Max H(a ) � �[Max(R )] � (1 � �)[Min(R )] (27b)i ij ij
j j

The values of H(�j) are plotted in Figure 7 for the sample problem. We may determine, either
graphically or algebraically, that a2 will be chosen for 0 � � � 0.125, a4 will be selected for 0.125
� � � 0.75, and a3 is least costly for 0.75 � � � 1.00.

4.4.4. The Laplace Principle (Insufficient Reason)

The Laplace principle, sometimes known as the principle of insufficient reason, assumes that the
probabilities of future events occurring are equal. That is, in the absence of any information to the
contrary, it is assumed that all future outcomes are equally likely to occur. The expected cost (or
profit / revenue) of each alternative is then computed, and the alternative that yields the minimum
expected cost (or maximum expected profit / revenue) is selected. The mathematical expression for
this principle is

k1
Min C (28a)��� � �ijki j�1

when the figure of merit is expressed as a cost or as

k1
Max R (28b)��� � �ijki j�1

when the figure of merit is expressed as revenue or profit.
Returning to our example, the insufficient reason assumption yields p1 � p2 � p3 � p4 � 0.25.

With these probabilities:

E[C(a )] � $12,250,000 E[C(a )] � $14,000,0001 3

E[C(a )] � $16,000,000 E[C(a )] � $13,500,0002 4
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TABLE 7 Regret Matrix for Sample Problem (Cell values are multiples of $1,000,000)

Possible Outcomes

s1 s2 s3 s4

a1 18 � 9 � 9 11 � 11 � 0 10 � 8 � 2 10 � 10 � 0
a2 16 � 9 � 7 16 � 11 � 5 16 � 8 � 8 16 � 10 � 6

Alternatives a3 14 � 9 � 5 14 � 11 � 3 8 � 8 � 0 20 � 10 � 10
a4 9 � 9 � 0 12 � 11 � 1 17 � 8 � 9 16 � 10 � 6

Alternative a1 should therefore be selected because it results in the minimum expected present worth
(cost).

4.4.5. The Savage Principle (Minimax Regret)

The Savage principle, or principle of minimax regret, is based on the assumption that the decision
maker’s primary interest is the difference between the actual outcome and the outcome that would
have occurred had it been possible to accurately predict the future. Given these difference, or regrets,
the decision maker then adopts a conservative position and selects the alternative that minimizes the
maximum potential regret for each alternative.

A regret matrix is constructed, having for its cell values either

C � [Min(C )] (29a)ij ij
i

for cost data or

[Max(R )] � R (29b)ij ij
i

for revenue or profit data. In either case these cell values, or regrets, represent the differences between
(a) the outcome if alternative aj is selected and state of nature sj subsequently occurs and (b) the
outcome that would have been achieved had it been known in advance which state of nature would
occur, so that the best alternative could have been selected. To illustrate, consider alternative a1 and
state of nature s1: C11 � $18,000,000. However, if we had known a priori that state s1 would in fact
occur, we would have selected a4, incurring a cost of only $9,000,000. The difference ($18,000,000
� $9,000,000) is a measure of ‘‘regret’’ about selecting a1 when we could have selected a4 (had
we known the state of nature in advance). The complete regret matrix for the example is given in
Table 7.

The alternative that minimizes the maximum regret is preferred. That is, for cost data,

Min Max{C � [Min(C )]} (30a)ij ij
i j

or, when the cell values are based on revenue or profit data,

Min Max{[Max(R )] � R } (30b)ij ij
i j i

Equation (30a) is applicable for the sample problem, yielding the following:

Alternative Maximum Regret

a1 9 (in $ millions)
a2 8 (in $ millions)
a3 10 (in $ millions)
a4 9 (in $ million)

Thus, according to this principle of choice, a2 should be preferred.
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TABLE 8 Input Data for Deterministic Example (All cash flows have been discounted—they
are shown as their PW equivalents)

Year
j

Initial Cost if
Purchased at

Start of Year j

Salvage Value if Sold at End
of Year

1 2 3

Operating Cost in Year

1 2 3

1 $50a $40 $ 30 $ 20 $90 $95 $100
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1 100b 80 65 55 50 60 70
2 120b 100 85 45 55
3 130b 110 40

a Current salvage value of defender.
b Challengers at start of years 1, 2, and 3.

4.5. Summary of Results

There is no special reason why the principles of choice discussed in the preceding sections should
yield the same solution. Indeed, each of the alternatives in this example problem were selected at
least once.

Decision Under Risk

Principle Solution

Decisions Under Uncertainty

Principle Solution

Expectation a4 Minimax a2

Most probable future a1 Minimin a3

Aspiration level a3 Hurwicz
(0.1215 � � � 0.75)

a4

Laplace (insufficient reason) a1

Savage (minimax regret) a2

Is one principle more ‘‘correct’’ than any other? There is no simple answer to this question—the
choice of principle largely depends on the predisposition of the decision maker and the specific
decision situation. Each principle has certain obvious advantages, and each is deficient in one or
more desirable characteristics. Nevertheless, the principles in this section are useful because they
shed some light on the subjective decision process and make the available information explicit to the
decision process.

5. DECISION TREES
Decision tree methodology is useful for the evaluation of problems characterized by sequential de-
cisions, each of which involves a variety of outcomes. The pictorial representation of this problem
is suggestive of a tree lying on its side, with the branches in the tree representing successions of
outcomes. The graphic portrayal of the problem structure is both its primary asset as well as its
principal disadvantage. The ability to communicate complex dependencies is of great value, of course.
However, the number of sequential decisions and outcomes (branches) is necessarily limited by the
graphic medium (CRT screen, 81⁄2 � 11 in. paper, etc.). These features will be apparent from the
following discussion of deterministic and stochastic decision trees.

5.1. Deterministic Decision Trees

Consider a problem of retirement and replacement over a three-year planning horizon. The existing
equipment, the defender, is now two years old. Replacement decisions are to be made now, one year
hence, and two years hence. Whichever equipment is in service three years from now will be removed
from service and sold in any event. Initial costs, salvage values, and operating costs for each of the
3 years are summarized in Table 8. Note that the first row of the table represents the defender: It
has a current salvage value of $50, $40 after one year, $30 after two years, and $20 if sold at the
end of the third year.
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Figure 8 Decision Tree for Deterministic Example.

The decision tree for this problem is shown in Figure 8. The three decision points are represented
by squares, the branches are the decisions, and the economic consequence of each branch is shown
at that line. The solution begins at the end of the tree, that is, at the latest decision point, which is
decision 3 in this case.

Decision
Point Alternative Monetary Outcome, 3rd Year Choice

3a Keep
Replace

�$100 � $20 � �$80
$30 � $130 � $40 � $110 � �$30 Replace

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

3b Keep
Replace

�$55 � $85 � $30
$100 � $130 � $40 � $110 � $40 Replace

3c Keep
Replace

�$70 � $55 � �$15
$65 � $130 � $40 � $110 � $5 Replace

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

3d Keep
Replace

�$55 � $85 � $30
$100 � $130 � $40 � $110 � $40 Replace

Next, the procedure rolls back to the preceding decision point, the beginning of the second year. The
monetary outcomes are cumulative, that is, the economic consequences in year 2 are added to those
of the optimal decisions at the beginning of year 3.
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Figure 9 Decision Tree for Stochastic Example. (All cash flows have been discounted. They are
shown here in their PW equivalents.)

Decision
Point Alternative Monetary Outcome, 2nd � 3rd Year Choice

2a Keep
Replace

(�$95) � (�$30) � �$125
($40 � $120 � $45) � ($40) � �$85 Replace

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

2b Keep
Replace

(�$60) � ($5) � �$55
($80 � $120 � $45) � ($40) � �$45 Replace

The process continues until the first decision point. Here:

Decision
Point Alternative Monetary Outcome, 1st, 2nd, 3rd Year Choice

1 Keep Replace (�$90) � (�$85) � �$175
($50 � $100 � $50) � (�$45) � �$145 Replace

The optimal solution is now complete. The optimal path through the tree is determined by beginning
at the first decision point and continuing through subsequent decisions in accordance with the indi-
cated decisions. In this example the optimal solution is replace, replace, and replace at the start of
years 1, 2, and 3, respectively.
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5.2. Stochastic Decision Trees

One of the most useful features of decision trees is their ability to illustrate variable outcomes when
their probabilities of occurrence can be estimated. To be effective in a graphic format, the outcomes
must be characterized as discrete random variables with a relatively small number of possibilities.

A very simple example of a stochastic decision tree is illustrated in Figure 9. The firm is consid-
ering expansion of a production line for the manufacture of a certain product. If the decision is made
to forgo expansion at the present time, a subsequent opportunity will arise in about a year from now.
The delay, perhaps, might be warranted based on the demand experienced over the next year. All
dollar values shown in the tree are present value equivalents. There are three possible demand out-
comes as shown—high, moderate, and low, with probabilities 0.3, 0.5, and 0.2, respectively.

At decision point 2 it is clear that plant expansion is preferred as PW(expand) � $280,000 and
PW(do not expand) � $200,000. Rolling back to decision point 1, it is now necessary to evaluate
the expected present worth through each of the branches emanating from that point.

Exp[PW, expand now] � 0.3($480,000) � 0.5($300,000) � 0.2(�$100,000)

� $274,000

Exp[PW, do not expand] � 0.3($230,000) � 0.5($280,000) � 0.2($120,000)

� $233,000

Thus, based on this analysis, it would appear that expansion at the present time is warranted.
The solution can be effected, of course, without reference to the decision tree. It is the graphic

character of the tree that permits the analyst to articulate the sequential and stochastic nature of events
and outcomes and to communicate these interrelationships to decision makers.

6. DIGITAL COMPUTER (MONTE CARLO) SIMULATION
The statistical procedures related to risk analysis suffer from at least one important drawback: The
analytical techniques necessary to derive the mean, variance, and possibly the probability distribution
of the figure of merit may be extremely difficult to implement. Indeed, the complexity of many real-
world problems precludes the use of these computational techniques altogether; computations may
be intractable, or the necessary underlying assumptions may not be met. Under these conditions
analysts may find digital computer (Monte Carlo) simulation especially useful. (Strictly speaking,
Monte Carlo simulation and digital computer simulation are not synonymous. Monte Carlo simulation
is a sampling technique used in the digital computer simulation of systems behavior. However, in
recent years, practitioners have tended to blur this semantic distinction, using the terms interchange-
ably.)

The objective of digital computer simulation is to generate a probability distribution for the figure
of merit, generally present worth or rate of return, given the probability distributions for the various
components of the analysis. The decision maker can thus compare expected returns as well as the
variability of returns for two or more alternatives. Moreover, probability statements can be made, in
this form: The probability is x that project y will result in a profit in excess of z.

6.1. Sampling from a Discrete Distribution

Suppose that ‘‘annual operating savings,’’ A, is a discrete random variable with probabilities as given
in Table 9. The associated cumulative distribution function (CDF), also given in the table, represents
the probability that the annual operating savings will be less than or equal to some given value.

Our problem now is one of sampling from this distribution, using either the probability function
or its associated CDF in order to preserve precisely all the characteristics of the original distribution.
We can do this by obtaining, say, 100 perfectly matched balls, numbered from 00 to 99. We want to
label four of the balls ‘‘$2400,’’ eight of the balls ‘‘$2500,’’ and so on. The number of balls labeled
with a particular amount is proportional to their relative probability in the original distribution:

Ball
Numbers

Number of
Balls Labels

Ball
Numbers

Number of
Balls Label

01–04 4 $2400 49–64 16 $2900
05–12 8 2500 65–80 16 3000
13–22 10 2600 81–90 10 3100
23–34 12 2700 91–98 8 3200
35–48 14 2800 99–00 2 3300
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TABLE 9 Probabilities and Cumulative Distribution Function for Sample Problem

Event
i

Annual
Savings

Ai

Probability of
Occurrencea

P( i)A

Cumulative Distribution
Function (CDF) P(Ann.

Savings � )Ai

1 $2400 0.04 0.04
2 2500 0.08 0.12
3 2600 0.10 0.22
4 2700 0.12 0.34
5 2800 0.14 0.48
6 2900 0.16 0.64
7 3000 0.16 0.80
8 3100 0.10 0.90
9 3200 0.08 0.98

10 3300 0.02 1.00

a The probability function for a discrete random variable is sometimes known as a probability mass function. The
equivalent function for a continuous random variable is a probability density function (pdf).

Now we can put all the balls into a large jar, shake it thoroughly so that the balls are completely
mixed, and then draw out a single ball. Then, the result of this ‘‘random sample’’ is recorded and
the ball is placed back in the jar to select our next sample. As we continue this process through a
large number of samples, or trials, we can expect the resulting frequency distribution to approximate
that of the original population.

Of course, in practical applications, the sampling process does not consist of drawing balls from
a jar. There are a variety of more elegant procedures, generally based on successive iterations of a
predetermined formula. An alternative approach that is useful when the number of samples to be
drawn is relatively small is to reference a table of random numbers. Such tables have been developed
and the results recorded in tabular format. (A table of three-digit random numbers appears in Table
10.) Inasmuch as the numbers in the table are randomly generated, users may enter the table at any
point and proceed in any direction.

6.2. Sampling from a Normal Distribution

The normal distribution is frequently used to describe the probabilities of certain continuous random
variables. The probability density function is given by

1 �1 x � �
ƒ(x) � exp (31)� � � �	�2 ���2�

where � � mean and � � standard deviation of the distribution and x is the particular value of the
random variable. A particular normal distribution is fully described by the parameter � and �, where
� is a measure of central tendency and � is a measure of dispersion.

The standard normal distribution results from the special case wherein � � 0 and � � 1. The
area under the curve from �� to �� is exactly 1.0. If one can develop a table of random numbers
for a uniform distribution over the interval 0–1, it is possible to map a set of equivalent values for
the standard normal distribution, as in Figure 10. The value along the ordinate represents the prob-
ability that the random variable X lies in the interval �� to x. For any random number we can
compute the equivalent value x. This latter value is called the random normal deviate.

Tables of random normal deviates exist that contain values from which one may generate a random
sample for any normal distribution with known parameters � and �. (See Table 11.) The simulated
event, then, is given by

{Simulated event (Sample)} � � � {Random normal deviate}� (32)

6.3. General Framework

The previous sections discussed the process whereby random samples are drawn from an underlying
probability distribution. The general procedure can be described in four steps:

Step 1: Determine the probability distribution(s) for the significant factors, as illustrated in Figure
11.



ECONOMIC RISK ANALYSIS 2387

TABLE 10 Random Numbers a

139 407 027 030 530 687 694 017 943 787
073 886 255 332 037 264 341 948 462 774
075 259 224 042 332 890 196 693 988 467
254 352 917 614 273 643 994 956 128 193
096 119 694 625 095 727 846 565 868 405

459 637 289 778 407 468 234 472 567 681
577 111 813 903 194 321 019 757 959 726
062 868 748 951 815 863 435 621 154 365
895 362 955 001 004 798 091 394 637 554
438 170 667 256 871 953 972 528 265 370

424 995 495 044 900 283 436 601 275 016
963 666 423 819 951 864 219 317 274 820
539 136 809 158 257 900 430 504 249 235
011 483 389 765 429 720 553 115 557 840
615 910 272 467 450 776 447 227 934 337

958 745 941 218 680 646 347 045 488 555
026 442 257 096 854 034 862 896 705 447
178 578 454 305 080 768 977 233 443 091
149 856 142 171 844 800 051 635 937 689
047 106 304 149 003 210 819 804 796 572

357 279 299 816 794 199 389 569 005 190
939 454 864 876 825 097 246 882 922 123
027 834 106 157 081 356 250 823 284 073
230 747 510 611 920 554 634 594 197 869
532 647 935 317 078 396 009 523 148 464

294 111 617 479 664 707 358 063 996 936
248 843 163 423 162 443 042 793 974 488
506 670 559 604 431 680 793 415 692 449
551 546 165 599 706 623 723 758 136 270
242 550 713 112 597 599 314 775 663 531

814 883 315 971 087 061 427 544 008 935
876 874 453 128 536 588 296 268 281 309
413 977 988 663 678 882 530 275 967 607
784 769 154 777 623 772 114 018 923 907
723 954 560 800 855 210 407 076 386 412

340 360 190 184 234 276 143 151 964 450
119 939 405 508 993 172 432 073 641 475
920 770 938 474 743 226 758 792 778 064
976 057 899 910 468 891 980 389 108 921
898 126 771 771 526 746 333 066 740 873

669 432 416 134 653 493 427 152 160 875
649 553 066 201 957 961 245 098 226 003
573 190 331 302 924 103 147 484 173 461
549 174 196 889 412 997 868 013 610 577
062 457 020 541 656 846 516 512 522 805

a This table was prepared by Mr. Ken Molay using a PDP 22 computer with a TOPS 10 operating system. To
produce these random numbers, a congruential multiplicative generator was used, based on a seed of system time
in milliseconds.

Step 2: Using Monte Carlo simulation, select random samples from these factors according to
their relative probabilities of occurring in the future. (See Figure 12.) Note that the selection
of one factor (price, for example) may determine the probability distribution of another factor
(total amount demanded, for example).

Step 3: Determine the figure of merit (rate of return or present worth, for example) for each
combination of factors. One trial consists of one calculation of the figure of merit.
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Figure 10 Sampling from a Normal Distribution.

Step 4: Repeat the process, that is, conduct a series of trials, building a frequency histogram with
the results, as in Figure 13. Continue until you are reasonably satisfied that the histogram
yields a clear portrayal of the investment risk. (There is no universally accepted rule for
determining the optimum number of trials. It is clearly less expensive to produce a smaller
number of trials, yet a larger number of trials yields more information. Substantial literature
is addressed to this interesting problem, but additional discussion is not warranted here.)

6.4. Numerical Example

A certain investment, if purchased, will result in annual operating savings described by the probability
distribution shown in column (b) of Table 12. The project life is described by the probability distri-
bution shown in column (e), and the initial cost is a normally distributed random variable with � �
$25,000 and � � $1000. The discount rate to be used in the analysis, a certainty estimate, is 0.10.
It is assumed that the annual savings, project life, and initial cost are independent random variables.
If there are no other relevant consequences of the proposed investment, the expected net present
value is given by the equation

PW � A(P /A, 10%, N ) � P (33)

where � annual operating savings, N � project life, and P � initial cost.A
Columns (c) and (f) of Table 12 contain the random numbers corresponding to the relative prob-

abilities in columns (b) and (e), respectively. Note that two-digit random numbers are used. Inasmuch
as the specified accuracy of the probability distributions is two significant digits, the corresponding
random numbers must be specified by at least two digits. (A three-digit random number, say 843,
could be rounded to 84 or simply truncated after the first two digits.) For the first variable, annual
operating savings there are 100 random numbers, the first four of which correspond to the event(A),

� $2400. The next eight numbers, 05 through 12, correspond to the event � $2500, and so on.A A
The results of 10 simulated trials are shown in Table 13. Consider the first trial, for example: a

random number, 09, is drawn from the table of random numbers in Table 10. As shown in Table 12,
this corresponds to the event � $2500. Next, a new random number, 52, is drawn, which corre-A
sponds to the event N � 30. Note that the same random number cannot be used for both random
variables because they are independent. The third random variable, P, is normally distributed, so a
random normal deviate (RND) is drawn from Table 11. This number, 0.464, indicates a simulated
value for
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TABLE 11 Random Normal Deviates a

0.199 �0.066 �0.205 0.455 �2.023 �0.131 �0.032 1.050
1.344 0.421 �0.599 �0.575 0.231 �0.455 1.977 2.029

�0.362 1.112 �0.200 0.072 1.044 1.399 0.910 �1.630
�0.451 �0.413 �0.159 1.421 0.286 0.499 1.402 0.750
�1.477 �0.149 �1.234 �0.644 �1.753 �0.895 1.393 0.853

�0.392 0.977 0.603 0.851 �1.161 0.206 0.294 �0.270
1.341 0.009 �1.489 0.499 0.695 �1.284 �0.542 0.682

�0.993 1.078 0.194 0.231 0.615 �1.436 �0.019 0.928
�0.708 �0.134 �0.308 1.797 �0.354 �0.445 0.019 1.355
�0.336 2.044 0.199 �0.401 �0.929 �1.964 �0.746 �0.229

0.307 �0.998 �1.083 0.104 �1.385 �1.224 0.428 0.607
�1.361 �0.203 0.675 �0.761 �0.092 �1.309 �0.966 �0.335

0.467 �0.256 0.788 0.72 �0.349 �1.401 0.205 1.043
0.373 �1.472 0.334 �0.361 �2.519 �0.658 �0.249 �1.017
1.517 0.615 �1.414 �0.665 �0.701 �0.105 �0.78 �0.266

�1.659 �0.902 �0.883 �1.679 �0.197 �1.329 0.596 �0.419
1.078 0.274 0 0.926 �1.557 �0.610 1.554 �0.139

�0.388 �1.048 �1.135 �0.878 �1.705 0.275 0.535 �0.488
0.008 0.184 �0.208 0.236 �0.134 �0.705 0.202 0.354

�2.998 �0.165 �0.295 �0.282 �0.709 1.024 0.029 1.179

0.051 �1.229 �1.265 0.440 0.593 0.276 1.053 �0.125
0.536 �0.367 2.430 0.312 0.431 0.987 0.335 0.505
1.761 0.349 �1.039 �0.814 0.299 �0.057 0.970 1.705
0.365 0.250 1.426 �1.042 �0.822 �1.065 0.708 �0.144
0.921 0.190 0.385 1.674 0.483 �0.863 �0.743 2.513

�1.308 �0.892 1.333 �0.127 �0.590 �1.590 �0.470 0.159
0.647 0.879 0.094 �0.464 0.093 0 0.614 0.393

�0.603 �0.333 �0.373 �0.523 �0.058 �1.294 0.321 �1.855
�0.214 �0.699 �0.292 0.928 0.363 0.035 0.645 �1.243

1.223 �0.868 �0.397 �0.047 0.870 �0.613 0.174 1.602

�0.649 �0.244 0.008 �0.611 0.958 �0.940 2.080 0.964
�2.215 1.712 0.941 0.537 �1.221 0.263 0.893 1.171

0.630 �0.602 �0.401 0.922 �0.734 1.992 �0.310 �1.030
�0.516 0.539 1.148 �0.373 �0.805 1.855 �0.115 �0.773

0.764 �1.190 �0.150 0.396 1.620 0.575 �0.049 �0.279

�0.519 0.772 0.817 1.003 0.306 �1.761 �0.841 �1.099
�0.144 1.254 �0.661 0.890 0.645 1.618 �1.800 �0.297

0.469 0.514 �0.304 �0.166 1.145 1.018 �0.080 0.030
1.871 0.048 �0.075 0.105 �0.617 �1.945 1.378 0.782

�2.306 �1.901 1.636 �0.725 0.264 0.169 �0.337 �0.208

a This table was prepared by Mr. Shay Bao Lai using an Apple II computer. The algorithm for producing these
random normal deviates is from A. M. Law and W. D. Kelton, Simulation Modeling and Analysis, McGraw-Hill,
New York, 1982, pp. 258–259.

Figure 11 Probability Functions for Inputs.

P � � � (RND)�

� $25,000 � (0.464)($1000) � $25,464

The present worth for the first trial can now be computed:
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Figure 12 Cumulative Distribution Functions.

Figure 13 Frequency Histogram for Figure of Merit.

PW � $2500(P /A, 10%, 30) � $25,464 � �$737

A frequency distribution can be developed from the resulting PW values, and relevant statistics
can be computed. In this example the cumulative average PW after 10 trials is $2023; 40% of the
trials result in a negative PW. The minimum value simulated was �$737; the maximum value sim-
ulated was $6761. Of course, if this were an actual application, the number of trials would be much
larger, perhaps several thousand or more, and we would have considerably greater confidence in the
resulting statistics.

In this particular example there are relatively few random variables, the relationships are not
complex, and the variables are independent. Hence it is possible to compute the theoretical expected
value for the net present value. That is

E[PW] � E[A](P /A, 10%, E[N]) � E[P] (34)

where

E[A � 0.04($2400) � 0.08($2500) � . . . � 0.02($3300)

� $2848

E[N] � 0.05(25) � 0.10(26) � . . . � 0.05(35)

� 30

E[P] � $25,000

Thus,

E[PW] � $2848(P /A, 10%, 30) � $25,000 � $3170

We can expect, therefore, that the cumulative average PW will approach $3170 as the number of
trials increases. Although we can compute the theoretical mean, it is not possible in this case to
compute the theoretical distribution for the PW. However, an approximate distribution can be devel-
oped through simulation.
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TABLE 12 Example Simulation Problem: Input Data

Annual operating
savings (a)

Probability
(b)

Corresponding
random numbers

(c)
Project life

(d)
Probability

(e)

Corresponding
random numbers

(f)

$2400 0.04 01–04 25 0.05 01–05
2500 0.08 05–12 26 0.10 06–15
2600 0.10 13–22 27 0.10 16–25
2700 0.12 23–34 28 0.10 26–35
2800 0.14 35–48 29 0.10 36–45
2900 0.16 49–64 30 0.10 46–55
3000 0.16 65–80 31 0.10 56–65
3100 0.10 81–90 32 0.10 66–75
3200 0.08 91–98 33 0.10 76–85
3300 0.02 99–00 34 0.10 86–95

35 0.05 96–00
1.00 1.00

TABLE 13 Example Simulation Problem: Simulated Trials

Trial
Random
Number

Operating
Savings

Random
Number

Project
Life

(years)

Random
Number
Deviate

Initial
Cost

Present
Worth

Cumulative
Average

PW

1 09 $2500 52 30 0.464 $25,464 �$737 �$737
2 54 2900 80 33 0.137 25,137 3979 1621
3 42 2800 45 29 2.455 27,455 72 1105
4 01 2400 68 32 �0.323 24,677 �689 656
5 80 3000 59 31 �0.068 24,932 4904 1506
6 06 2500 48 30 0.296 25,269 �569 1160
7 06 2500 12 26 �0.288 24,712 �682 897
8 26 2700 35 28 0.060 24,940 1,426 963
9 57 2900 91 34 �2.526 22,474 6761 1607

10 79 3000 89 34 �0.531 24,469 5774 2023

7. OTHER APPROACHES FOR DEALING WITH THE UNCERTAIN/RISKY
FUTURE
As indicated at the beginning of this chapter, risk and uncertainty are inherent in the general problem
of resource allocation because all decisions depend on estimates about the noncertain future. Thus,
risk and uncertainty have occupied the attention of a great many theoreticians and practitioners. A
substantial number of approaches have been proposed, several of which were summarized earlier.
Now four additional approaches are briefly identified. The first three are widely used in industry,
despite certain important shortcomings; the fourth requires detailed discussion beyond the scope of
this text.

7.1. Increasing the Minimum Attractive Rate of Return

Some analysts advocate adjusting the minimum attractive rate of return to compensate for risky
investments, suggesting that, since the future is uncertain, stipulation of a minimum attractive rate of
return of, say, i � 	i will ensure that i will be earned in the long run. Since some investments will
not turn out as well as expected, they will be compensated for by the incremental ‘‘safety margin,’’
	i. This approach, however, fails to come to grips with the risk or uncertainty associated with
estimates for specific alternatives, and thus an element 	i in the minimum attractive rate of return
penalizes all alternatives equally.

7.2. Differentiating Rates of Return by Risk Class

Rather than building a safety margin into a single minimum attractive rate of return, some firms
establish several risk classes with separate standards for each class. For example, a firm may require
low-risk investments to yield at least 15% and medium-risk investments to yield at least 20%, and
it may define a minimum attractive rate of return of 25% for high-risk proposals. The analyst then
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judges which class a specific proposal belongs in, and the relevant minimum attractive rate of return
is used in the analysis. Although this approach is a step away from treating all alternatives equally,
it is less than satisfactory in that it fails to focus attention on the uncertainty associated with the
individual proposals. No two proposals have precisely the same degree of risk, and grouping alter-
natives by class obscures this point. Moreover, the attention of the decision maker should be directed
to the causes of uncertainty, that is, to the individual estimates.

7.3. Decreasing the Expected Project Life

Still another procedure frequently employed to compensate for uncertainty is to decrease the expected
project life. It is argued that estimates become less and less reliable as they occur further and further
into the future; thus shortening project life is equivalent to ignoring those distant, unreliable estimates.
Furthermore, distant consequences are more likely to be favorable than unfavorable; that is, distant
estimated cash flows are generally positive (resulting from net revenues) and estimated cash flows
near date zero are more likely to be negative (resulting from startup costs). Reducing expected project
life, however, has the effect of penalizing the proposal by precluding possible future benefits, thereby
allowing for risk in much the same way that increasing the minimum attractive rate of return penalizes
marginally attractive proposals. Again, this procedure is to be criticized on the basis that it obscures
uncertain estimates.

7.4. Utility Models

In essence, utility is a single metric on the unit interval denoting the degree of desirability of an item
or a quantity of items with respect to a completely defined collection of such items. Thus an item
or group of items with the greatest desirability would have a utility of, say, 100, and at a least
desirable item, a zero utility. All items and groups within the collection range between these extremes
in an ordered fashion. Amounts of monetary receipts and disbursements would provide a utility
function from 0 to 100. A monetary gamble would be reviewed in this theory as a linear combination
of the amount won and lost in the gamble, with the expected utility associated with winning. Once
a person’s utility function is derived, the theory of utility denotes how one should act in order to
remain consistent with his or her denoted goals. Accordingly, utility theory is a description of nor-
mative economic behavior based on several stated axioms.

A number of advocates of this theory have therefore recommended that utility functions be es-
tablished and economic risk analysis conducted with respect to this theory. That is, projects with the
greatest expected utility should be selected by rational economic decision makers. There are many
compelling features to this approach. However, it also involves the required development of the utility
function, which is not a simple task; the question of whose utility function should represent the firm;
and other perplexing problems. Also, it has been shown that current methods of risk cash flow analysis
do represent a reasonable and rational approximation of the utility theory approach. There are also
challenges to the axioms of existing theories of utility. Because of these and other detractions, the
utility theory approach has not enjoyed popularity among many practitioners.
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