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1. INTRODUCTION
Over the past few decades, human factors and ergonomics practitioners have increasingly been called
upon early in the system design and development process. Early input from all disciplines results in
better and more integrated designs as well as lower costs than if one or more disciplines finds that
changes are required later. Our goal as human factors and ergonomics practitioners should be to
provide substantive and well-supported input regarding the human(s), his or her interaction(s) with
the system, and the resulting total performance. Furthermore, we should be prepared to provide this
input from the earliest stages of system concept development and then throughout the entire system
or product life cycle.

To meet this challenge, many human factors and ergonomics tools and technologies have evolved
over the years to support early analysis and design. Two specific types of technologies are design
guidance (e.g., O’Hara et al. 1995; Boff et al. 1986) and high-fidelity rapid prototyping of user
interfaces (e.g., Dahl et al. 1995). Design guidance technologies, in the form of either handbooks or
computerized decision support systems, put selected portions of the human factors and ergonomics
knowledge base at the fingertips of the designer, often in a form tailored to a particular problem such
as nuclear power plant design or UNIX computer interface design. However, design guides have the
shortcoming that they do not often provide methods for making quantitative trade-offs in system
performance as a function of design. For example, design guides may tell us that a high-resolution
color display will be better than a black-and-white display, and they may even tell us the value in
terms of increased response time and reduced error rates. However, this type of guidance will rarely
provide good insight into the value of this improved element of the human’s performance to the
overall system’s performance. As such, design guidance has limited value for providing concrete
input to system-level performance prediction.

Rapid prototyping, on the other hand, supports analysis of how a specific design and task allo-
cation will affect human and system-level performance. The disadvantage of prototyping, as with all
human-subjects experimentation, is that it can be costly. In particular, prototypes of hardware-based
systems, such as aircraft and machinery, are very expensive to develop, particularly at early design
stages when there are many widely divergent design concepts. In spite of the expense, hardware and
software prototyping are important tools for the human factors practitioner, and their use is growing
in virtually every application area.

While these technologies are valuable to the human factors practitioner, what is often needed is
an integrating methodology that can extrapolate from the base of human factors and ergonomics data,
as reflected in design guides and the literature, in order to support system-level performance predic-
tions as a function of design alternatives. This methodology should also bind with rapid prototyping
and experimentation in a mutually supportive and iterative way. As has become the case in many
engineering disciplines, a prime candidate for this integrating methodology is computer modeling
and simulation.

Computer modeling of human behavior and performance is not a new endeavor. Computer models
of complex cognitive behavior have been around for over 20 years (e.g., Newell and Simon 1972)
and tools for computer modeling of task-level performance have been available since the 1970s (e.g.,
Wortman et al. 1978). However, two things have changed appreciably in the past decade that promote
the use of computer modeling and simulation of human performance as a standard tool for the
practitioner. First is the rapid increase in computer power and the associated development of easier-
to-use modeling tools. Individuals with an interest in predicting human performance through simu-
lation can select from a variety of computer-based tools (for a comprehensive list of these tools, see
McMillan et al. 1989). Second is the increased focus by the research community on the development
of predictive models of human performance rather than simply descriptive models. For example, the
GOMS model (Gray et al. 1993) represents the integration of research into a model for making
predictions of how humans will perform in a realistic task environment. Another example is the
research in cognitive workload that has been represented as computer algorithms (e.g., McCracken
and Aldrich 1984; Farmer et al. 1995). Given a description of the tasks and equipment with which
humans are engaged, these algorithms support assessment of when workload-related performance
problems are likely to occur and often include identification of the quantitative impact of those
problems on overall system performance (Hahler et al. 1991). These algorithms are particularly useful
when embedded as key components in computer simulation models of the tasks and the environment.

Perhaps the most powerful aspect of computer modeling and simulation is that it provides a
method through which the human factors and ergonomics team can step up to the table with the
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Figure 1 The Synergy between Modeling and Experimentation.

other engineering disciplines that also rely increasingly on quantitative computer models. What we
will discuss in this chapter are the methods through which the human factors and ergonomics com-
munity can contribute early to system design tradeoff decisions.

2. OBJECTIVES OF THIS CHAPTER
This chapter will discuss some existing computer tools for modeling and simulating human/system
performance. It is intended to provide the reader with:

1. An understanding of the types of human factors and ergonomics issues that can be addressed
with modeling and simulation

2. An understanding of some of the tools that are now available to assist the human factors and
ergonomics specialist in conducting model-based analyses

3. An appreciation of the level of expertise and effort that will be required to use these technol-
ogies

We begin this chapter with two caveats. First, we are not yet at a point where computer modeling
of human behavior allows sufficiently accurate predictions that no other analysis method (e.g., pro-
totyping) is likely to be needed. In early stages of system concept development, high-level modeling
of human–system interaction may be all that is possible. As the system moves through the design
process, human factors and ergonomics designers will often want to augment modeling and simulation
predictions with prototyping and experimentation. In addition to providing high-fidelity system per-
formance data, these data can be used to enhance and refine the models. This concept of human
performance modeling supporting and being supported by experimentation with human subjects is
represented in Figure 1. In essence, simulation provides the human factors and ergonomics practi-
tioner with a means of extending the knowledge base of human factors and of amplifying the ef-
fectiveness of limited experimentation.

Second, the technologies discussed here are evolving rapidly. We can be certain that (1) every
tool discussed is undergoing constant change and (2) new modeling tools are being developed. We
are discussing computer-based tools, and we expect the pace of change in these tools to mirror the
pace in other computer tools such as word processors and spreadsheets. These detailed discussions
of several of the modeling tools are included to facilitate a better understanding of human performance
modeling tools. We encourage the reader to contact citations in this chapter to assess the state of any
tool at that time.

3. THE TYPES OF QUESTIONS THAT ARE BEING ADDRESSED BY
HUMAN PERFORMANCE MODELS
Below are a few classes of problems to which human/system modeling has been applied:

• How long will it take a human or team of humans to perform a set of tasks as a function of
system design, task allocation, and individual capabilities?

• What are the trade-offs in performance for different combinations of design, task allocation,
and individual capability selections?

• What are the workload demands on the human as a function of system design and automation?
How will human performance and resulting system performance change as the demands of the
environment change? How many individuals are required on a team to ensure safe, successful
performance? How should tasks be allocated to optimize performance?

• How will environmental stressors such as heat, cold, and the use of drugs affect human–system
performance?
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The above is a sampling rather than an exhaustive list. The tools we discuss in this chapter are
inherently flexible, and we consistently discover that these tools can be used to solve problems that
the tool developers never conceived.

To assess the potential of simulation to answer questions, every potential human performance
modeling project should first determine the specific questions that the project is trying to answer.
Then conduct a critical assessment of what is important in the human–machine system being modeled.
This will define the required content and fidelity of the model. The questions that should be consid-
ered about the system include:

• Human performance representation: What time or duration of performance is important? How
is human performance initiated and what resolution of behavior is required? What aspects of
human performance, including task management, load management, and goal management, are
expected?

• Equipment representation: What equipment is used to accomplish the tasks? To what level of
functional and physical description can and should the equipment be represented? Is it operable
by more than one human or system component?

• Interface requirements: What information needs to be conveyed to the humans and when? Is
transformation of information required?

• Control requirements: What processes need to be controlled by the human and to what level of
resolution?

• Logical and physical constraints: How is performance supported through equipment operability
and procedural sequences? What alarms and alerts should be represented?

• Simulation driver: What makes the system function—the occurrence of well-defined events
(e.g., a procedure), the movement of time (e.g., the control of a vehicle), or a hybrid of both?

By defining the purpose of the model and then answering the above questions, the human factors
practitioner will get a sense of what is important in the system and therefore what may need to be
represented in a model. In using human performance models, perhaps the most significant task of
the human factors practitioner will be to determine what aspects of the human/machine system to
include in the model and what to leave out. Many modeling studies have failed because of the
inclusion of too many factors that, while a part of human–system performance, were not system
performance drivers. Consequently, the models become overly complex and expensive to develop. In
our experience, it is better to begin with a model with too few aspects of the system represented and
then add to it than to begin a modeling project by trying to model everything. The first approach
may succeed, while the second is often doomed.

Second, the human factors practitioner should consider the measures of effectiveness of the system
that the model should be designed to predict. In building the model, it is important to remember that
the goal of the model will be to predict measures of human performance that will impact system
performance. Therefore, a clear definition of what is important to performance is necessary. The
following aspects of performance measures should be considered:

• Success criteria: What operational success measures are important to the system? Can these be
stated in relative terms, or must they be measured in absolute terms?

• Range of performance to be studied: What are the experimental variables that are to be explored
by the model? How important is it to establish a range of performance for each experimental
condition as a function of the stochastic (i.e., random) behavior of the system?

By asking the above questions prior to beginning a modeling project, the human factors practi-
tioner can develop a better sense of what is important in the system in terms of both aspects that
drive system performance as well as the measures of effectiveness that are truly of interest. Then and
only then can a human performance modeling project begin with a reasonable hope of success.

The remainder of this chapter will discuss two classes of modeling tools for human performance
simulation. After discussing each class of modeling tool, we will provide specific examples of a
modeling tool and then provide case studies about how these tools have been used in answering real
human performance questions.

4. THE TWO CLASSES OF SIMULATION MODELS OF HUMAN–SYSTEM
PERFORMANCE
Human performance can be highly complex and involve many types of processes and behavior. Over
the years, many models have been developed that predict sensory processes (e.g., Gawron et al.
1983), aspects of human cognition (e.g., Newell 1990), and human motor response (e.g., Fitts’s law).
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Figure 2 The Concept of Reductionist Models of Human Performance.

The current literature in the areas of cognitive engineering, error analysis, and human–computer
interaction contains many models, descriptions, methodologies, metaphors, and functional analogies.
However, in this chapter we are not focusing on the models of these individual elements of human
behavior but rather on models that can be used to describe human performance in systems. These
human/system performance models typically include some of these elemental behavioral models as
components but provide a structural framework that allows them to be put in the context of human
performance of tasks in systems.

We separate the world of human–system performance models into two general categories: reduc-
tionist models and first principle models. Reductionist models use human/system task sequences as
the primary organizing structure, as shown in Figure 2. The individual models of human behavior
for each task or task element are connected to this task-sequencing structure. We refer to it as
reductionist because the process of modeling human behavior involves taking the larger aspects of
human/system behavior (e.g., ‘‘perform the mission’’) and then successively reducing them to smaller
elements of behavior (e.g., ‘‘perform the function,’’ ‘‘perform the tasks’’). This continues until a level
of decomposition is reached at which reasonable estimates of human performance for the task ele-
ments can be made. One can also think of this as a top-down approach to modeling human/system
performance. The example of this type of modeling that we will use in this chapter will be task
network modeling, where the basis of the human–system model is a task analysis.

First-principle models of human behavior are structured around an organizing framework that
represents the underlying goals and principles of human performance. Tools that support first-principle
modeling of human behavior have structures embedded in them that represent elemental aspects of
the human. For example, these models might directly represent processes such as goal-seeking be-
havior, task scheduling, sensation and perception, cognition, and motor output. To use tools that
support first-principle modeling, one must describe how the system and environment interact with
the modeled human processes. An example of a very simple structure that supports this type of
modeling environment is presented in Figure 3. The example we will use of a tool designed to
support this type of modeling is the Man–Machine Integrated Design and Analysis System (MIDAS).

It is worth noting that these two modeling strategies are not mutually exclusive and, in fact, can
be mutually supportive in any given modeling project. Often, when one is modeling using a reduc-
tionist approach, one needs models of basic human behavior to represent behavioral phenomena
accurately and therefore must draw on elements of first-principle models. Alternatively, when one is
modeling human–system performance using a first-principled approach, some aspects of human–
system performance and interrelationships between tasks may be more easily defined using a reduc-
tionist approach. Either class of model has been used to model individual and team performance. It
is also worth noting that recent advances in human performance modeling tool development are
blurring the distinctions between these two classes (e.g., Hoagland et al. 2001; LaVine 2000). In-
creased emphasis on interoperability between models has caused researchers and developers to focus
on integrating reductionist and first-principle models.
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Figure 3 An Example of the Concept of First-Principle Models of Human Performance.
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Figure 4 An Example of a Task Network Model Representing a Human Dialing a Telephone.

5. AN EXAMPLE OF A REDUCTIONIST APPROACH: TASK NETWORK
MODELING
One technology that has proven useful for predicting human-system performance is task network
modeling. In a task network model, human performance is decomposed into tasks. The fidelity of
this decomposition can be selective, with some functions being decomposed several levels and others
just one or two. This is, in human factors engineering terms, the task analysis. The sequence of tasks
is defined by constructing a task network. This concept is illustrated in Figure 4, which presents a
sample task network for dialing a telephone.

Task network modeling is an approach to modeling human performance in complex systems that
has evolved for several reasons. First, it is a reasonable means for extending the human factors
staple—the task analysis. Task analyses organized by task sequence are the basis for the task network
model. Second, task network models can include sophisticated submodels of the system hardware
and software to create a closed-loop representation of relevant aspects of the human/machine system.
Third, task network modeling is relatively easy to use and understand. Recent advancements in task
network modeling technology have made this technology more accessible to human factors practi-
tioners. Finally, task network modeling can provide efficient, valid, and useful input to many types
of issues. With a task network model, the human factors engineer can examine a design (e.g., control
panel redesign) and address questions such as ‘‘How much longer will it take to perform this pro-
cedure?’’ and ‘‘Will there be an increase in the error rate?’’ Generally, task network models can be
developed in less time and with substantially less effort than would be required if a prototype were
developed and human subjects used. However, as stated before, for revolutionary designs, modeling
may not alleviate the need for empirical data collection.

Task network models of human performance have been subjected to validation studies with fa-
vorable results (e.g., Lawless et al. 1995; However, as with any modeling approach, the real level at
which validation must be considered is with respect to a particular model, not with respect to the
general approach.

5.1. What Goes into a Task Network Model?

To represent complex, dynamic human/system behavior, many aspects of the system may need to
be modeled in addition to simply task lists and sequence. In this subsection, we will use the task
network modeling tool Micro Saint as an example.
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Figure 5 The Main Window in Micro Saint for Task Network Construction and Viewing.

The basic ingredient of a Micro Saint task network model is the task analysis as represented by
a network or series of networks. The level of system decomposition (i.e., how finely we decompose
the tasks) and the amount of the system that is simulated depends on the particular problem. For
example, in a power plant model, one can create separate networks for each of the operators and one
for the power plant itself. While the networks may be independent, performance of the tasks can be
interrelated through shared variables. The relationships among different components of the system,
represented by different segments of the network, can then communicate through changes in these
shared variables. For example, when an operator manipulates a control, this may initiate an open
valve task in a network representing the plant. This could ripple through to a network representing
other operators and subsystems and their response to the open valve.

This basic task network is built in Micro Saint via a point-and-click drawing palette. Through
this environment, the user creates a network as shown in Figure 5. Networks can be embedded within
networks, allowing for hierarchical construction. In addition, the shape of the nodes on the diagram
can be chosen in order to represent specific types of activity.

To reflect complex task behavior and interrelationships, more detailed characteristics of the tasks
need to be defined. By double clicking on a task, the user opens up the task description window, as
shown in Figure 6. Below are descriptions of each of the items on this window.

Task number: An arbitrary number for task referencing.
Task name: any name used to identify the task.
Time distribution: Micro Saint will conduct Monte Carlo simulations with task performance times

sampled from a distribution as defined by this option (e.g., normal, beta, exponential).
Mean time: This parameter defines average task performance time for this task. This can be a

number, equation, or algorithm, as can all values in the fields described below.
Standard deviation: Standard deviation of task performance time.
Release condition: Data in this field will determine when a task begins executing. For example,

a condition stating that this task will not start before an operator is available might be rep-
resented by a release condition such as the following:

operator � � 1
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Figure 6 The User Interface in Micro Saint for Providing Input on a Task.

In other words, there must be at least one operator available for the task to commence. If all
operators were busy, the value of the variable operator would equal zero until a task is com-
pleted, at which time an operator becomes available. This task would wait until the condition
was true before beginning execution, which would probably occur as a result of the operator
completing the task he or she is currently performing.

Beginning effect: This field permits the user to define how the system will change as a result of
the commencement of this task. For example, if this task used an operator that other tasks
might need, we could set the following condition to show that the operator is unavailable
while he performed this task:

operator :� operator � 1

Assignment and modification of variables in beginning effects are one key way in which tasks
are interrelated.

Launch effect: Similar to a task beginning effect but used to launch high-resolution animation of
the task.

Ending effect: This field permits the definition of how the system will change as a result of the
completion of this task. From the previous example, when this task was complete and the
operator became available, we could set the ending effect as follows

operator :� operator � 1

at which point another task waiting for an operator to become available could begin. Ending
effects are another key way in which tasks can be interrelated through the assignment and
modification of variables.

Another notable aspect of the task network diagram window shown in Figure 5 is the diamond-
shaped icons that follow some tasks. These are present every time more than one path out of a task
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Figure 7 The User Interface in Micro Saint for Defining Task Branching Decision Logic.

is drawn. In a task network model, this means that several tasks might commence at the completion
of this task. Often this represents a human decision-making process. In that case, the branches align
to potential courses of action that the modeled human could select. To define the decision logic,
the user of Micro Saint would double-click on the diamond to open up a window, as shown in
Figure 7.

There are only three general types of decisions to model:

• Probabilistic: In probabilistic decisions, the human will begin one of several tasks based on a
random draw weighted by the probabilistic branch value. These weightings can be dynamically
calculated to represent the current context of the decision. For example, this decision type might
be used to represent human error likelihoods and would be connected to the subsequent tasks
that would be performed.

• Tactical: In tactical decisions, the human will begin one of several tasks based on the branch
with the highest ‘‘value.’’ This could be used to model the many types of rule-based decisions
that humans make, as illustrated in Figure 7.

• Multiple: This would be used to begin several tasks at the completion of this task, such as when
one human issues a command that begins other crew members’ activities.

The fields in Figure 7 labeled ‘‘Routing Condition’’ represent the values associated with each
branch. The values can be numbers, expressions, or complicated algorithms defining the probability
(for probabilistic branches) or the desirability (for tactical and multiple branches) of taking a particular
branch in the network. Again, any value on this screen can not simply be numbers but also include
variables, algebraic expressions, logical expressions, or groups of algebraic and logical expressions
that would essentially form a subroutine. As the model executes, Micro Saint includes a parser that
evaluates the expressions included in the branching logic when it is encountered in the task network
flow. This results in a dynamic network in which the flow through the tasks can be controlled with
variables that represent equipment state, scenario context, or the task loading of the humans in the
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Figure 8 An Example of a Task Network Animation during Model Execution in Micro Saint.

system, to name a few examples. It is the power of this parser that provides many task network
models the ability to address complex problems.

There are other aspects of task network model development. Some items are defining a simulation
scenario, defining continuous processes within the model, and defining queues in front of tasks.
Further details of these features can be obtained from the Micro Saint User’s Guide (Micro Analysis
and Design 1999).

As a model is being developed and debugged, the user can execute the model to test it and collect
data. There are several display modes, reflecting differing levels of information provided to the user
during execution. In the most detailed mode, the simulation pauses after every simulated task. Another
mode shows the user nothing about the simulation except when it is completed. There is also a model
animation mode in which the task network is drawn on the screen and tasks that are currently
executing are highlighted. In the model animation mode, the analyst can get a very clear picture of
what events are occurring in what sequence in the model. Figure 8 presents a sample display during
model animation.

Once a model is executed and data are collected, the analyst has a number of alternatives for data
analysis. The data created during a model execution can be reviewed in the model analysis environ-
ment or exported to statistical and graphics packages.

The above discussion should indicate that task network modeling is a relatively straightforward
concept that is a logical extension of task and systems analysis. Task network modeling is an evo-
lution, not a revolution, to the human factors practitioner. As stated before, the basis for task network
models of human performance is the mainstay of human engineering analysis—the task analysis.
Much of the information discussed is generally included in the task analysis. Task network modeling,
however, greatly increases the power of task analysis since the ability to simulate a task network
with a computer permits prediction of human performance, rather than simply the description of
human performance that a task analysis provides. What may not be as apparent, however, is the
power of task network modeling as a means for modeling human performance in systems. Simply
describing the systems activities in this step-by-step manner allows complex models of the system
to be developed where the human’s interaction with the system can be represented in a closed-loop
manner.
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The above discussion, in addition to being an introduction to the concepts, is also intended to
support the argument that task network modeling is a mature technology ready for application in a
wide range of problem domains.

5.2. An Example of a Task Network Model of a Process Control Operator

This simple hypothetical example illustrates how many of the basic concepts of task network mod-
eling can be applied to studying human performance in a process control environment. It is intended
to illustrate many of the concepts described above.

The simple human task that we want to model is of an operator responding to an annunciator.
The procedure requires that the operator compare readings on two meters. Based on the relative
values of these readings, the operator must either open or close a valve until the values on the two
meters are nearly the same. The task network in Figure 9 represents the operator activities for this
model. Also, to allow the study of the effects of different plant dynamics (e.g., control lags), a simple
one-node model of the line in which the valve is being opened is included in Figure 10.

The operator portion of the model will run the monitor panels task until the values of the variables
meter1 and meter2 are different. The simulation could begin with these values being equal and then
precipitate a change in values based on what is referred to as a scenario event (e.g., an event rep-
resenting the effects of a line break on plant state). This event could be as simple as:

meter1 :� meter1 � 2.0

or as complex as an expression defining the change in the meter as a function of line break size,
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flow rates, and so on. An issue that consistently arises in model construction is how complex the
plant system model should be. If the problem under study is purely operator performance, simple
models will usually suffice. However, if overall plant behavior is of interest, then the models of plant
dynamics, such as meter values, are more important. Again, we recommend the ‘‘start simple’’ ap-
proach whenever possible.

When the transient occurs and the values of meter1 and meter2 start to diverge, the annunciator
signal will trigger. This annunciator would be triggered in the plant portion of the model by a task-
ending effect such as:

if meter1 �� meter2 then annunciator :� 1

Once the plant model sets the value of the variable annunciator to 1, the operator will begin to move
to the appropriate board. Then the operator will continue through a loop to check the values for
meter1 and meter2 and either open valve1, close valve1, or make no change. The determination of
whether to make a control input is determined by the difference in values between the two meters.
If the value is less than the acceptable threshold, then the operator would open the valve further. If
the value is greater than the threshold, then the operator would close the valve. This opening and
closing of the valve would be represented by changes in the value of the variable valve1 as a task-
ending effect of the tasks open valve1 and close valve1. In this simple model, operators do not
consider rates of change in values for meter1 and therefore would get into an operator-induced
oscillation if there were any response lag. A more sophisticated operator model could use rates of
change in the value for meter1 in deciding whether to open or close valves.

Again, this is a very small model reflecting simple operator activity on one control via a review
of two displays. However, it illustrates how large models of operator teams looking at numerous
controls and manipulating many displays could be built via the same building blocks used in this
model. The central concepts of a task network and shared variable reflecting human–system dynamics
remain the same.

Given a task network model of a process control operator in a current control room, how might
the model be modified to address human-centered design questions? Some examples are:

1. Modifying task times based on changes in the time required to access a new display
2. Modifying task times and accuracies based upon changes in the content and format of displays
3. Changing task sequence, eliminating tasks, and /or adding tasks based upon changes in plant

procedures
4. Changing allocation of tasks and ensuing task sequence based upon reallocation of tasks among

operators
5. Changing task times and accuracies based upon stressors such as sleep loss or the effects of

circadian rhythm

The above is not intended as a definitive list of all the ways that these models may be used to study
design or operations concepts, but it should illustrate how these models can be used to address design
and operational issues.

5.3. Case Studies in the Use of Task Network Modeling to Address Specific Design
Issues

In this section, we will examine two case studies in the use of task network simulation for studying
human performance issues. The first case study explores how task network modeling can be used to
assess task allocation issues in a cognitively demanding environment. The second example explores
how task network modeling has been used to extend laboratory and field research on human per-
formance under stress to new task environments.

We should state clearly that these examples are intended to be representative of the types of issues
that task network modeling can address, as well as approaches to modeling human performance with
respect to these issues. They are not intended to be comprehensive with respect to either the issues
that might be addressed or the possible techniques that the human factors practitioner might apply.
Simulation modeling is a technology whose application leaves much room for creativity on the part
of the human factors practitioner with respect to application areas and methods. These two case
studies are representative.

5.4. Using Task Network Modeling to Evaluate Crew Workload

Perhaps the greatest contributor to human error in many systems is the extensive workload placed
upon the human operator. The inability of the operator to cope effectively with all of his or her
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information and responsibilities contributes to many accidents and inefficiencies. In recognition of
this problem, new automation technologies have been introduced to reduce workload during periods
of high stress. Some of these technologies are in the form of enhanced controls and displays, some
are in the form of tools that push information to the operator and alert the operator in order to focus
attention, and still others consist of adaptive tools that take over tasks when they sense that the
operator is overloaded. Unfortunately, these technical solutions often introduce new tasks to be per-
formed that affect the visual, auditory, and /or psychomotor workload of the operators.

Recently, new concepts in crew coordination have focused on better management of human work-
load. This area shows tremendous promise and is benefiting from efforts of human factors researchers.
However, their efforts are hindered because there are limited opportunities to examine empirically
the performance of different combinations of equipment and crew composition in a realistic scenario
or context. Additionally, high workload is not typically caused by a single task but by situations in
which multiple tasks must be performed or managed simultaneously. It is not simply the quantity of
tasks that can lead to overload, but also the composition of those tasks. For example, two cognitive
tasks being performed in parallel are much more effortful than a simple motor task and an oral
communication task being performed together. The occurrence of these situations will not typically
be discovered through normal human engineering task analysis or subjective workload analysis until
there is a system to be tested. That is often too late to influence design.

To rectify this problem, there has been a significant amount of recent research and development
aimed at human workload prediction models. Predictive models allow the designers of a system to
estimate operator workload without human subjects experimentation. From this and other research, a
solid theoretical basis for human workload prediction has evolved, as is described in Wickens (1989).

This section discusses a study using task network modeling to predict the impact of task allocation
on human workload. While these examples are posed in the context of the design of a military
system, the same techniques have been used in nonmilitary applications such as process control and
user–computer interface design.

5.4.1. Modeling the Workload of a Future Command and Control Process

The Army command and control (C2) community is concerned with how new information, technol-
ogy, and organizational changes projected for tomorrow’s battlefield will impact soldier tasks and
workload. To address this concern, an initiative was taken to model soldier performance under current
and future operational conditions. In this way, the impact of performance differences could be quan-
titatively assessed so that equipment and doctrine design could be influenced in a timely and effective
manner.

In one C2 project, the primary concern was to determine how tasks should be allocated and
automated such that a C2 team could evaluate all the relevant data and make decisions within an
environment with particularly high time pressure. Specifically, the effort was to address the following
key questions:

• How many crew members do you need?
• How do you divide tasks among jobs?
• How does decision authority flow?
• Can the crew meet decision time line requirements?
• Is needed information usable and accessible?

We used task network modeling to study crew member, task and scenario combinations in order
to examine these questions.

Figure 11 shows the top level diagram of the task network. Essentially, the crew members receive
and monitor information about the system and the environment until an event occurs that pushes
them out of the 10000 and 20000 networks into either a series of planning tasks, and /or a series of
evaluation, decision, direction, and execution tasks. The purpose of the planning task is to update
tactical battle plans based on new information received from the system or the environment. Receipt
of new intelligence data about the enemy’s intention or capability is an example of an event that
would cause the crew members to undertake planning tasks. Similarly, receipt of information from
the system about resource limitations might trigger the crew members to proceed down the alternative
path (through evaluate to execute). Specifically, limited resources might cause the crew members to
evaluate whether the engagement is proceeding appropriately (30000), decide how to adjust system
parameters (40000), direct the appropriate response to the correct level of command (50000), and
then execute the order (60000). Upon completion, the crew members would return to monitoring the
system and situation.
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Each of the rectangles in the task network shown in Figure 11 actually consists of a network of
tasks. An example of the tasks that belong to Network 10000, receive and monitor situation infor-
mation, is shown in Figure 12. As described under Figure 7 of this chapter, the tasks in Network
10000 are linked by probabilistic and tactical decisions.

Each of the tasks in the C2 task network is associated with several items of human performance
data. These include:
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• Task performance time: These data consist of a mean, standard deviation, and distribution. The
data were collected from a combination of three sources: (1) human factors literature (e.g.,
Fitts’s Law); (2) empirical studies during operator-in-the-loop simulator exercises; and (3) sub-
ject matter experts.

• Branching logic: While the task network indicates a general process flow, this particular model
was designed to respond to scenario events. Because of that design decision, each task includes
logic to determine the following task. For example, if the scenario is very intense and multiple
target tracks are available, the crew members will follow a different task flow than if they were
performing routine system checks.

• Release rules: Logic controlling the number and types of parallel tasks each crew member can
perform are contained in each task’s release condition.

Since one purpose of the model was to examine various task-allocation strategies, the model was
designed to incorporate several measures of crew member workload. The basis of this technique is
an assumption that excessive human workload is not usually caused by one particular task required
of the operator. Rather, the human having to perform several tasks simultaneously leads to overload.
Since the factors that cause this type of workload are intricately linked to these dynamic aspects of
the human’s task requirements, task network modeling provides a good basis for studying how task
allocation and sequencing can affect operator workload.

However, task network modeling is not inherently a model of human workload. The only relevant
output common to all task network models is the time required to perform a set of tasks and the
sequence in which the tasks are performed. Time information alone would suffice for some workload-
evaluation techniques, such as Siegel and Wolf (1969), whereby workload is estimated by comparing
the time available to perform a group of tasks to the time required to perform the tasks. Time available
is driven by system performance needs, and time required can be computed with a task network
model. However, it has long been recognized that this simplistic analysis misses many aspects of the
human’s tasks that influence both perceived workload as well as ensuing performance. At the very
least, this approach misses the fact that some pairs of tasks can be performed in combination better
than other pairs of tasks.

One of the most promising theories of operator workload, which is consistent with task network
modeling, is the multiple resource theory proposed by Wickens (e.g., Wickens et al. 1983). Simply
stated, the multiple-resource theory suggests that humans have several different resources that can be
tapped simultaneously. Depending upon the nature of the information-processing tasks required of a
human, these resources would have to process information sequentially (if different tasks require the
same types of resources) or possibly in parallel (if different tasks required different types of re-
sources). There are many versions of this multiple-resource theory in workload literature (e.g., Mc-
Cracken and Aldrich: Bierbaum et al. 1989; North and Riley 1989; Little et al. 1993; Knapp et al.
1999). In this chapter, we will provide a discussion of the underlying methodology of the basic theory.

Multiple-resource workload theory is implemented in a task model in a fairly straightforward
manner. First, each task in the task network is characterized by the workload demand required in
each human resource, often referred to as a workload channel. Examples of commonly used channels
include auditory, visual, cognitive, and psychomotor. Particular implementations of the theory vary in
the channels that are included and the fidelity with which each channel is measured (high, medium,
low vs. seven-point scale). In fact, Bierbaum et al. 1989 present reliable benchmark scales for deter-
mining demand for each channel. As an example, the scale for visual demand is presented in Figure 13.

Similar scales have been developed for the auditory, cognitive, and psychomotor channels. With
this approach, each operator task can be characterized as requiring some amount of each of the four
kinds of resources, as represented by a value between one and seven. All operator tasks can be
analyzed with respect to these demands and values assigned accordingly.

In performing a set of tasks pursuant to a common goal (e.g., engage an enemy target), crew
members frequently must perform several tasks simultaneously, or at least nearly so. For example,
they may be required to monitor a communication network while visually searching a display for
target track. Given this, the workload literature indicates that the crew member may either accept the
increased workload (with some risk of performance degrading) or begin dumping tasks perceived as
less important. To factor these two issues into task network simulations, two approaches can be
incorporated: (1) evaluate combined operator workload demands for tasks that are being performed
concurrently, and /or (2) determine when the operator would begin dumping tasks due to overload.

During a task network simulation, the model of the crew may indicate they are required to perform
several tasks simultaneously. The task network model evaluates total attentional demands for each
human resource (e.g., visual, auditory, psychomotor, and cognitive) by combining the attentional
demands across all tasks that are being performed simultaneously. This combination leads to an
overall workload demand score for each crewmember.
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Figure 13 An Example of a Visual Workload Scale.

To implement this approach in Micro Saint, the task beginning effect can be used to increment
variables that represent the current workload score in each resource. Then, while the tasks are being
performed, these variables track attentional demands. When the tasks are completed, the task ending
effects can decrement the values of these variables accordingly. Therefore, if these workload variables
were recorded and then plotted as the model runs, the output would look something like what is
shown in Figure 14. This result can be used to identify points of high workload throughout the
scenario being modeled. The human factors practitioner can then review the tasks that led to the
points of high workload and determine whether they should be reallocated or redesigned in order to
alleviate the peak. This is a common approach to modeling workload.

Once the task networks were verified with knowledgeable crewmembers, they became part of the
human factors team’s analytical test bed. Figure 15 shows the overall method that we used to examine
aspects of crew member performance across a wide variety of operational scenarios and crew con-
figuration concepts.

The center of this diagram, labeled task network, represents the tasks that the crew performs as
we just described them. The network itself, representing the flow of the tasks, does not change
between model runs. Rather, the model has been parameterized so that an event scenario stimulates
the network. The left side of the diagram illustrates the types of data that are used to drive the task
network model. In this case, those data include crew configurations, or allocations of tasks to different
crew members and automation devices, as well as scenario events. The scenario events represent an
externally generated time-ordered list of the events that trigger the crew members to perform tasks
in the task network. The right side of Figure 15 represents the types of outputs that can be produced
from this task network model. One of the primary outputs is a crew member workload graph, such
as that shown in Figure 14.

5.4.2. Extensions of This Approach to Simulating Crew Mental Workload to Other
Environments

The workload-analysis methodology described above has recently been developed into a stand-alone
task network modeling tool by the Army Research Laboratory (ARL) Human Research and Engi-
neering Directorate (HRED), as part of the Improved Performance Research Integration Tool (IM-
PRINT) (Allender et al. 1994; Archer and Adkins 1999). IMPRINT integrates task network modeling
software with features to support specifically the multiple-resource theory of workload discussed
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Figure 14 An Example Workload Output from a Task Network Model.
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Figure 16 Example of Model Predictions of Operator Utilization over Time.

above. It provides the human factors practitioner with an environment that supports the analysis of
task assignment to crewmembers based on four factors:

1. Workload of crew members: Tasks should be assigned to minimize the amount of time crew
members will spend in situations of excessive workload.

2. Time performance requirements: Tasks must be assigned and /or sequenced so that they are
completed within the available time. This consideration is essential because time constraints
often will drive the need to perform several tasks simultaneously.

3. Likelihood of successful performance and consequences of failure: Tasks must be assigned
and /or sequenced so that they can be completed within a specified accuracy measure.

4. Access to controls and displays: Tasks cannot be assigned to crew members who do not have
access to the necessary controls and displays.

Of course, there are numerous theoretical questions regarding this simplistic approach to assessing
workload in an operational environment. However, even the use of this simple approach has been
shown to provide useful insight during design. For example, in a study conducted by the Army
(Allender 1995), a three-man crew design was evaluated using a task network model. The three-man
model was constructed using data from a prototype four-man system. From this model-based analysis,
the three-man design was found to be unworkable . Later, human subjects experimentation verified
that the model’s workload predictions were sufficiently accurate to point the design team in a valid
direction.

Finally, ARL HRED has developed another custom software package named WinCrew (Plott
1995). It includes capabilities, also available in an advanced version of IMPRINT, to implement more
refined methods of predicting workload. WinCrew overlays the W/INDEX manifestation of the mul-
tiple resource theory of workload (Boettcher et al. 1989) into a task network-based environment. In
addition to a better estimate of workload, WinCrew is unique in that it has built-in constructs for
simulating workload management strategies that operators would employ to accommodate points of
high operator workload. The ultimate result of simulating the workload management strategies is that
the operator task network being modeled is dynamic. In other words, the task sequence, assignments
to operators, and individual task performance may change in response to excessive operator workload
as the task network model executes. These changes may be as simple as one operator handing tasks
off to another operator to reduce workload to an acceptable level or as complex as the operator
beginning to time share tasks in order to complete all the assigned tasks, potentially task time and /
or accuracy. Ultimately, the tool provides an estimate of system-level performance as a result of these
realistic workload management strategies. This innovation in modeling provides greater fidelity in
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efforts that model human behavior in the context of system performance, particularly in high-
workload environments such as complex system control and management.

5.5. Using Task Network Modeling as a Means of Extending Research Findings on
Human Performance under Stress to New Task Environments

Task network modeling was used by LaVine et al. (1995) to extend laboratory data and field data
collected on one set of human tasks to predicting performance on similar tasks. The problem of
extending laboratory or field human performance data to other tasks has plagued the human engi-
neering community for years. We intuitively know that human performance data can be used to
predict performance for similar tasks. However, often the task whose performance we want to predict
is similar in some ways but different in others. The approach described below uses a skill taxonomy
to quantify task similarity and therefore provides a means for determining how other tasks will be
affected when exposed to a common stressor on human performance. Once functional relationships
are defined between a skill type and a stressor, task network modeling is used to determine the effect
of the stressor on performance of a complex task that simultaneously uses many of these skills.

The specific approach below is being used by the U.S. Army to predict crew performance deg-
radation as a function of a variety of stressors. It not intended to represent a universally acceptable
taxonomy for simulating human response to stress. The selection of the best taxonomy would depend
upon the particular tasks and stressors being studied. What this example is intended to illustrate is
another way that task network modeling can be used to predict human performance by making a
series of reasonable assumptions that can be played together in a model for the purpose of making
predictions that would be impossible to make otherwise.

The methodology for predicting human performance degradation as a function of stressors consists
of three parts: (1) a taxonomy for classifying tasks according to basic human skills, (2) degradation
functions for each skill type for each stressor, and (3) task network models for the human-based
system whose performance is being predicted. Conceptually, either laboratory or field data can be
used to develop links between a human performance stressor (e.g., heat, fatigue) and basic human
skills. By selecting a skills taxonomy that is sufficiently discriminating to make this assumption
reasonable, one can assume that the effects of the stressor on all tasks involving the skill will be
approximately the same. The links between the level of a stressor (e.g., fatigue) and resulting skill
performance (e.g., the expected task time increase from fatigue) are defined mathematically as the
degradation function. The task network model is the means for linking these back to complex human/
system performance.

5.5.1. The Taxonomy

The basic premise behind the taxonomy is that the tasks that humans perform can be broken down
into basic human skills or atomic tasks (Roth 1992). The taxonomy used by Roth consists of five
skill types: attention, perception, psychomotor, physical, and cognitive skills. These taxonomic skills
are described by Roth as follows:

1. Attention: The ability to attend actively to a stimulus complex for extended periods of time in
order to detect specified changes or classes of changes that indicate the occurrence of some
phenomenon that is critical to task performance.

2. Perception: The ability to detect and categorize specific stimulus patterns embedded in a stim-
ulus complex.

3. Psychomotor: The ability to maintain one or more characteristics of a situation within a set of
defined conditions over a period of time, either by direct manipulation or by manipulation of
controls that cause changes in the characteristics.

4. Physical: The ability to accomplish sustained, effortful muscular work.
5. Cognitive: The ability to apply concepts and rules to information from the environment and

from memory in order to select or generate a course of action or a plan. This includes com-
municating the course of action or plan to others.

These five skills covered most of the tasks that were of interest to the Army for this study and still
provided a manageable number of categories for an analyst to use.

5.5.2. Degradation Functions

The degradation functions quantitatively link skill performance to the level of a stressor. The deg-
radation functions can be developed from any data source, including standard test batteries or actual
human tasks. Through statistical analysis, one can build skill-degradation functions for each taxon.
These functions map the performance decrement expected on a skill based on the parameters of the
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Human Skills from the Taxonomy.

performance-shaping factor (e.g., time since sleep). An example of these functions is presented in
Figure 17.

5.5.2.1. Incorporating the Degradation Functions into Task Network Models to Predict Overall
Human/System Performance Degradation The key to making this approach useful to predicting
complex human performance is the task network model of the new task. In the task network model
of the human’s activities, all tasks are defined with respect to the percentage of each skill required
from the taxonomy. For example, the following are ratings for tasks faced by a console operator
responding to telephone contacts:

• Detect ring—50% attention, 50% perception
• Select menu item using a mouse—40% attention, 60% psychomotor
• Interpret customer’s request for information—100% cognitive

In building the task network model, one can build functions to degrade a specific task’s perform-
ance through an arithmetic weighting of skill-degradation multipliers that are derived from the deg-
radation functions. For example, if the fatigue parameter was time since sleep and the value of that
parameter was 36 hours since sleep, the task time performance multipliers would be as follows in
the example above:

• Attention performance multiplier � 0.82
• Perception performance multiplier � 0.808
• Cognition performance multiplier � 0.856
• Psychomotor performance multiplier � 0.784
• Physical performance multiplier � 0.727

Based upon these multipliers and the above task weightings, the specific task effects would be:

• Detect ring—50% attention, 50% perception

Task multiplier � 0.5 � 0.82 � 0.5 � 0.808 � 0.814

• Select menu item using a mouse—40% attention, 60% psychomotor

Task multiplier � 0.4 � 0.82 � 0.6 � 0.784 � 0.7984

• Interpret customer’s request for information—100% cognitive

Task multiplier � 0.856
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Figure 18 Frequency Distribution of Expected Human Performance as a Function of Time Since
Sleep That Was Derived Using Task Network Modeling.

In a model of the complex tasks examined by LaVine et al. (1995), the task networks consisted
of several dozen or even several hundred tasks. Through the approach described above, each task in
a model exhibited a unique response to a stressor depending upon the particular skills that it required.
The task network model then provided the means for relating the individual task performance to
overall human/system performance as a function of stressor level (e.g., the time to perform a complex
series of tasks involving decision making and error correction). Through this type of analysis, LaVine
et al. were able to develop curves such as that shown in Figure 18 relating human performance to a
stressor. These relationships would have been virtually impossible to develop experimentally.

Again, there were a number of simplifying assumptions that were made in this research. However,
by being willing to accept these assumptions, LaVine et al. were able to characterize how complex
human/system performance would be affected by a variety of stressors over a wide range in a
relatively short time. They were thus able to estimate the effects of stressors that would have otherwise
been pure guesswork.

5.6. Summary of Examples of Task Network Modeling of Human–System Performance

Once again, the above are intended to serve as examples, not as a catalogue of problems or approaches
that are appropriate for task network modeling. Task network modeling is an approach to extend task
and systems analysis to make predictions of human system performance. The creative human factors
and ergonomics practitioner will find many other useful applications and approaches.

6. AN EXAMPLE OF A FIRST-PRINCIPLED APPROACH TO HUMAN/
SYSTEM PERFORMANCE MODELING: THE MAN MACHINE INTEGRATED
DESIGN SYSTEM (MIDAS)
The other fundamental approach to modeling human performance is based upon the mechanisms that
underlie and cause human behavior. Since this approach is based on fundamental principles of the
human and his or her interaction with the system and environment, we have designated them first-
principle models. By integrating these models with models of the system and environment, the human
factors specialist can predict the full behavior of large-scale interactive human–machine systems. The
Man–Machine Integrated Design and Analysis System (MIDAS) follows in the tradition of integrated,
first-principled models of human performance such as PROCRU (Baron et al. (1980) in that the
modeling framework provides models of emergent human behavior based on elementary models of
human behaviors such as perception, attention, working memory, and decision making. In the oper-
ation of these elementary models, MIDAS shares some of the characteristics of the task network
approach. However, MIDAS is focused around an integrated architecture where micromodels of
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human performance feed forward and feedback to the other constituent models in the human system
rather than being linked primarily to the human’s activities as in task network models.

6.1. Background

The A3I Program was initiated in 1985 to support exploration of computational representations of
human–machine performance to aid designers of crew systems. The major product of this effort was
a human factors computer-aided engineering system called MIDAS (Man–Machine Integration De-
sign and Analysis System). MIDAS is intended to revise the system design process in order to place
more accurate information into the hands of the designers early in the process of human engineering
design so that the impact and cost of changes are minimal. It is also intended to identify and model
human–automation interactions with flexible representations of human–machine function. The crew
station development process, as it is currently undertaken, is illustrated in Figure 19. The design
proceeds from requirements and capabilities in conceptual design through increasing specification to
hardware and software prototypes and simulation tests. Human performance evaluation occurs after
prototype design and development. Results from testing the prototype are then used to guide prototype
redesign.

MIDAS integrates the design process by using human performance models in the conceptual
design phases of system development. Human–system integration and development enabled by the
computational human performance models methodology are illustrated in Figure 20.

In this revised process, human performance considerations are accounted for early in the designs
and played out for evaluation in the simulation mode. Iteration in this mode is flexible and timely.
The flow then proceeds with a refined design into the standard design and prototype development
phases. MIDAS provides a prototyping test bench, based on human performance models. Designers
can work with computational representations of the crew station and human operators rather than
relying solely on hardware simulators and man-in-the-loop studies, to discover problems and ask
‘‘what-if’’ questions regarding the projected mission, equipment, and environment.

In addition to its use in development and design, MIDAS offers a structure or framework in which
to test and implement models of human cognition. The MIDAS framework systematizes and unifies
the interaction of human performance representations in a common structure and with a common
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language for interaction. The representation is a tightly linked set of computational descriptions of
the elemental aspects of human performance. Models of human performance from perception through
cognition and action are implemented within this framework. The interplay of the models produces
simulations of behavior.

In developing MIDAS, three challenges were considered. First, the level of representation of
human behavior has to be sufficiently detailed to predict individual performance and guide design
for individual aiding and support systems. At the same time, that behavioral representation must be
able to provide input into large-scale analyses to predict global consequences of system modification.
Second, the models of human–system performance have to be sufficiently computational to support
design specification in control theoretic terms but also sufficiently flexible and robust to account for
a range of human behavior influenced by cultural (corporate, professional, and national) and envi-
ronmental context. Third, the human performance model has to represent individuals and teams of
human operators. This requires control of not only single cognitive behavior but also the cognitive
activities associated with group and organizational behavior. Such applications require representation
of many intelligent agents sharing world models, and coordinating action / intention with cooperative
scheduling of goals and actions in a potentially unpredictable world of operations. The simulated
operators’ activity structures must provide for anticipation (knowledge of the intention and action of
remote operators) and respond to failures of the system and other operators in the system in context-
sensitive processes.

MIDAS is intended to meet these challenges by including the following characteristics:

• Modifiability and manipulability: The basic mode of operation for MIDAS users is to explore
the impact of changes to the baseline design. Thus, the capability for systematic change is
critical. Of equal importance is system extensibility. To be generally useful, the modeling en-
vironment should be applicable to many types of design changes, and to many operational
domains. The MIDAS architecture is designed to allow extensions of this type with minimal
disruption to the existing core MIDAS system.

• Transparency: The analysis system must provide designers with explicit and transparent refer-
ence to the rules, decision-making strategies, heuristics, and assumptions under which the hu-
man–machine system is assumed to be operating, as well as predicted performance. For
example, at any point in the simulation, a designer should be able to examine the cognitive
state of the human operators, the rules that are being used to guide their behavior, and their
nominal workload. The designer should also be able to perform sensitivity analyses on critical
parameters of the human–machine system. Similarly, the state of equipment or mission progress
should be able to be probed in order to relate the system state to the operator’s performance.

• Dynamic analysis capability: The simulation system must produce a stream of behavior in the
form of dynamic timelines describing not only its state and structure, but also sequences of
action over time and contingent responses of the human/system behavior. The system must
support testable hypotheses. Designers must be able to analyze the events occurring in a sim-
ulation scenario and relate this performance to man-in-the-loop simulation data. In MIDAS,
each action taken, decision made, and communication event is logged by the analysis system.

6.2. System Architecture

There are two perspectives on the MIDAS system architecture that describe the system to support
these modes of analysis: the functional architecture and structural bases of the system. Each is
discussed below.

6.2.1. MIDAS Functional Architecture

The MIDAS system has evolved over a period of 15 years of development (Corker and Smith 1992).
The basic structure of the core system presented here is based on the work of Tyler et al. (1998).
This architectural version of MIDAS has throughout its development been used to evaluate helicopter
crew stations, short-haul civil tiltrotor emergency handling operations, and the impact of MOPP flight
gear on crew performance (Atencio et al. 1996, 1998; Shively et al. 1995). The specific development
for analysis of air traffic management systems will be provided below.

The user enters the system through the graphical user interface (GUI), which provides the main
interaction between the designer and the MIDAS system. The user selects among four functions in
the system:

1. Create and /or edit a domain model that includes establishment and selection of the parameters
of performance for the human operator model(s) in the simulation

2. Select the graphical animation or view to support that simulation or a set of simulations
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Figure 21 Illustration of the Overall Functional Architecture of the Human Operator Model in
MIDAS. The functional architecture is repeated because multiple operators need to be represented in
larger team simulations.

3. Specify in the simulation module the parameters of execution and display for a given simulation
set

4. Specify in the results analysis system the data to be collected and analyzed as a result of
running the simulation.

The results-analysis system also provides for archival processes for various simulation sessions.
The overall functional architecture is provided in Figure 21.

The user would typically use all of the top-level features to support a new simulation. If a user
were exploring, for instance, the assignment of function between a human operator and an automated
assistant, the user could maintain the majority of the extant domain, graphical, and analytic models
and make modification through the domain model to the human operator model, the equipment model,
and the simulation scenario.

6.2.1.1. Domain Model The domain model consists of descriptors and libraries supporting the
creation of:

• Vehicle characteristics: Location space, aerodynamic models of arbitrarily detailed fidelity, and
guidance models for vehicle (automatic) control.

• Environment characteristics: This provides the external interactions, including terrain from se-
lected databases at varied levels of resolution, weather features insofar as they affect vehicle
performance or operator sensory performance, and cultural features (towns, towers, wires, etc.).
In short, the analyst here specifies the world of action of the experiment / simulation.

• Crew Station /equipment characteristics: The crew station design module and library is a critical
component in the MIDAS operation. Descriptions of discrete and continuous control operation
of the equipment simulations are provided at several levels of functional detail. The system can
provide discrete equipment operation in a stimulus–response (black box) format, a time-scripted/
event driven format, or a full discrete-space model of the transition among equipment states.
Similarly, the simulated operator’s knowledge of the system can be at the same varied levels of
representation or can be systematically modified to simulate various states of misunderstanding
the equipment function.

• The human operator model (HO): The human performance model in MIDAS allows for the
production of behavior and response for single and multiple operators in the scenarios. The
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Figure 22 Illustration of a Run-Time View of the MIDAS System with Cockpit, Pilot, and Copilot,
and an Activity and Load Time as Well as the Procedures and Goals That Are Currently Active in
the System.

human operator model is the key to the MIDAS function as a predictive design aid. The human
operator performance model is a combination of a series of functionally integrated micromodels
of specific cognitive capabilities within a human operator. The human operator model functions
as a closed-loop control model with inputs coming from the world and action being taken in
the world. The model provides psychological plausibility through the explicit representation of
cognitive constructs (detailed in Section 6.3).

• Mission and activity models: describe in a hierarchic structure the goals and the available re-
covery activities from missions-not-as-planned that make up the human operators’ high-level
behavioral repertoire in the mission. The next level of decomposition of the action of the mission
is a set of high-level procedures (that can be stored as a fairly generic set of routines, e.g., look
at or fixate). Finally, there are the specific activities in ‘‘active action packets’’ RAPS, which
are the process by which the human operator affects the simulation.

6.2.1.2. Graphical Simulation Model MIDAS provides the user with a set of CAD development
tools for both the design and modification of the simulation domain elements. The system also
provides for the selection of a set of views or graphical simulation windows. These windows can
provide various perspectives into the ongoing simulation, from that of a God’s-eye view of the
vehicles, environment and operators to views from the eyes of a particular human agent in the
simulation.

In addition to the standard physical views, MIDAS supports a number of analytic views. The user
can select views into the activity performance over time or views into the cognitive activities of any
of the operators of the simulation. In addition, these views can be linked to the overall simulation
view so that the user can view the cognitive activities and their effect in the real world at the same
time. The time synching also allows for retrospective reply after a particular simulation has been
performed. Figure 22 illustrates a standard set of views that might be selected during a simulation.

6.2.1.3. Analytic Tools After the simulation trials have been run, MIDAS provides the user with
an editor to aid in the specification of analyses to be performed on the data generated. A set of
analyses can be undertaken in the MIDAS model environment, which will allow the analyst views



2434 METHODS FOR DECISION MAKING

TABLE 1 Representational Models Within MIDAS.

Micromodels Empirical research

Visual processing (field of view) Arditi and Azueta 1992;
Lubin and Bergen 1992

Visual perception Remington et al. 1992
Auditory processing Card et al. 1983
Central processing and memory Baddeley and Hitch 1974
Effectors /output behavior

(35 primitive tasks)
Hamilton et al. 1990

Attention—multiple-resource
theory

Wickens 1984

Anthropometric models Badler et al. 1993 (28)

Source: Gore and Corker 1999.

Figure 23 Structure of Cogntive Models.

into the task timeline and load levels for the operators simulated in the scenario. MIDAS supports
packaging and exportation of specific data associated with the simulation entities to external statistical
packages as well.

6.3. MIDAS Structural Architecture

The structural architecture of MIDAS is that of a federated set of models organized into groupings
that represent the various agents in the simulation. We will concentrate here on the structural inte-
gration of the models that compose the human operator(s) in the MIDAS modeling system. These
models have been developed in a structure that represents an empirically based human information-
processing model. This structural integration has been termed a first-principles model, based on its
intentional integration of cognitive models that represent separable elements of the cognitive process.

The first-principles models of human performance are based on the mechanisms that underlie and
cause human behavior. First-principles models integrate human perceptual and cognitive systems and
human motor systems, thus incorporating the higher-level behaviors that are characteristic of human
performance. This incorporation supports emergent human behavior based on elementary model func-
tion. The representational models and the research upon which these models have been based can be
seen in Table 1.

Figure 23 presents a schematic of the way that the models can be structured for many human
performance-modeling applications.

The cognitive submodels function as follows.

6.3.1. Working and Long-Term Memory Stores

Working memory is the store that is susceptible to interference and loss in the ongoing task context.
Long-term memory loss would represent, for instance, a loss of skills or deep procedural memory
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of how to perform tasks. Neither the process of loss nor development of long-term memory, learning,
is explicitly represented as a MIDAS function. We have modeled human memory structures as divided
into long-term (knowledge) and working memory (short-term store). We have implemented working
memory, described by Baddeley and Hitch (1974) as composed of a central control processor (of
some limited capacity), an ‘‘articulatory loop’’ (temporary storage of speech-based information), and
a ‘‘visuo-spatial scratch pad’’ (temporary storage of spatial information). The point of transference
of information from the flight deck and ATC displays to the operators’ working memory is the critical
juncture in the subsequent use of the information that is exchanged.

Long-term memory structure is provided via a semantic net. The interaction of procedure with
memory is provided by a goal decomposition method implemented as a form of cognitive schema.
In order to capture the central role of schema and internal representation, we have an elaborate
representation of both declarative and procedural information in the MIDAS model. In MIDAS, the
internal updatable world representation (UWR) provides a structure whereby simulated operators
access their own tailored or personalized information about the operational world. The structure and
use of the UWR are akin to human long-term memory and are one of the aspects of MIDAS unique
from most human–system modeling tools. UWR contents are defined by presimulation loading of
required mission, procedural, and equipment information. Data are then updated in each operator’s
UWR as a function of the mediating perceptual and attentional mechanisms previously described.
These mechanisms function as activation filters, allowing more or less of the stimuli in the modeled
environment to enter the simulated operator’s memory. Knowledge of what is on each operator’s
mind is a key modeling feature that allows MIDAS to examine decision making and the information
exchange that is critical to decision making.

6.3.2. Attentional Control

Representation of human–automation integration requires functions of attentional control and con-
current task performance. Distributed attention and attention switching refer to an operator’s ability
to perform multiple tasks simultaneously. In many cases, a second task can be added to the perform-
ance of a primary task with little or no impact to the performance of the first task. In other cases,
the performance of two tasks simultaneously has a disastrous interaction. Such context-and order-
sensitive effects are determined in the scheduling and agenda management function provided in the
MIDAS model. Attention capture functions are represented through a preattentive filter mechanism
that responds to physical characteristics of environmental stimuli (e.g., color, blinking, auditory char-
acteristics).

6.3.3. Activity Representation

Tasks or activities available to an operator are contained in that operator’s UWR and generate a
majority of the simulation behavior. Within MIDAS, a hierarchical representation is used (similar to,
but more flexible than, the mission–phase–segment–function–task decomposition employed by many
task-analysis systems). Each activity contains slots for attribute values, describing, for example, pre-
conditions, temporal or logical execution constraints, satisfaction conditions, estimated duration, pri-
ority, and resource requirements. A continuum of contingent or decision-making behavior is also
represented in MIDAS, following the skill, rule, knowledge-based distinction reported by Rasmussen
(1983). The activity structures in MIDAS are currently being implemented as sketchy plans in the
reactive action packets paradigm (RAPS) of Firby (1989). This structure of activities will interact
with resource and context mangers to structure an agenda.

6.3.4. Task Agenda

The agenda structure stores instantiated RAPS as goals with subnetworks and logical control flags,
object bindings, and history of state and completion. This network represents the current set of tasks
to be performed by the operators of the simulation given the current goals and context. The network
can complete successfully, be interrupted by other task networks, or be aborted. The relationship
among the actions in terms of logic of performance (e.g. sequential or concurrent tasks) is also
specified in the agenda structure. Whether, in fact, tasks can be performed concurrently is a function
of resource relations in the cognitive model (sensation / reception, central / attentional / effectors). Work
is currently underway to unify the representation of action and resources in the various version of
the MIDAS system.

6.3.5. Decision Making

Quick, skill-based, low-effort responses to changes in values of information held in the UWR are
captured by ‘‘daemons’’ when a triggering state or threshold value, sensed by perception, is reached.
Daemons represent well-trained behaviors such as picking up a ringing phone or extinguishing a
caution light. Classic production rule-based behavior is also available and is used when conditions
in the simulation world match user-defined rule antecedent clauses active for the scenario modeled.
Finally, more complex or optimization-oriented decision making is represented via a set of six pre-
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scriptive algorithms (e.g., weighted additive, elimination by aspect, etc.), as reported by Payne et al.
(1988). Each of these algorithms uses a different combination of attribute values, weights, and cut-
off values for calculating the ‘‘goodness’’ of the options.

6.3.6. Higher-Level Functions

The cognitive submodel architecture allows for the development of higher-order functions of cogni-
tion. For example, Shiveley et al. 1995 has developed and demonstrated a ‘‘situation awareness’’
function that combines characteristics of working memory, long-term memory search, and perceptual
models to develop an abstraction termed situation, which can then be used to guide behavior or to
serve as a measure of adequacy of information in the environment and in the crew’s knowledge store
to meet task demands.

Context is a combination of declarative memory structures and incoming world information that
is mapped to the agenda manager who is taking the plan (overall mission). This, combined with the
plan interpreter, provides a series of actions to be performed in order to meet mission goals and
handle contingent activities (such as interruption or plan repair). Verma (2000) has explored the
extension of situation to ‘‘contextual control’’ (Hollnagel 1993) by using the elements of rule-based
behavior, number of goals in working memory, and decision horizon in the MIDAS planning module.

6.4. Case Studies in MIDAS Applications to Aviation

The world community of aviation operations is engaged in a vast, system-wide evolution in human–
system integration. The nature of this change is to relax restrictions in air transport operations wher-
ever it is feasible. The relaxation includes schedule control, route control, and, potentially, separation
authority in some phases of flight, such as aircraft self-separation in en route and oceanic operations.
The consistent result of the relaxation of system constraints is to change and challenge human per-
formance in that system in two dimensions. First, the decision-making process becomes distributed.
This distributed decision differs from current operation and has a direct impact on crew and team
resource management processes. Second, the dynamic concept of operations provides a new challenge
to the human operators of that system. The human operators (pilots, air traffic controllers, and airline
operations personnel) must monitor and predict any change in the distribution of authority and control
that might result as a function of the airspace configuration, aircraft state or equipage, and other
operational constraints. The operators are making decisions and sharing information not only about
the management of the airspace, but also about the operating state of that airspace. In order to support
collaborative and distributed control between air and ground for separation assurance, modifications
to the roles and decision authority must be explored. The evolution of the air transportation system,
therefore, profoundly challenges human performance prediction and the cognitive sciences. Previous
models of human performance linked to machine performance have had distinct boundaries in the
human–machine elements to be modeled. Current system design requires models of human, machine/
automation, aircraft, airline operations, air traffic management, and National Airspace (NAS) man-
agement to be tightly coupled in order to guide design, evaluate the effectiveness, and ensure the
safe operation of the system.

6.4.1. MIDAS Case Study 1: Predicting Flight Crew Performance in the Advanced Air
Traffic Management System

We have focused our early investigation on critical issues in air ground coordination in relation to
aircraft self-separation. The interaction among aircraft and controllers is proposed to occur at points
in space around each aircraft called alert and protected zones.

These zones are to be used by an alerting system to monitor and advise the flight crew on
conflicting traffic flying within these areas. In a cockpit-based system, the alerting system would
warn the flight crew of any aircraft entering the alert zone. The crew could evaluate the situation and
choose or negotiate a preferred deviation. If the intruding aircraft continued into the smaller warning
zone, the crew would be advised to take evasive action.

Much discussion and debate has gone into the further definition of the warning and alert zones,
including their description as complex surfaces that take into account the speed, performance, and
turning radius of the aircraft. Up to this time, the process of definition lacked data for inclusion of
human performance in the size and shape of these areas. Figure 6 proposes a redefinition of these
zones based on a human–machine system performance. Built upon the well-defined physical aero-
dynamic response of the aircraft are the more varying machine (sensing, communication, computa-
tion) and human (perception, communication, decision, action) responses to any alert. These zones
might also differ, depending on the speed of the aircraft, configuration of the conflict, and procedures
used to process the conflict.

6.4.1.1. Study 1: Model Analysis The goal of this study was to develop a better understanding
of the impact of joint and distributed decision making among flight crews and air traffic control on
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Figure 24 Alert and Protected Zones Calibrated to Human Performance Parameters, Aircraft Per-
formance Parameters, and Communication Systems Parameters.

the size and shape of the alert zones. This was accomplished by first analyzing and modeling the
cognitive and procedural requirements of several candidate encounter scenarios. These models were
then populated with performance data derived from human-in-the-loop experiments. The specified
scenarios were then represented within the MIDAS computational modeling and simulation system.

With Monte Carlo simulation techniques, each scenario could be exercised many times, eventually
establishing a statistical distribution for the human–machine performance of that configuration. Com-
bining this with the aerodynamic performance of the system (in this case the closing speed of con-
flicting aircraft at differing encounter angles) meant that the differences in warning requirements
between the different scenarios should have emerged. All encounters were assumed to be two-ship
interactions.

• Scenario 1: In this scenario, both aircraft are equipped with some type of CDTI detection
equipment. Here a single aircraft can detect and avoid the conflicting aircraft by acting on its
own (no communications are necessary). This might describe a situation where one aircraft is
slowly closing on another from behind.

• Scenario 2: Both aircraft are again equipped. However, because of the geometry of the encounter
and conflicting goals, both aircraft must be involved and negotiate to resolve the problem. The
solution would be arrived at though communication and negotiation between the two flight
crews.

• Scenario 3: This scenario describes an encounter where communications with ATC are required
to resolve the problem. This is necessary because one aircraft is equipped with the required
suite of equipment while the other is not. Such encounters might be common early in the
implementation of free flight or when encountering older, nonupgraded aircraft.

6.4.1.2. High-Level Activity Definition in the MIDAS Model An initial cognitive and physical
task analysis was performed for each of the three scenario cases. The result was a sequential model
identifying the high-level processes (or activities) performed by the operators. In scenarios 2 and 3,
the activities that were to be performed in parallel by the other flight crew and ATC were also
defined. Falling out of this analysis was a recognizable cycle of alert, recognition, communication,
decision, then communication and action by the crews. This process was replicated throughout the
scenarios for each flight crew interaction.

6.4.1.3. Lower-Level Activity Specification Using these sequences as a guide, the lower, or leaf-
level, activities (corresponding to the physical or cognitive tasks actually performed by the operators)
were defined for each high level task. Columns 2 and 3 of Figure 7 show the high- and lower (leaf)-
level activities defined for scenario 1. The remaining columns show the interrupt recovery, duration,
and VACM (visual, auditory, cognitive, and motor channel capacity requirements) specifications as-
signed to those activities. Where possible, the activities were chosen to correspond to research that
had been performed in previous studies (Corker and Pisanich 1995). This provided access to fully
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Figure 25 Response Times for an Air-to-Air Encounter at 90� Intercept.

defined activity specifications. New activities, along with their specifications, were developed by
interpolating prior results.

The MIDAS model can contain activities that may interrupt the flight crew from the normal
activities (for example, a question in the cockpit may interrupt a flight crew member from a CDU
entry task). The interrupt resumption specifications define how an activity is resumed after being
suspended. Resumption methods are individually defined based on the characteristics of the activity
and the sequence in which it operates. The resumption methods used on this simulation include not-
interruptible (cannot be interrupted); resume (resume activity where interrupted); and restart (restart
the activity from its beginning). Interruptions and the way that an activity is resumed directly affect
the duration of the activity sequence.

6.4.1.4. Experimental Runs After specification and testing, each scenario was loaded into Air-
MIDAS and 50 Monte Carlo runs were gathered for that simulation. The data recorded for each run
included the activity sequence along with the individual activities and their duration for that sequence
(including any interrupt activities). These data were written to a file for analysis in Microsoft Excel
format. This data was postprocessed using the rules described earlier to extract a proper time for the
parallel activity sets. This allowed the establishment of a total duration (time required for all operators
to complete their tasks) for each scenario run. This was the dependent variable in this study.

6.4.1.5. Results A standard set of descriptive statistics was generated for each scenario based
on the set of 50 Monte Carlo runs. The temporal performance data were also plotted as a histogram
using a bin size of 10 seconds, illustrated in Figure 25.

The performance observed in each scenario above was applied to a 90� crossing conflict. In this
geometry, the initial traffic alert was proposed to be signaled at 40 miles from the crossing point and
assumed a typical commercial aircraft cruise speed (Mach 0.82). The measure in this case was the
closing distance (straight-line distance between the aircraft). The minimum, maximum, and average
human–machine performance times are illustrated in Figure 25. This calculation also allowed the
determination of a closing distance for each performance time (potentially from 56 down to 0 miles).
Using this geometry, an idea of the initial warning distance could be inferred using the worst-case
performance criteria. Although the average clearing distances in scenarios 1 and 3 differ significantly,
given a warning at 40 miles, the worst-case time in both scenarios would allow an avoidance ma-
neuver to begin well before the aircraft were 20 miles from each other. In scenario 3, however, the
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Figure 26 Cartoid Shape of Minimum Safe Distance to Alert Calculated as a Function of Model-
Generated Crew Response Times.

worst, and even average, clearing distances observed would indicate that the alert point for that type
of interaction should be initiated well beyond 40 miles.

To investigate this idea further, a second application of the human performance data was per-
formed. Calculations were again made with both aircraft maintaining a speed of Mach 0.82. For each
15� angle around the aircraft, the resulting closing speed was calculated. Combining that speed and
the performance distribution of each scenario resulted in a distance traveled for that angle. In this
case, two standard deviations above and below the average were used as the minimum and maximum
points respectively. Five miles were added to these distances to account for the warning zone. When
plotted, these points create the heart-shaped rosettes shown in Figure 26.

In addition to showing the difference in warning distance needed to maintain the same perform-
ance at differing closing angles, these plots are interesting because they also illustrate a difference
in performance area (size of the area between minimum and maximum performance) between the
three scenarios. Given the performance observed, the higher closing speeds actually exacerbate the
differences between the scenarios. Although scenarios 1 and 3 looked comparable in the 90� closure
shown earlier, at shallower angles scenario 3 actually requires a significantly earlier warning point
to maintain the five mile alert zone.

6.4.2. Extension of Model to Air Traffic Control

The second example of MIDAS use concentrates on the air traffic controller operations in response
to free-flight self-maneuvering aircraft. In this study, the human operator’s performance measures in
the distributed air /ground air traffic management (ATM) that characterizes the multiple-controller,
multiple-aircraft system include visual monitoring, perception, spatial reasoning, planning, decision
making, communication, procedure selection, and execution. Two scenarios will be created in the
current modeling effort. The first scenario will be operated consistent with the air traffic control rules
of flight. The second scenario will be operated consistent with free flight rules of operation established
by RTCA. Each scenario involves a response to a scripted conflict situation in a number of conditions.

The MIDAS model of the controller was developed using the rules of current and free-flight
operation. Estimates and measured times for controllers performance on these tasks was input into
the task descriptions. Here the interest was in how stable the system was to emergency conditions
under current and free-flight conditions. The control scenario was focused on the handoff between
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Figure 27 Cross-Sector Handoff Scenario

sectors in an enroute segment of flight. This scenario then required the development and interaction
of several MIDAS human performance models. There were two controllers modeled that interacted
with a single aircraft flight crew. The scenario is illustrated in Figure 27.

Results were compiled for various conditions of weather and emergency management under the
two flight regimes and controllers’ performance profiles for workload were developed. In addition,
operational measures, such as aircraft maneuvers and points of closest approach, were also calculated.
The details of these analyses can be found in Gore (1999).

6.5. Other Modeling Strategies That Have Demonstrated Utility in Modeling Human
Performance in Systems

There has been a flurry of interest over the past decade in the use of object-oriented tools that focus
on the representation of human knowledge and how humans use that knowledge in real situations to
make decisions and act. An example of this approach is the Distributed Operator Model Architecture
(DOMAR), developed by Dr. Michael Young of the Wright Patterson Air Force Research Laboratories
and Mr. Stephen Deutsch of BBN Inc. (Young and Deutsch 1999). The system is composed of a
framework of software languages and model-development tools. As with the other models discussed
in this section, the intention is to provide the analyst with the necessary components to develop
models that simulate both the human operators and the systems with which they interact.

DOMAR is unique in its intention to allow these models to interact not only to allow with other
entities in the model environment, that is, with simulations, but to allow the human performance
models developed in OMAR to interact with live human operators and real systems in a hybrid
human–simulation modeling capability.

The component software tools that are part of DOMAR allow the developers to construct their
own unique cognitive architecture for the operators simulated in DOMAR.

DOMAR is made up of tools to support the development of appropriate cognitive models of
human operators interacting with systems. The following description is provided by Young and
Deutsch (1999):

• The Simple Frame Language (SFL) is used to represent knowledge about objects, their attributes,
and the relationships among objects. It provides an object-oriented substrate for the entire sim-
ulation environment. One of the most important classes of objects is an agent—the special type
of object that can execute procedures and thereby run in the DOMAR simulator. The Rule
Definition Language (RDL) provides computational primitives for representing rules (i.e., con-
dition action pairs of the form if-then). Rules are developed as rule packets, which specify when
and how the rules are to be applied to a specific situation. The Simulation Core Language
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(SCORE) is a procedure definition language that provides a set of computational primitives for
modeling the priority-based serial or parallel execution of goals, plans, and tasks.

• The DOMAR publish–subscribe protocol, implemented in a set of SCORE forms, plays a central
role in several important aspects of model building. Within the human performance models
themselves, it is used to coordinate the concurrent operation of related procedures. It is fre-
quently employed in the modeling of person-to-person communication, and it is the basis for
the distributed execution, in real time or fast time, that DOMAR supports. Very large agent-
based simulations may be developed in a distributed computing environment.

• Knowledge engineering: DOMAR provides graphical tools to support knowledge acquisition,
the development and management of large bodies of code, and data-analysis tools to support
model development and experiment evaluation. SFL objects and agents are defined using the
graphical concept editor, which provides an interactive graphical display of the hierarchical
relationship among object definitions as a directed network of connected nodes. It provides a
table window for displaying and editing slots associated with objects. SCORE procedures are
created with a text editor (e.g., EMACS). They can then be viewed with the procedure browser,
which provides several different graphical views of the programmatic interrelationships among
the procedures.

• Analysis capabilities: DOMAR provides tools for monitoring events as reported by the simulator
during a model run. Events that can be monitored include goal events, procedure events, stim-
ulus-and-response events, and user-defined events such as communication events. Using a menu,
the DOMAR user chooses the events to be displayed before the start of a simulation or at any
point during a run. Finally, DOMAR has two post-run analysis displays. The event timeline
window displays a listing of time-tagged events for one or more simulation agents. Individual
agents have their own timelines within the display. The task timeline window displays the set
of concurrently running tasks for one or more agents over a specific period of time. It provides
the start and end time for a task and the task’s status and priority. All of the displays are written
in the Java language and can be connected to any DOMAR image that may be running on a
local or remote computer.

6.5.1. Sample Applications

DOMAR was created to support the development of human performance models. DOMAR’s so-
phisticated agent framework has recently been used by other researchers to develop a variety of
agent-based systems. DOMAR is being used by AFRL in its Human Interaction with Software Agents
(HISA) project to create human–computer interfaces incorporating intelligent agents; by the Defense
Advanced Research Project Agency (DARPA) in its Collaborating Agent Based Systems (CoABS)
program to demonstrate a collaborating agent communication framework and in its Joint Forces Air
Component Commander (JFACC) program to create a business enterprise model of the JFACC pro-
cess; and by the Navy in its Conning Officer Virtual Environment (COVE) program to create an
intelligent training system.

7. SUMMARY
This chapter has provided the need for simulating performance of complex human-based systems as
an integral part of system design, development, testing, and life-cycle support. It has also defined
two fundamentally different approaches to modeling human performance: a reductionist approach
and a first-principled approach. Additionally, we have provided detailed examples of two modeling
environments that typify these two approaches, along with representative case studies.

As we have stated and demonstrated repeatedly throughout this chapter, the technology for mod-
eling human performance in systems is evolving rapidly. Furthermore, the breadth of questions being
addressed by models is constantly expanding. We encourage the human factors practitioner with a
little creativity and computer savvy to consider how computer simulation can provide a better and
more cost-effective basis for human factors analysis.
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Resectorization,’’ Master’s thesis, San José State University, Human Factors and Ergonomics Pro-
gram, San José, CA.
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