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1. INTRODUCTION
Linear programming (LP) defines a particular class of optimization problems that meet the following
two conditions:

1. The objective function to be optimized can be described by a linear function of the decision
variables.

2. The operating rules or constraints governing the process (e.g., limited resources) can be ex-
pressed as a set of linear equations or inequalities.

LP techniques are widely used to solve a number of military, economic, industrial, and social
problems.

1. A large variety of problems in diverse fields can be represented (within reasonable accuracy)
as LP models.

2. Efficient techniques for solving LP problems are available.
3. Data variation (sensitivity analysis) can be handled with ease through LP models.

2. FORMULATION OF LINEAR MODELS

2.1. Basic Steps in Formulation

The three basic steps in constructing an LP model are:

Step 1: Identify the unknown variables to be determined (design or decision variables) and rep-
resent them in terms of algebraic symbols.

Step 2: Identify all the restrictions or constraints in the problem and express them as linear
equations or inequalities, which are linear functions of the unknown variables.

Step 3: Identify the objective or criterion and represent it as a linear function, which is to be
maximized or minimized.

The following example illustrates these basic steps.

2.2. Product-Mix Problem (Ravindran et al. 1987)

2.2.1. Example 1 (Product Mix Problem)

A company manufactures three products that require three resources—labor, material, and adminis-
tration. The company’s production engineering department has furnished the following data:

Products

1 2 3

Labor (hr /unit) 1 1 1
Material (lb /unit) 10 4 5
Administration (hr /unit) 2 4 6
Profit ($ /unit) 10 6 4

The supply of raw material is restricted to 600 lb /day. The daily availability of manpower is 100 hr.
There are 300 hr of administration. Formulate a linear programming model to determine the daily
production levels of the various products in order to maximize the total profit.

The formulation is as follows:
Step 1. Identify the decision variables. The unknown activities to be determined are the daily rates

of production on the three products. Represented by algebraic symbols, they are

x1 � daily production of product 1
x2 � daily production of product 2
x3 � daily production of product 3

Step 2. Identify the constraints. In this problem the constraints are the limited availability of the
three resources—labor, material, and administration. Product 1 requires 1 hr of labor for each unit,
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and its production quantity is x1. Hence the requirement of labor for product 1 alone will be x1 hr
(assuming a linear relationship). Similarly, products 2 and 3 will require x2 and x3 hr, respectively.
Thus, the total requirement of labor will be x1 � x2 � x3 which should not exceed the available 100
hr. So the labor constraint becomes

x � x � x � 1001 2 3

The raw material requirements will be 10x1 lb for product 1, 4x2 lb for product 2, and 5x3 lb for
product 3. Thus, the raw material constraint is given by

10x � 4x � 5x � 6001 2 3

Similarly, the constraint for administration becomes

2x � 2x � 6x � 3001 2 3

In addition, we restrict the variables x1, x2, and x3 to having only nonnegative values. This is called
the nonnegativity constraint, which the variables must satisfy. Most practical LP problems will have
this nonnegative restriction on the decision variables.

Step 3. Identify the objective. The objective is to maximize the total profit from sales. Assuming
that a perfect market exists for the products such that all that is produced can be sold, the total profit
from sales becomes

Z � 10x � 6x � 4x1 2 3

Thus, the LP model for our product mix problem is to find numbers x1, x2, x3 that will maximize

Z � 10x � 6x � 4x1 2 3

subject to the constraints

x � x � x � 1001 2 3

10x � 4x � 5x � 6001 2 3

2x � 2x � 6x � 3001 2 3

x � 0 x � 0 x � 01 2 3

3. BASIC ASSUMPTIONS OF LINEAR MODELS
The LP approach to modeling a system under study is to decompose the system into its elementary
functions, or ‘‘activities.’’ In Example 1 there were three activities—manufacture of one unit of
product 1, manufacture of one unit of product 2, and manufacture of one unit of product 3. The
decision variables merely define the levels at which these activities are to be carried out. Of course,
the aim of the LP model is to determine the optimal activity levels. To change the activity level, the
input and output flows into each activity have to be changed. These flows are called ‘‘items.’’ In
Example 1 the input flows were labor, material, and administration, and the output was profit in
dollars.

There are two basic assumptions in the formulation of all LP models: proportionality and addi-
tivity.

3.1. Proportionality

This guarantees that the flow of items into and out of an activity is directly proportional to its activity
level. If one unit of product 1 requires 1 hr of labor, 10 lb of material, and 2 hr of administration,
then to make x units of product 1 will require x hr of labor, 10x lb of material, and 2x hr of
administration for any x. Similarly, the unit profit from selling product 1 is always $10, irrespective
of how many units are sold.

3.2. Additivity

This assumption implies that the total usage of an item is equal to the sum of the item usages of
each individual activity at its specified level. In Example 1 the total material consumption was equal
to the sum of the material consumed by the individual products.
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Figure 1 Example of a Piecewise Linear Function.

For a more detailed discussion on the input–output approach to modeling and LP assumptions.
the reader is referred to Dantzig 1963. The proportionality and additivity assumptions imply that all
the constraints of the LP problem can be expressed as linear equations or inequalities and that the
objective is a linear function of the decision variables. It is common to find some practical problems
violating one or more LP assumptions. In such cases, by using clever formulations or good approx-
imations, one could still use LP. Some of these are discussed in the next section.

4. HANDLING NONLINEARITIES BY LINEAR PROGRAMMING (Ravindran,
et al., 1987; and Murty 1995)
Nonlinearities can arise in a number of ways in optimization problems in either the objective function
or the constraints. Some of the nonlinearities can be handled by LP methods, whereas the rest have
to be solved by specialized nonlinear programming methods.

4.1. Piecewise Linear Functions

A piecewise linear function arises when the per-unit contribution (cost) depends on the level of sales
(production). For example, consider a product whose profit contribution is $10 /unit for the first 40
units, $8 /unit for the next 60 units, and $5 /unit for the rest. The nonlinearity of the profit function
is apparent if a graph is plotted between total profit and quantity sold. This is illustrated by Figure
1, which is called a piecewise linear function since it is linear in the region (0, 40), (40, 100), and
(100,�). Partitioning the quantity sold into three activities means that the profit function could be
expressed as a linear function as follows:

x1 � quantity sold at $10 /unit profit
x2 � quantity sold at $8 /unit profit
x3 � quantity sold at $5 /unit profit

The amount of product sold is x1 � x2 � x3, and the objective function is to maximize Z � 10x1 �
8x2 � 5x3. Since there is a limit on how many units can be sold for a certain profit, we need the
following constraints:
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0 � x � 40 0 � x � 60 0 � x1 2 3

When the objective function is maximized, it is easy to see that x2 will not become positive until x1

reaches its limit of 40. Similarly, x3 cannot be positive until x1 � 40 and x2 � 60.
One could extend this idea to handle smooth nonlinear profit functions by approximating them

into piecewise linear functions. It is important to realize that LP methods can be used successfully
to handle piecewise linear functions as long as the following hold:

1. In a maximization problem the piecewise linear function must have decreasing slope or be a
concave function (i.e., the per-unit contribution must be decreasing or at least nonincreasing).

2. In a minimization problem the function must have increasing slope or be a convex function
(i.e., the per unit cost must be increasing or at least nondecreasing).

If these properties do not hold, then one has to use the more complicated integer programming
formulations.

4.2. Max-Min Problems

In some optimization problems one may encounter a nonlinear objective that is to maximize the
minimum of several variables or functions. Consider an assembly made up of three different parts.
Let x1, x2 and x3 be the decision variables denoting the number of parts 1, 2, and 3 produced,
respectively. If management wishes to maximize the number of assemblies, then the objective function
becomes

Maximize [minimum of (x , x , x )]1 2 3

Even though this is a nonlinear function, it can be linearized as follows: Let y denote the number of
assemblies made. Then the linear objective function is

Maximize y (1)

Since y is the minimum of x1, x2, x3, we get the three additional constraints

y � x (2)1

y � x (3)2

y � x (4)3

The inequalities (2), (3), and (4) in conjunction with (1) are equivalent to maximizing the minimum
of x1, x2 and x3.

4.3. Handling Absolute Value Functions

Absolute value sign in the constraint can be handled by replacing it by two constraints. For example,
a nonlinear constraint of the type

�x � x � � 30 (5)1 2

is equivalent to the following two linear constraints:

x � x � 301 2

�x � x � 301 2

Nonlinear constraints of the type given in inequality (5) occur frequently in machine balancing. If x1

represents the daily utilization of machine 1 in minutes and x2 is the utilization for machine 2, then
inequality (5) is equivalent to the machine balancing constraint that no machine run more than 30
min /day longer than the other machine.

5. SIMPLEX ALGORITHM
The simplex algorithm as developed by G. B. Dantzig in 1947 is an iterative procedure for solving
LP problems. The theory of the simplex algorithm and its many computational refinements are fully
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presented in several outstanding textbooks (Dantzig 1963; Murty 1995; Ravindran et al. 1987; Gass
1975) The intent of this section is to describe briefly the basic principles of the simplex method.

5.1. Basic Principles

5.1.1. Example 2

Consider the following LP problem (Ravindran et al. 1987):

Minimize Z � 40x � 36x1 2

Subject to x � 81

x � 102

5x � 3x � 451 2

x � 0 x � 01 2

In this problem we are interested in determining the values of the variables x1 and x2 that will satisfy
all the restrictions and give the least value for the objective function. As a first step in solving this
problem, we want to identify all possible values of x1 and x2 that are nonnegative and that satisfy
the constraints. For example, a solution x1 � 8 x2 � 10 is positive and satisfies all the constraints.
Such a solution is called a feasible solution. The set of all feasible solutions is called the feasible
region. Solution of a linear program is nothing but finding the best feasible solution in the feasible
region. The best feasible solution is called an optimal solution to the linear programming problem.
In our example an optimal solution is a feasible solution that minimizes the objective function
40x1 � 36x2. The value of the objective function corresponding to an optimal solution is called the
optimal value of the linear program.

To represent the feasible region in a graph, every constraint may be plotted, and all values of x1,
x2 that will satisfy these constraints can be identified. The nonnegativity constraints imply that all
feasible values of the two variables will lie in the first quadrant. The constraint 5x1 � 3x2 � 45
requires that any feasible solution (x1, x2) to the problem should be above the straight line 5x1 �
3x2 � 45 (see Figure 2). Similarly, the constraints x1 � 8 and x2 � 10 are plotted. The feasible region
is given by the shaded region ABC as shown in Figure 2. Obviously there are an infinite number of
feasible points in this region. Our objective is to identify the feasible point with the lowest value of
Z. The feasible points A, B, and C are called the comer points of the feasible region.

Observe that the objective function given by Z � 40x1 � 36x2 represents a straight line if the
value of Z is fixed a priori. Changing the value of Z essentially translates the entire line to another
straight line parallel to itself. To determine an optimal solution, the objective function line is drawn
for a convenient value of Z such that it passes through one or more points in the feasible region.
Initially Z is chosen as 600. By moving this line closer to the origin, the value of Z is further decreased
(Figure 2). The only limitation on this decrease is that the straight line 40x1 � 36x2 � Z contain at
least one point in the feasible region ABC. This clearly occurs at the comer point A given by x1 �
8, x2 � 5 /3. This is the best feasible point giving the lowest value of Z as 380. Hence x1 � 8, x2 �
5 /3 is an optimal solution and Z � 380 is the optimal value for the linear program.

In our example one of the comer points of the feasible region (namely, A) was an optimal solution.
As a matter of fact, the following property is true for any LP problem: if there exists an optimal
solution to an LP problem, then at least one of the corner points of the feasible region will always
qualify to be an optimal solution.

This is the fundamental property on which the simplex method for solving LP problems is based.
Even though the feasible region of an LP problem contains an infinite number of points, an optimal
solution can be determined by merely examining the finite number of comer points in the feasible
region. In LP terminology the comer point feasible solutions are known as basic feasible solutions.

Hence the simplex method for solving general LP problems is simply an orderly procedure for
generating and examining different basic feasible solutions. In problems involving just two variables,
one can easily draw the feasible region in a graph and identify the comer points that are basic feasible
solutions. In practice, the LP problems involve hundreds of constraints and several thousand variables,
and we need an algebraic procedure for generating the basic feasible solutions. The simplex method
uses the classical Gauss-Jordan elimination scheme for generating the basic feasible solution. The
Gauss–Jordan elimination can be represented by a sequence of vector–matrix operations and hence
easily implemented on a digital computer.

5.2. General Steps

The general steps of the matrix-based simplex method are as follows:

1. Start with an initial basic feasible solution.
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Figure 2 Graphical Solution of Example 2.

2. Improve the initial solution, if possible, by finding another basic feasible solution with a better
objective function value. At this step the simplex method implicitly eliminates from consid-
eration all those basic feasible solutions whose objective function values are worse than the
present one. This makes the procedure more efficient than the naive approach, which would
examine all the basic feasible solutions.

3. Continue to find better basic feasible solutions, improving the objective function values. When
a particular basic feasible solution cannot be improved further, it becomes an optimal solution
and the simplex method terminates.

Finding an initial basic feasible solution can be accomplished by temporarily loosening the def-
inition of ‘‘feasible’’ in such a way that the origin becomes feasible. In Example 2, the simplex
algorithm would start at the origin, make its first step to the temporarily feasible point D, and make
its second step to the truly feasible and optimal point A. (The fact that the first truly feasible point
is optimal is coincidental.)

5.3. Computational Efficiency of the Simplex Method

The computational efficiency of the simplex method depends on (1) the number of iterations (basic
feasible solutions) to go through before reaching the optimal solution and (2) the total computer time
to solve the problem. Much effort has been spent in studying the computational efficiency with regard
to the number of constraints and the decision variables in the problem.

Empirical experience with thousands of practical problems shows that the number of iterations
of a standard linear program with m constraints and n variables varies between m and 3m, the average
being 2m. A practical upper bound for the number of iterations is 2(m � n). (Occasionally some
problems have violated this bound.)

If every decision variable had a nonzero coefficient in every constraint, then the computational
time would increase approximately in relation to the cube of the number of constraints, m3. In
practical large-scale models, however, typically fewer than 1% of the matrix coefficients are nonzero.
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The use of sparse matrix techniques makes computation times unpredictable but far better than the
m3 would suggest.

It is to be noted that the computational efficiency of the simplex method is more sensitive to the
number of constraints than to the number of variables. Hence the general recommendation is to keep
the number of constraints as small as possible by avoiding unnecessary or redundant constraints in
the formulation of the LP problem.

6. INTERIOR POINT METHOD
In 1984, a new and very different way of solving linear programs was introduced (Karmarkar 1984).
Announced with much fanfare by Karmarkar’s employer, AT&T Bell Laboratories, the new method
was claimed to be 50 times faster than the simplex method. By 1990, Karmarkar’s seminal work had
spawned hundreds of research papers and a large class of what are now called interior point methods.
It has become clear that while the initial claims were somewhat overenthusiastic, interior point meth-
ods dominate the simplex method for very large problems and for certain special classes of problems
that have always been particularly difficult for the simplex method. Two such classes are highly
degenerate problems (in which many different algebraic basic feasible solutions correspond to the
same geometric comer point) and multiperiod problems that involve decisions in successive time
periods that are linked together by inventory transfers. For both of these classes, the number of
iterations taken by the simplex method can far exceed the 2m rule of thumb.

The definition of the class of very large problems for which interior point methods dominate is
changing almost daily as computer implementations of the interior point method become more and
more efficient. However, since 1984 there have been dramatic improvements in the computer imple-
mentations of the simplex method as well, largely spurred by the competition between the two
methods. As a result, there is not currently much reason to prefer either method for LP models with
a few hundred constraints. Beyond a few thousand constraints, however, the interior point method
leaves the simplex method further and further behind as problem size grows.

Karmarkar’s derivation was quite original, but it has since become clear that the whole family of
interior point methods is equivalent to some classical ideas from the field of nonlinear programming
(Gill et al. 1986). We shall present here a brief introduction to the current framework for these
methods. A more detailed tutorial can be found in Marsten et al. 1990.

The classical building blocks that we need are Newton’s method (Newton 1687) for unconstrained
optimization, Lagrange’s method (Lagrange 1788) for optimization with equality constraints, and
Fiacco and McCormick’s barrier method (Fiacco and McCormick 1968) for optimization with ine-
quality constraints. Let us review these. A good general reference is Bazarra and Shetty 1979.

6.1. Newton’s Method

One of the foundations of numerical mathematics is Newton’s method for finding a zero of a function
of a single variable: ƒ(x) � 0. Given an initial estimate x 0, we compute a sequence of trial solutions.

kƒ(x )
k�1 kx � x �

kƒ �(x )

for k � 0, 1, 2, . . . , stopping when �ƒ(x k)� � � where � is some stopping tolerance, for example,
� � 10�8.

Suppose we have n equations in n variables: ƒ(x) � 0, where

ƒ (x) x1 1

ƒ (x) � � and x � �� � � �ƒ (x) xn n

The Jacobian at the point x, J(x), is defined as the matrix with (i, j) component

�ƒi
(x)

�xj

and Newton’s method looks like

k�1 k k �1 kx � x � [J(x )] ƒ(x )

Or, if we let
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k�1 kdx � x � x

denote the displacement vector and move the Jacobian matrix to the other side

k kJ(x )dx � �ƒ(x ) (6)

Newton’s method can be applied to the unconstrained minimization problem as well: to minimize
g(x), take ƒ(x) � g�(x) and use Newton’s method to search for a zero of ƒ(x). Each step of the method
can be interpreted as constructing a quadratic approximation of g(x) and stepping directly to the
minimum of this approximation.

If g is a real valued function of n variables, a local minimum of g will satisfy the following
system of n equations in n variables:

�g
(x) � 0

�x1

�g
(x) � 0

�xn

In this case the Newton iteration (6) looks like

2 k k� g(x )dx � � �g(x )

where �g is the gradient of g and �2g is the Hessian of g, that is, the matrix with (i, j) component

2� g
(x)

�x �xi j

If g is convex, then any local minimizer is also a global minimizer. If x* is a local minimizer of
g(x), that is, �g(x*) � 0, and if �2g(x*) has full rank, then Newton’s method will converge to x* if
started sufficiently close to x*.

6.2. Lagrange Multiplier Method

Lagrange discovered how to transform a constrained optimization problem, with equality constraints,
into an unconstrained problem. To solve the problem

Minimize ƒ(x)

Subject to g (x) � 0 for i � 1, . . . , mi

form a Lagrange function

m

L(x, y) � ƒ(x) � y g (x)� i i
i�1

and then minimize the unconstrained function L(x, y) by solving the system of (n � m) equations in
(n � m) variables:

m�ƒ �g�L i
� (x) � y (x) � 0 for j � 1, . . . , n� i

�x �x �xi�1j j j

�L
� �g (x) � 0 for i � 1, . . . , mi

�yi

These equations can be solved by Newton’s method.

6.3. Fiacco and McCormick Algorithm

General inequality constraints can be converted to equations by adding nonnegative slack (or surplus)
variables. So the only essential inequalities are the nonnegativity conditions: x � 0. The idea of the
barrier function approach is to start from a point in the strict interior of the inequalities �0(x j

0 for all j) and construct a barrier that prevents any variable from reaching the boundary � 0).0(x j
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For example, adding �log(xj) to the objective function will cause the objective to increase without
bound xj as approaches 0. Of course, if the constrained optimum is on the boundary (i.e., some

that is always true for linear programming), then the barrier will prevent us from reachingx* � 0j

it. The solution is to use a barrier parameter that balances the contribution of the true objective
function against that of the barrier function.

A minimization problem with nonnegativity conditions can be converted into a sequence of un-
constrained minimization problems in the following way. The problem

Minimize ƒ(x)

Subject to x � 0

is replaced by the family of unconstrained problems

n

Minimize B(x��) � ƒ(x) � � log(x )� j
j�1

which is parameterized on the positive barrier parameter �. Let x(�) be the minimizer of Fiacco and
McCormick show that x(�) → x* the constrained minimizer, as � → 0. The set of minimizers is
called the central trajectory.

As a simple example, consider the problem

2 2Minimize (x � 1) � (x � 1)1 2

Subject to x � 0 x � 01 2

The unconstrained minimum would be at (�1, �1), but the constrained minimum is at the origin
For any � � 0:(x*, x*) � (0,0).1 2

2 2B(x��) � (x � 1) � (x � 1) � � log(x ) � � log(x )1 2 1 2

�B �
� 2(x �1) � � 01

�x x1 1

�B �
� 2(x � 1) � � 02

�x x2 2

1 1
x (�) � x (�) � � � �1 � 2�1 2 2 2

which approaches (0,0) as � → 0.
In general, we cannot get a closed-form solution for the central trajectory, but can use the fol-

lowing algorithm.

1. Choose �0 � 0, set k � 0.
2. Find xk(�k), the minimizer of B(x��k).
3. If �k � �, stop. Otherwise, choose �k�1 � �k.
4. Set k � k � 1 and go to step 2.

Then as xk(�k) → x* as � → 0.
In step 2 we can find x(�) by using Newton’s method to solve the system of n equations in n

variables:

�ƒ(x)�B �
(x��) � � � 0 for j � 1, . . . , n

�x �x xj j j

In practice, we do not have to compute x(�) very accurately before reducing �.

6.4. Application to Linear Programming

The classical ideas reviewed can be applied to LP in the following way. If nonnegative slack and /
or surplus variables have been used to convert inequalities into equations, then the general LP problem
can be written as
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TMinimize c x

Subject to Ax � b

x � 0

where A is m � n. Let Aj denote column j of A, for j � 1, . . . , n. We can replace the nonnegativity
conditions with a barrier function:

n
TMinimize c x � � log(x )� j

j�1

Subject to Ax � b

This is now a problem with equality constraints, so we can use Lagrange’s method. The Lagrangian
function is

T TL(x, y) � c x � � log(x ) � y (Ax � b)j

and the partial derivatives are

�L �
T� c � � A y � 0 j � 1, . . . , nj j

�x xj j

�L
� �(Ax � b) � 0

�y

The first set of equations gives

�
Tc � A y � � 0j j xj

since � � 0 and xj � 0. If we define

Tz � c � A y for j � 1, . . . , nj j j

and require z � 0, then the system of equations that need to be solved is

Ax � b
T(*) A y � z � c�x z � � for j � 1, . . . , nj j

So we have (m � 2n) equations in (m � 2n) variables. Notice that the last n equations are nonlinear.
Starting from any point x0, y0, z0 that satisfies x0 � 0 and z0 � 0, the idea is now to use Newton’s

method to solve the nonlinear system (*) for a given � � 0, and then reduce �. In fact � could be
reduced after some fixed number of Newton steps (perhaps only one!). Various methods will differ
in how many Newton steps are taken before reducing � and in how much � is reduced.

Forming the Jacobian of (*), we see that making a single Newton step requires the solution of
the linear system of equations:

0A 0 0 dx b � Ax
T T 0 0(**) 0 A I dy � c � A y � z� �� � � �Z 0 X dz �e � xZe

where

0 0X � diag(x , . . . , x )1 n

0 0Z � diag(z , . . . , z )1 n

Te � (1, . . . , 1)

The iteration count for the interior method is the total number of Newton steps, that is, the number
of times the linear system (**) is solved.
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TABLE 1 OB1 vs. XMP on Multiperiod Refinery Models

Number of Time Periods in the Model

1 2 3 4 8 16

Equation 442 883 1,255 1,659 3,275 6,507
Variables 1,032 1,945 2,644 3,506 6,874 13,610
Nonzeros 7,419 14,280 19,494 25,727 50,659 100,253

XMPa 40 123 418 683 3,207 16,331
OB1a 62 139 217 306 656 1,441

a These are CPU seconds on a DECstation-3100.

The interior point method sketched here, which is simply an application of the classical nonlinear
barrier method to LP, was actually tried in the late 1960s. At that time it was not even close to being
competitive with the simplex method. The reason was that the efficient numerical linear algebra for
solving (**) had not yet been developed. This was done during the 1970s and early 1980s for the
purpose of solving large-scale finite-element problems. One way to solve (**) involves the Cholesky
factorization of the symmetric positive-definite matrix: AZ�1XAT. Factoring large, sparse, symmetric,
positive-definite matrices is the central computational core of finite-element methods. See George
and Liu (1981) and Duff et al. (1987).

6.5. Computational Efficiency of the Interior Point Method

The truly remarkable thing about the interior point method is that the number of iterations (Newton
steps) is almost independent of problem size. For all models solved to date, the number of iterations
has been less than 100, and is usually between 20 and 40. (Note, however, that one Newton step
involves much more computation than one simplex step.) There are theoretical and empirical reasons
to believe that the number of iterations increases with the log of the number of variables, log(n).
Indeed, Marsten et al. (1990) report a family of problems with from 35,000 to 2,000,000 variables
for which a regression of iterations vs. log(n) gave an R2 � 0.979.

Given this surprising behavior, the computation time depends on how efficiently the individual
steps can be executed. This is a very active area of research and one that is exploring new parallel
and vector computer architectures. (As with the simplex method, if the A matrix were completely
dense, the computation time would increase with the cube of the number of constraints, but sparse
matrix techniques make this rather meaningless.)

To give some comparison between the interior point method and the simplex method, consider
the following set of multiperiod oil refinery planning models. The number of periods is the number
of days in the planning horizon. This is a class of problems, as mentioned earlier, that becomes
particularly hard for the simplex method as the number of periods increases. In Table 1, OB1 is an
implementation of the interior point method and XMP is an implementation of the simplex method.
They were both written entirely in FORTRAN by the same programmer and run on the same com-
puter, a DECstation 3100.

One surprising consequence of the independence between iteration count and problem size is the
fact that it takes about 20 Newton steps to solve even very small problems. For Example 2, the
interior method takes 18 steps to obtain eight digits of accuracy, while the simplex method takes
only 2 steps! The interior point method has to converge to the vertex, while the simplex method,
being essentially combinatorial, hops exactly (within machine precision) onto the vertex. The se-
quence of trial solutions generated by the interior method, rounded to three decimal places, are given
in Table 2. Steps 14 to 18 are required for eight digits of accuracy and are omitted. Recall that the
solution is at (8, 5 /3).

7. COMPUTER SOLUTION OF LINEAR PROGRAMS

7.1. Evolution of Commercial Packages for LP

The discovery of the simplex method and the birth of the digital computer occurred at about the
same time, in the late 1940s. Because of the prodigious amount of computation required to solve all
but the smallest problems, the simplex method would be of no practical use without the digital
computer. Solving large LP models has always been one of the most challenging computational tasks
for each new generation of computers. This remains true today, as the meaning of ‘‘large’’ expands
with the capabilities of each new computer. It is interesting that the interior point method appeared
at about the same time as the widespread availability of vector and parallel computers, since it seems
much better suited to these new architectures than the simplex method.
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TABLE 2 Trial Solutions for Example 2 Using the
Interior Point Method

Iteration x1 x2

1 2.000 2.000
2 3.997 3.327
3 1.258 2.657
4 5.211 7.629
5 5.375 7.611
6 5.590 7.598
7 5.723 7.476
8 5.794 6.797
9 7.503 2.562

10 7.981 1.734
11 7.988 1.692
12 7.998 1.672
13 7.999 1.667

7.2. PC Software for LP

Up until the mid-1980s, almost all industrial LP models were solved on mainframe computers, with
software provided by the computer manufacturers or by a very small number of specialty LP software
companies. In the late 1980s, the situation changed drastically. LP models with a few hundred con-
straints can now be solved on personal computers (PCs using Intel Pentium chips). This has expanded
the use of LP dramatically. There are even LP solvers that can be invoked directly from inside
spreadsheet packages. For example, Microsoft Excel and Microsoft Office for Windows contain a
general purpose optimizer for solving small linear, integer, and nonlinear programming problems.
The LP optimizer is based on the simplex algorithm. There are now at least a hundred companies
marketing LP software for personal computers. They can be found in any issue of OR/MS Today, a
publication of the Institute for Operations Research and Management Science. For a 1999 survey of
LP software, see Fourer (1999). A web version of the survey can be reached via Fourer’s home page
at http://iems.nwu.edu /	4er /.

7.3. High-End LP Software

As we entered the 1990s, another dramatic change became apparent. The workstation class of ma-
chines offered mainframe speed at a fraction of the mainframe cost. The result is that virtually all
currently used LP models can now be solved on workstations.

We now have the capability to solve truly enormous LP models using interior point methods on
supercomputers, but at the moment users are just beginning to realize this and to think of larger
models. For example, an oil company that has been solving single-period production planning models
for each refinery can start to piece together a multiperiod, multirefinery model that incorporates
distribution as well as production planning. Another sure source of very large LP models is stochastic
programming, which attempts to deal with uncertainty in the context of optimization.

In 1989, three new high-end LP software systems were introduced that dominated all earlier
systems and redefined the state of the art. The first is OSL from IBM. OSL incorporates both the
simplex method and the interior point method. The simplex part is a very substantial improvement
over IBM’s earlier LP software. The second is CPlex, a simplex code written by Robert Bixby of
Rice University and marketed by CPlex Optimization. The third is OB1, an interior point code written
by Roy Marsten and David Shanno and marketed by XMP Software.

7.4. LP Modeling Languages

During the 1980s, there was also great progress in the development of computer tools for building
LP models. The old mainframe LP systems had matrix generator languages that provided some
assistance in constructing LP coefficient matrices out of collections of data tables. The focus was on
the matrix, however, rather than on the algebraic form of the model. The matrix is a very large, very
concrete object that is of little real interest to the human model builder.

There are now modeling languages that allow the user to express a model in a very compact
algebraic form, with whole classes of constraints and variables defined over index sets. Models with
thousands of constraints and variables can be defined in a couple of pages, in a syntax that is very
close to standard algebraic notation. The algebraic form of the model is kept separate from the actual
data for any particular instance of the model. The computer takes over the responsibility of trans-
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forming the abstract form of the model and the specific data into a specific coefficient matrix. This
has greatly simplified the building, and even more the changing, of LP models. Several modeling
languages are available for PCs. The two high-end products are GAMS (General Algebraic Modeling
System) and AMPL (A Mathematical Programming Language). GAMS is marketed by GAMS De-
velopment. For a reference on GAMS, see Brooke et al. (1988). AMPL is marketed by AT&T. For
a general introduction to modeling languages, see Fourer (1983), and for an excellent discussion of
AMPL see Fourer et al. (1990).

7.5. LP Software on the Internet

A complete list of optimization software available for LP problems is available at the following
NEOS website: http://www.mcs.anl.gov /home/otc. This site not only provides access to the software
guide but also to the other optimization related sites that are continually updated. The NEOS guide
on optimization software is based on More and Wright (1993), an excellent resource for those inter-
ested in a broad review of the various optimization methods and their computer codes. The book is
divided into two parts. Part I has an overview of algorithms for different optimization problems,
categorized as unconstrained optimization, nonlinear least squares, nonlinear equations, linear pro-
gramming, quadratic programming, bound-constrained optimization, network optimization, and in-
teger programming. Part II includes product descriptions of 75 software packages that implement the
algorithms described in Part I. Much of the software described in this book is in the public domain
and can be obtained through the Internet.

8. SENSITIVITY ANALYSIS IN LINEAR PROGRAMMING

8.1. Reasons for Sensitivity Analysis

In all linear programming models, the coefficients of the objective function and the constraints are
supplied as input data or as parameters to the model. The optimal solution obtained by the simplex
method is based on the values of these coefficients. In practice, the values of these coefficients are
seldom known with absolute certainty because many of the coefficients are functions of some un-
controllable parameters. For instance, the future demands, the cost of raw materials, or the cost of
energy resources cannot be predicted with complete accuracy before the problem is solved. Hence
the solution of a practical problem is not complete with the mere determination of the optimal
solution.

Each variation in the values of the data coefficients changes the linear programming problem,
which may in turn affect the optimal solution found earlier. To develop an overall strategy to meet
the various contingencies, one has to study how the optimal solution will change as a result of changes
in the input (data) coefficients. This is sensitivity analysis or postoptimality analysis. Other reasons
for performing a sensitivity analysis are as follows:

1. There may be some data coefficients or parameters of the linear program that are controllable,
for example, availability of capital, raw material, or machine capacities. Sensitivity analysis
enables one to study the effects of changing these parameters on the optimal solution. If it
turns out that the optimal value (profit / cost) changes (in our favor) by a considerable amount
for a small change in the given parameters, then it may be worthwhile to implement some of
these changes. For example, if increasing the availability of labor by allowing overtime con-
tributes to a greater increase in the maximum return as compared to the increased cost of
overtime labor, then one might want to allow overtime production.

2. In many cases the values of the data coefficients are obtained by statistical estimation proce-
dures on past figures, as in the case of sales forecasts, price estimates, and cost data. These
estimates, in general, may not be very accurate. If we can identify which of the parameters
affect the objective value most, then we can obtain better estimates of these parameters. This
will increase the reliability of our model and the solution.

8.2. Practical Uses

Example 1, discussed at the beginning of this chapter, can be used to help illustrate the practical
uses of sensitivity analysis. A computer output of the solution of this problem is given in Table 3.
Note from the optimal solution that the optimal product mix is to produce products 1 and 2 only at
levels 33.33 and 66.67 units, respectively.

The shadow prices give the net impact on the maximum profit if additional units of certain
resources can be obtained. Labor has the maximum impact, providing a $3.33 increase in profit per
every hour of increase in labor. Of course, the shadow prices on the resources apply as long as their
variations stay within the prescribed ranges on right-hand side (RHS) constants given in Table 3. In
other words, a $3.33 /hr increase in profit is achievable as long as the labor hours are not increased
beyond 150 hr. Suppose it is possible to increase the labor hours by 25% by scheduling overtime
that incurs an additional labor cost of $50. To see whether it is profitable to schedule overtime, we
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TABLE 3 Computer Solution of Example 1

Optimal solution x1 � 33.33, x2 � 66.67, x3 � 0
Optimal value Maximum profit � $733.33
Shadow prices For row 1 � $3.33, for row 2 � $0.67, for row 3 � 0
Opportunity costs For x1 � 0, for x2 � 0, for x3 � 2.67

Ranges on Objective Function Coefficients

Variable Lower Limit Present Value Upper Limit

x1 6 10 15
x2 4 6 10
x3 �� 4 6.67

Ranges on RHS Constants

Row Lower Limit Present Value Upper Limit

1 60 100 150
2 400 600 1000
3 200 300 �

first determine the net increase in maximum profit due to 25 hr of overtime as (25) (3.33) � $83.25.
Since it is more than the total cost of overtime, it is economical to schedule overtime. It is important
to note that, when any of the RHS constants is changed, the optimal solution will change. However,
the optimal product mix will be unaffected as long as the RHS constant varies within the specified
range. In other words, we will still be making products 1 and 2 only, but their quantities may change.

The ranges on the objective function coefficients given in Table 3 exhibit the sensitivity of the
optimal solution with respect to changes in the unit profits of the three products. It shows that the
optimal solution will not be affected as long as the unit profit of product 1 stays between $6 and
$15. Of course, the maximum profit will be affected by the change. For example, if the unit profit
on product 1 increases from $10 to $12, the optimal solution will be the same, but the maximum
profit will increase to $733.33 � (12 � 10) (33.33) � 799.99.

Note that product 3 is not economical to include in the optimal product mix. Hence a further
decrease in its profit contribution will not have any impact on the optimal solution or maximum
profit. Also, the unit profit on product 3 must increase to $6.67 (present value � opportunity cost)
before it becomes economical to produce.

8.3. Simultaneous Variations in Parameters (Bradley et al., 1977)

The sensitivity analysis output on profit and RHS ranges is obtained by varying only one of the
parameters and holding all other parameters fixed at their current values. However, it is possible to
use the sensitivity analysis output when several parameters are changed simultaneously. This is done
with the help of the 100% rule.

8.3.1. 100% Rule for Objective Function Coefficients

The 100% rule for the objective function coefficients is given by

�cj
� 1 (7)�

	cj j

where �cj is the actual increase (decrease) in the objective function coefficient of variable xj and 	cj

is the maximum increase (decrease) allowed by sensitivity analysis. As long as inequality (7) is
satisfied, the optimal solution to the LP problem will not change. For example, suppose the unit
profit on product 1 decreases by $1, but increases by $1 for both products 2 and 3. This simultaneous
variation satisfies the 100% rule, since �c1 � �1, 	c1 � �4, �c2 � 1, 	c2 � 4, �c3 � 1, 	c3 �
2.67, and

�1 1 1
� � � 0.875 � 1

�4 4 2.67

Hence the optimal solution will not change, but the maximum profit will change by (�1)(3.33) �
1(66.67) � 1(0) � 33.34.
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8.3.2. 100% Rule for RHS Constants

The 100% rule for the RHS constants is given by

�bi � 1 (8)�
	bj i

where �b1 is the actual increase (decrease) in the RHS constant of the ith constraint and 	bi is the
maximum increase (decrease) allowed by sensitivity analysis. If inequality (8) is satisfied, then the
optimal product mix remains the same and the shadow prices apply, but the optimal solution and
maximum profit will change. Of course, the net change in the maximum profit ran be obtained using
the shadow prices.

Warning: The failure of the 100% rule does not automatically imply that the LP solution will be
affected.

9. APPLICATIONS OF LINEAR PROGRAMMING
Linear programming models are widely used to solve a number of military, economic, industrial, and
social problems. The oil companies have been and still are one of the foremost users of very large
LP models in petroleum refining, distribution, and transportation. The number of LP applications has
grown so much in the last 20 years that it would be impossible to survey all the different applications.
Instead, the reader is referred to two excellent textbooks, Gass (1970) and Salkin and Saha (1975)
which are devoted solely to LP applications in such diverse areas as defense, industry, commercial-
retail, agriculture, education, and the environment. Many of the applications also contain a discussion
of the experiences in using the LP models in practice.

An excellent bibliography on LP applications is available in Gass (1975). It contains a list of
references arranged by area (e.g., agriculture, industry, military, production, transportation). In the
area of industrial application, the references have been further categorized by industry (e.g., chemical,
coal, airline, iron and steel, paper, petroleum, railroad). For additional bibliographies on LP appli-
cations, readers may refer to a survey by Gray and Cullinan-James (1976). For more recent appli-
cations of LP in practice, readers should check the recent issues of Interfaces, AIIE Transactions,
Decision Sciences, European Journal of Operational Research, Management Science, Operations
Research, Operational Research (United Kingdom), Naval Research Logistics Quarterly, and Op-
Search (India).
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