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1. INTRODUCTION
Nonlinear programming and nonlinear optimization are generally considered synonymous terms,
where in this context the term programming refers to the process of determining an optimum program
or solution. Optimization can be thought of as a very broad extension of the simple calculus problem
of finding the extrema of a given function. This process of finding the ‘‘best’’ solution to a mathe-
matical model of some real-world system has a wealth of practical applications (see, e.g., Bracken
and McCormick 1968.)

The basic elements of a mathematical program are decision variables, an objective function, and
constraints or restrictions. To help fix ideas, consider the simple problem of finding the dimensions
of a rectangle that has maximum area and whose perimeter is at most 4. This problem can be posed
as the following mathematical program:
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Figure 1 Graphical Solution of Example 1.

Example 1

maximize ƒ(x) � x x (1)1 2

subject to g (x) � 2x � 2x � 4 � 0 (2)1 1 2

g (x) � �x � 0 (3)2 1

g (x) � �x � 0 (4)3 2

where x � (x1, x2)t � E2, Euclidean 2-space. (The notation vt represents the transpose of the vector
v.) The decision variables in this case are x1 and x2, which represent the length and width of the
rectangle, respectively. The objective function is ƒ(x) � x1x2, which represents the area of the rec-
tangle. g1(x) � 0 is the perimeter constraint, whereas g1(x) � 0 and g1(x) � 0 represent nonnegativity
restrictions on the variables. These nonnegativity restrictions, as well as simple bounds on the vari-
ables, are handled implicitly by some mathematical programming techniques (e.g., the simplex al-
gorithm for linear programming). Here it is assumed that they are included as explicit constraints.

In general, a mathematical program can be represented in the generic form:

(P) optimize ƒ(x) (5)

subject to g (x) � 0 for i � 1, . . . , m (6)i

h (x) � 0 for j � 1, . . . , p (7)j

where x � (x1, x2, . . . , xn)t � En, Euclidean n-space, and ƒ, gi, hj: En → E1. Generally, throughout
much of this chapter, ‘‘optimize’’ will be taken to mean ‘‘minimize,’’ since maximization problems
can be addressed using the simple transformation, maximize ƒ(x) � �minimize (�ƒ(x)).

If all of the functions ƒ, gi, hj are linear functions of x, then (P) is called a linear program.
Otherwise (P) is a nonlinear program. Note that Example 1 is a nonlinear program since the objective
function (1) is a nonlinear function. Actually, as will be seen later, this problem can be classified as
a quadratic program since the objective function is a quadratic function and the constraints are all
linear functions.

The region in En defined by constraints (6) and (7) is referred to as the feasible region; the feasible
region for Example 1 is illustrated in Figure 1. The objective function contours (or level curves) are
also identified in Figure 1, and it is clear that the point, where the objectivet tx* � (x*, x*) � (1, 1) ,1 2

contour is tangent to the boundary of the feasible region, is the global optimal solution. The constraint
g1(x) � 0 is said to be binding (tight or active) at the optimal solution since g1(x*) � 0, whereas
g2(x) � 0 and g3(x) � 0 are nonbinding (loose or inactive) at the optimal solution.

Unlike linear programming, in which an optimum, if one exists, can be found at an extreme point
of the feasible region, solutions of nonlinear programming problems can occur at any feasible point.
Whereas Figure 1 shows an example where the optimum lies on the boundary of the feasible region,
Figure 2 illustrates a case where the optimum is an interior point of the feasible region. In the latter
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Figure 2 Example of a Nonlinear Programming Solution—No Active Constraints.

Figure 3 Local and Global Extrema.

case, the constraints have no influence on the optimal solution, that is, the unconstrained optimum
is also the constrained optimum.

This is just one of the difficulties encountered in nonlinear optimization. In contrast to linear
programming, no single method is suitable for all types of nonlinear programs. And generally, it is
only practical to obtain a local minimum that is not guaranteed to be a global minimum. (See Figure
3.)

Generally speaking, optimization methods can be divided into direct and indirect methods. Clas-
sical optimization methods are frequently referred to as indirect methods since these methods rely
on analytic techniques for determining the optimal solution. This indirect approach does not involve
a direct search for a particular solution but rather specifies a set of general conditions that must be
satisfied by all solutions to the problem. As such, these methods do not lend themselves to computer
implementations; however, they form the foundation for many of the computer-oriented direct meth-
ods. Direct methods of optimization seek to find a particular solution to a specified problem in a
direct, iterative manner. The iterative nature of these procedures allows for effective computer im-
plementations. Since real-world problems may involve many variables and constraints, the major
challenge of nonlinear programming has been the development of efficient computational and algo-
rithmic techniques. Although many algorithms have been developed, only a relative few have enjoyed
continued success in real-world applications.
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Figure 4 Examples of (a) Convex Set and (b) Nonconvex Set.

This chapter outlines the fundamentals of nonlinear optimization. A review of some basic concepts
and convexity is followed by a section addressing unconstrained optimization. This section presents
classical optimization results as well as several direct search algorithms for solving univariate and
multivariate problems. Next, constrained optimization problems are addressed. A review of Lagrange
multipliers and the Karush–Kuhn–Tucker conditions precedes the presentation of several algorithms
for solving different classes of nonlinear programming problems. There are a multitude of direct
search algorithms in the literature, and the author has selected several representative methods to
review. This is by no means an exhaustive review. It is simply an attempt to expose the reader to a
cross-section of algorithmic methods. Finally, a listing of some nonlinear programming codes and
some online resources is provided.

2. CONVEXITY
As indicated previously, nonlinear programming algorithms can generally only find a local optimal
solution. Under these conditions, it becomes very important to know when a local minimum is
actually guaranteed to be a global minimum over a given feasible region. One set of conditions that
ensures such an outcome is that the feasible region is a convex set and the objective function is a
convex function. Such a problem is called a convex program.

A convex set satisfies the following property: if x1, x2 � S, then � �x1 � (1 � �)x2 � Sx
for all � �[0, 1]. is referred to as a convex combination of x1 and x2. Geometrically, the abovex
property simply means that if x1, x2 �S, then the line segment joining x1 and x2 is also contained in
S. An extreme point of a convex set S is any point in S that cannot be written as a strict convex
combination (i.e. � � (0, 1)) of two distinct points in S. Figure 4 illustrates a convex and a nonconvex
set. A set is closed if it contains all of its boundary points.

A function ƒ : S → E1 defined on a convex set S � En is a convex function if � �ƒ(x1) �ƒ(x)
(1 � �)ƒ(x2) for all x1, x2 � S and � � [0, 1]. This property is illustrated geometrically in Figure
5(a) and means that the line segment joining the points (x1, ƒ(x1)) and (x2, ƒ(x2)) lies above the graph
of ƒ(x). Also, ƒ is a strictly convex function if � �ƒ(x1) � (1 � �)ƒ(x2) for all x1, x2 � S, x1ƒ(x)
� x2, and ��[0, 1]. Similarly, g : S → E1 is (strictly) concave if �g is (strictly) convex.

As a special case, if the feasible region of a linear program with nonnegative variables is non-
empty, the feasible region is always a convex polyhedral set with a finite number of extreme points.
If an optimal solution exists, an optimal extreme point among this finite set can be found quite
efficiently using either the simplex algorithm, which was developed by Dantzig in 1947, or, more
recently, by Karmarkar’s interior point algorithm (Karmarkar 1984). An analogous approach is not
possible with general nonlinear programs, since the feasible region cannot readily be reduced to a
finite set of candidate solutions and a global optimal solution cannot necessarily be found by relying
only on local information, as in the simplex method. The effects of convexity on the outcome of
different mathematical programming problems can be summarized as follows.

1. Minimizing an unconstrained convex objective function: In this case, any local minimum will
also be a global minimum. Furthermore, if the objective function is differentiable, any station-
ary point (i.e., a point at which all the first-order derivatives vanish) will be a global minimum.

2. Maximizing an unconstrained concave objective function: Any stationary point will be a global
maximum, and any local maximum will also be a global maximum.

3. Minimizing a convex objective function over a closed convex feasible region: Again, any local
minimum will be a global minimum. As mentioned earlier, this class of problems is labeled
convex programming problems, and a global minimum, if one exists, may occur at either an
interior point or a boundary point of the feasible region.
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Figure 5 Examples of (a) Convex function, (b) Concave function, (c) Neither convex nor concave,
(d) Both convex and concave.

4. Maximizing a convex objective function over a closed bounded convex feasible region: In this
case, a maximum, if one exists, will be found at an extreme point of the feasible region.
However, a local maximum need not be a global maximum.

5. Maximizing a concave objective function over a closed convex feasible region: This case is
similar to case 3. That is, a local maximum is a global maximum.

6. Minimizing a concave objective function over a closed bounded convex feasible region: This
case is analogous to case 4 and does not guarantee that a local minimum is a global minimum.
However, a global minimum, if one exists, will occur at an extreme point of the feasible region.

7. Maximizing or minimizing an objective function over a nonconvex set: This is a difficult case
that may produce a local minimum or maximum that is not also a global solution. Figure 6
illustrates that this can occur even in the simple case when the objective function is linear.
Observe that extreme point B is a local minimum since all feasible points near B have an
objective value that is greater than that at B.

In general, the task of proving that an arbitrary subset of En is convex can be quite difficult.
However, the feasible region of problem (P) will be a convex set if each function gi(x) is a convex
function and each function hj(x) is a linear function. Actually, these conditions on the functions gi(x),
hj(x) can be relaxed somewhat using the concepts of generalized convexity. A nice summary of
generalized convexity is provided by Avriel (1976).

Verifying the convexity of an arbitrary function ƒ : En → E1 can also be a difficult task. In the
case when ƒ is twice differentiable, however, the concept of quadratic form is useful for investigating
the convexity or concavity of ƒ.

A quadratic form q(x) is defined by

tq(x) � x Ax (8)

where x � En and A is an n � n real symmetric matrix. The matrix A is said to be:

1. Positive definite if and only if xtAx � 0 for all x � 0
2. Negative definite if xtAx � 0 and only if for all x � 0
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Figure 6 Minimizing a Linear Objective over a Nonconvex Set.

3. Positive semidefinite if and only if xtAx � 0 for all x
4. Negative semidefinite if and only if xtAx � 0 for all x
5. Indefinite if xtAx � 0 for some x and xtAx � 0 for some x

Example 2. Consider the 2 � 2 symmetric matrix A � . A is positive definite since
1 �3� ��3 11

1 �3 x1t 2q � x Ax � (x , x ) � x � 6x x� �� �1 2 2 1 2�3 11 x2
2 2 2� 11x � (x � 3x ) � 2x � 0 for all x � 02 1 2 2

Positive and negative definiteness can also be checked using the leading principal minor test,
although semidefiniteness cannot be verified in this manner. Using standard matrix notation, let

a a . . . a11 12 1n

a a . . . a21 22 2nA � (9)�� � � ��� �
a a . . . an1 n2 nn

Define

a a11 12A � a , A � � �1 11 2 a a21 22

with A3, . . . , An defined similarly. Note that An � �A�, that is, An is the determinant of A. Ai is called
the ith leading principal minor of A. The results of the leading principal minor test can be sum-
marized as follows:

1. If Ai � 0 for all i � 1, . . . , n, then A is positive definite.
2. If Ai, i � 1, . . . , n, alternate in sign with A1 � 0, then A is negative definite.
3. If 1 and 2 are not satisfied and Ai � 0 for all i � 1, . . . , n, then A is indefinite.
4. If Ai � 0 for some i, then the test fails.

In Example 2, A1 � 1 � 0 and A2 � 2 � 0, therefore A is positive definite. A more comprehensive
polynomial-time algorithm for checking both definiteness and semidefiniteness is presented in Ba-
zaraa et al. (1994, pp. 96–97). The algorithm uses Gauss–Jordan reduction and works toward sys-
tematically reducing the matrix to upper triangular form until a conclusion is reached. Definiteness
and semidefiniteness can also be determined by examining the eigenvalues of the matrix.
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2.1. Convexity and the Hessian Matrix

Let ƒ : En → E1 be a twice differentiable function and define the Hessian matrix, H(x), to be the
matrix of second partial derivatives, ƒij(x) � �2ƒ(x) /�xi�xj.

ƒ (x) ƒ (x) . . . ƒ (x)11 12 1n

ƒ (x) ƒ (x) . . . ƒ (x)21 22 2nH(x) � (10)�� � � ��� �
ƒ x) ƒ (x) . . . ƒ (x)n1( n2 nn

Let . Then by examining the nature of the quadratic form of H(x), it is possible to deter-x � En

mine local characteristics of the function ƒ.

1. If is positive definite, then ƒ is locally convex atH(x) x.
2. If is negative definite, then ƒ is locally concave atH(x) x.
3. If H(x) is positive semidefinite for all x, then ƒ is a convex function.
4. If H(x) is negative semidefinite for all x, then ƒ is a concave function.

If ƒ is a univariate function, that is, ƒ : E1 → E1, then the Hessian matrix simply reduces to the
scalar, ƒ�(x) and the above conditions simplify to the following:

1. If � 0, then ƒ is locally convex atƒ�(x) x.
2. If � 0, then ƒ is locally concave atƒ�(x) x.
3. If ƒ�(x) � 0 for all x, then ƒ is a convex function.
4. If ƒ�(x) � 0 for all x, then ƒ is a concave function.

These conditions are used in the following section to develop optimality conditions in uncon-
strained optimization.

3. UNCONSTRAINED OPTIMIZATION
An unconstrained mathematical programming problem is a problem of the form: minimize ƒ(x) where
ƒ : En → E1. This is the type of problem that is typically addressed in a first course in calculus, and
this class of problems has many applications, including maximum-likelihood or least-squares esti-
mation problems in statistics. The classical fundamentals and algorithmic techniques used to solve
these problems are often used as a basis for constructing efficient procedures for solving more general
problems. This section presents some fundamental classical results, as well as algorithmic strategies
for finding the solution of unconstrained optimization problems.

3.1. Classical Unconstrained Results

Classical methods of optimization are based on differential calculus, and it is generally assumed that
the function to be optimized is continuous and differentiable (smooth). For a function of one variable,
ƒ : E1 → E1, a necessary condition for a local extremum (either a local maximum or local minimum)
to occur at a point x* � E1 is that the first derivative vanishes at x*, that is,

ƒ�(x*) � 0 (11)

However, a local extremum does not necessarily occur at every point that satisfies (11); that is, (11)
is not a sufficient condition for optimality. In practice, necessary conditions are used to identify
stationary points, which are candidate extrema, whereas sufficient conditions are used to classify the
stationary points as local maxima, local minima, or saddle points (inflection points in E2). Once all
local extrema are found, the global extrema can be found by selecting the absolute maximum or
minimum. The necessary and sufficient conditions for determining and classifying the stationary
points of a function of one variable are summarized in Table 1. These conditions are easily derived
using a Taylor series expansion.

As indicated in the previous section, the sufficiency conditions in Table 1 are essentially examining
the local properties of the function ƒ. For example, indicates that the function is convexƒ�(x) � 0
at the point and thus, if a local minimum occurs at . Similarly, if , then f isx, ƒ�(x) � 0, x ƒ�(x) � 0
concave at x.

To illustrate the use of the results presented in Table 1 consider the following simple problem.

Example 3. Find the extrema of the function ƒ(x) � x3 (3x � 8) � 20. First, the stationary points
are identified by finding the roots of ƒ�(x) � 12x2 (x � 2) � 0. Clearly x � 0, 2 are the only stationary
points. Next, these candidate points are classified by examining higher-order derivatives. In particular,
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TABLE 1 Necessary and Sufficient Conditions for Local Extrema of a Univariate Function

Necessary Condition Sufficient Condition

Local minimum at x � 0ƒ�(x) � 0, i � 1, . . . , m � 1,(i)ƒ (x)
� 0 and m is even(m)ƒ (x)

Local maximum at x � 0ƒ�(x) � 0, i � 1, . . . , m � 1(i)ƒ (x)
� 0 and m is even(m)ƒ (x)

Inflection point at x � 0ƒ�(x) � 0, i � 1, . . . , m � 1(i)ƒ (x)
� 0 and m is odd(m)ƒ (x)

TABLE 2 Necessary and Sufficient Conditions for Local Extrema of a Multivariate
Function

Necessary Condition Sufficient Condition

Local minimum at x � 0�ƒ(x) is positive definiteH(x)
Local maximum at x � 0�ƒ(x) is negative definiteH(x)
Saddle point at x � 0�ƒ(x) is indefiniteH(x)

for this example, it is necessary to determine ƒ�(x) � 36x2 � 48x and ƒ�(x) � 72x � 48. A local
minimum occurs at x � 2 since ƒ�(2) � 48 � 0 and m � 2 is even. Also, ƒ�(0) � 0 and ƒ�(0) �
�48. Therefore, an inflection point occurs at x � 0 since ƒ�(0) � 0 and m � 3 is odd. In addition,
upon graphing, it can be seen that the local minimum at x � 2 is also a global minimum, even
though the function ƒ is not convex.

For a function of n variables, ƒ : En → E1, a necessary condition for an extremum to occur at a
point x* � En is that the gradient vector, �ƒ(x), the vector of first partial derivatives, vanishes at x*.
Thus, in this case, the task of finding the stationary points is more difficult, in that it is necessary,
in general, to solve a system of n simultaneous nonlinear equations in n unknowns,

�ƒ(x)
� 0 for i � 1, . . . , n (12)

�xi

Sufficiency conditions are determined by examining the Hessian matrix H(x), the matrix of second
partial derivatives. Based on the discussion in Section 2, Table 2 gives the necessary and sufficiency
conditions for identifying and classifying stationary points in the multivariate case. In the event that
the sufficiency conditions are not satisfied, higher-order derivative information must be used.

Example 4. Find the extrema of the function ƒ(x) � First, obtain first3 2x � 6x x � 24x � x .1 1 2 1 2

and second order derivative information.

23x � 6x � 241 2�ƒ(x) � (13)� ��6x � 2x1 2

6x �61H(x) � (14)� ��6 2

Setting �ƒ(x) � 0, the stationary points are x1 � (2, 6)t and x2 � (4, 12)t. From Table 2, x1 is a
saddle point since H1(x1) � 12 and H2(x1) � �12, that is, H(x1) is indefinite. Similarly, H1(x2) �
24 and H2(x2) � 12 implies that H(x2) is positive definite and thus, a local minimum occurs at x2.

3.2. Line Search Techniques

There are several direct search techniques for minimizing a function of one variable. The methods
generally start from an initial estimate and sequentially move toward the minimum. Univariate or
line search techniques play a major role in solving subproblems in more complex direct search
algorithms.

3.2.1. Golden Section Method

An example of a line search technique that does not use derivatives is the golden section method,
which seeks to find the minimum of a function ƒ(x) on an interval [a, d]. The interval [a, d] is called
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Figure 7 Narrowing the Interval of Uncertainty.

Figure 8 Successive Iterations of the Golden Section Method.

the interval of uncertainty, and the basic strategy of the method is to successively decrease the length
of the interval, assuming that the function is unimodal, that is, the function has only one minimum
on the interval [a, d].

Let b, c � [a, d] such that a � b � c � d and compute ƒ(b) and ƒ(c). Since ƒ is unimodal on
[a, d], it is possible to narrow the interval of uncertainty by comparing ƒ(b) and ƒ(c). That is, if ƒ(b)
� ƒ(c), then the true minimum cannot lie on the interval [a, b] [Figure 7(a)], and if ƒ(b) � ƒ(c), the
minimum cannot lie on the interval [c, d] [Figure 7(b)]. Thus, in either case, the length of the interval
of uncertainty is reduced and the entire process can be repeated until some desired accuracy is
achieved.

Let ak � bk � ck � dk, where [ak, dk] is the interval of uncertainty at iteration k and assume that
[a1, d1] � [a, d]. Since functional evaluations are the most expensive step in the process, the golden
section method reduces the amount of overall work by intelligently choosing symmetric points bk

and ck so that they can be reused on successive iterations, as illustrated in Figure 8. This is achieved
by using the relationships bk � �ak � (1 � �)dk and ck � (1 � �)ak � �dk, where � � 0.618.
Observe that bk and ck are simply expressed as convex combinations of ak and dk. A summary of the
golden section algorithm follows:

1. Choose a tolerance � � 0 for the length of the final interval of uncertainty. Choose an initial
interval of uncertainty [a1, d1] and set the iteration counter k � 1. Compute b1 � �a1 � (1 �
�)d1 and c1 � (1 � �)a1 � �d1.

2. If dk � ak � �, stop; the interval [ak, dk] contains the minimum. Otherwise, continue with step
3.

3. If ƒ(bk) � ƒ(ck), go to step 4. Otherwise go to step 5.
4. Let ak�1 � bk, bk�1 � ck, dk�1 � dk [see Figure 8(a)]. Compute ck�1 � (1 � �)ak�1 � �dk�1.

Replace k by k � 1 and go to step 2.
5. Let ak�1 � ak, ck�1 � bk, dk�1 � ck. [see Figure 8(b)]. Compute bk�1 � �ak�1 � (1 � �)dk�1.

Replace k by k � 1 and go to step 2.

Other line search methods that involve only function evaluations, that is, no derivative calculations,
are the dichotomous search, the Fibonacci search (Kiefer 1957), and the quadratic fit line search. The
Fibonacci search is the most efficient derivative-free line search technique in the sense that it requires
the fewest function evaluations to attain a prescribed degree of accuracy. The quadratic fit method
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Figure 9 The Method of Hooke and Jeeves.

fits a quadratic function to three points on the function and then finds the unique minimizing point
of the resulting quadratic function. A new interval of uncertainty is determined and the process is
repeated until convergence is achieved (see, e.g., Bazaraa et al. 1994, pp. 279–281). Examples of
line search techniques that utilize derivative information are the bisection search method and Newton’s
method. The more general multivariate version of Newton’s algorithm will be discussed in the next
section. In practice, a line search is typically used to find the step length during an iterative step of
a more general algorithm. As such, it may be impractical to try to find the exact minimum point and
it may be appropriate to apply an inexact method such as Armijos’ rule (Armijo 1966) or simply to
terminate the line search procedure before it has converged.

3.3. Multidimensional Search Techniques

This section is a natural extension of the previous section and addresses the problem of minimizing
a function of several variables, that is, minimize ƒ(x) where ƒ : En → E1. The general process behind
multidimensional search techniques may be expressed as follows: Given a current point xk, determine
a direction dk and a step size 	k to yield a new point,

x � x � 	 d (15)k�1 k k k

The step size 	k is determined by either solving the line search problem in the variable 	,

Minimize ƒ(x � 	d ) (16)k k

where typically 	 � E1, 	 � [0, �), or 	�[a, b], or by taking prescribed discrete steps along the
search directions. The strategy for choosing the search directions and the step sizes determines the
different methods.

3.3.1. Multidimensional Search Techniques without Using Derivatives

The cyclic coordinate search method successively uses search directions that are parallel to the
coordinate axes along with line search problems to determine the step sizes. This method is concep-
tually simple, but the sequence of iterates generated by this method tend to zigzag if the optimal
solution lies in a valley.

To help overcome this problem, the method of Hooke and Jeeves (1961) involves both exploratory
moves and pattern moves (acceleration moves) with discrete steps along the search directions. The
discrete steps eliminate the need for a line search. In the exploratory move phase, starting at a point
xk, a modified cyclic coordinate search is performed in which, if possible, the objective function is
reduced once along each of the coordinate directions using a prescribed discrete step length. This
leads to a new point xk�1 and establishes a direction of improvement. A pattern move is then per-
formed in the direction xk�1 � xk, leading to an intermediate point y. Now, starting from y, another
exploratory move yields the point xk�2. If ƒ(xk�2 � ƒ(xk�1), then an improvement has been found
and the process is continued with a pattern move in the direction xk�2 � xk�1. Otherwise, xk�1 is
considered the new initial point and the process is begun anew. In the instance when no improving
exploratory step can be made, the discrete step size is reduced and the process is repeated. When
the step size becomes smaller than some prescribed tolerance, the search terminates. A graphical
interpretation of the algorithm is presented in Figure 9.
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Figure 10 The Steepest Descent Method.

Other methods of multidimensional search without using derivatives include Rosenbrock’s method
(1960) and the simplex method of Spendley et al. (1962), which was later modified by Nelder and
Meade (1974). Although it has the same name, this simplex method is not the same algorithm as
that used for linear programming; it is a polytope algorithm that requires only functional evaluations
and requires no smoothness assumptions.

3.3.2. Multidimensional Search Techniques Using Derivatives

In this section, optimization techniques are discussed that use derivative information in determining
the search directions. As in the preceding discussion, a basic step in the algorithmic process consists
of choosing a direction dk and a step length 	k to arrive at a new point,

x � x � 	 d (17)k�1 k k k

Recall from calculus that the gradient, �ƒ(x), of a differentiable function ƒ : En → E1 provides
local information concerning the rate of change of the function. In fact, given a point the gradientx,
of ƒ evaluated at is the direction of steepest ascent at and is the direction ofx, �ƒ(x), x ��ƒ(x)
steepest descent at This fundamental result leads to the following algorithm.x.

3.3.2.1. The Method of Steepest Descent This is one of the most basic procedures for mini-
mizing an unconstrained differentiable function, and the process is defined by simply specifying
dk � ��ƒ(xk) in Eq. (17) to get

x � x � 	 �ƒ(x ) (18)k�1 k k k

where 	k is determined by solving the line search problem

Minimize ƒ(x � 	�ƒ(x )) (19)k k
	�0

The path generated by the algorithm for an example problem is illustrated in Figure 10. Note that
successive directions are orthogonal and at each point xk, �ƒ(xk) is normal to the objective contour
at xk. A typical stopping rule is when the Euclidean norm of �ƒ(xk), (��ƒ(xk)�), is less than some
prescribed small positive number. The performance of the method of steepest descent is quite good
during early iterations, but the convergence tends to slow excessively during later iterations and
exhibits zigzagging tendencies near stationary points. Thus, it is not well used in practice.

3.3.2.2. Newton’s Method The classical Newton’s method is a technique that instead of spec-
ifying a step length at each iteration uses the inverse of the Hessian matrix, H(x)�1, to deflect the
direction of steepest descent. The method assumes that ƒ(x) may be approximated locally by a second
order Taylor approximation and is derived quite easily by determining the minimum point of this
quadratic approximation. Assuming that H(xk) is nonsingular, then the algorithmic process is defined
by

�1x � x � H(x ) �ƒ(x ) (20)k�1 k k k

The classical method does not require a line search at each iteration, but it does require second
order derivative information and a matrix inversion, or equivalently, the solution of a system of linear
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equations. In general, the performance of Newton’s method is quite erratic and the sequence of points
generated may not converge. Thus, it is not well suited for general use. However, Newton’s method
performs quite well if the initial point is sufficiently close to the optimal solution. This is because
near an optimal solution, the local contours of the approximating quadratic function are usually a
good approximation of those of the function.

Another interesting feature is that the method is not a true descent procedure, since the objective
function is not guaranteed to decrease at each iteration. However, the direction, �H(xk)�1�ƒ(xk), is
guaranteed to be a descent direction if H(xk) is positive definite. Thus, adding a line search to control
the step size means the objective will improve at each iteration provided that H(xk) is positive definite.
In the case when H(xk) is indefinite, some other corrective action must be taken. One alternative is
to give the Newton search direction a bias towards the steepest descent direction as suggested by
Levenberg (1944) and Marquardt (1963). Another method, suggested by Fiacco and McCormick
(1990, pp. 167–169), involves computing a negative curvature descent direction when H(xk) is in-
definite. For further discussion of these methods, see, for example, McCormick (1983).

Example 5. Use classical Newton’s method to minimize ƒ(x) � � x2)2 � (1 � x1)2. Clearly,2(x1

since ƒ(x) � 0 for all x, a unique minimum occurs at x* � (1, 1)t. First, compute the gradient vector,
�ƒ(x), and the Hessian matrix, H(x).

34x � 4x x � 2x � 21 1 2 1�ƒ(x) � (21)� �2�2x � 2x1 2

212x � 4x � 2 �4x1 2 1H(x) � (22)� ��4x 21

Choosing x1 � (�1, 1)t, then from (20),

�1
�1 10 4 �4 1x � � � (23)� � � � � � � �2 1 4 2 0 �3

�1
1 26 �4 16 1x � � � (24)� � � � � � � �3 �3 �4 2 �8 1

Observe that ƒ(x1) � 4, ƒ(x2) � 16, and ƒ(x3) � 0. That is, even though the minimum was found in
two iterations, the objective function did not improve from iteration 1 to iteration 2.

3.3.2.3. Quasi-Newton Methods In some sense, quasi-Newton methods are an attempt to com-
bine the best features of the steepest descent method with those of Newton’s method. Recall that the
steepest descent method performs well during early iterations and always decreases the value of the
function, whereas Newton’s method performs well near the optimum but requires second order de-
rivative information. Quasi-Newton methods are designed to start like the steepest descent method
and finish like Newton’s method while using only first order derivative information. The basic idea
was originally proposed by Davidon (1959) and subsequently developed by Fletcher and Powell
(1963). An additional feature of quasi-Newton methods is that the minimum of a convex quadratic
function ƒ : En → E1 can be found in at most n iterations if exact line searches are used. The basic
step of the algorithm is

x � x � 	 D �ƒ(x ) (25)k�1 k k k k

where Dk is a deflection matrix requiring only first order derivative information and 	k is determined
using a line search. The method of Davidon–Fletcher–Powell can be summarized as follows:

1. Choose a small positive number � � 0 to test convergence and choose an initial point x1. Let
the initial deflection matrix D1 � I and set the iteration counter k � 1.

2. Compute �ƒ(xk). If ��ƒ(xk)� � �, stop with xk as the optimal solution. Otherwise, set dk �
�Dk�ƒ(xk) and continue with step 3.

3. Let 	 � 	k be a solution to the univariate problem, minimize ƒ(x � 	d ).k k
	�0

4. Compute xk�1 � xk � 	kdk.
5. Find the updated deflection matrix Dk�1 using

t tu u D v v Dk k k k k kD � D � � (26)k�1 k t tu v v D vk k k k k
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where uk � 	kdk and vk � �ƒ(xk�1) � �ƒ(xk). Replace k by k � 1 and go to step 2.
Since D1 � I, the initial iteration is a steepest descent step. Also, if ƒ is a convex quadratic

function, it can be shown that at termination Dk is the inverse of the Hessian matrix.
There are several other methods for updating Dk in step 5. Another important method is based

on the BFGS formula, which was developed by Broyden (1970), Fletcher (1970), Goldfarb (1970),
and Shanno (1970) and is given by

t t t tv D v u u u v D � D v uk k k k k k k k k k kD � D � 1 � � (27)� �k�1 k t t tu v u v u vk k k k k k

The BFGS formula is generally preferred to (26) since computational results have shown that it
requires considerably less effort, especially when inexact line searches are used. Quasi-Newton meth-
ods, also referred to as variable metric methods, are much more widely used than either the steepest
descent or Newton’s method. For additional details and computational comparisons, see Fletcher
(1987, pp. 44–74).

Example 6. Find the minimum of ƒ(x) � using the method of2 2x / 2 � x x � x � x � x1 1 2 2 1 2

Davidon–Fletcher–Powell. Choose an initial point x1 � (0, 0)t, an initial deflection matrix D1 �

, and determine the gradient vector,
1 0� �0 1

x � x � 11 2�ƒ(x) � (28)� ��x � 2x � 11 2

Next, compute �ƒ(x1) � (�1, �1)t, and as in step 3, solve the line search problem:

0 �1 2minimize ƒ � 	 � 	 / 2 � 2	 (29)�� � � ��0 �1	�0

to find 	1 � 2. Therefore, from (25),

0 1 0 �1 2
x � � 2 � (30)� � � �� � � �2 0 0 1 �1 2

Now compute the updated deflection matrix as in (26).

2 1 0 10 0
(2 2) (0 2)� � � �� � � �2 0 2 01 11 0 2 1D � � � � (31)� � � �2 0 1 1 102 1 0

(2 2) (0 2)� � � �� �12 0 2

Then,

2 2 1 �1 3�x � � 1 � (32)� � � � � � �3 2 1 1 1 2

Since �ƒ(x3) � 0, the algorithm terminates with x* � (3, 2)t. Note that D2 is precisely the inverse

of the Hessian matrix, of the convex quadratic objective function ƒ(x).
1 �1H(x) � ,� ��1 2

3.4. Conjugate Gradient Methods

The nonzero vectors d1, . . . , dk are said to be conjugate with respect to the positive definite matrix
H if they are linearly independent and � 0 for i � j. A method that generates such directionstd Hdi j

when applied to a quadratic function with Hessian matrix H is called a conjugate direction method.
These methods will locate the minimum of a quadratic function in a finite number of iterations, and
they can also be applied iteratively to optimize nonquadratic functions.

The algorithm proposed by Fletcher and Reeves (1964), is probably the best-known example of
a conjugate gradient algorithm. Starting at some initial point x1, the algorithm begins like the steepest
descent method by searching in the direction d1 � ��ƒ(x1) to determine x2. Subsequent directions
are computed using the expression
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d � ��ƒ(x ) � 	 d (33)k�1 k�1 k k

where

t�ƒ(x ) �ƒ(x )k�1 k�1
	 � (34)k t�ƒ(x ) �ƒ(x )k k

Note from (33) that the method actually deflects the current direction of steepest descent by adding
on a positive multiple of the direction vector used in the previous step. In fact, it is easily shown
that dk�1 is essentially a convex combination of ��ƒ(xk�1) and dk.

Quasi-Newton methods are generally preferable to conjugate gradient methods because they have
been shown to be more efficient. However, conjugate gradient methods have the advantage of re-
quiring no matrix operations and having minimal storage requirements for computer implementation.

4. CONSTRAINED OPTIMIZATION
In this section, methods for addressing constrained optimization problems are discussed. First the
classical method of Lagrange multipliers is presented, followed by the Karush–Kuhn–Tucker con-
ditions. Both of these techniques are indirect methods, and general optimality conditions are pre-
sented. Then several algorithmic strategies are presented for addressing specific classes of nonlinear
programming problems.

4.1. Lagrange Multipliers

The method of Lagrange multipliers is a classical indirect method for solving nonlinear programming
problems in which the objective is to optimize a differentiable function subject to a set of equality
constraints comprised of differentiable functions. The basic technique involves transforming the con-
strained nonlinear problem into an unconstrained nonlinear problem by forming what is called the
Lagrangian function. Consider the mathematical programming problem with equality constraints,

(NLPE) Minimize ƒ(x) (35)

Subject to h (x) � 0 for j � 1, . . . , p (36)j

The Lagrangian function,

p

L(x, v) � ƒ(x) � v h (x) (37)� j j
j�1

is formed by introducing a vector of Lagrange multipliers, v � (v1, . . . , vp)t. vj is referred to as the
Lagrange multiplier, dual multiplier, or dual variable for constraint hj(x) � 0. Since each feasible
point x must satisfy hj(x) � 0 for all j � 1, . . . , p, the addition of the term vjhj(x) to thep�j�1

objective function ƒ(x) does not change the value of the function. As in section 3, a necessary
condition for a stationary point is that the partial derivatives with respect to xi for i � 1, . . . , n and
vj for j � 1, . . . , p, equal zero. That is,

p�ƒ(x) �h (x)�L(x, v) j
� � v � 0 for i � 1, . . . , n (38)� j

�x �x �xj�1i i i

�L(x, v)
� h (x) � 0 for j � 1, . . . , p (39)j

�vj

A stationary point for a general Lagrangian function may or may not be a local extremum. If, as
described in Section 2, suitable convexity conditions hold, then the method of Lagrange multipliers
will yield a global minimum.

Example 7

2 2Minimize ƒ(x) � x � 2x � 4x x � 12x � 15x (40)1 2 1 2 1 2

Subject to h (x) � 2x � x � 5 � 0 (41)1 1 2

First, form the Lagrangian function,
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2 2L(x, v) � x � 2x � 4x x � 12x � 15x � v (2x � x � 5) (42)1 2 1 2 1 2 1 1 2

Then, using (38) and (39),

�L(x, v)
� 2x � 4x � 12 � 2v � 0 (43)1 2 1

�x1

�L(x, v)
� 4x � 4x � 15 � v � 0 (44)1 2 1

�x2

�L(x, v)
� 2x � x � 5 � 0 (45)1 2

�v1

Solving the system of linear equations, (43) through (45), yields x1 � 3, x2 � 1, and v1 � 1. Thus,
the optimal solution is x* � (3, 1)t.

4.2. Karush–Kuhn–Tucker Conditions

Consider the general nonlinear programming problem,

(NLP) Minimize ƒ(x) (46)

Subject to g (x) � 0 for i � 1, . . . , m (47)i

h (x) � 0 for j � 1, . . . , p (48)j

where ƒ, gi, hj : En → E1 are continuously differentiable functions. The Karush–Kuhn–Tucker (KKT)
conditions are essentially an extension of the method of Lagrange multipliers to problems involving
inequality constraints. The results were derived independently by Karush (1939), and Kuhn and
Tucker (1951). Although these necessary conditions are not typically used to derive an optimal
solution, they do provide insight into solution behavior and form the basis for many nonlinear pro-
gramming algorithms. They can also be used to verify that a given solution is a candidate for an
optimal solution.

4.2.1. KKT Necessary Conditions

If x* is a local minimum of problem (NLP) and some constraint qualification holds (e.g. the vectors
�gi(x*) for all i such that gi(x*) � 0, and �hj(x*) for j � 1, . . . , p, are linearly independent), then
there exists vectors u � (u1, . . . , um)t and v � (v1, . . . , vp)t such that

g (x*) � 0 for i � 1, . . . , m (49)i

h (x*) � 0 for j � 1, . . . , p (50)j

m p�ƒ(x*) �g (x*) �h (x*)i j
� u � v � for k � 1, . . . , n (51)� �i j

�x �x �xi�1 j�1k k k

u � 0 for i � 1, . . . , m (52)i

u g (x*) � 0 for i � 1, . . . , m (53)i i

Conditions (49) and (50) are called primal feasibility, conditions (51) and (52) are called dual
feasibility, and condition (53) is called complementary slackness. To interpret these results geomet-
rically, it is helpful to rewrite (51) in a more compact notation using gradients,

m p

—�ƒ(x*) � u �g (x*) � v �h (x*) (54)� �i i j j
i�1 j�1

Given a point x*, condition (53) asserts that the dual variable ui will be zero if gi(x*) � 0 (i.e., the
constraint gi(x) � 0 is nonbinding at x*). Thus, from (53) and (54), the KKT conditions are specifying
that, at an optimal solution, ��ƒ(x*) can be written as a linear combination of the gradients of the
binding constraints (i.e., those constraints satisfied as equalities). In the case involving only constraints
of the form gi(x) � 0, ��ƒ(x*) must lie in the cone spanned by the gradients of the binding
constraints since ui � 0 for i � 1, . . . , m. This geometric interpretation is illustrated in Figure 11
using the following example.
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Figure 11 Graphical Solution of Example 8 Illustrating the KKT Conditions.

Example 8

2 2Minimize ƒ(x) � (x � 14) � (x � 12) (55)1 2

Subject to g (x) � x � 4x � 40 � 0 (56)1 1 2

2g (x) � x � 8x � 0 (57)2 1 2

g (x) � �x � 0 (58)3 1

The KKT conditions for this problem can be written as follows:

x � 4x � 40 � 0 (59)1 2

2x � 8x � 0 (60)1 2

�x � 0 (61)1

2x � 28 1 2x �1 01 1� u � u � u � (62)� � � � � � � � � �1 2 22x � 24 4 �8 0 02

u � 0 for i � 1, 2, 3 (63)i

u (x � 4x � 40) � 0 (64)1 1 2

2u (x � 8x ) � 0 (65)2 1 2

u (�x ) � 0 (66)3 1

The reader can verify that x* � (8, 8)t and u* � (28 /9, 5 /9, 0)t satisfy (59) through (66) and thus,
as illustrated in Figure 11, the negative gradient of the objective at x*, ��ƒ(x*), lies in the cone
spanned by �g1(x*) and �g2(x*).

It should also be pointed out that if ƒ and gi for i � 1, . . . , m are convex functions and hj for
j � 1, . . . , p are linear functions, then the KKT conditions are also sufficient for optimality. This
is the case in Example 8. In fact, these assumptions can be somewhat relaxed using the concepts of
generalized convexity. For a detailed discussion of first- and second-order KKT conditions, see, for
example, Fiacco and McCormick (1990, pp. 17–34).

The following section discusses a solution procedure that is a direct application of the KKT
conditions.

4.3. Quadratic Programming

Quadratic programming problems are an important class of linearly constrained problems having the
following form:



2556 METHODS FOR DECISION MAKING

t t(QP) Minimize c x � 1 /2x Hx (67)

Subject to Ax � b (68)

x � 0 (69)

where H is an n � n symmetric matrix, A is an m � n matrix, c � (c1, . . . , cn)t, b � (b1, . . . ,
bm)t and the decision vector is x � (x1, . . . , xn)t. The following method is based on the Karush–
Kuhn–Tucker conditions and reduces the quadratic programming problem to what is referred to as
a linear complementarity problem.

Let u � (u1, . . . , um)t and v � (v1, . . . , vn)t be the dual multipliers for constraints Ax � b
and �x � 0, respectively. Then, using matrix notation, the KKT conditions for (QP) can be expressed
as follows:

Ax � s � b (70)
t�A u � Hx � v � c (71)

x, v � 0, s, u � 0 (72)
t tx v � 0, u s � 0 (73)

If H is positive semidefinite, then problem (QP) is a convex program. Thus, the KKT conditions
are sufficient in this case, and any solution to this system will yield a global optimal solution to
(QP). When H is indefinite, then local optimal solutions which are not global optimal solutions may
occur.

The system (70)–(73) can be expressed in the form

w � Mz � q (74)

w � 0, z � 0 (75)
tw z � 0 (76)

where
0 �A b s uM � , q � , w � , Z � .� � � � � � � �tA H c v x

Written in this form, (74)–(76) are an example of a linear complementarity problem, which also has
applications in game theory. In this context, (76) is referred to as the complementarity condition, and
all wi, zi pairs are said to be complementary variables. A method for finding a solution to this system
is the complementary pivoting algorithm credited to Lemke (1968). Under certain assumptions on
the matrix M, the algorithm determines a solution or finds a direction indicating unboundedness in
a finite number of iterations.

Other solution procedures for quadratic programming problems include conjugate gradient meth-
ods and the Dantzig–Wolfe method (see Dantzig 1963), which uses a modification of the simplex
algorithm for linear programming.

4.4. Separable Programming

Separable programming is a procedure for obtaining an approximate solution to a nonlinear program-
ming problem in which the objective function and constraint functions can be expressed as the sum
of univariate functions. A separable programming problem has the following form:

n

(SP) Minimize ƒ(x) � ƒ (x ) (77)� j j
j�1

n

Subject to g (x ) � b for i, . . . , m (78)� ij j i
j�1

x � 0 for j � 1, . . . , n (79)j

Here, for example, ƒ(x) may represent the total cost whereas ƒj(xj) represents the cost contribution
of variable xj.

The solution technique involves approximating each of the functions (xj) and each of the func-ƒj

tions gij(xj) by piecewise linear functions on their respective intervals of interest. Before presenting
the resulting mathematical programming formulation, it is informative to review the idea of a linear
approximation.
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Figure 12 Piecewise Linear Approximation, l(x), of a Function, h(x).

A piecewise linear approximation of a univariate function h(x) on an interval of interest [a, b] is
illustrated in Figure 12. The interval [a, b] is partitioned using t grid points, a � x1, x2, . . . , xt �
b. Then the linear approximation, lk(x), on subinterval [xk, xk�1] can be written as follows using the
concept of a convex combination.

l (x) � �h(x ) � (1 � �)h(x ) (80)k k k�1

where

x � �x � (1 � �)x (81)k k�1

� � [0, 1] (82)

Generalizing, the piecewise linear approximation of h(x) on the interval [a, b] is given by

t

l(x) � � h(x ) (83)� k k
k�1

t

� � 1 (84)� k
k�1

� � 0 for k � 1, . . . , t (85)k

where, at most, two adjacent �ks are positive. This last restriction arises because if nonadjacent �ks
are positive, the resulting approximation will not lie on the piecewise linear approximating function.
The accuracy of this approximation improves as the number of grid points increases, but, increasing
the number of grid points increases the number of variables in the approximating problem.

Denoting the grid points for variable xj by xkj for k � 1, . . . , tj, the approximating problem is

n tj

Minimize � ƒ (x ) (86)� � kj j kj
j�1 k�1

n tj

Subject to � g (x ) � b for i � 1, . . . , m (87)� � kj ij kj i
j�1 k�1

tj

� � 1 for j � 1, . . . , n (88)� kj
k�1

� � 0 for k � 1, . . . , t ; j � 1, . . . , n (89)kj j

At most, two adjacent � s are positive for j � 1, . . . , n (90)kj

Except for constraint (90), this is a linear programming problem in the variables �kj, which can
be solved by the simplex method provided a restricted basis entry rule is used which enforces (90).
However, in the case when each ƒj is strictly convex and each gij is convex, constraint (90) can be
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neglected since it will be satisfied automatically by a solution generated by the simplex method. For
additional details, see Miller (1963), and Wolfe (1963).

4.5. Geometric Programming

As has been shown in the two previous sections, it is sometimes possible to find the solution of a
problem by transforming it into a simpler problem. This is also the case with geometric programming
problems, another important class of nonlinear programming problems. The motivation for addressing
this class of problems originated with work in engineering design. Geometric programming problems
have the following general form:

t n0

a0jk(GP) Minimize g (x) � c (x ) (91)� 	0 0k j
k�1 j�1

t ni

aijkSubject to g (x) � c (x ) � 1 for i � 1, . . . , m (92)� 	i ik j
k�1 j�1

x � 0 for j � 1, . . . , n (93)j

where the coefficients cik, i � 0, . . . , m must be positive. Although each of the functions gi(x) for
i � 0, . . . , m is not a true polynomial since the exponents aijk are not restricted to be integers, they
are generally referred to as posynomials or positive generalized polynomials.

Problem (GP) has a nonlinear objective function and nonlinear constraints and, as such, is quite
difficult to solve. However, geometric programming problems belong to a class of problems whose
dual problems involve only linear constraints. Let 
ik be the dual variable associated with the term

Then the dual problem for problem (GP) can be written as follows:n aijkc (x ) .	ik j�1 j


ikm t mi cik �iMinimize v(�, �) � (� ) (94)	 	 	� � i
i�0 k�1 i�1ik

m ti

Subject to a 
 � 0 for j � 1, . . . , n (95)� � ijk ik
i�0 k�1

t0


 � 1 (96)� 0k
k�1

ti


 � � for i � 1, . . . , m (97)� 0k i
k�1

� � 0 (98)

This dual problem has variables, and at best, in the case when t � n � 1 � 0,mt � t�i�0 i

determining the solution simply involves solving a square system of linear equations in nonnegative
variables. The quantity t � n � 1 is referred to as the degree of difficulty. Although the dual objective
function as written in (94) is neither convex nor concave, by using a natural logarithm transformation,
the resulting function can be shown to be a concave function. In fact, by taking the logarithm, the
objective function becomes separable and the dual problem can be cast as a separable programming
problem. Thus, at worst, solving the dual problem involves maximizing a nonlinear concave objective
function subject to linear constraints. As such, any local solution to the dual problem is a global
solution. Even so, the advantage of solving the dual problem is offset by the fact that it can be
difficult to find the optimal primal variables given the optimal dual variables and the optimal objective
value.

Example 9

3 �2Minimize g (x) � 4x x � 20x (99)0 1 2 1

�1Subject to g (x) � x x � 1 (100)1 1 2

x , x � 0 (101)1 2

Letting 
01, 
02, and 
11 be the dual variables for the terms respectively, then3 �2 �14x x , 20x , and x x ,1 2 1 1 2

the dual problem becomes
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01 02 114 20 1
�1Maximize v(�, �) � (� ) (102)� � � � � � 1
 
 
01 02 11

Subject to 
 � 2
 � 
 � 0 (103)01 02 11

3
 � 
 � 0 (104)01 11


 � 
 � 1 (105)01 02


 � � (106)11 1


 , 
 , 
 � 0 (107)01 02 11

Condition (103) is derived from the exponents of x1 in the respective terms of the primal. Similarly,
(104) is derived from the exponents of x2. These are referred to as the orthogonality conditions,
whereas (105) is termed the normality condition. In this case t � n � 1 � 3 � 2 � 1 � 0 and the
dual problem can be solved by finding the solution of the linear system of equations, (103)–(105).
Thus, , with g0(x*) � v(�*, �*) � 121 / 3302 / 3.
* � 1 /3, 
* � 2 /3, �* � 
* � 101 02 1 01

The optimal values of the primal variables can be recovered by utilizing the following condition:

nc0k a0jk
* � (x*) for k � 1, . . . , t (108)	ok j 0g (x*) j�10

Substituting into (108) yields

1 4
3� x x (109)1 21 / 3 2 / 33 12 30

2 20
�2� x (110)11 / 3 2 / 33 12 30

Now solving (109) and (110) gives � (5 /2)1 / 6.x* � x*1 2

For a complete discussion of geometric programming, the interested reader is referred to Duffin
et al. (1967), and Beighter and Phillips (1976). Reviews of software for solving geometric program-
ming problems are provided in Dembo (1976) and Rijckaert and Walraven (1985).

4.6. Methods of Feasible Directions

Consider the following nonlinear programming problem:

Minimize ƒ(x) (111)

Subject to x � S � E (112)n

Conceptually, methods of feasible directions operate in a manner similar to unconstrained multidi-
mensional search techniques. That is, the basic idea is, given a feasible point xk, determine a direction
dk and a step length 	k that yield the new point xk�1 � xk � 	kdk. In the constrained case, however,
care must to taken to choose a direction dk that not only produces a point xk�1 that improves the
objective function, but also maintains the feasibility of xk�1. For a differentiable objective function
ƒ(x), an improving feasible direction dk at the point xk � S, has the following two properties (see
Figure 13):

1. �ƒ(xk)tdk � 0, that is, the directional derivative at xk in the direction dk is negative, resulting
in a reduction in objective value. Geometrically, this means that dk forms an acute angle with
��ƒ(xk).

2. xk�1 � xk � 	dk � S for some 	 � 0, that is, a feasible move is possible in the direction dk.

Thus, methods of feasible directions operate by determining an improving feasible direction and
then solving a line search problem to determine the step length in that direction. This process is
repeated until some stopping rule is satisfied. Since the sequence of points generated is feasible to
the primal problem, these are often called primal methods. The way in which the directions are
generated and the step sizes are computed determines the various methods.

One such method that can be applied to a nonlinear programming problem with a linear constraint
set is the method of reduced gradient, originally proposed by Wolfe (1963). It operates in a manner



2560 METHODS FOR DECISION MAKING

Figure 13 Illustration of (a) Feasible direction set at , (b) Improving direction set at and (c)x x,
Improving feasible direction set at x.

similar to the simplex method for linear programming by using a set of independent variables to
reduce the dimensionality of the problem. The reduced gradient is the gradient with respect to these
independent variables. This method was generalized to handle nonlinear constraints by Abadie and
Carpentier (1969) and is called the generalized reduced gradient method (GRG). There are several
other methods of feasible directions, including those proposed by Zoutendijk (1960), the gradient
projection method of Rosen (1961), and the convex simplex method of Zangwill (1967).

4.7. Sequential Unconstrained Minimization Techniques

In this section, methods for converting a general constrained nonlinear programming problem into
an equivalent unconstrained problem are discussed. Once this conversion has been made, algorithms
for unconstrained optimization can be applied. Unfortunately, there are computational difficulties
associated with this process, and instead of solving a single unconstrained problem, it is usually
necessary to solve a sequence of unconstrained problems. Although penalty functions methods were
originally introduced by Courant (1943), the sequential unconstrained minimization technique
(SUMT) was primarily developed by Fiacco and McCormick (1964). There are two basic approaches,
both of which add a penalty term to the objective function. In the penalty function method (or exterior
penalty function method), the optimal solution is approached by a sequence of infeasible points. That
is, the optimum is approached from the exterior of the feasible region. In the second approach, known
as the barrier function method (or interior penalty function method), the sequence of points generated
converges to the optimum from within the feasible region.

4.7.1. Penalty Function Methods

Consider the following problem:

Minimize ƒ(x) (113)

Subject to x � S � E (114)n

The basic idea is to approximate this problem with an unconstrained problem by adding a penalty
function to the objective function that prescribes a high cost for violation of the constraint set S. This
new unconstrained auxiliary problem is of the form

Minimize ƒ(x) � rP(x) (115)

where r is a positive constant, and P(x) is chosen as a continuous penalty function such that (1)
P(x) � 0 for all x, and (2) P(x) � 0 if and only if x � S. For large r, the optimal solution of (115)
will be in a region where P(x) is small. However, if r is chosen too large, then the unconstrained
problem becomes ill-conditioned and difficult to solve. Thus, a sequence of problems is solved in
which r is increased from problem to problem. A sequence of problems that could be used for solving
the general nonlinear programming problem (NLP), (46)–(48), is
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m p
q qMinimize ƒ(x) � r [max{0, g (x)}] � �h (x)� (116)� �� �k i j

i�1 j�1

where q is a positive integer and rk represents a strictly increasing sequence of positive numbers such
that rk → �.

4.7.2. Barrier Function Methods

Barrier function methods are very similar to penalty function methods except that they start at an
interior point of the feasible region and set a barrier against leaving the feasible region. In this case,
the feasible region must have an interior, so this method is generally restricted to inequality con-
straints. Consider the nonlinear problem with inequality constraints,

(NLPI) Minimize ƒ(x) (117)

Subject to g (x) � 0 for i � 1, . . . , m (118)i

Ideally, a barrier function, B(x), would assume the value zero for x � {x:gi(x) � 0 for i � 1,
. . . , m} and the value � on the boundary of the feasible region. B(x) is usually defined such that
(1) B(x) is continuous and nonnegative on the interior of the feasible region, and (2) B(x) → � on
the boundary of the feasible region. A typical barrier function is

m

B(x) � [�1 /g (x)] (119)� i
i�1

This would result in the sequence of auxiliary problems

m

Minimize ƒ(x) � t [�1 /g (x)] (120)�k i
i�1

where tk is a strictly decreasing sequence of positive numbers such that tk → 0.

4.7.3. Augmented Lagrangian Methods

In an attempt to avoid the ill-conditioning that occurs in the regular penalty and barrier function
methods, Hestenes (1969) and Powell (1969) independently developed a multiplier method for solving
nonlinearly constrained problems. This multiplier method was originally developed for equality con-
straints and involves optimizing a sequence of unconstrained augmented Lagrangian functions. It was
later extended to handle inequality constraints by Rockafellar (1973).

Consider the mathematical programming problem

(NLPE) Minimize ƒ(x) (121)

Subject to h (x) � 0 for j � 1, . . . , p (122)j

The augmented Lagrangian function,

p p
2L (x, v) � ƒ(x) � v h (x) � r (h (x)) (123)� �r j j j

j�1 j�1

is formed by introducing a multiplier vector, v � (v1, . . . , vp)t and a positive penalty parameter r.
Note that Lr(x, v) in (123) is the Lagrangian function (37) augmented with the term p 2r � (h (x)) .j�1 j

Thus, instead of a single penalty parameter, as in regular penalty function methods, the augmented
Lagrangian requires estimates of the Lagrange multipliers. Using these multiplier estimates, which
are updated from iteration to iteration, reduces the ill-conditioning of the unconstrained problems.
Assuming that at iteration k, estimates xk, vk, and penalty parameter rk are available, the problem
minimize (x, vk) is solved to find the local unconstrained solution xk�1. The updated vector vk�1Lrk

is then found using the relationship

v � v � 2r h(x ) (124)k�1 k k k�1

where h(x) � (h1(x), . . . , hp(x))t. Upon selecting rk�1 � rk, the process is repeated until xk�1 is
sufficiently close to a local solution of (NLPE).
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A summary of basic penalty function techniques, as well as exact penalty functions and multiplier
methods are discussed in Fletcher (1987, pp. 277–304). For a complete discussion of multiplier
methods, the interested reader is referred to Bertsekas (1982).

4.8. Successive Linear Programming

Successive (or sequential) linear programming (SLP) algorithms were introduced by Griffith and
Stewart (1961) and have been used in a number of application areas, especially the oil and gas
industry. SLP algorithms solve nonlinear optimization problems by using a sequence of linear pro-
grams, and computational results have shown they are particularly efficient on problems that are
highly constrained. Consider the following nonlinear programming problem:

t(NLP1) Minimize ƒ(x) � c y (125)

Subject to g(x) � Ay � b (126)

Dx � Ey � e (127)

l � x � u (128)

s � y � t (129)

where A is an m � p matrix, D is q � n, E is q � p, c, s, t � Ep, l, u � En, b � Em, e � Eq, ƒ :
En → E1, and g : En → Em, that is, g(x) � (g1(x), . . . , gm(x))t. Note that the decision variables have
been partitioned into the nonlinear variables x � En, and the variables y � Ep, which appear only
linearly. Similarly, the constraints are divided into nonlinear constraints (126) involving the vector of
nonlinear differentiable functions g(x), and the linear constraints (127). The nonlinear variables x
appear in the objective function (125) via the nonlinear differentiable function ƒ.

The basic idea is, given a base point the nonlinear functions, ƒ, g, are linearized using firstx,
order Taylor series approximations. That is, ƒ(x) is replaced by where d � x �tƒ(x) � �ƒ(x) d x.
Similarly, gi(x) for i � 1, . . . , m, is replaced by It is assumed that these lineartg (x) � �g (x) d.i i

approximations are accurate on some interval �� � d � � where � � En, � � 0. Substituting these
results into (NLP1) yields the linear program

t t(LP(x, �)) Minimize �ƒ(x) d � c y (130)

Subject to J(x)d � Ay � b � g(x) (131)

Dd � Ey � e � Dx (132)

max(l � x, � �) � d � max(u � x, �) (133)

s � y � t (134)

where J(x) is the Jacobian matrix whose jth column is �g (x).j

Assuming a feasible solution exists, �) is solved to find the solution that results in theLP(x, y, d
candidate solution If this solution is acceptable, then the bounds � may be increased and(x � d, y).
the process repeated. Otherwise, the bounds � are decreased and �) is resolved. The processLP(x,
terminates when is sufficiently small.�d�

Details of SLP algorithms along with computational results are contained in Palacios-Gomez et
al. (1982), Baker and Lasdon (1985), and Zhang et al. (1985).

4.9. Successive Quadratic Programming

Successive quadratic programming (SQP) algorithms are an important class of methods that has
shown much promise in solving general nonlinear programming problems. The methods are also
referred to as Wilson–Han–Powell-type methods (Wilson 1963; Han 1976; Powell 1978) as well as
Lagrange–Newton methods. SQP algorithms essentially determine a Karush–Kuhn–Tucker point by
applying Newton’s method to find a stationary point of the Lagrangian function. For a discussion of
SQP algorithms, see, for example, Stoer (1985) and Fletcher (1987, pp. 304–317).

4.10. Nonsmooth Optimization

Nonsmooth or nondifferentiable optimization plays an important role in large-scale programming and
addresses mathematical programming problems in which the functions involved have discontinuous
first derivatives. Thus, classical methods that rely on gradient information fail to solve these problems,
and alternative nonstandard approaches must be used. These alternative methods include subgradient
methods and bundle methods. The interested reader is referred to Shor (1985), Zowe (1985), and
Fletcher (1987, pp. 357–414).
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5. ONLINE SOURCES OF INFORMATION ON OPTIMIZATION
There is a wealth of information on mathematical programming available on the World Wide Web.
The resources range from electronic books on optimization to libraries of source code for optimization
problems to test data archives for mathematical programming. The following is a listing of a few of
the more comprehensive optimization sites. Many of the sites also provide links to other related sites.

• Center for Advanced Modeling and Optimization (CAMO)
http: / /www.ici.ro /camo/

• Mathematical Optimization (Computational Science Education Project)
http: / / csep1.phy.ornl.gov /mo/mo.html

• The Optimization Technology Center and The Network Enabled Optimization System (NEOS)
http: / /www-fp.mcs.anl.gov /otc /

• Nonlinear Programming FAQ (Optimization Technology Center)
http: / /www-unix.mcs.anl.gov /otc /Guide / faq /nonlinear-programming-faq.html

• Mathematical Programming Glossary (Harvey J. Greenberg)
http: / /www.cudenver.edu /
hgreenbe /glossary /glossary.html

6. NONLINEAR PROGRAMMING CODES
Due to advances in computer technology and algorithmic techniques, mathematical programming
codes have made significant progress in recent years. Below is a partial listing of some of the
nonlinear programming software that is available to the industrial engineering practitioner. For a
detailed discussion of software packages, the interested reader is referred to Moré and Wright (1993).
Several online sites also provide listings and reviews of available optimization software. See, for
example,

• Decision Tree for Optimization Software (H. D. Mittelmann and P. Spellucci)
http: / /plato.la.asu.edu / topics /problems /nlores.html

• Guide to Available Mathematical Software (National Institute of Standards and Technology)
http: / /gams.cam.nist.gov /

• Nonlinear Programming FAQ (Optimization Technology Center)
http: / /www-unix.mcs.anl.gov /otc /Guide / faq /nonlinear-programming-faq.html

• Nonlinear Programming Packages (Center for Advanced Modeling and Optimization)
http: / /www.ici.ro /camo/hnp.htm

• Optimization Software (Optimization Technology Center)
http: / /www-fp.mcs.anl.gov /otc /Guide /SoftwareGuide /

6.1. Optimization Software

CONOPT
Problem Type: Nonlinear programs with sparse nonlinear constraints
Method: Generalized reduced gradient
Author: Arne S. Drud, ARKI Consulting and Development A/S, Denmark
Contact: ARKI Consulting and Development A/S, Email: info@arki.dk

DONLP2
Problem Type: Smooth nonlinear functions subject to smooth constraints
Method: Sequential quadratic programming
Author: Peter Spellucci, Technical University Darmstadt, Germany
Contact: http: / /www.mathematik.tu-darmstadt.de /ags /ag8 / spellucci /

EA3
Problem Type: Nonlinear programs
Method: Ellipsoid algorithm
Authors: J. G. Ecker, M. Kupferschmid, Rensselaer Polytechnic Institute, NY
Contact: J. G. Ecker, Department of Mathematical Sciences; M. Kupferschmid, Alan M. Voorhees
Computing Center, Rensselaer Polytechnic Institute, Troy, NY 12181

FSQP
Problem Type: Multiple linear /nonlinear objective functions with linear /nonlinear constraints
Method: Sequential quadratic programming
Authors: Eliane R. Panier, Andre Tits, Jian Zhou, Craig Lawrence, University of Maryland



2564 METHODS FOR DECISION MAKING

Contact: http: / /www.isr.umd.edu /Labs /CACSE/FSQP/ fsqp.html

GRG2
Problem Type: Nonlinear programs
Method: Generalized reduced gradient
Author: Prof. Leon Lasdon, The University of Texas at Austin
Contact: http: / /www.optimalmethods.com/

LANCELOT
Problem Type: Large-scale optimization problems
Method: Penalty method
Authors: Andy Conn, IBM T. J. Watson Research Center, NY, Nick Gould, Rutherford Appleton
Laboratory, UK, Philippe Toint, Facultés Universitaires Notre Dame de la Paix, Belgium
Contact: http: / /www.cse.clrc.ac.uk /Activity /LANCELOT�165

LSGRG2
Problem Type: Large-scale nonlinear programs
Method: Generalized reduced gradient
Author: Prof. Leon Lasdon, The University of Texas at Austin
Contact: http: / /www.optimalmethods.com/

MINOPT
Problem Type: Linear, mixed-integer, nonlinear, dynamic, and mixed-integer nonlinear programs
Method: Generalized benders decomposition, outer approximation and variants, generalized cross
decomposition
Authors: C. Schweiger, Christodoulos A. Floudas, Princeton University
Contact: http: / / titan.princeton.edu /MINOPT/minopt.html

MINOS
Problem Type: Large-scale linear and nonlinear programs
Method: Projected Lagrangian
Authors: Bruce A. Murtagh, University of New South Wales, Australia, Michael A. Saunders, Stan-
ford University
Contact: http: / /www.stanford.edu /
saunders /brochure /brochure.html

NIMBUS
Problem Type: Differentiable /nondifferentiable multiobjective / single objective optimization prob-
lems with nonlinear / linear constraints
Method: Nondifferentiable interactive multiobjective bundle-based optimization
Authors: Kaisa Miettinen, University of Jyväskylä, Finland
Contact: http: / /nimbus.mit.jyu.fi /

NLPQL
Problem Type: Nonlinear programs
Method: Sequential quadratic programming
Authors: K. Schittkowski, University of Bayreuth, Germany
Contact: http: / /www.uni-bayreuth.de /departments /math /
kschittkowski /nlpql.htm

NLPQLB
Problem Type: Smooth nonlinear programming with many constraints
Method: Sequential quadratic programming
Authors: Schittkowski, University of Bayreuth, Germany
Contact: http: / /www.uni-bayreuth.de /departments /math /
kschittkowski /nlpqlb.htm

NPSOL
Problem Type: Dense linear and nonlinear programs
Method: Sequential quadratic programming
Authors: Philip Gill, University of California, San Diego; Walter Murray, Michael A. Saunders,
Stanford University; Margaret H. Wright, AT&T Bell Laboratories
Contact: http: / /www.stanford.edu /
saunders /brochure /brochure.html

OPTIMA Library
Problem Type: Unconstrained and constrained nonlinear optimization
Method: Various methods
Authors: M. C. Bartholomew-Biggs, University of Hertfordshire, United Kingdom
Contact: Dr. M. C. Bartholomew-Biggs, Numerical Optimisation Center, Hatfield, Hertfordshire AL10
9AB, United Kingdom
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SNOPT
Problem Type: Large-scale linear and nonlinear programs
Method: Sparse sequential quadratic programming
Authors: Philip Gill, University of California, San Diego; Walter Murray, Michael A. Saunders,
Stanford University
Contact: http: / /www.stanford.edu /
saunders /brochure /brochure.html

SOLVOPT
Problem Type: Nonlinear programs
Method: Exact penalty method
Authors: Alexei V. Kuntsevich, Karl-Franzens Universität Graz, Austria, Franz Kappel
Contact: http: / /bedvgm.kfunigraz.ac.at:8001 /alex / solvopt /

SPENBAR
Problem Type: Nonlinear programs
Method: Modified penalty method
Authors: Neculai Andrei, Research Institute for Informatics, Romania
Contact: Neculai Andrei, Research Institute for Informatics, 8-10, Bdl. Maresal Averescu, 71316
Bucharest, Romania, E-mail: nandrei@u3.ici.ro

TRON
Problem Type: Large bound-constrained optimization problems
Method: Trust region Newton method
Authors: Chih-Jen Lin,National Taiwan University; Jorge Moré, Argonne National Laboratory
Contact: http: / /www-unix.mcs.anl.gov /
more / tron /
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