
2582

CHAPTER 100
Discrete Optimization

RONALD L. RARDIN
Purdue University

1. MODELING 2582

2. SOLUTIONS 2583

3. TOTAL ENUMERATION 2584

4. RELAXATION 2584

4.1. Linear Programming
Relaxations 2585

4.2. Lagrangean Relaxations 2587

5. HEURISTIC SEARCH 2589

5.1. Constructive or Solution-
Building Search 2589

5.2. Improving or Solution-
Enhancing Search 2590

5.3. Local Optima 2590

5.4. Tabu, Simulated Annealing,
and Genetic Algorithms 2590

6. BACKTRACKING SEARCH
AND BRANCH AND BOUND 2591

6.1. Tree Representation 2591

6.2. Branch and Bound 2592

7. GUIDELINES AND LIMITS 2593

7.1. Computational Complexity
Theory 2594

7.2. Choosing a Strategy 2595

APPENDIX 2596

REFERENCES 2600

Optimization is the process of selecting a solution from among available decision alternatives so that
it conforms to all problem constraints and (at least approximately) maximizes or minimizes one or
more objective /criterion functions. Discrete optimization is the branch confronting the vast array of
problems having decisions of a logical or countable nature. Instead of, say, selecting an operating
temperature, which is a decision that can pick any value in a continuous interval, discrete decisions
are those with only specified list of options: turn left or turn right, build or do not build a plant,
undertake job A before job B or B before A. If all decisions of a problem are discrete, the problem
is termed pure; otherwise (e.g., if decisions include both whether to setup a process and what tem-
perature to operate it at), the problem is mixed. The Appendix to this chapter presents many specific
discrete optimization models. Other names for discrete optimization are combinatorial optimization,
integer programming, and mixed-integer programming. A good introduction is provided in Rardin
(1998, chaps. 9–12). More advanced books include Wolsey (1988), Parker and Rardin (1988), and
Nemhauser and Wolsey (1988). Other standard sources are Schrijver (1986), Papadimitriou and Steig-
litz (1982), and Lawler (1976).

1. MODELING
Modeling is the process of mathematically representing a problem in a form conducive to analysis
and solution. The logical nature of discrete optimization—especially pure discrete optimization—
invites a variety of quite different representations. Many problems can usefully be modeled in terms
of logical predicates, objects and sets, graphs, or numerous other constructs.

The format that has proved most useful, and the focus of this chapter, is numerical representa-
tion—formulation of the problem in terms of numerically valued decision variables. Discrete decision
options are encoded as specific numerical variable values. For example, variable yj � 1 may mean
plant j is selected for construction and yj � 0 that it is not.

Handbook of Industrial Engineering: Technology and Operations Management, Third Edition.
Edited by Gavriel Salvendy Copyright © 2001 John Wiley & Sons, Inc.

DISCRETE OPTIMIZATION 2583

TABLE 1 Representing Discrete Phenomena with Numerical Variables

Phenomena Representation

At least K decisions j of subset J must be
taken.

yj 1 if j is in the solution, 0 otherwise�
�

�j�J yj � K
Exactly K decisions j of subset J must be

taken.
yj 1 if j is in the solution, 0 otherwise�

�
�j�J yj � K

At most K decisions j of subset J can be taken. yj 1 if j is in the solution, 0 otherwise�
�

�j�J yj � K
At most K variables zj with j in subset J can be

positive in a solution.
yj 1 if zj � 0, 0 otherwise�

�
�j�J yj � K
zj � M yj for all j � J

Decision j is allowed only if all decisions
i1, . . . , in are taken.

yik 1 if decision ik is taken, 0 otherwise�
�

yj 1 if decision j is taken, 0 otherwise�
�

yj � for all k � 1, . . . , nyik
Decision j is allowed only if some decision

i1, . . . , in is taken.
1 if decision ik is taken, 0 otherwise�y �ik

yj 1 if decision j is taken, 0 otherwise�
�

yj � n� yk�1 ik
Decision j is implied if all decisions

i1, . . . , in are taken.
1 if decision ik is taken, 0 otherwise�y �ik

yj 1 if decision j is taken, 0 otherwise�
�

� (n � 1) � yj
n� yk�1 ik

Decision j is implied if any decision
i1, . . . , in is taken.

1 if decision ik is taken, 0 otherwise�yi �k

yj 1 if decision j is taken, 0 otherwise�
�
� yj for all k � 1, . . . , nyik

Nonnegative fixed cost Fj is incurred whenever
variable zj is positive.

yj 1 if zj positive, 0 otherwise�
�

min . . . � Fjyj � . . .
zj � M yj

If decision i is taken and decision j is taken,
cost Cij is incurred.

yi 1 if decision i is taken, 0 otherwise�
�

yj 1 if decision j is taken, 0 otherwise�
�

min . . . � Cijyiyj � . . .
Either task i of duration Ti done before task j

of duration Tj or vice versa.
zi task i start time; zj task j start time� �

� �
yij 1 if task i before j, 0 otherwise�

�
0 � zi � Ti � zj � M (1 � yij)
0 � zj � Tj � zi � M yij

Function �(p) � �1, . . . , �n at p � P1 � . . .
� Pn, with linear interpolation between Pj’s.

yj 1 if j left interpolation point, 0 otherwise�
�

� interpolated value zj weight on point j� �
� �

p � Pj zj; � � �j zj
n n� �j�1 j�1

yj � 1; zj � 1n�1 n� �j�1 j�1

0 � z1 � y1; 0 � zn � yn�1

0 � zj � yj � yj�1 for all j � 2, . . . , n � 1
Quantity q is a nonnegative integer variable

with value less than or equal to positive inte-
ger U.

yj 1 if the 2j bit in the binary representation�
�
of q is ‘‘on,’’ 0 otherwise

N log2 U�
�

q � 2jyj
N�j�0

q � U

Although numerical modeling of discrete problems requires more abstraction than some other
approaches, it offers a host of advantages. First, objective and constraint functions involving weighted
sums and the like are easily expressed in terms of numerically valued variables. Second, methods
and encodings evolved for pure problems extend naturally to mixed cases. Most important, however,
is the fact that the available methods for continuous optimization are generally more effective than
those for discrete problems (see Chapters 97 and 98). Embedding a discrete problem in a continuous
environment makes it possible to exploit continuous approximations in the analysis.

Table 1 shows the standard modeling of a variety of discrete notions in terms of numerical decision
variables. Throughout, y denotes discrete variables restricted to 0 and 1 values, z represents continuous
variables, and M is a large positive constant.

2. SOLUTIONS
In optimization, a solution (choice of values for decision variables) is termed feasible if it satisfies
all problem constraints and optimal if it is feasible and as good as any other feasible solution in
objective function value. Models that have no feasible solutions are infeasible.

2584 METHODS FOR DECISION MAKING

The goal of all discrete optimization analysis is to find feasible solutions with good objective
function values. It is rarely important to know a mathematically optimal solution to a model, since
the model is itself only an approximation to the underlying problem. However, it is desirable to have
a sharp bound on the objective function value that might be obtained by any feasible solution. Then,
for example, if a feasible solution to a maximize problem is known with objective function value
$92, and other analysis establishes that no feasible solution can produce better that $100, one can
accept the $92 solution with confidence that it is no more (100 � 92) /100 � 8% suboptimal. The
attraction of mathematically optimal solutions is that they provide good feasible solutions with zero-
error bounds.

Many search methods for discrete optimization move through a sequence of partial solutions that
assign specific values to some decision variables in a model, leaving others free or undetermined. A
completion of a partial solution is an assignment of specific values to any remaining free variables.
Of course, the definition of a partial solution includes the possibility that there are no free variables,
in which case the solution is complete.

Each change in solution as a search proceeds is termed a move, and the collection of partial
solutions reachable in one move from the current solution constitutes its neighborhood. Moves may
change the value of a decision variable already assigned a value in the partial solution, or they may
give a value to a previously free decision variable.

To illustrate, consider a pure discrete model with four decision variables y1, y2, y3, y4. One partial
solution is (y1, y2, y3, y4) � (1, 0, #, #), where # denotes a free value. Here only y1 and y2 have been
assigned a specific value. Assume moves may either increase a single fixed variable from 0 to 1; or
decrease a single fixed variable from 1 to 0; or assign the value 0 to a single free variable; or assign
the value 1 to a single free variable. The neighborhood of the present solution is then the six partial
solutions (y1, y2, y3, y4) � (1, 1, #, #), (0, 0, #, #), (1, 0, 0, #), (1, 0, 1, #) (1, 0, #, 0), and (1, 0, #,
1), reachable in one move.

3. TOTAL ENUMERATION
When there are only a few discrete-valued decision variables in a model, the most effective method
of analysis is usually the most direct one: total enumeration of all the possibilities. For example, a
model with only eight 0–1 variables could be enumerated by trying all 28 � 256 combinations of
values for the different variables. If the model is pure discrete, it is only necessary to check whether
each possible assignment of values to discrete variables is feasible and to keep track of the feasible
solution with best objective function value. For mixed models the process is more complicated be-
cause each choice of discrete values yields a residual optimization problem over the continuous
variables. Each such continuous problem must be solved or shown infeasible to establish an optimal
solution for the full mixed problem.

Although attractive for problems with only a few discrete decisions, enumeration becomes im-
practical as the number of discrete variables grows to even modest size. Each new 0–1 variable
doubles the number of cases that must be considered. In the range of 100–150 discrete decisions,
one can compute that this explosive number of cases could occupy the fastest imaginable computer
longer than the estimated life of the universe.

4. RELAXATION
When dealing with difficult discrete optimization problems, it is natural to search for related, but
easier optimization models that can aid in the analysis. Relaxations are auxiliary optimization prob-
lems of this sort formed by weakening either the constraints or the objective function of the main
problem. Specifically, an optimization problem (P̃) is said to be a constraint relaxation of another
optimization problem (P) if every solution feasible to (P) is also feasible for (P̃). Similarly, maximize
problem (respectively minimize problem) (P̃) is an objective relaxation of another maximize (re-
spectively minimize) problem (P) if the two problems have the same feasible solutions and the
objective function value in (P̃) of any feasible solution is � (respectively �) the objective function
value of the same solution in (P).

To illustrate, consider the discrete optimization problem

min �2y � 3y � 6z1 2 1

(P) s.t. y � y � 11 2

z � 10y � 01 1

y , y � 0 or 1, z � 01 2 1

Table 2 shows a variety of relaxations.

DISCRETE OPTIMIZATION 2585

TABLE 2 Examples of Relaxations

Relaxation (P̃) Reason

min �2y1

s.t. y � y � 11 2

z � 10y � 01 1

y , y � 0 or 1, z � 01 2 1

Objective relaxation. New objective underestimates at feasible y1,
y2, z1.

min �2y � 3y � 6z1 2 1

s.t. y � y � 11 2

y , y � 0 or 1, z � 01 2 1

Constraint relaxation. Second main constraint deleted.

min �2y � 3y � 6z1 2 1

s.t. y � y � 11 2

z � 10y � 01 1

1 � y , y � 0, z � 01 2 1

Constraint relaxation. Feasible 0–1 values satisfy 1 � y1, y2 � 0.

min �2y � 3y � 6z1 2 1

�100(z � 10y)1 1

s.t. y � y � 11 2

y , y � 0 or 1, z � 01 2 1

Objective relaxation by term 100(z1 � 10y1) � 0 at feasible so-
lutions. Then constraint relaxation dropping z1 � 10y1 � 0.

Relaxations of discrete optimization problems aid in both the good solution finding and the
bounding tasks of model analysis.

• An optimal solution to a relaxation can often be rounded or otherwise manipulated in a straight-
forward way to obtain a satisfactory solution for the main problem.

• The objective function value of an optimal solution to a relaxation bounds the optimal objective
function value of the main problem. Specifically, relaxation optima provide lower bounds for
minimize problems and upper bounds for maximize problems.

• An optimal solution to a relaxation is an optimal solution to the main problem if (1) it is feasible
in the main problem and (2) its objective value in the main problem is the same as that in the
relaxation.

• If a relaxation is infeasible, the main problem is infeasible.

4.1. Linear Programming Relaxations

An expression is linear if it consists of a weighted sum of variables � or � a constant. Most of the
discrete modeling illustrated in Table 1 consists of linear objective functions and constraints. In
follows that a great many discrete optimization problems can be effectively modeled as integer linear
programs of the general form

n

min or max C x� j j
j�1

� Bn i

(ILP) s.t. A x � B for all i � 1, . . . , m� ij j i� �j�1 � Bi

x � 0 for all j � Jj

x � 0 or 1 for all j � Jj

Here the Cj are given objective function coefficients, the Aij are given coefficients of the m linear
constraints, the Bi are constant terms of the linear constraints, and J is the subset of subscripts j �
1, . . . n indexing the 0–1 variables.

The linear programming relaxation of problem (ILP), denoted is the linear program ob-(ILP),
tained when the last 0–1 system of constraints is replaced by

1 � x � 0 for all j � Jj

The third relaxation of Table 2 provides an example.

2586 METHODS FOR DECISION MAKING

Because linear programs are the best solved of all optimization problems (see Chapter 97), linear
programming relaxations can be optimized for very large models. For this reason, are by far(ILP)s
the most commonly employed relaxations, and they form the core of most commercial software for
discrete optimization.

Not all linear programming relaxations are close approximations of the discrete problem of in-
terest. Because very complex criterion functions and constraints can be modeled by the linear part
of an ILP, however, it is often the case that an optimal solution to the relaxation provides a(ILP)
sound starting point for construction of a good feasible solution to the discrete problem. Such con-
structions may loosely be termed rounding.

Let an optimal solution to LP relaxation be denoted by j � 1, . . . , n. The easiest case(ILP) x ,j
of rounding, yet one that still applies in many models, is where the model permits fractional thatxj

should be integer (i.e., j � J) to be simply rounded up to the next integer (often denoted orx)j

rounded down to the next integer General-purpose rounding algorithms are also available,(x).j

notably Balas and Martin’s (1980), pivot and complement procedure. For most cases, however, the
methods are dependent on the form of the model.

In a number of very important cases, (ILP)s have properties that guarantee there will always be
an optimal solution to the corresponding with integer values for variable xj with j � J. That(ILP)
is, the full model (ILP) can be solved optimally by solving the linear relaxation because its(ILP)
only relaxed constraints (xj integer for j � J) are automatically satisfied by an LP optimum.

The most common of these exact cases are optimization problems that can be modeled as single-
commodity network flows (see Chapter 99). Equivalently, these are the (ILP)s that can be written so
that for each variable xj, at most one constraint coefficient Aij equals 1, at most one Aij equals �1,
and all other Aij equal 0. Such (ILP)’s are totally unimodular in that any submatrix formed by the
{Aij} associated with a collection of rows i and a like-sized collection of variables j has determinant
0, 1 or �1. This is enough to ensure optimal basic solutions to (produced, for example, by the(ILP)
simplex algorithm for linear programming) are integer whenever right-hand-side coefficients Bi are
all integer.

Another important class of (ILP)’s with integer optimal solutions to their linear relaxations is
those that are totally dual integer (TDI). An with integer constraint coefficients Aij is TDI if(ILP)
its linear programming dual (see Chapter 97) has an integer optimal solution for every integer choice
of objective function coefficients Cj. Models that are TDI will have integer optimal solutions to their
linear programming relaxations if all right-hand-side constants Bi are integer.

When linear programming relaxations are not exact, it is important to make them as sharp an
approximation as possible. Different formulations of discrete models as (ILP)s can produce quite
different linear programming relaxations, even though the models have the same discrete solutions.

To illustrate, consider a problem to

min 30z � 60z � 100z1 2 3

s.t. (z � 1 only if z � z � 1)3 1 2

z , z , z � 0 or 11 2 3

If the specified logical requirement is modeled as z1 � z2 � 2z3 the optimal solution to the linear
programming relaxation is z1 � 1, z2 � 0, z3 � 1 /2 with objective function value �20. An equivalent
(ILP) with a sharper comes from modeling the requirement as z1 � z3, z2 � z3. In this format,(ILP)
an optimal solution to the linear programming relaxation is z1 � z2 � z3 � 1 with objective value
�10. The latter form is stronger because the relaxation solution obtained is both more nearly feasible
for the discrete problem and the source of a more exact bound. (In fact, the second modeling yields
an optimal solution for this instance.)

Because of the importance of using formulations with sharp linear programming relaxations, a
great deal of research in the recent decades has been addressed to various aspects of that issue. One
broad area of opportunity for sharpening linear programming relaxation comes in choosing constraint
coefficients more carefully. Assume that each linear inequality of the formulation is rearranged to �
format with only the constant term on the right-hand side. Each inequality is then of the form n�j�1

Aij xj � Bi. Recalling that we also assume all variables are subject to nonnegativity constraints, it is
easy to see that this constraint will cut off more LP-feasible points if either Bi can be increased or
at least one of the Aij can be decreased.

A classic example relates to large-integer ‘‘big M’’ constants in (ILP) formulations. For example,
suppose continuous variable z1 is subject to constraints 0 � z1 � 10 and corresponding 0–1 variable
y1 is to be 1 whenever z1 is positive. The latter requirement is modeled My1 � z1 � 0, where M is
any positive constant at least 10. However, the modeling with the strongest linear programming
relaxation will be the one that makes M as small as possible (i.e., M � 10).

A second common method of improving linear programming relaxations is to add new valid
inequality constraints. An inequality is valid for an (ILP) if it is satisfied by every (integer) feasible

DISCRETE OPTIMIZATION 2587

solution to (ILP). Technically all the original constraints of (ILP) are valid inequalities. However, the
term usually refers to added constraints that are not needed for a correct integer linear programming
formulation but do sharpen the corresponding linear programming relaxation. The strongest such
valid inequalities—ones that are unavoidable if the sharpened LP relaxation is to be exact—are called
facet-inducing, facetial, or simply facets.

It is easy to find valid inequalities for discrete optimization formulations but difficult to find ones
strong enough to materially improve the LP relaxation. Most of the families of such inequalities that
have proved useful are highly problem specific.

One fairly general case is the family of valid inequalities employed by Crowder et al. (1983),
when the original (ILP) formulation includes a constraint �j�L Aij xj � Bi where nonzero coefficients
occur only on integer subscripts in L � J, all coefficients Aij and Bi are positive, and the Aij are not
just ones. For any K � L with �j�K Aij � Bi, it is easy to see the following inequality is valid �j�K

xj � �K� � 1 (�K� denotes the number of subscripts in K). Furthermore, the smaller we can make K
while satisfying its defining requirement, the sharper the revised linear programming relaxation.
Choosing minimal K, that is, K that cannot be further reduced, produces a useful family of valid
inequalities.

One difficulty with using families of strong valid inequalities to sharpen linear programming
relaxations is that the number of inequalities in such families is usually exponentially large. It would
be impossible actually to enumerate all such inequalities and add them to the formulation submitted
to a linear programming code. Instead, successful applications have employed separation subroutines.
Such subroutines heuristically select a small subfamily of inequalities that are likely to improve the
current formulation. After solving the linear programming relaxation with the selected inequalities
added, if the approximation is still not sharp enough, the separation routine may be reinvoked to
generate further inequalities.

A third approach to sharpening linear programming relaxations has been to introduce an extended
(larger) set of variables (see Martin 1999). Such extra variables are not necessary for a correct (ILP)
formulation. Still, their presence in the model makes it possible to write new constraints that sharpen
the linear programming relaxation.

To illustrate, consider a fixed charge network flow problem with two candidate locations for $50
thousand facilities, each with a demand for 10 thousand units of the commodity to be provided by
the facilities. If there is a $1 per unit shipping charge between the facilities, a textbook formulation
is

min z � z � 50y � 50y12 21 1 2

s.t. z � z � 10, z � z � 101 12 2 21

z � 20y , z � 20y1 1 2 2

z , z , z , z � 0; y , y � 0 or 11 2 12 21 1 2

Here zi is the total supplied at facility i, zij represents the number of thousands of units shipped to
the other facility, and yi decides whether facility i is built. This model has LP relaxation optimal
solution � � 10, � � 0, � � 1 /2 and value $50 thousand.z z z z y y1 2 12 21 2

The extended form of Rardin and Wolsey (1993) introduces new variables that subdivide flows
z1 and z2 according to whether they are directed to the facility site or to its companion site. Specif-
ically,

z � w � w , z � w � w1 11 12 2 21 22

z � w , z � w12 12 21 21

0 � w � 10y , 0 � w � 10y11 1 12 1

0 � w � 10y , 0 � w � 10y21 2 22 2

With this extended system, the LP relaxation yields a discrete optimum of value $60 thousand.

4.2. Lagrangean Relaxations

Linear programming relaxations of integer linear programs produce an easier problem by deleting
difficult integrality requirements on variables xj with j � J. This makes them as widely applicable
as integer linear programming itself, but they are not always very good approximations.

Lagrangean relaxations are an alternative appropriate where some of the linear constraints are
treated as the complications in an otherwise manageable discrete model. Integrality requirements are
explicitly retained in relaxations, and complicating linear constraints are dualized, that is, taken to
the objective function with appropriate Lagrange multipliers.

2588 METHODS FOR DECISION MAKING

The fourth relaxation of Table 2 illustrates the principle of Lagrangean relaxation, but most of
the success with Lagrangean relaxation has derived from problem-specific structures. Its power is
better illustrated by a classic application.

Generalized assignment problems involve optimal arranging of objects i � 1, . . . , m of known
size Si into locations j � 1, . . . , n of known capacity Kj. An (ILP) formulation is

m n

min C y�� ij ij
i�1j�1

n

(GA) s.t. y � 1 for all i � 1, . . . , m� ij
j�1

m

S y � K for all j � 1, . . . , n� i ij
i�1

y � 0 or 1 for all i � 1, . . . , m; j � 1, . . . , nij

where Cij is the cost of assigning object i to location j.
Either of the main systems of constraints in (GA) might be thought of as complicating because

deletion of either leaves an easier model where each variable appears in only one constraint. Thus,
either system might be first dualized and then dropped. Corresponding Lagrangean relaxations are

m n n m

min C y � u S y � K�� � �� �ij ij j i ij j
i�1j�1 j�1 i�1

n

(GA) s.t. y � 1 for all i � 1, . . . , m�u ij
j�1

y � 0 or 1 for all i � 1, . . . , m; j � 1, . . . , nij

and

m n m n

min C y � v y � 1�� � �� �ij ij i ij
i�1j�1 i�1 j�1

m

(GA) s.t. S y � K for all j � 1, . . . , n�v i ij j
i�1

y � 0 or 1 for all i � 1, . . . , m; j � 1, . . . , nij

The effect of dualizing constraints is to enforce them partially by penalizing violating solutions
in the objective function. However, care must be taken to ensure that a valid relaxation results. In
(GAu), the dualized constraints are inequalities. Terms weighted by uj will be negative or zero at
feasible solutions. Thus, in order to have a proper objective relaxation, multipliers must satisfy

u � 0 for all j � 1, . . . , nj

Furthermore, an optimal solution to a relaxation (GAu) may not be optimal in (GA) even if it satisfies
the relaxed constraints. Since the objective function values in (GA) and (GAu) may differ, comple-
mentary slackness conditions

m

u S y � K � 0 for all j � 1, . . . , n�� �j i ij j
i�1

must also be satisfied if a relaxation optimum is to be optimal in (GA).
In (GAv), the situation is much easier because dualized constraints are equalities. Terms weighted

by vi will be zero at feasible solutions. Thus, no sign restrictions on Lagrange multipliers are needed
for a proper relaxation, and complementary slackness is not an issue for (GA) optimality.

Any valid choice of multipliers on dualized constraints produces a Lagrangean relaxation, and
like all relaxations the optimal objective function value in the relaxation bounds the optimal value
of the main problem. However, some choices of constraints to dualize may give rather weak bounds;
others may yield very strong bounds (see Parker and Rardin 1988, chap. 5 for a full discussion).

DISCRETE OPTIMIZATION 2589

For any fixed dualization strategy, good bounds depend on good multipliers. Successful use of
Lagrangean relaxation requires a search where a sequence of Lagrangean relaxations is solved with
different multipliers. Results of one relaxation suggest ways to change the multipliers for the next.

The simplest, subgradient search, is effective in many settings. Assume the given discrete problem
has been expressed as a minimize (ILP) with all inequalities �, I� the collection of dualized equality
row numbers, I� the collection of dualized (�) inequalities, and {ui : i � I� � I�} the Lagrange
multipliers. Then subgradient search updates multipliers:

n
� �u ← u � � A x̂ � B for all i � I � I�� �i i ij j i

j�1

�u ← max{u , 0} for all i � Ii i

where x̂j denotes the most recent relaxation optimum and � is a stepsize.

5. HEURISTIC SEARCH
When a discrete model has too many decisions for total enumeration and no convenient relaxation
that is sharp enough to give sound approximations, the principal remaining approach is to organize
a search through a series of solutions (or partial solutions) until a satisfactory feasible solution is
isolated.

Sometimes a practical method is available for computing an exact optimum (see Section 6). More
commonly, however, only a heuristic or approximate optimum can be obtained in reasonable com-
putation time. Such solutions are feasible, but there is no guarantee they are optimal. Often it is not
even possible to bound the error in the heuristic optima produced.

Implementations of heuristic search in discrete optimization are usually classified according to
whether they focus on partial or complete solutions. Constructive searches begin with an all-free
partial solution and fix one or more components at each move until a complete solution is obtained.
Improving searches work their way through a sequence of complete solutions, striving at each move
to find a complete solution in the neighborhood that is either less infeasible, better in objective value
than the current solution, or both. Of course, the strategies can be combined by, for example, using
a constructive search to build a first complete solution and then applying an improving search to
make it better.

5.1. Constructive or Solution-Building Search

Constructive searches are often called greedy or myopic because they usually choose variables and
values to fix on the basis of estimates of immediate or short-term gain. The main issue in design of
such procedures is to choose an informative measure of efficiency or gain on which to base selections.

For certain maximizing models on combinatorial structures called matroids (see e.g., Parker and
Rardin 1988, chap. 3), an exact optimal solution results from the most naive possible greedy choice
rule. Moves iteratively make �1 the remaining free variable with greatest objective function coeffi-
cient, subject only to the requirement that this choice does not produce infeasibility. The spanning
tree problem (see the Appendix) is the most famous example of this matroid structure where a greedy
algorithm is optimal.

Constructive searches based on more complicated efficiency ratios are much more common than
the pure greedy notion of considering only objective coefficient magnitudes. One example is Dobson’s
(1982), heuristic for generalized covering problems of the form

n

min C y� j j
j�1

n

s.t. A y � B for all i � 1, . . . , m� ij j i
j�1

y � 0 or 1 for all j � 1, . . . , nj

where all Aij and Bi are nonnegative integers. Dobson’s algorithm starts with the all free solution and
iteratively chooses a new to make � 1 where is the free index with min{Cj / min{Aij, B̃i}}m˜y j �j̃ i�1

and B̃i � max{0, Bi � �j fixed 1 Aij}. The denominator of this ratio is the total overall constraints of
the amount variable j could contribute toward resolving remaining infeasibility. Thus, the algorithm
is choosing on the basis of least cost per unit improvement in infeasibility. The process terminates
(making any remaining free variables � 0) when the current partial solution is feasible in every main
constraint.

2590 METHODS FOR DECISION MAKING

The fact that constructive heuristics usually terminate as soon as the first feasible solution is found
makes them an attractive choice where solution time is critical, such as in near real-time control.
Still, results obviously depend critically on the early decisions taken, so the quality of the heuristic
optimum produced tends to deteriorate rapidly with the number of discrete variables in the model.

5.2. Improving or Solution-Enhancing Search

Improving searches begin from a complete solution and apply moves that either improve the objective
function value or reduce infeasibility. All or a large part of the complete solutions in the neighborhood
are evaluated, and the search advances to the one found most attractive. One example is the parallel
processor problem:

min z

s.t. y � y � 1 for all i � 1, . . . , mi1 i2

m

T y � z for all p � 1, 2� i ip
i�1

y � 0 or 1 for all i � 1, . . . , m; p � 1, 2ip

Here tasks i � 1, . . . , m of time duration Ti must be scheduled on one of two processors p. Decision
variables yip � 1 if task i is assigned to processor p and � 0 otherwise. Continuous variable z
measures the completion time of all tasks.

An improving search would begin from any feasible choice of values for the discrete variables
(each task is assigned to some processor). A major algorithm-design question is what other solutions
should be considered neighbors, or equivalently, what set of moves to apply.

One obvious family of moves consists of switching one task from its current processor to the
other. Whichever of these changes most improved the objective function would provide the move to
be taken.

A neighborhood allowing pairs of tasks to be interchanged between the two processors could
yield better results. However, the computational effort per step would increase because there are only
m reassignments of one task to a different processor, but more like m2 /4 pairwise swaps (assuming
about half the tasks will be on each processor).

Still another neighborhood might employ moves that delete or add a single task to one of the
processors. Such moves could create infeasibility because a task might be assigned to both processors,
or it might not be assigned at all. The difficulty in this case is how to balance improvement in
solution value with reduction in infeasibility as the next solution is chosen. A common approach is
to add a penalty term in the objective function to discourage infeasibility without prohibiting it. In
the parallel processor example above, this penalty term would have the form

m

� �y � y � 1�� i1 i2
i�1

where � � 0 is the weight applied to infeasibility.

5.3. Local Optima

Although heuristic search has proved useful on some problems, natural definitions of neighborhoods
often lead to poor local optima, that is, final feasible solutions that cannot be improved in the
neighborhood. Of course, a richer family of allowed moves would make it possible to reach stronger
local optima, but the cost of examining the neighborhood at each iteration rapidly becomes prohib-
itive.

One standard solution to this dilemma, known as multistart, is to employ a limited neighborhood
but restart the search several times. Each time, the search begins with a randomly chosen starting
solution and continues to a local optimum. The best of these local optima is kept as an heuristic
optimum.

5.4. Tabu, Simulated Annealing, and Genetic Algorithms

An alternative that has generated much recent research interest is to liberate neighborhood search
from the obligation to improve at each step. That is, moves are sometimes adopted that do not improve
the objective function (or reduce infeasibility). Comprehensive books on the topic include Reeves
(1993), Aarts and Lenstra (1997), and Glover and Laguna (1998).

The immediate difficulty with nonimproving moves is that they can make the search loop. For
example, suppose that no improving move is available and a nonimproving move is adopted to change
y27 from � 1 to � 0. Assuming some symmetry in the move set, there will certainly be an improving

DISCRETE OPTIMIZATION 2591

move at the next step: changing y27 back from � 0 to � 1. The algorithm could loop infinitely
between the two.

Tabu algorithms of Glover and others deal with repeats by keeping list of moves that are tem-
porarily ‘‘tabu’’ or forbidden. The best improving (or least nonimproving) non-tabu move is adopted
at each step of the procedure. For example, in the above case where y27 is switched from � 1 to
� 0, any move involving y27 might be placed on the tabu list for say the next 5–10 steps and then
freed. Solutions can still repeat under tabu, but computational experience has shown promise in a
number of applications.

From this simple beginning, tabu methods have developed in a variety of directions. Once a data
structure must be maintained to limit moves, it can be used to guide other aspects of the search in
a variety of creative ways. For example, moves that have proved useful in the past may be given
some preference, or moves that have not been used in the most recent part of the search might be
tried. Glover and Laguna (1998) develop a host of alternatives.

A second approach is the stochastic one of simulated annealing (see, e.g., Kirkpatrick et al.
(1983); Aarts and Lenstra (1998)). With simulated annealing, a move is selected randomly from the
available neighborhood at each iteration. If the selected move would result in an improvement, it is
adopted and the search advances to the indicated solution. If the move would degrade the solution,
it may or may not be adopted, depending on a probability that decreases with the magnitude of the
degradation.

A common rule is to accept a nonimproving move with probability e�d / T, where d is the amount
by which the solution degrades the objective function value and T is a control parameter called the
temperature. Typically T is started relatively large so that the search can range widely in the early
stages. Then T is slowly decreased as the procedure settles into the region of a good feasible solution.

As with tabu, solutions can repeat, but simulated annealing’s use of probabilities ensures the
search will advance to better solutions if any exist, although it may take a long time. Experience has
shown simulated annealing to be a reliable and easy-to-implement way to compute good heuristic
solutions in a wide variety of applications. However, comparatively long running times are often
required.

Genetic algorithms (see Holland 1975; Goldberg 1989) offer still another approach to dealing
with local optima. Instead of keeping just a single current solution at each move, these methods
retain a whole population of solutions. At each update or generation, some or all of these solutions
will be replaced by improved ones.

Any of the normal manipulations of neighborhood search can be employed to construct the new
solutions, but crossover moves, which interchange parts of solutions in the current population, are
the most popular. For example, crossover of ‘‘parent’’ solutions (0,1,0,0,1,1) and (1,1,0,1,0,1) by
cutting after the third component would produce ‘‘offspring’’ (0,1,0,1,0,1) and (1,1,0,0,1,1). These
new solutions would be evaluated and the better ones preserved in the next generation.

Genetic algorithms have become the method of choice in difficult engineering design circum-
stances where complex feasibility limitations and massive nonlinearity make it difficult to employ
neighborhood-based methods. However, other methods usually give better performance on classic
combinatorial optimization problems—especially (ILP)’s and cases with linear constraints.

6. BACKTRACKING SEARCH AND BRANCH AND BOUND
Heuristic searches usually guarantee neither a global optimal solution nor a bound on the error when
computation stops because they make preemptive moves—moves for which there are viable alter-
natives that are not explored. In order to carry out a more exhaustive search, such moves must be
taken as provisional. That is, a record must be retained of the alternatives not yet pursued, and search
must backtrack to those alternatives, pursuing them until they prove incapable of producing an sat-
isfactory solution. As the search encouters a particular partial solution, it either terminates that so-
lution, that is, finds it to admit no improving move, or branches it, that is, extends it by one applicable
move. The best feasible solution encountered is recorded as the incumbent solution. Thus, if the
search exhausts all open alternatives, the incumbent solution is a global optimum.

6.1. Tree Representation

One essential element of backtracking search is a record of provisional moves and alternatives not
yet explored. The most convenient format for such a record is a tree like the one in Figure 1. Nodes
of that tree represent states of the search. Branches show the selected and alternative moves available
in a state. Search proceeds from the first node or root of the tree toward the bottom. A node is
numbered when it is actually visited by the search; ones still to be considered are left unnumbered.
A backtrack occurs thenever the search skips to an open alternative instead of an extension of the
current state.

The example of Figure 1 represents a search that has already completed 6 nodes. Successive
moves from the root�1 fixed y5, then y11, then y3 to 1. The last produced a feasible solution and
node 4, which is terminated. The search now backtracks to one of the three unexplored alternatives

2592 METHODS FOR DECISION MAKING

y =1 y =0

y =0y =1

y =1 y =0 y =1 y =0

55

11

9933

11

1

2

5

6

3

4

Figure 1 Backtracking Search Tree.

to the moves taken. Here the choice was to adopt move y11 � 0 to the node marked 5. Moves y9 �
1 and y9 � 0 were now available at this node, so it was branched and the first of these moves was
selected.

6.2. Branch and Bound

Branch and bound procedures combine backtracking search with the power of relaxations. Any partial
solution in a search that has variables still free defines a candidate problem, that is, a discrete
optimization problem over the free variables subject to limits imposed by the fixed decisions. Instead
of pursuing partial solutions until no further moves are available, branch and bound solves a relaxation
of the corresponding candidate problems. If the relaxation optimum satisfies requirements to be
optimal for the candidate problem, the partial solution can be terminated immediately; its best com-
pletion has been identified. If the relaxation proves infeasible, the partial solution can also be ter-
minated; no completion exists. When neither of these cases occurs, the value of the relaxation optimal
solution provides a bound on the value of the candidate problem. That is, it yields a bound on the
quality of any completion. If that bound is already worse than the incumbent solution, no completion
can improve on the incumbent; the node can be terminated. In any event, the best such bound across
all unexplored nodes provides a global bound on the optimal value of the full discrete model.

Any reasonable set of branching moves can be combined with any convenient relaxation to pro-
duce a branch and bound procedure. Still, the great majority of successful applications and all com-
mercial codes for discrete optimization use implementations of branch and bound on integer linear
programs (ILP), with linear programming relaxations. The main ideas of such an algorithm can be
outlined as follows:

ILP branch and bound (minimize):
initialize CAND ← {(ILP)}; INCUM ← �; k ← 0
while CAND � do0/

k ← k � 1
select a member of CAND as (ILPk)
attempt to solve relaxation for value VALk(ILP)k

if is infeasible or VALk � INCUM(ILP)k

then delete (ILPk) from CAND
elseif the optimum is feasible in (ILP)(ILP)k

then INCUM ← min{INCUM, VALk}
delete any member of CAND with stored bound � INCUM
delete (ILPk) from CAND

else choose binary free xp fractional in (ILP)k

replace (ILPk) in CAND by extensions with xp � 0
and xp � 1, both with stored bound VALk

end

DISCRETE OPTIMIZATION 2593

x =1

x =1 x =0 x =1

x =1 x =0

x =0

x =0

x =1 x =0

x =0x =1

1

2 3

4

10 11

5

6

8 9

7

4

5 5

4

2

3 3

3 3

1

2

1

Figure 2 Branch and Bound Example.

In this statement, CAND represents a list of the candidate problems associated with active nodes of
the search. Stored bounds are maintained with members of CAND to show the best-known lower
bound on the value of an optimal solution to the candidate.

To illustrate this (ILP) form of branch and bound, consider the example

min 7x � 12x � 7x � 14x � x � 25x1 2 3 4 5 6

s.t. 3x � 6x � 5x � 16x � x � 71 2 3 4 6

5x � 4x � 4x � 5x � 21 2 3 4

3x � 3x � 3x � 10x � 31 2 3 5

x , . . . , x � 0 or 1; 0 � x � 31 5 6

Figure 2 shows the search tree for this example, and Table 3 describes processing of each node.
A complete implementation of branch and bound in even the (ILP) form given above involves

many heuristic rules. The primary ones are (1) which free variable to fix in branching node k and
(2) which active node (member of CAND) to choose at each iteration k. For the simple example
above, corresponding rules were (1) choose the fractional-valued free variable closest to 0.0 and (2)
choose the active node with least stored bound, breaking ties in favor of the last fixed variable � 1.

A desirable feature of branch and bound is that a bound on the value of a global optimal solution
is always available, so that the algorithm need not be run to termination in order to bound the error
of accepting the incumbent solution as approximately optimal. The best stored bound of CAND (least
for minimize problems, highest for maximize problems) always provides such a bound. Thus, for
example, after node 8 is processed in the example of Figure 2, it is certain that any solution to the
full (ILP) will cost at least min{12.6,13.4} � 12.6. Stopping at that point with the incumbent solution
of value 14 would produce at most (14 � 12.6) /12.6 � 11.1% error.

7. GUIDELINES AND LIMITS
Discrete optimization problems abound in all phases of industrial engineering, and ones with impor-
tant economic implications easily justify formal modeling and systematic analysis. However, there
are no general-purpose methods appropriate for dealing with all or even most models. This concluding

2594 METHODS FOR DECISION MAKING

TABLE 3 Processing for Branch and Bound Example

Node Fixed LP Relaxation VAL Processing

1 none (0,0,0,0.44,0.3,0) 6.42 branch on x4

2 x4 � 1 (0,0,0,1,0.3,0) 14.30 branch on x5

3 x4 � 0 (0,0.33,1,0,0,0) 11 branch on x2

4 x4 � 0, x2 � 1 (0,1,0.2,0,0,0) 13.4 branch on x3

5 x4 � 0, x2 � 0 (0.67,0,1,0,0,0) 11.67 branch on x1

6 x4 � 0, x2 � 0,
x1 � 1

(1,0,0.8,0,0,0) 12.6 branch on x3

7 x4 � 0, x2 � 0,
x1 � 0

(0,0,1,0,0,2) 57 new incumbent; INCUM ← 57;
terminate solved

8 x4 � 0, x2 � 0,
x1 � 1, x3 � 1

(1,0,1,0,0,0) 14 new incumbent; INCUM ← 14;
delete extensions of Node 2;
terminate solved

9 x4 � 0, x2 � 0,
x1 � 1, x3 � 0

infeasible — terminate infeasible

10 x4 � 0, x2 � 1,
x3 � 1

(0,1,1,0,0,0) 19 terminate bound � 14

11 x4 � 0, x2 � 1,
x3 � 0

(0.33,1,0,0,0,0) 14.33 terminate bound � 14;
incumbent solution optimal

section reviews theory and accumulated wisdom delimiting which of the approaches treated in pre-
vious sections are appropriate for a given model.

7.1. Computational Complexity Theory

The formal theory of problem difficulty classification is called computational complexity theory (see
Garey and Johnson 1979; Papadimitriou 1994; Parker and Rardin 1988, chap. 2). Complexity theory
terms a problem any collection of related instances distinguished only by their size and numerical
constants. For example, (ILP) is a problem with instances distinguished by counts m and n, discrete
variable list J, and constants Cj, Aij, and Bi. The size of an instance is the length of the symbol string
required to encode it for a computer.

The objective of complexity theory is to classify problems according to how efficiently instances
can be solved relative to their size. Bounds on the required computation are expressed as computa-
tional orders, denoted O(). For example, if every instance of a problem can be solved in a number
of elementary calculations bounded by the square of its size s, the problem is O(s2) solvable. More
generally, a problem is said to be polynomially solvable if there is a constant k such that every
instance of size s is solvable in O(sk) effort. Specifically, O(s4), and O(s2 log s) computationsO(s�s),
are polynomial (the last because s2 log s � s3). O(2s) and O(s!) are not polynomial.

One of the most important theoretical achievements of discrete optimization research has been to
isolate polynomial solvability as the defining characteristic of truly tractable discrete problems. Every
one of the discrete models for which a generally effective algorithm or an exact (polynomially
solvable) relaxation has been discovered belongs to the polynomially solvable class.

Across what seems to be a cosmic boundary in mathematics lies the alternative NP-hard class,
to which almost all discrete optimization models belong that lack such tractable characteristics. NP-
hard problems are not (yet) provably outside the reach of polynomial solvability, but neither are they
just problems for which research has so far failed. Class NP is a vast collection of ‘‘Does there exist
. . .’’ problems in discrete mathematics and computer science, some of which have been studied for
centuries without much progress. No discrete optimization problem actually belongs to NP because
none is of this existence form. Still, each NP-hard discrete optimization problem (H) is as difficult
as any in NP in the sense that a polynomial algorithm for (H) would provide one for every member
of NP. Thus, to seek such an algorithm for any NP-hard problem is simultaneously to attack the
enormous variety of challenging problems in NP. Success is most unlikely. Similar logic establishes
that exact relaxations and strong duality theories are also highly improbable for most NP-hard prob-
lems, although additional technical issues make general statements more difficult.

The fundamental importance of the polynomially solvable vs. NP-hard distinction makes it a high-
priority matter to try to determine on which side of the boundary any given discrete optimization
application falls (theory indicates there may be problems that belong to neither category, but few
realistic candidates are known). Polynomial solvability is almost always established by showing the
given model is a special case of one of the classic polynomial time models detailed in the Appendix,

DISCRETE OPTIMIZATION 2595

error in
relaxation

20%

10%

heuristic
search

binary
decisions

total
enumeration

branch
and
bound

rounded
relaxation

10 10 10 101 2 3 4

Figure 3 Guidelines for NP-Hard Problems.

or inventing some simple enumeration over cases solvable as one of those models. On the other hand,
one shows a problem is NP-hard by demonstrating that some known NP-hard problem can be viewed
as a special case (several NP-hard models are included in the Appendix, and Garey and Johnson
1979 provides a much bigger list). For example, generalized assignment (GA) is known to be NP-
hard. This is enough to establish that integer linear programming (ILP) is NP-hard because every
instance of (GA) is an instance of (ILP).

7.2. Choosing a Strategy

When a discrete optimization problem is in the polynomially solvable complexity category, it is
usually clear how to proceed with its analysis. A clever and efficient algorithm is at hand. Often an
exact linear programming formulation is also known, and a strong duality theory is available for
sensitivity studies. Very complete analysis should be possible, unless limits on the time available for
solution (e.g., in a real-time setting) mandate quicker methods.

In the far more typical case where the given discrete optimization is NP-hard, more care should
be exercised in choosing avenues of analysis. Figure 3 offers some very approximate guidelines in
terms of two critical characteristics: the number of binary decisions in the model vs. the error of the
best available relaxation bound.

For small numbers of decisions, say up to 10–15, total enumeration is recommended, regardless
of relaxation quality. As the number of binary decisions increases, models subdivide into three
regions. In the outermost, relaxations are too poor to assist in analysis. The only practical strategy
is some form of heuristic search lacking even a bound on the suboptimality of results obtained.

The innermost region shows where branch and bound methods may be effective. Relatively strong
relaxations are required, and the needed sharpness increases rapidly with the number of binary de-
cisions.

2596 METHODS FOR DECISION MAKING

Between these two extremes lies a region where relaxations may be helpful but branch and bound
is unlikely to be effective. Here, bounds from relaxations at least delimit the suboptimality of solutions
found through heuristic search or other means. Relaxation may also provide a good source of feasible
discrete solutions when the problem admits easy rounding of relaxation optima.

As with any broad guidelines, the boundaries in Figure 3 are very fuzzy. In particular, it is often
too simple to take the number of binary decisions in a model to equal the number of 0–1 variables
in an (ILP) formulation. A generalized assignment model, for example, with m objects and n locations
has mn 0–1 variables. However, each belongs to �jyij � 1 multiple-choice set. Thus, there are really
only n choices in each of these subsets, or m log2 n total binary decisions in the model.

Application of the guidelines in Figure 3 also requires, of course, information about the likely
quality of available relaxations. Each family of examples has different behavior, but there are char-
acteristic attributes of relaxations with little promise:

• Nonlinear objective functions or constraints
• Either–or constraints that can only be placed in (ILP) format through the use of large positive

constants (‘‘big M’s’’)
• Massive symmetry introducing numerous feasible alternatives of nearly the same objective func-

tion value

Any relaxation possessing such attributes is likely to require strengthening if it is to be of practical
use with even moderately large applications.

APPENDIX
This appendix briefly describes and formulates a variety of standard discrete optimization models.
Throughout, y denotes 0–1 discrete variables, z represents continuous variables, D(N, A) indicates a
directed network or graph with nodes in N and arcs in A, and G(N, E) denotes an undirected network
or graph with nodes in N and edges in E. Capital letters are used to denote input and lower case to
show decision variables. The size of set S is indicated by �S�.

Assignment: Maximum utility pairing of objects from two given sets S and T; family of allowed�
�

pairs (i, j), i � S, j � T; Cij value of pair (i, j).�
�

�y � 1 if pair (i, j) is chosen, else 0ij

max � C y(i, j)�E ij ij

s.t. � y � 1, i � Sj�T ij

� y � 1, j � Ti�S ij

y � 0 or 1, (i, j) � Eij

Polynomially solvable by combinatorial algo-
rithms. Special case of both Matching and Net-
work Flows. LP relaxation is totally unimodular.

Capital Budgeting: Maximum value subset of objects or projects j to pack within given capacity
or resource limits Bi; Aij (nonnegative) consumption of resource i by project j; Cj value of� �

� �
project j.

�y � 1 if project j is chosen, else 0j

max � C yj j j

s.t. � A � B for all ij ij i

y � 0 or 1 for all jj

NP-hard. LP relaxation rounds down and can be
strengthened with the inequalities discussed in
the Valid Inequalities section above. Solution-
building heuristics based on ratios of Cj to
weighted sums of Aij are common.

Facilities Location: Minimum cost subset of facilities i with capacity Ui, considering both con-
struction, setup, etc. cost Fi � 0 of the facility; plus variable travel, service cost Cij of serving
customers j from facility i; Dj demand at j.�

�

DISCRETE OPTIMIZATION 2597

�z � flow from i to jij
�y � 1 if i is opened, else 0i

min � C z � � F yi, j ij ij i i i

s.t. � z � D for all ji ij j

� z � U y for all ij ij i i

0 � z � D y for all i, jij j i

y � 0 or 1 for all ii

NP-hard. LP relaxation of the stated form is
strong, but weak if the third system of constraints
is deleted. Special case of Fixed Charge Network
Flows.

Fixed Charge Network Flows: Minimum variable plus fixed cost flow in directed graph D(N, A)
with net demands Dk at nodes k � N, and capacities Uij on arc (i, j) � A; C:ij unit cost of�

�
(i, j) flow; Fij fixed cost (nonnegative) of using arc (i, j) at all.�

�

�z � flow in arc (i, j)ij
�y � 1 if z � 0, else 0ij ij

min � C z � � F y(i, j)�A ij ij (i, j)�A ij ij

s.t. � z � � z � D , k � N(i,k)�A ik (k, j)�A kj k

0 � z � U y , (i, j) � Aij ij ij

y � 0 or 1, (i, j) � Aij

NP-hard. LP relaxation is poor unless capacities
are tight. For other cases much improved multi-
commodity extended LP relaxation is obtained by
introducing separate variables recording the (i,stzij

j) flow originating at supply s and bound for de-
mand t.

Generalized Assignment: Minimum cost assignment of objects i to capacitated locations, plants,
vehicles, etc.; Si size of object i; Kj capacity of location j; Cij cost of assigning i to j.� �

� �

�y � 1 if i assigned to j, else 0ij

min � C yi, j ij ij

s.t. � y � 1 for all ij ij

� S y � K for all ji i ij i

y � 0 or 1 for all i, jij

NP-hard. Excellent bounds are obtained from La-
grangean relaxations dualizing �1 constraints to
leave a series of Knapsack problems.

Generalized Covering: Minimum cost subset of patterns j to cover given requirements Bi; Aij
�
�

(nonnegative) contribution to requirement i by pattern j; Cj cost of pattern j.�
�

�y � 1 if pattern j is chosen, else 0j

max � C yj j j

s.t. � A y � B for all ij ij j i

y � 0 or 1 for all jj

NP-hard. LP relaxation rounds up. Solution
building heuristics based on ratios of Cj to
weighted sums of Aij are common.

Job Shop Scheduling: Sequence a collection of jobs j with steps s � 1, . . . , Sj on processors p
to minimize the time to complete all jobs; processor sequence for any job is fixed; Tjs duration�

�
of step s; Pjs processor of step s.�

�

�z � completion time of all tasks
�z � start time of job j, step sjs

min z
s.t. z � 0 for all jj1

z � z � T ,js j,s�1 j,s�1

for all j; s � 2, . . . , Sj

z � z � T for all jjS jSj j

z � z � T or z � z � T ,js j�s� j�s� j�s� js js

for all j, s, j�, s� with P � Pjs j�s�

NP-hard. LP relaxation formed with big M as in
Table 1 is poor. Both solution-building and so-
lution-enhancing heuristics are common.

2598 METHODS FOR DECISION MAKING

Knapsack: Maximum value subset of objects or projects j to pack within a given capacity or
budget B; Aj size of object j; Cj value of object j.� �

� �

�y � 1 if object j is chosen, else 0j

max � C yj j j

s.t. � A y � Bj j j

y � 0 or 1 for all jj

NP-hard. LP relaxation rounds down and is near
optimal in many cases. Heuristics can come ar-
bitrarily close to optimal in polynomial time.

B� Leontief Flows: Minimum cost flow through state nodes in N of directed hyperarcs or com-
position operators (I, j) combining positive integer multiples of inputs i � I � N to produceiAIj

one unit at node j; CIj unit cost of (I, j) flow; Bk � 0 is the nonnegative net requirement at�
�

node N.

�z � flow in hyperarc (I, j)Ij

min � C z(I, j) Ij Ij
k js.t. � z � � A z(I,k) Ik (K, j),K�k K, Kj

� B , k � Nk

z � 0, for all (I, j)Ij

Polynomially solvable by combinatorial algo-
rithms. LP relaxation is TDI so has integer op-
tima if all Bk are integer.

Matching: Maximum utility nonoverlapping collection of pairs of objects from a given set N; E
family of allowed pairs (i, j), i � j; Cij value of pair (i, j).� �

� �

�y � 1 if pair (i, j) is chosen, else 0ij

max � C y(i, j)�E ij ij

s.t. � y � � y � 1, k � N(i,k)�E ik (k, j)�E kj

y � 0 or 1, (i, j) � Eij

Polynomially solvable by combinatorial algo-
rithms. An exact (TDI) linear programming re-
laxation is also known.

Network Flows: Minimum cost flow in directed graph D(N, A) with net demands Dk at nodes k
� N, and capacities Uij on arc (i, j) � A; Cij unit cost of (i, j) flow.�

�

�z � flow in arc (i, j)ij

min � C z(i, j)�A ij ij

s.t. � z � � z � D , k � N(i,k)�A ik (k, j)�A kj k

0 � z � U , (i, j) � Aij ij

Polynomially solvable by combinatorial algo-
rithms. LP relaxation is totally unimodular so has
integer optima if demands and capacities are in-
teger. Special cases include Assignment, Shortest
Path, Maximum Flow, and Minimum Cut (see
Chapter 99).

Parallel Processor Scheduling: Assign tasks i of duration Ti to one of several processors p so that
the time to complete all tasks (makespan) is minimized.

�y � 1 if task i assigned to p, else 0ip
�z � completion time of all tasks

min z
s.t. � T y � z for all pi i ip

� y � 1 for all ip ip

y � 0 or 1 for all i, pip

NP-hard. Closely related to Generalized Assign-
ment. Both solution-building and solution-
enhancing heuristics are common.

DISCRETE OPTIMIZATION 2599

Quadratic Assignment: Minimum cost assignment of objects i � S to locations, times j � T,
where value is measurable only after pairs of assignments; E family of allowed pairs (i, j), i�

�
� S, j � T; Vik the shared activity of i and k; Cjl unit cost or distance of activity between� �

� �
locations j and l.

�y � 1 if pair (i, j) is chosen, else 0ij

min � � (V C)y(i, j)�E (k,l)�E ik jl kl

s.t. � y � 1, i � Sj�T ij

� y � 1, j � Ti�S ij

y � 0 or 1. (i, j) � Eij

NP-hard. No effective relaxations are available
for even moderate-sized problems. Local im-
provement by pairwise exchange of assignments
is common.

Set Covering: Finite list of patterns, routes, workers, etc. j that must span a collection of custom-
ers, hours, districts, jobs i (duplication allowed); Aij 1 if pattern j covers i, else 0; Cj cost� �

� �
of pattern j.

�y � 1 if pattern j is chosen, else 0j

min � C yj j j

s.t. � A y � 1 for all ij ij j

y � 0 or 1 for all jj

NP-hard. LP relaxation rounds up and is near
optimal in many cases. LP relaxations often nu-
merically difficult.

Set Packing: Finite list of patterns, routes, workers, etc. j that must not overlap in customers,
hours, districts, jobs i; Aij 1 if pattern j uses i, else 0; Cj value of pattern j.� �

� �

�y � 1 if pattern j is chosen, else 0j

max � C yj j j

s.t. � A y � 1 for all ij ij j

y � 0 or 1 for all jj

NP-hard. LP relaxation rounds down and is near
optimal in many cases. For others many valid
inequalities are known. LP relaxations often nu-
merically difficult.

Set Partitioning: Finite list of patterns, routes, workers, etc. j that must span a collection of
customers, hours, districts, jobs i without duplication; Aij 1 if pattern j covers i, else 0; Cj

� �
� �

cost of pattern j.

�y � 1 if pattern j is chosen, else 0j

min � C yj j j

s.t. � A y � 1 for all ij ij j

y � 0 or 1 for all jj

NP-hard. LP relaxation gives good bounds in
many cases but difficult to round. LP relaxations
often numerically difficult.

Spanning Tree: Maximum total weight subset of edges in a connected undirected graph G(N, E)
containing exactly one path between each pair of nodes; Cij value of edge (i, j), i � j.�

�

�y � 1 if edge (i, j) is chosen, else 0ij

max C y� ij ij
(i, j)�E

s.t. C y � �N� � 1� ij ij
(i, j)�E

y � �S� � 1, S � N� ij
i, j�S

y � 0 or 1, (i, j) � Eij

Polynomially solvable by the greedy algorithm.
LP relaxation is Totally Dual Integer.

2600 METHODS FOR DECISION MAKING

Steiner Tree: Minimum cost collection of edges of a graph G(N, E) providing a path between
vertices in subset S � N; Cij (nonnegative) cost of edge (i, j) � E, i � j.�

�

�y � 1 if edge (i, j) is chosen, else 0ij

min � C y(i, j)�E ij ij

s.t. y � y � 1,� �ij ij
i�Q, j�N \ Q j�Q, i�N \ Q

Q � N, Q� S � 0/ , S \Q � 0/
y � 0 or 1, (i, j) � Eij

NP-hard. LP relaxation easily rounded up then
enhanced by deleting unnecessary edges. Nu-
merous valid inequalities are known to
strengthen the LP relaxation.

Traveling Salesman: Minimum total weight route or sequence visiting each object, job, customer
in N exactly once. Represent on a graph with nodes N and edges for allowed i to j transitions;
Cij cost of transition (i, j), i � j.�

�

�y � 1 if transition (i, j) is chosen, else 0ij

max � C yi, j ij ij

s.t. � y � � y � 2, k � Ni�k ik j�k kj

� y � �S� � 1, S � Ni, j�S ij

y � 0 or 1, (i, j) � Eij

NP-hard. The best-researched problem in dis-
crete optimization. LP relaxation of the given
form is strong but requires a separation proce-
dure. Numerous effective solution building and
solution enhancing heuristics exist, especially for
the triangular cost case with Cik � Cik � Ckj.

REFERENCES

Aarts, E., and Lenstra, J. K. (1997), Local Search in Combinatorial Optimization, Wiley-Interscience,
New York.

Balas, E., and Martin, C. H. (1980), ‘‘Pivot and Complement—A Heuristic for 0–1 Programming,’’
Management Science,. Vol. 26, pp. 86–96.

Crowder, H., Johnson, E. L., and Padberg, M. (1983), ‘‘Solving Large-Scale Zero–One Linear Pro-
gramming Problems,’’ Operations Research, Vol. 31, pp. 803–834.

Dobson, G. (1982), ‘‘Worst-Case Analysis of Greedy Heuristics for Integer Programming with Non-
negative Data,’’ Mathematics of Operations Research, Vol. 7, pp. 515–531.

Garey, M. R., and Johnson, D. S. (1979), Computers and Intractability: A Guide to the Theory of
NP-Completeness, W.H. Freeman, San Francisco.

Glover, F., and Laguna, M. (1998), Tabu Search, Kluwer, Norwell, MA.
Goldberg, D. E. (1989), Genetic Algorithms in Search, Optimization and Machine Learning, Addison-

Wesley, Reading, MA.
Holland, J. H. (1975), Adaptation in Natural and Artificial Systems, University of Michigan Press,

Ann Arbor, MI.
Kirkpatrick, S., Gelatt, J. R., and Vecchi, M. P. (1983), ‘‘Optimization by Simulated Annealing,’’

Science, Vol. 220, pp. 671–680.
Lawler, E. L. (1976), Combinatorial Optimization: Networks and Matroids, Holt, Rinehart & Win-

ston, New York.
Martin, R. K. (1999), Large Scale Linear and Integer Optimization: A Unified Approach, Kluwer,

Norwell, MA.
Nemhauser, G. L., and Wolsey, L. A. (1988), Integer and Combinatorial Optimization, John Wiley

& Sons, New York.
Papadimitriou, C. H. (1994), Computational Complexity, Addison-Wesley, Reading, MA.
Papadimitriou, C. H., and Steiglitz, K. (1982), Combinatorial Optimization: Algorithms and Com-

plexity, Prentice-Hall, Englewood Cliffs, MJ.
Parker, R. G., and Rardin, R. L. (1988), Discrete Optimization, Academic Press, Boston.
Rardin, R. L. (1998), Optimization in Operations Research, Prentice Hall, Upper Saddle River, NJ.
Rardin, R. L., and Wolsey, L. A. (1993), ‘‘Valid Inequalities and Projecting the Multicommodity

Extended Formulation for Uncapacitated Fixed Charge Network Flow Problems,’’ European Jour-
nal of Operational Research, Vol. 71, 95–109.

DISCRETE OPTIMIZATION 2601

Reeves, C. R. (1993), Modern Heuristic Techniques in Combinatorial Problems, Halsted Press, New
York.

Schrijver, A. (1986), Theory of Linear and Integer Programming, John Wiley & Sons, New York.
Wolsey, L. A. (1998), Integer Programming, Wiley-Interscience, New York.

