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1. INTRODUCTION
All animals have multiple goals to fulfill in their lives. They want to survive, to perpetuate their own
species (including sex), to dominate, and so on. If you kick a dog, the dog will fight back or run
away. Humans are no exception. We want to have a good life, which may mean more wealth, power,
respect, and time for ourselves, together with good health and a successful next generation, and so
on. We want food to taste, smell, and look good and be nutritious. Ever since Adam, human beings
have been continuously confronted with multiple-criteria decision problems.

Although there have been abundant records of decision analyses based on multiple criteria in
human history, putting the analyses in a formal mathematical setting is fairly new. Though still young,
the literature of such mathematical treatments has exploded during the last three decades. The inter-
ested reader is referred to Stadler (1979, 1981), Steuer et al (1996) for surveys and historic notes.
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In this chapter, we will report on six basic concepts of multicriteria optimization. Just as the three
primary colors (red, yellow, and blue) can produce an infinite number of pictures and the seven basic
notes of the musical scale (do, re, mi, etc.) can produce an infinite number of songs, the six basic
concepts we will describe should allow the reader to generate an infinite number of models to solve
the complex multiple-criteria decision problems. The six basic concepts are:

1. Preferences as binary relations, in which mathematical functional relations are generalized to
represent revealed preferences and some basic solution concepts of MCDM (multiple-criteria
decision making) will be introduced (Section 2).

2. Value functions, in which preferences are represented by powerful numerical ordering and
multicriteria optimization problems are reduce to single-criterion optimization (Section 3).

3. Satisficing, goal programming, and compromise solutions, in which we model the preferences
in terms of human goal-seeking behavior and introduce goal programming (which is well
known). Again in this framework multicriteria problems are reduced to single-criterion ones
(Section 4).

4. Domination structures, in which the preferences are represented in terms of multidimensional
comparisons (in contrast to 2 and 3, which are of single-dimensional comparison) and solution
concepts and methods to obtain the solutions are introduced (Section 5).

5. MC2-simplex method for linear cases, in which powerful computation method for linear cases
are introduced (Section 6).

6. Fuzzy multicriteria optimization, is sketched in Section 7.

In Section 8, we offer further comments on multicriteria optimization.

2. PREFERENCES
Given any pair of decision outcomes y1 and y2, one and only one of the following can occur:

1. We are convinced that y1 is better than or preferred to y2, denoted by y1 � y2.
2. We are convinced that y1 is worse than or less preferred to y2, denoted by y1 � y2.
3. We are convinced that y1 is equivalent to or equally preferred to y2, denoted by y1 � y2; or
4. We have no sufficient evidence to say either 1, 2, or 3, denoted by y1 ? y2. Thus, the preference

relation between y1 and y2 is indefinite or not yet clarified.

Note that each of the above statements involves a comparison or relation between a pair of
outcomes. Let Y denote the set of all possible outcomes. Any revealed preference information, ac-
cumulated or not, can be represented by a subset of the Cartesian product Y � Y, or by a so-called
binary relation. We have the following definition.

Definition 2.1. A binary relation R on Y is a subset of the Cartesian product Y � Y. Binary
relation R is

1. Reflexive if (y, y) � R for all y � y
2. Symmetric if (y1, y2) � R implies that (y2, y1) � R for all y1, y2 � y
3. Transitive if (y1, y2) � R and (y2, y3) � R imply that (y1, y3) � R, for all y1, y2, y3 � Y
4. Complete if (y1, y2) � R or (y2, y1) � R for all y1, y2 � y and y1 � y2

5. An equivalence if R is reflexive, symmetric, and transitive

Definition 2.2.

1. A preference based on � (respectively �, �, or ?) is a binary relation on Y, denoted by {�}
(respectively {�}, {�}, or {?}), so that whenever (y1, y2) � {�} (respectively {�}, {�}, or
{?}) y1 � y2 (respectively y1 � y2, y1 � y2, or y1? y2).

2. For convenience, we also define {� �} � {�} � {�};{�?} � {�} � {?}, {��?} � {��}
� {?}, etc.

By a preference (or revealed preference) structure we mean the collection of all the above pref-
erences. Because such structures are uniquely determined by {�}, {�} and {?}, a preference structure
will be denoted by P({�}, {�}, {?}), or simply by P.
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Remark 2.1. Note that the larger {?} is, the less the revealed preference is clarified, which will
usually cloud the decision process. Sometimes it may take discipline and /or new information for the
decision maker to clarify his or her preference in order to reach the final solution. The concept of
pseudo-orders (Roy and Vincke 1987) may help in resolving some of the problems.

Example 2.1 (Pareto preference). Let greater values be more preferred for each component yi and
assume that no other information on the preference is available or established. Then Pareto preference
is defined by y1 � y2 if and only if for all i and y1 � y2. Therefore,1 2y � yi i

1 2 1 2 1 2{�} � {(y , y )� y � y for all i and y � y }i i

{�} � {(y, y)�y � Y}
1 2 1 2 1 2{?} � {(y , y )�there exist i and j such that y � y , y � y }i i j j

Example 2.2 (value function). A value function v is a real-valued function which is defined on
Y, the set of decision outcomes, such that v(y1) � v(y2) if and only if y1 is preferred to y2 and v(y1)
� v(y2) if and only if y1 is indifferent to y2. It is easy to see that

1 2 1 2{�} � {(y , y ) � Y � Y �v(y ) � v(y )}
1 2 1 2{�} � {(y , y ) � Y � Y �v(y ) � v(y )}

{?} � ∅

Example 2.3 (a lexicographic ordering). Let y � (y1, y2, . . . , yq) be indexed so that the kth
component is overwhelmingly more important than the (k � l)th component for k � l, 2, . . . , q � 1.
A lexicographic ordering preference is defined as follows: the outcome y1 � is1 1 1(y , y , . . . , y )1 2 q

preferred to y2 � if and only if , or there is some k so that and2 2 2 1 2 1 2(y , y , . . . , y ) y � y y � y1 2 q 1 1 k k

for j � 1, 2, . . . , k � 1. We see that1 2y � yj j

1 2 1 2{�} � {(y , y ) � Y � Y �y is lexicographically preferred to y }

{�} � {(y, y) � Y � Y}

{?} � ∅

Definition 2.3. Given a preference and a point y0 � Y, we define the better, worse, equivalent,
and indefinite sets with respect to (w.r.t.) y0 as:

1. {y0 �} � {y � Y �y0 � y} (the better set w.r.t y0)
2. {y0 �} � {y � Y�y0 � y} (the worse set w.r.t y0)
3. {y0�} � {y � Y�y0 � y} (the equivalent set w.r.t y0)
4. {y0?} � {y � Y�y0?y} (the indefinite set w.r.t y0)
5. {y0��} � {y0 �} � {y0�}
6. {y0�?} � {y0 �} � {y0?}
7. {y0��?} � {y0 ��} � {y0?}

Now we can define various solution concepts as follows.

Definition 2.4. Given a preference structure P ({�}, {�}, {?}) defined on the outcome space Y,
we define:

1. y0 � Y is an N[�]-solution (point) if and only if {y0 �} � Y � ∅; the collection of all such
solutions is denoted by N[�].

2. y0 � Y is an N[��]-solution if and only if {y0��} � Y � {y0}; the collection of all such
solutions is denoted by N[��].

3. y0 � Y is an N[�?]-solution if and only if {y0?�} � Y � ∅; the collection of all such solutions
is denoted by N[?].

4. y0 � Y is an N[��?]-solution if and only if {y0 ��?} � Y � {y0}; the collection of all such
solutions is denoted by N[��?].

The following can be easily established (Chien 1987; Chien et al. 1990):
Theorem 2.1.
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1. N[��?] � N[�?] � N[�]
2. N[��?] � N[��] � N[�]
3. N[��?] contains at most one point

Remark 2.2. In application, we may first try to locate N[�], then N[� ?] or N[� �], and finally
N[� �?], which, if nonempty, will contain only one clear superior solution, and no alternative
optimals would occur.

3. VALUE FUNCTIONS

3.1. Revealed Preferences and Value Functions

Numerical systems have a prevailing impact on our culture and thinking. It is natural and important
for us to ask, Is it possible to express our preference over the outcomes in terms of numbers so that
the larger the number the stronger the preference, and if it is, how do we do it?

Suppose that our preference structure P can be represented by a value function v:Y → R so that
v(y1) � v(y2) if and only if y1 is preferred to y2 and v(y1) � v(y2) if and only if y1 is indifferent to
y2 and that Y is convex and v is continuous on Y. We immediately can obtain the following properties
for P (see Example 2.2).

1. {?} � ∅
2. {�} and {� �} are transitive.
3. Let Y be the collection of all isovalued curves (or surfaces) of v in Y. Note that different

isovalued curves never intersect. Since Y is convex and v is continuous, V � v[Y] is an interval
which contains dense countable rational numbers. Their corresponding isovalued curves are
thus countable and dense in Y.

4. {y �} and {y �} are open sets in Y for every y � Y, if Y is open.

We summarize some important results on value functions in the following remark.

Remark 3.1. (a) Property 1 of the above is essential. If {?} � ∅, then value function representation
cannot offer meaningful numerical ordering; (b) Properties 1 and 2 together mean that P is a weak
order in literature; (c) Properties 1–3 conversely ensure the existence of value function representation;
(d) Properties 1–2 and 4 conversely ensure the existence of continuous value function representation.
The reader is referred to Fishburn (1970), Debreu (1954, 1960), Keeney and Raiffa (1976), Yu (1985),
Gorman (1968), Yu and Takeda (1987), and others for further detailed discussion on the existence
condition of value functions and their forms.

3.2. Methods of Constructing Value Functions

Assuming that the existence conditions are satisfied, we are interested in methods of constructing
value functions to approximate the revealed preferences. Let us first roughly classify the existing
methods before we illustrate some popular methods.

One large class of techniques for constructing value functions is a direct application of calculus.
These methods are usually based on the construction of approximate indifference curves. This class
includes methods using trade-off ratios, tangent planes, gradients, and line integrals. Some of these
methods are discussed in Yu (1985).

A second class has specifically been developed for the case of additive value functions. One of
the well-known methods in this class is the midvalue method (Keeney and Raiffa 1976; Yu 1985),
which is based on the pairwise information of {�} and {�}.

A third class takes into account the fact that usually the revealed preference contains conflicting
information, making it a virtually impossible task to construct a consistent value function. The con-
flicting nature of the information may be due to an unclear perception on the part of the DM of his
true preference structure or to imperfect and /or incorrectly used interaction techniques. The objective
of these methods is to find a value function and /or ideal point that minimizes the inconsistencies.
Some of the techniques, such as regression analysis, are based on statistical theory, others on math-
ematical programming models, such as least distance and minimal inconsistency methods (using some
appropriate lp-norm). Included are methods based on weight ratios, pairwise preference information,
or the distance from a (perhaps unknown) idea / target point (see Yu 1985, Section 6.3.4 and the
citations therein). Another group of methods in this class is that of eigenweight vectors (see, e.g.,
Saaty 1980; Cogger and Yu 1985; Yu 1985, Section 6.3.3.). Yet another group uses holistic assessment
utilizing the orthogonal design of statistical experiment (see Yu 1985, Section 6.3.3.2 and citations
therein).
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Each method has its strengths and weaknesses. The selection of the best / correct method is truly
an art and poses a challenge for the analyst and decision maker. Assume that there are q criteria
under consideration and that more is better for each yk (k � l, 2, . . . , q) with yk taking values in
the interval [ak, bk]. Thus, the outcome space is the rectangle [a1, b1] � [a2, b2] � . . . � [aq, bq].
Assume that the value function is additive as follows:

v(y) � w v (y ) � w v (y ) � . . . � w v (y )1 1 1 2 2 2 q q q

where vk(yk), k � 1, 2, . . . , q are the individual components and (w1, w2, . . . , wq) is the weight
distribution. Without loss of generality, we can assume that vk(ak) � 0 and vk(bk) � 1. To assess
individual vk(yk), there are several methods. For details, see Yu (1985, chap. 5).

Assume that we have successfully generated the individual function vk (k � l, 2, . . . , q). We
want to determine the weights w1, w2, . . . , wq so that we can obtain the overall value function

v(y) � w v (y ) � w v (y ) � . . . � w v (y )1 1 1 2 2 2 q q q

by aggregating the individual components. There are many ways to assess the weights (see, e.g.,
Hwang and Masu 1979; Hwang and Yoon 1981; Yu 1973). Being limited by space, we shall discuss
only two popular methods for different situations.

Method 1. Recall that vk(ak) � vk( ) � 0 and vk(bk) � vk( ) � 1. Set y0 � ( ) and y10 1 0 0y y y , . . . , yk k 1 q

� ( ). Denote1 1y , . . . , y1 q

1 0 0 0 1 0 0(y , y ) � (y , . . . , y , y , y , . . . , y )k k 1 k�1 k k�1 q

then

1 0 1v((y , y )) � w v (y ) � wk k k k k k

This simply means that we need only to know the value of the value function at point ( ) to1 0y , yk k

know wk. If this is difficult to accomplish, we can alternatively identify q � 1 pairs of indifferent
points, then, using the additive form of the value function, we can obtain q � 1 equations for the q
unknowns (w1, w2, . . . , wq). After normalizing, we obtain a unique solution.

Example 3.1. Assume that there are three criteria under consideration and that Y1 � Y2 � Y3 �
[0, 2]. Suppose that we have obtained the individual functions as

2v (y ) � (5 /6)y � (1 /6) y1 1 1 1

2v (y ) � y � (1 /4) y2 2 2 2

2v (y ) � (3 /4) y � (1 /8) y3 3 3 3

(1, 2, 0) � (1, 0, 2)

(1, 0, 1) � (0, 2, 0)

Using the additive form of the value function, we obtain

v((1, 2, 0)) � w v (1) � w v (2) � w v (0) � (2 /3)w � w1 1 2 2 3 3 1 2

v((1, 0, 2) � w v (1) � w v (0) � w v (2) � (2 /3)w � w1 1 2 2 3 3 1 3

Therefore, (l, 2, 0) � (l, 0, 2) implies that w2 � w3. Similarly, from (l, 0, l) � (0, 2, 0), we have
(2 /3)w1 � (5 /8)w3 � w2. Combined with w1 � w2 � w3 � l, we obtain the weights

9 16 16
w � , w � , w �1 2 341 41 41

Therefore, the overall value function is given by

15 3 16 4 12 2
2 2 2v(y) � y � y � y � y � y � y� � � � � � � � � � � �1 1 2 2 3 382 82 41 41 41 41

Method 2. Saaty’s Eigenweight Vector Method (Saaty 1980). Suppose that the value function is
of the form
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v(y) � w y � w y � . . . � w y1 1 2 2 q q

Thus, the value function is determined if the weights are known. Without losing generality, we can
assume that wk � 0 (k � 1, 2, . . . , q).

If weights are given, we can define the weight ratio by

wiw �ij wj

Then the weight ratio matrix W � is consistent in the sense that for any i, j, and k,[w ]ij q�q

�1w � wij ji

w � w wik ij jk

On the other hand, given a consistent matrix, we can find the weight vector that generates it.

Theorem 3.1. Let wq�q be any consistent matrix. Then

1. The maximum eigenvalue for W is q and all the other eigenvalues are 0.
2. The eigenvector corresponding to the maximum eigenvalue, which is unique after normalizing,

is the weight vector w � (w1, w2, . . . , wq), which generates W by wij � wi /wj.

Therefore, to find the weights w1, w2, . . . , wq, we need only to find the weight ratios wij (i, j �
1, 2, . . . , q). Saaty proposed the following procedure:

Step 1: For i � j, estimate or elicit the weight ratio wij, by aij. Let aii � 1 for all i and a �ij

for i � j. Denote A � [aij]q�q.�1aij

Step 2: Since A is found as an approximation for W, when the consistency conditions are ‘‘almost’’
satisfied for A, one would expect that the normalized eigenvector corresponding to the max-
imum eigenvalue of A, denoted by �max, will be close to w. Thus, w can be approximated by
the normalized eigenvector corresponding to �max.

Here the problem is, however, that the estimated weight ratios are generally not consistent, es-
pecially when criteria are not few, since human perception and judgment are subject to change when
the information input or psychological state of the decision maker change. The using of the above
procedure is partially justified by the following theorem.

Theorem 3.2 (Saaty 1980).

1. Let ) be the normalized eigenvector corresponding to �max of A. Thenw � (w , w , . . . , w1 2 q

for all i.w � 0i

2. Given i and k, if aij � akj for all j, then .w � wi k

Example 3.2 (Saaty 1980). Three criteria are under consideration. Assume that the following
estimations of weight ratios are obtained:

a � 9, a � 7, a � 1 /512 13 23

We construct the following matrix:

1 9 7
A � 1 /9 1 1 /5� �1 /7 5 1

To find �max, we solve det[A � � I] � 0, or (1 � �)3 � (1 � �) � 9 /35 � 35 /9 � 0. The maximum
solution is �max � 3.21. Then we find the corresponding normalized eigenweight vector withw

w � 0.77, w � 0.05, w � 0.171 2 3

The value function is therefore given by

v(y) � 0.77y � 0.05y � 0.17 y1 2 3
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Remark 3.2. In Saaty’s method, one needs to solve a nonlinear equation to find the maximum
eigenvalue. Cogger and Yu (1985) proposed another eigenweight vector method that can be applied
to find the eigenweight vector easily by using the deductive formula. The weights determined by the
latter method are different from those determined by the former. It is important to note that there is
no need to have all aij, i � j, in order to apply the above method. For such exploration, the reader
is referred to Takeda and Yu (1995).

Many other methods have been developed that we cannot discuss here due to limited space. The
interested reader is referred to Yu (1985), Yu and Takeda (1987, 1995), Hwang and Masud (1979),
Hwang and Yoon (1981), and Yu (1973) and quotes therein. It should also be stressed that all these
methods are approximation methods. When inconsistencies occur, we may wish to represent the
decision maker’s preference in ways other than value functions. This will be discussed shortly.

4. SATISFICING AND COMPROMISE SOLUTIONS
Each human being has a set of ideal goals to achieve and maintain (see Yu 1990, 1995, and 1985,
chap. 9 and citations therein). When a perceived state (or value) has unfavorably deviated from its
targeted or ideal state (or value), a charge (tension or pressure) will be produced to prompt an action
to reduce or eliminate the deviation. The behavior of taking actions, including adjustment of the ideal
values to move the perceived states to the targeted ideal states is called goal-seeking behavior.

This goal-seeking behavior has an important and pervasive impact on human decision making. In
this section, we shall focus on two concepts that model human goal-seeking behavior. These are
satisficing goal programming and compromise models.

4.1. Satisficing Models

Example 4.1. Consider the problem of selecting an athlete for a basketball team. Assume that
quickness, ƒ1, and accuracy of shooting, ƒ2, of the player are the main concerns. Let both ƒ1 and ƒ2

be indexed from 0 to 10, where the higher indices, the better the player. Assume that a player, x,
will be selected with satisfaction if ƒ1(x) � 9 or ƒ2(x) � 9, or ƒ1(x) � ƒ2(x) � 15. Let ƒ � ƒ(x) �
(ƒ1(x), ƒ2(x)) be the score vector of x and G1(ƒ ) � ƒ1 � 9, G2(ƒ ) � ƒ2 � 9, and G3(ƒ ) � ƒ1 �
ƒ2 � 15. If an athlete’s score vector is in at least one of the sets , Si � {ƒ �Gi(ƒ ) � 0}, i � 1, 2, 3,
then he or she is to be selected with satisfaction. Note that these sets are defined in terms of the
scores (outcomes) instead of the candidates (decision alternatives). Here Si, i � 1, 2, 3, so defined,
are called satisficing sets.

Note that the specifying of lower bounds 9, 9, and 15 in the above example is an act of goal
setting. Goal setting for satisficing models is defined as the procedure of identifying a satisficing set
S such that whenever the decision outcome is an element of S, the decision maker will be happy and
satisfied and is assumed to have reached the optimal solution. When S contains only a single point,
the point is called the goal or target point.

Let our MCDM problem be specified by the criteria ƒ � (ƒ1, ƒ2, . . . , ƒq) and the feasible set is
X � {x � Rn�g(k) � 0}, where g � (g1, g2, . . . , gm). Note that the outcome of a decision x is
specified by y(x) � f(x).

To specify S, one can start with each individual fi and find its satisficing or acceptable intervals.
One can then consider two or more criteria simultaneously for their corresponding trade-off. In a
general form, in the final satisficing set S can be defined as the union of

S � {ƒ �G (ƒ ) � 0}, k � 1, 2, . . . , rk k

where Gk is a vector function that reflects the trade-off over ƒ. Note that when the union contains a
single set (i.e., r � 1), S is defined by a system of inequalities.

Once S, the satisficing set, has been determined, finding a satisficing solution x0, such that ƒ (x0)
� S, is a mathematical programming problem.

Since S � � {Sk�k � 1, 2, . . . , r}, Y � S � ∅ if and only if there is an Sk such that Y � Sk �
∅. Because we need only one point of Y � S when it is nonempty, we can verify individually if Y
� Sk � ∅, k � l, 2, . . . , r, and find one point from the nonempty intersections.

To verify whether or not Y � Sk � ∅ is empty and to find a point in Y � Sk, if it is nonempty,
we can use the following mathematical program. First rewrite each satisficing set as

S � {ƒ(x)�G (ƒ (x)) � 0, j � 1, 2, . . . , J }k kj k

where Gkj, j � l, 2, . . . , Jk, are components of Gk, and Jk is the number of components of Gk.

Program 4.1. Vk � min d1 � d2 � . . . � dJk

s.t. G (ƒ (x)) � d � 0, j � 1, 2, . . . , Jkj j k
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x � X, d � 0, j � 1, 2, . . . , Jj k

It is readily verified that Y � Sk � ∅ if and only if Vk � 0. We thus have:

Theorem 4.1. Let S � � [Sk�k � 1, 2, . . . , r}. Then a satisficing solution exists if and only if
there is at least one k � {l, 2, . . . , r} such that Program 4.1 yields Vk � 0.

Observe that when one satisficing solution is found, the decision problem is solved, at least
temporarily. Otherwise the decision maker can activate either positive problem solving or negative
problem avoidance to restructure the problem. The former will enable careful restudy and restruc-
turing of the problem so as to find a solution, perhaps a new one, that lies in the satisficing set. The
latter will try to reduce the aspiration levels or play down the importance of making a good decision,
thus, lowering the satisficing set to have a nonempty intersection with Y. While the psychological
attitude in problem solving and in problem avoidance may be different (see Yu 1990, 1995, 1985,
chap. 9 for further discussion), the consequences are the same. That is, eventually the newly structured
problem enables the decision maker to have Y � S � ∅. The following provides some helpful
information for decision maker for restructing S and Y.

1. Depending on the formation of S, if Program 4.1 is used to identify a satisficing solution, one
can produce xk, k � l, 2, . . . , r, which solves Program 4.1 with Sk as the satisficing set. One
then can compute ƒ(xk), Gk(ƒ (xk)), the distance between ƒ(xk) and Sk, and the trade-off among
the Gkj(ƒ (x)), j � 1, 2, . . . , Jk, at xk. All of these can be helpful for the decision maker to
reframe Sk.

2. Suppose that it has been revealed or established that more is better for each criterion and that
the revealed preference contains at least the Pareto preference. One can then generate (a) all
or some representatives of the N[�] points, the corresponding ƒ(x), and optimal weights �(x)
for the N[�] points (see Sections 5 and 6 for further discussion); (b) the value � maxƒ*k
{ƒk(x)�x � X}(k � l, 2, . . . , q), which gives the best value of ƒ (x) over X . This information
can help the decision maker to restructure his or her S. Relaxing of the target goal with
reference to the ideal point ( ) sequentially and interactively with the decisionƒ*, ƒ*, . . . , ƒ*1 2 g

maker, until a satisficing solution is obtained, is certainly an art. It is especially useful when
X and ƒ are fairly fixed and not subject to change.

3. If possible (for instance, in bicriteria cases), displaying Y and S, even if only partially, can
help the decision maker conceptualize where Y and S are, to make it easier to restructure the
problem.

One must keep in mind that with X, ƒ (x), and S, one can generate as much information as one
wishes, just as one can generate as many statistics from sample values as one wants. However, relevant
information (e.g., useful statistics) that can positively affect the problem solving may not be too
much. Irrelevant information can become a burden for decision analysis and decision making.

Example 4.2. Consider a sample production problem. Let the resource constraints in the amount
produced, x1 and x2, be given as follows:

g (x) � 3x � x � 12 � 01 1 2

g (x) � 2x � x � 9 � 02 1 2

g (x) � x � 2x � 12 � 03 1 2

x � 0, x � 01 2

The following two objective functions are related to gross output and net profit respectively:

y � ƒ (x) � x � x1 1 1 2

2 2y � ƒ (x) � 10x � x � 4x � x2 2 1 1 2 2

Assume that the decision maker specifies his or her satisficing set as

S � {(y , y )�y � 10, y � 30}1 2 1 2

Then, using Program 4.1, we solve the problem of
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V � min d � d1 2

s.t. x � x � d � 101 2 1
2 210x � x � 4x � x � d � 301 1 2 2 2

3x � x � 121 2

2x � x � 91 2

x � 2x � 121 2

x � 0, x � 01 2

It turns out that V � 0, thus S � Y � ∅. To find a satisficing solution, we must restructure X, ƒ,
and /or S. If X and ƒ are fairly fixed, we may offer the information that � 7 and � 26.5,ƒ* ƒ*1 2

which simply means that any outcome y with y1 � 7 or y2 � 26.5 is unobtainable. Thus, the goals
y1 � 10 and y2 � 30 must come down to allow a satisficing solution. The restructuring of S will
continue until a satisficing solution is found.

4.2. Compromise and Goal Programming Solutions

Assume that each criterion ƒi(i � l, 2, . . . , q) is characterized by ‘‘more is better.’’ Let y* �
( ) where � sup{ƒi(x)�x � X} with X the feasible set. The point y* is called idealy*, y*, . . . , y* y*1 2 q i

(or utopia) point because it is usually unattainable even though may individually be attainable.y*i

Example 4.3. Consider the following maximization problem with two criteria:

max y � ƒ (x) � 6x � 4x1 1 1 2

max y � ƒ (x) � x2 2 1

s.t. g (x) � x � x � 1001 1 2

g (x) � 2x � x � 1502 1 2

x , x � 01 2

To find , we solvey*1

max y � ƒ (x) � 6x � 4x1 1 1 2

s.t. x � x � 1001 2

2x � x � 1501 2

x , x � 01 2

The solution is Thus, � ƒ1(x*) � 500. Similarly, we find Therefore, thex* � x* � 50. y* y* � 75.1 2 1 2

ideal point is y* � (500, 75). Note that y* is not attainable.
In group decision problems, if each criterion represents a player’s payoff, then y*, if attainable,

would make each player happy because it would simultaneously maximize each player’s payoff. Even
if one is a dictator, he cannot do better than y* for himself. As y* is usually not attainable, a
compromise is needed if no other alternative is available to dissolve the group conflict. This offers
a natural explanation of why the solution to be introduced is called a compromise solution (Yu 1973).
The reader can extend this explanation easily to multiple-criteria problems.

Now given y � Y, the outcome space, the regret of using y instead of obtaining the ideal point
y* may be approximated by the distance between y and y*. Thus, we define the (group) regret of
using y by

r (y) � �y � y*�

where �y � y*� is the distance between y and y* according to some specific norm. Typically, the lp-
norm will be used in our discussion because it is easy to understand, unless otherwise specified. To
make this more specific, define for p � 1,

1 / p

pr (y; p) � �y � y*� � �y � y*��	 
p i i

and

r (y; �) � max {�y � y*�, i � 1, 2, . . . , q}i i

Then r (y; p) is a measurement of regret from y to y* according to the lp-norm.
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Definition 4.1. The compromise solution with respect to the lp-norm is y p � Y, which minimizes
r (y; p) over Y, or is x p � X, which minimizes r (ƒ (x); p) over X. When the ideal point y* is replaced
by a specific goal or target point, the resulting compromise solution is called the goal programming
solution with respect to the goal point.

Remark 4.1. In group decision problems, r (y; p) may be interpreted as group regret and the
compromise solution y p, is the one which minimizes the group regret in order to maintain a coop-
erative group spirit. As the parameter p varies, the solution y p can change.

Note that r (y; p) treats each as having the same importance in forming the group regret�y* � y �i i

and the multiple criteria problems. If the criteria have different degrees of importance, then a weight
vector may be assigned to signal the different degrees of importance. The regret function r (y; p) can
be modified in a natural way (Yu 1985). Observe that using weights in the regret function has the
effect of changing the scale of each criterion. Conversely, the scale can be adjusted so that the regret
function is reduced to that of equal weight. Thus, in studying the properties of compromise solutions,
without loss of generality, one may focus on the equal weight case. We shall assume the equal weight
case from now on, unless specified otherwise.

Remark 4.2. Observe that the compromise solution is not scale independent. Scale independence,
an important criterion in group decision problems, can prevent players from artificially changing the
scale to obtain a better arbitration for themselves. Note that when the scale of ƒi(x) or yi is changed
and the weight of importance of each criterion is changed, so is the compromise solution.

Remark 4.3. Compromise solutions with proper assumptions enjoy a number of properties, such
as feasibility, least group regret, no dictatorship, Pareto optimality, uniqueness, symmetry, indepen-
dence of irrelevant alternatives, continuity, monotonicity, and boundedness. In terms of parameter p
(associated with p-norms), we may say that when p � l, the sum of the group utility is mort
emphasized, and when p � �, the individual regret of the group is mort emphasized. For the details
and further exploration, see Yu (1985, 1973) and Freimer and Yu (1976).

4.3. Computing Compromise Solutions and Goal Programming Solutions

Now we turn to the computation of compromise solutions. We first consider the case when the target
point is the ideal point, then the general case.

4.3.1. The Ideal Point as the Target Point

To find a compromise solution when the ideal point is the target point, we have to solve q � 1
mathematical programming problems. The first q problems are to find the utopia or ideal point where
y* � ( ), where � sup{ƒi(x)�x � X}. The last one is to find the compromise solutiony*, y*, . . . , y* y*1 2 q i

y p. Suppose that X contains only countable points. We will have q � 1 integer programming problems.
Otherwise, if X is a region, we will have q � 1 nonlinear programming problems.

If X and ƒi(x), i � 1, 2, . . . , q have some special structure, then more efficient computational
techniques are available. For instance, if X is a convex set and each ƒi(x) is concave, then we first
have q concave programming and then a convex programming (because r (ƒ (x); p) is convex under
the assumptions). If X is a polyhedron defined by a system of linear inequalities and each ƒi(x) is
linear, then the ideal points y* can be found by q simple linear programming problems. Furthermore,
the compromise solutions of y1 and y� can be found by a linear programming problem (the other
compromise solutions, y p, 1 � p � �, can be found by convex programming) (Yu 1985).

Example 4.4. Reconsider Example 4.3. The ideal point is (500, 75). Now we show how to find
compromise solutions y1, y2, and y�.

1. To find the y1 compromise solution, we solve

min {[500 � (6x � 4x )] � [75 � x ]}1 2 1

s.t. x � x � 1001 2

2x � x � 1501 2

x , x � 01 2

We obtain and the compromise solution is then y1 � (500, 50).x* � 50, x* � 501 2

2. Similar to (l), we obtain compromise solution y2 � (490, 55).
3. For the y� compromise solution, we solve
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min max {500 � (6x � 4x ), 75 � x }1 2 1

s.t. x � x � 1001 2

2x � x � 1501 2

x , x � 01 2

This problem can be simplified as

min v
s.t. v � 500 � (6x � 4x )1 2

v � 75 � x1

x � x � 1001 2

2x � x � 1501 2

x , x � 01 2

Note that this is a linear program. We can obtain the solution easily as �x* � 58.33, x*1 2

33.33, and y� � (483.33, 58.33).

4.3.2. General Target Points and Goal Programming

The computation for the compromise solution with general target point can be slightly more com-
plicated. This is due to the possibility that � yi for all y � Y and i � 1, 2, . . . , q no longery*i
hold. In this case, we need some transformation of variables.

Let and be respectively the positive and negative pairs of yi � , i.e., � yi � if� � �d d y* d y*i i i i i

yi � and 0 if otherwise, and � yi if yi � and 0 if otherwise. Now given a target point�y* d � y* y*i i i i

y*, the compromise solution with lp-norm can be found by solving the following (Yu 1985):

Program 4.2.

� � pmin (d � d )� i i
� �s.t. y* � f (x) � d � d , i � 1, 2, . . . , qi i i i

� �d , d � 0, i � 1, 2, . . . , qi i

g(x) � 0

Remark 4.4.

1. Suppose that all ƒi(x), i � l , 2, . . . , q, and g(x) are linear. Then Program 4.2 for ll-compromise
solutions reduces to a linear program typically known as (linear) goal programming. By adding
weights to or imposing lexicographical ordering on the criteria, one can generalize the concept
discussed here to a variety of goal programming formats. Goal programming and compromise
solutions are closely related. The major advantages of goal programming and ll-compromise
solutions are that they are easily understood and can be easily computed by linear programs.

2. When all ƒi(x), i � l, 2, . . . , q, and g(x) are linear, Program 4.2 for l2-compromise solutions
becomes a quadratic program. The program can be solved without major difficulty.

3. When all ƒi(x), i � l, 2, . . . , q, and g(x) are linear, Program 4.2 for l�-compromise solutions
becomes a linear program.

4.3.3. Interactive Methods of Compromise and Goal Programming Models

For nontrivial decision problems, an optimal decision usually cannot be reached by applying the
compromise solution only once. The following interactive method, according to Figure l, may be
helpful.

Box (1): Identifying X, ƒ, and y* is an art that requires careful observation and conversation with
the decision maker. The target point y*, weight vector w, and p for lp-norm may be more
difficult to specify precisely. However, one can use the ideal point as the first step of approx-
imation for y*, select some representative weights for w, and let p � 1, 2, or � to begin.

Box (2): One can locate compromise solutions according to Program 4.2 for the specified values
of y*, w, and p.

Box (3): All relevant information obtained in Box (1) and (2) can be presented to the decision
maker. These include X, ƒ, Y, ideal points , i � 1, 2, . . . , q, the optimal vector value thaty*i
maximizes the ith criterion, and the compromise solutions y1, y2, and y* with their weights
and norms.
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Figure 1 An Interactive Method for Compromise Solutions.

Boxes (4) and (6): If an optimal solution is reached in Box (3) and the decision maker is satisfied,
the process is terminated at Box (6); otherwise, we go to Box (5) to obtain more information.

Box (5): Through conversation, we may obtain new information on X, ƒ, y*, weight vector w,
and norm parameter p. Note that each of these five elements may change with time. To help
the decision maker locate or change the target point, the ‘‘one-at-a-time method may be used.
That is, only one value of ƒi, or yi, i � 1, 2, . . . , q, is to be changed and the rest remain
unchanged. One may ask the decision maker, ‘‘Since no satisfactory solution is obtained with
the current target point y*, would it be possible to decrease (or increase) the value of ?y*i
And, if so, by how much?’’ This kind of suggestive question may help the decision maker to
think carefully of possible changes in the target points. The other method is called the pairwise
trade-off method. We first select two criteria, say ƒi and ƒj, and then ask: ‘‘To maintain the
same degree of satisfaction for the target point everything else being equal, how many units
of ƒj must be increased in order to compensate a one-unit decrease in ƒi?’’ Again, this kind
of suggestive question can help the decision maker to think carefully of the possible changes
in the target points. Finally, we recall that the target point may be regarded as the satisficing
set containing a single satisficing solution. Thus, by locating the satisficing set, we may locate
the target point.

Example 4.5. Let us use Example 4.3 to illustrate the interactive method.

Step 1: Identify X, ƒ, y*, w, and p. The decision space X is given by

g (x) � x � x � 1001 1 2

g (x) � 2x � x � 1502 1 2

x , x � 01 2

and the objective functions are

y � ƒ (x) � 6x � 4x1 1 1 2

y � ƒ (x) � x2 2 1

Through conversation with the decision maker, assume that the ideal point will be used as the
approximation for the target point. The ideal point ( ) is (500, 75). We also assume thaty*, y*1 2

the two criteria are of the same weights. We shall use p � 1, 2, and � for lp-norm.
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Step 2: Find compromise solutions. The computation of compromise solutions for p � 1, 2, and
� was illustrated in Example 4.4. The compromise solutions are y1 � (500, 50), y2 � (490,
55), and y� � (483.33, 58.33).

Step 3: Present relevant information to DM. All relevant information obtained in steps 1 and 2
will be presented to the decision maker. This includes X, ƒ, Y, ideal points and the compromise
solutions y1, y2, and y� with their weights (w) and norms (p).

Step 4: Optimal solution reached? Suppose the decision maker is not satisfied with the compro-
mise solutions presented. Assume that he or she is not satisfied with the target point (y*) and
the weight vector (w). The decision maker prefers to have the target point a little bit closer
to the set Y and also feels that more weight should be given to the first criterion (ƒ1) rather
than having equal weights.

Step 5: Through conservation with the decision maker, new relevant information on the target
point (y*) and the weight vector (w) will be obtained. Assume that the information on X, ƒ,
and p remains the same and that the new y* is (450, 75) and the new w is (2 /3, l /3). With
this new information compromise solutions y1, y2, and y� can be recalculated and the new
solutions will be presented to the decision maker. If the decision maker is satisfied with the
new solutions, the procedure will be terminated; otherwise, more information from the decision
maker on X, ƒ, y*, w, and p will be needed. We go to Box 5 and the process continues.

4.4. Further Comments

Utilizing human goal-seeking behavior, we have described the main concepts of satisficing and com-
promise solutions. In the real world, although specifying the satisficing set or the target point is not
trivial, we can always start with the ideal point and then interact with the decision maker to gradually
reach the final decision. For more details see Yu (1985, chap. 4).

There is a rich literature related to satisficing and compromise models. For instance, for goal
programming see Charnes (1975), Ignizio (1976), Lee (1972) and those quoted therein; for different
kinds of norms or penalty functions see Hwang and Yoon (1981), Gearhart (1979), Pascoletti and
Serafini (1984), and the citations therein; for restructuring ideal points see Zeleny (1975).

Finally, observe that methods of this and the previous section are called methods of one-
dimensional comparison, which tries to convert the preferences into a single-criterion numerical
ordering. Other methods, such as Elimination et Choice Translating Reality (ELECTRE) (see Roy
1971 for further details) also belong to this class.

5. DOMINATION STRUCTURES
As mentioned in the introduction, preferences may be represented by one-dimensional comparison,
which we discussed in the previous two sections, or in terms of multidimensional comparison, which
we will discuss in this and the following section. Note that in one-dimensional comparison, we
implicitly or explicitly assume that {?} � ∅ and that no ambiguity exists in preference. Once the
value function or proper regret function is determined, MCDM becomes a one-dimensional com-
parison or a mathematical programming problem. In this section we shall tackle the problems with
{?} � ∅.

Recall Definition 2.3 and {y0�}, {y0�}, {y0 �}, and {y0?} are respectively the sets of points in
Y that are better (preferred), worse (less preferred), equivalent and indefinite to y0. For simplicity,
we rewrite:

0 0 0{y �} � y � P(y )
0 0 0{y �} � y � D(y )
0 0 0{y �} � y � I(y )

0 0 0{y ?} � y � U(y )

where P(y0), D(y0), I(y0), and U(y0) are respectively the sets of preferred, dominated, indifferent
(equivalent), and unclarified (indefinite) factors.

Example 5.1

1. In Pareto preference (Example 2.l), for each y, P(y) � �� � {d � Rq�di � 0 for all i and
d � 0}, D(y) � �� � {d � Rq�di � 0 for all i and d � 0} � � P(y), I(y) � {0}, U(y) �
Rq\(�� � �� � {0}).

2. If the preference is represented by a concave differentiable value function v(y), then D(y)
contains {d��v(y)�d � 0} which is a ‘‘half’’ space no matter what the dimensionality of Y is.
Except linear v(y), D(y) is a function of y and in general D(y) � � P(y). Note that in general
D(y) and P(y) are not convex cones. Nevertheless, if we use the tangent cones of {y�} and
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{y�} at y to represent the local sets of the preferred and dominated factors, denoted by
LD(y) and LP(y), respectively, then LD(y) and LP(y) can be convex cones and LD(y) �
�LP(y). For a detail of such treatment, see Yu (1985, chap. 7).

In order to simplify our presentation, we shall assume the following throughout this section.

Assumption 5.1. For each y � Y, D(y) and P(y) are convex cones. Furthermore, D(y) �
�P(y).

Remark 5.1. Pareto preference (Example 5.l number 1) satisfies Assumption 5.l, so does the
preference represented by a linear value function. As indicated in Example 5.l, number 2, one can
use LD(y) and LP(y) to replace D(y) and P(y) respectively when the assumption does not hold. If
we do so, our results stated in this section are still valid, but only in a local sense (local optimal vs.
global optimal). For the details of such treatment and conditions for the local results to be valid as
the global results refer to Yu (1985, chap. 7).

Definition 5.1. A point y0 � Y is a nondominated point or N-points if y0N[�], where N[�] is as
defined in Definition 2.4.

In Section 5.1, we discuss some basic properties of N-points when D(y) is constant. In Section
5.2, we explore the case when D(y) varies with y.

5.1. Constant Cone Domination Structures and Solutions

For simplicity, when D(y) � � for all y, we shall call � the dominated cone and denote the set of
all nondominated points or (N-points) by N(Y, �). In this subsection we shall discuss two sets of
conditions that characterize N-points. To facilitate our discussion, let us introduce the following
concepts:

Definition 5.2

1. Y is �-convex if Y � � is a convex set.
2. The polar cone of � is defined by �* � {����d � 0 for all d � �}; interior is denoted by int

�*.
3. Given � � �*, � � 0, the set of all maximum points in Y with respect to linear functional �

� y is denoted by Y 0(�).

For further discussion on cone convexity, see Yu (1974, 1985).

Theorem 5.1

1. � {Y 0(�)�� � int �*, � � 0} � N (Y, �)
2. If Y is �-convex and � is pointed (that is, � � (� �) � {0}), then

0N (Y, �) � � {Y (�)�� � �*, � � 0}

Note that the theorem states that conditions for N-points to be found by maximizing a linear
function over Y; 1 is a sufficient condition and 2 a necessary condition. If one is interested in the
entire set of N-points, then the theorem serves as an approximation for the set; 1 is the inner ap-
proximation and 2 the outer approximation for N (Y, �). The results are derived in Yu (1974, 1985);
their further refinement can be found in Hartley (1978).

A cone that is a closed polyhedron is called a polyhedral cone. If � is a polyhedral cone, so is
�*. In this case, there are a finite number of vectors {H 1, H 2, . . . , H p} so that �* is the cone
generated by {H 1, H 2, . . . , H p}. That is,

1 2 p 1�* � {a H � a H � . . . � a H �a � R , a � 0, i � 1, 2, . . . , p}1 2 p i 1

{H 1, H 2, . . . , H p} will be called a generator of �*. From now on, unless otherwise specified,
whenever � is a polyhedral cone, we shall assume that {H 1, H 2, . . . , H p} is a generator for �*.

Let r ( j) be the vector in Rk
p�1 representing {rk � R1�k � {1, 2, . . . , p}\{ j}}. Define Y(r ( j)) �

{y � Y�H k � y � rk, k � {1, 2, . . . , p}\{ j}}. Note that rk may be regard as an aspiration level or
satisfying level for Hk � y.

Theorem 5.2 (Yu 1974). Let �� � � � {0} be a polyhedral cone. Then y0 � N (Y, �) if and
only if for any arbitrary j � {1, 2, . . . , p}, there is r ( j) such that y0 uniquely maximizes H j � y
over Y(r ( j)).
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Figure 2 Flowchart 1: The First Method for Nondominated Solutions.

This theorem essentially says that in search of N(Y, �) by mathematical programming, constraints
and objective functions are interchangeable.

5.2. Variable Cone Domination Structures and Methods for Seeking Good Solutions

In this subsection we describe a convergent method and a heuristic method to locate N(Y, D(�)). To
begin, let us assume that each D(y) contains ��. Define �0 � � {D(y)�y � Y} and set Y 0 � Y. Note
that �� � �0. Recursively, let us define, for n � 0, 1, 2, . . .

n n n�1 n n� � � {D(y)�y � Y } and Y � N(Y , � )

Then

n�1 n n n�1Y � Y and � � �

It follows that the sequences converge. Denote by lim Y n and lim �n the limits. It can be shown (Yu
1985) that for each n, N(Y, D(�)) � Y n and N(Y, D(�)) � lim Y n. This observation allows us to locate
the N-points according to Flowchart 1 (method l) of Figure 2.

Flowchart 1 is self-explanatory. Although the method guarantees a convergent set containing the
N-points, it may not be effective and efficient. The following heuristic method according to Flowchart
2 (method 2) can be more efficient in reaching the final decision at the risk of missing some N-
points. Let us explain Flowchart 2.

Box (0): We first explore the relationship among the criteria and locate some plausible aspiration
levels and trade-offs among the criteria. Then we use Theorem 5.1 or 5.2 to locate a set of
initial ‘‘good’’ alternatives corresponding to different aspiration levels and trade-offs, using
mathematical programming if necessary. One can also start with the points that respectively
maximize the individual criteria. This initial set is denoted by Z 0.

Box (1): We should first estimate D(y) for some representative points in Z n and find their inter-
section for �n. The more representative points considered, the smaller is �n and the less chance
there is to miss N-points; but it may take longer to find the final solutions. In estimate D(y),
we can use the definition to locate it directly, or we can use the bounds of trade-off ratios to
locate it indirectly. For further discussion, see Yu (1985).

Box (2): Here we can use Theorem 5.1 or 5.2 to locate the entire set of Z n�1 or to locate a
representative set for Z n�1, depending on how much we want to avoid missing some N-points.
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Figure 3 Flowchart 2: The Second Method for Nondominated Solutions.

Boxes (3) and (4): Box (3) is a comparison to see if the process has reached a steady state. If
not, the process will continue to Box (4), which is to eliminate those dominated points in Z
n�1. Here D̂(Z n�1) denotes estimated dominated points in Z n�1, and W n�1 will be the remaining
‘‘good’’ alternatives after the elimination.

Boxes (5) and (6): Box (5) is a comparison to see if the elimination in Box (4) is effective if
Wn�1 � Z n�1, then Z n�1 can be a set of N-points and the process can reach its steady state.
Box (6) is to replace Z n�1 by Wn�1 for the next iteration.

Boxes (7)–(10): Z n�1 is stable if no element in Z n�1 is dominated by any other element in Z n�1

and every element outside of Z n�1 is dominated by some element in Z n�1 � N(Z n�1, D(�)). If
this condition is satisfied, Z n�1 can probably be the set of all N-points. In Box (9), nondom-
inance is verified either by Theorem 5.1 or 5.2. If Z n�1 is the set of all N-points, the process
is stopped at Box (10) with Z n�1 as the set for the final decision. Otherwise, the process should
be repeated again from Box (0). If Z n�1 is not stable, then Z n�1 contains some dominated
points or there are N-points not contained in Z n�1. We shall accordingly either eliminate the
dominated points from Z n�1 or add new N-points into Z n�1. This adjustment on Z n�1 is per-
formed at Box (8).

Box (11): This step is obvious for changing the step variable in the process.

For examples of applying the two methods described in this subsection, the interested reader is
referred to Yu (1985).
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6. MC2-SIMPLEX METHOD FOR LINEAR CASES
Linear function is the best function in analysis and application because it is easy to understand and
compute. Because of these traits of linear functions, linear programming is popular and powerful. In
this section we shall extend the linear programming with single criterion to that with multiple criteria
and multilevel constraints of the resource. Instead of the simplex method with single criterion, we
shall discuss the multicriteria (MC) simplex method and the multicriteria multiconstraint-level (MC2)
simplex method to help resolve the difficulty of decision problems.

Algebraically, the MC2-simplex method can be represented by

max Cx
(1)

s.t. Ax � D, x � 0

where C � Cq�n, A � Am�n, and D � Dm�k are matrices. Note that if k � 1, then D is a vector and
(1) becomes the MC simplex problem; if q � 1, then C is a vector and (1) becomes the ordinary
simplex problem.

The MC2-simplex formulation can arise in many ways. Recall that Theorem 5.2 implies that to
find N-points, the constraints and the objective functions in mathematical programming formulation
are interchangeable. One may put some criteria in constraints with multiple levels, and thus the result
will be a MC2-simplex form. Another case is in the design of optimal systems, in which one wishes
to design a system that is optimal over all contingencies rather than find an optimal point within a
given system (see Seiford and Yu 1979; Yu 1985, chap. 8 for further discussion). Alternatively, one
may view the constraint level as occurring according to a random rule or influenced by some uncertain
factor but contained within a set. In multiple-person decision making, the resource levels may reflect
the views of different coalitions of the players.

6.1. Nondominated Solutions

The following result (Yu and Zeleny 1974) connects the relationship between N-points and the MC-
simplex method.

Theorem 6.1. When D is a column vector, x0 is an N-point in X with respect to D(y) � �� (i.e.,
Cx0 � N(Y, ��)) if and only if there exists some � � 0 such that x0 solves

max �Cx
(2)

s.t. Ax � D , x � 0m�1

Thus, by varying over � over �� � {��� � 0}, we can locate all possible nondominated extreme
points (Nex-points) of X. Indeed, there are only a finite number of Nex-points in X, and they are
connected. (That is, by simplex pivoting, one can always arrive at any Nex-point from other Nex-point
without leaving the bases of Nex-points.) Locating all Nex-points is in fact computationally feasible.
Once all Nex-points are located, they can be used to locate the entire N-points. (See Yu 1985, Yu and
Zeleny 1974 for further discussion.)

To find Nex-points, one can use the MC-simplex method, which appends multiple-criteria rows to
the simplex tableaus. Because the MC-simplex method is a special case of the MC2-simplex method,
we shall only describe the MC2 simplex method in the next subsection.

Now suppose �� � � � {0} is a general pointed polyhedral cone with (H 1, H 2, . . . , Hp) as a
generator for �*. One can define C� � HC, where H is the matrix with H j as its jth row. Then Cx0

� N(Y, �) if and only if there is �1�p � 0 so that x0 is a solution of (2) with C� replacing C. (See
Yu 1985; Yu and Zeleny 1974 for further discussion.) This result suggests that in locating Nex-points
for a general polyhedral dominated cone � one can first convert the objective coefficient C into C�,
and then it becomes a problem of locating Nex-points with dominated cone ��. Thus, unless specified,
we shall assume D(y) � �� for all y throughout the remainder of this subsection.

6.2. Potential Solutions and MC2-Simplex Method

Returning to (1), we generalize the concept of nondominated solutions into that of a potential solution
by defining: A basis J is a potential basis (without confusion we also call J a potential solution) for
the MC2 problem (1) if there are � � 0 and � � 0 such that J is an optimal basis for

max �Cx
(3)

s.t. Ax � D�, x � 0

Note that if D is a vector, � � R1. By normalization, we can set � � 1 and (3) reduces to (2).
Then Theorem 6.1 ensures that a potential solution with D being a vector is indeed an Nex-point.
Thus, the concept of potential solutions is a generalization of that of nondominated solutions.
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Note that the simplex tableau of (3) can be written as:

A I D� (4)

��C 0 0 (5)

Let B be the basis matrix associated with J. Since each set of basic vectors J is uniquely associated
with a column index set, we shall, without confusion, let J be this set of indices and J� the set of
non-basic columns. The simplest tableau associated with J is

B�1A B�1 B�1D� (6)

�CBB�1A � �C �CBB�1 �CBB�1D� (7)

where (6) � B�1 � (4) (i.e., premultiply (4) by B�1 on both sides of the equation), (7) � �CB � (6) �
(5), and CB is the submatrix of criteria columns associated with the basis vectors.

Dropping � and �, we obtain the MC2 tableau associated with basis J:

B�1A B�1 B�1D (8)

CBB�1A � C CBB�1 CBB�1D (9)

which we write as

Y W

Z V

where Y � [B�1A, B�l], W � B�1D, Z � [CBB�1A � C, CBB�1] and V � CBB�1D.
Let W(J ) and Z(J ) be the submatrices of the tableau associated with basis J Define:

�(J ) � {� � 0�W(J )� � 0}, �(J ) � {� � 0��Z(J ) � 0}

Note that, because of (6) and (8), the basis is feasible for all � � �(J ); and because of (7) and (9),
the basis is also optimal for all � � �(J ). Immediately, we have (Yu 1985; Seiford and Yu 1979):

Theorem 6.2.

1. J is a potential solution if and only if �(J ) � �(J )∅.
2. Given basis J, �(J ) � ∅ if and only if wmax � 0 for

max w � e � e � . . . � e1 2 q

s.t. Z(J )x � e � 0
qx � 0, e � 0, where e � R

3. Given basis J, �(J ) � ∅ if and only if wmax � 0 for

max w � d � d � . . . � d1 2 k

s.t. yW(J )x � d � 0
ky � 0, x � 0, where d � R

There are practical ways to verify whether a basis is a potential solution. It can be shown (Yu
1985; Seiford and Yu 1979) that the set of all potential bases is connected (that is, using pivoting,
one can arrive at any potential solution without leaving the potential bases). This result makes locating
all potential solutions feasible.

Given a potential basis, its corresponding sets of weights �(J ) and �(J ) on criteria and constraint
levels can be specified. Even if we do not know the precise weights � and �, as long as � � �(J )
and � � �(J )), we know that J is the optimal basis and the decision process terminates at J for the
solution. Since there are only a finite number of potential bases, finding them and identifying their
corresponding weight sets can greatly simplify the difficulty in finding the final solution.
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Suppose that we have N � {1, . . . , n} opportunities or products, from which we want to choose
a subset to undertake or produce as to maximize profit. We can formulate the problem as in (3). We
want to maximize the objective � Cx with constraint and Ax � D� and x � 0. Here � and � are
uncertain. In this way we have a system design problem with multiple-criteria and multiple-resource
availability levels. We can use MC2-simplex method to identify a set of potentially good systems as
candidates for the optimal system. Here, each potentially good system is a subset of a given oppor-
tunity set, each of which optimizes the objective when the parameters of contribution coefficients
and that of resource availability levels fall in certain region. For further discussion along this line
and applications, see Lee et al. (1990), Shi (1998a, b).

7. FUZZY MULTICRITERIA OPTIMIZATION
In addition to the above methods, we could imbed fuzzy set theory into multiple-criteria linear
programming. Bellman and Zadeh (1970) propose the concept of fuzzy set, and Zimmermann (1978)
first propose this idea. In fuzzy set theory, there is a membership function 	(x) indicating each
element x the degree of membership for x to belong to a set. Fuzzy multiple-objective linear pro-
gramming formulates the objectives and the constraints as fuzzy sets, characterized by their individual
linear membership functions. The decision set is defined as the intersection of all fuzzy sets and the
set defined by relevant hard constraints. A crisp (nonfuzzy) solution is generated by selecting the
solution that has the highest degree of membership in the decision set. For further discussions, the
reader is referred to Zimmermann (1978), Werners (1987), Martinson (1993), and Lee and Li (1993).

The fuzzy multiple objectives linear programming (f-MOLP) usually has the following format:

n

max z̃ � c̃ x , k � 1, 2, . . . , q�k kj k 1
j�1

n

min w̃ � c̃ x , k � q � 1, . . . , q�k kj j 1
j�1

n

˜s.t. ã x � b , i � 1, 2, . . . , m� ij j i 1
j�1 (10)

n

˜ã x � b , i � m � 1, . . . , m� ij j i 1 2
j�1

n

˜ã x � b , i � m � 1, . . . , m� ij j i 2
j�1

x � 0, j � 1, 2, . . . , nj

where is the jth coefficient of kth objective, is jth coefficient of ith constraint, and is the˜c̃ ã bkj ij i

right-hand side (RHS) of ith constraint. Note that , and are fuzzy numbers. The f-MOLP˜c̃ , ã bkj ij i

problem (10) can be solved by transferring it into crisp MOLP (c-MOLP), shown as (11).

n
Umax (z ) � (c ) x , k � 1, 2, . . . , q�k a kj a j 1

j�1
n

Lmin (w ) � (c ) x , k � q � 1, . . . , q�k a kj a j 1
j�1

n
L Us.t. (a ) x � (b ) , i � 1, 2, . . . , m , m � 1, . . . , m (11)� ij a j i a 1 2

j�1
n

U L(a ) x � (b ) , i � m � 1, . . . , m� ij a j i a 1
j�1

x � 0, j � 1, 2, . . . , nj

where and and and and are upper and lower bound of fuzzy numberU L U L U L(c ) (c ) , (a ) (a ) (b ) (b )kj a kj a ij a ij a i a i a

, and , respectively, by taking 
-level cut. Problem (11) can be solved by a fuzzy algorithm˜c̃ ã bkj ij i

interactively. For details, see Zimmermann (1978) and Lee and Li (1993). For applications and
extensions along this line, see Sakawa et al. (1994, 1995), Shibano et al. 1996), Shih et al. (1996),
Ida and Gen (1997), and Shih and Lee (1999) and those quoted therein.

8. EXTENSIONS AND CONCLUDING REMARKS
We have briefly sketched six important topics of MCDM problems. Many more topics, such as
interactive methods including adapted gradient search method, surrogate-worth trade-off methods
(Haimes and Hall 1974), the Zionts–Wallenius method (Zionts and Wallenius 1976), the paired com-
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parison simplex method (Malakooti and Ravindran (1986), the bireference procedure (Michalowski
and Szapiro 1992), the paired comparison method (Shin and Allen 1994), preference over uncertain
outcomes, and second-order games can be found in Yu (1985, chap. 10 and the citations therein).
For multiple-criteria dynamic optimization problems, refer to Li and Haimes (1989), Yu and Seiford
(1981), Yu and Leitmann (1974) and those quoted therein. The reader who is interested in decision
aid and MCDM in abstract spaces is referred to Roy (1977) and Dauer and Stadler (1986) respectively,
and the citations therein. For other mathematical analysis on multiple criteria optimization, see Metev
and Yordanova-Markova (1997), Ehrgott and Klamroth (1997), and Gal and Hanne (1999).

There are a number of computer programs to solve multiple-criteria decision making (MCDM)
problems. Because many MCDM problems are reformulated and solved by converting them into
single-criterion optimization problems (as discussed in the previous sections), many computer pro-
grams for mathematical programming are adopted in MCDM computer software. Since the problem
domains of MCDM are rich and complex, so are the computer software programs. Space limitations
make it difficult to list and discuss them here. However, interested readers can refer to
www.cba.uga.edu /mcdm.html, the website of the International Society on Multiple Criteria Decision
Making, for MCDM software listing.

With creative thinking and practicing, the basic concepts of MCDM described above can generate
an infinite number of concepts and be applied to an infinite number of multicriteria problems. Rigid
habitual ways of thinking usually are the stumbling blocks to creativity. In solving nontrivial prob-
lems, we need not only the mastery of the mathematical tools but also a good understanding of
human behavior and the habitual domains of the decision makers (see Yu 1990, 1995 for a detailed
discussion). At the least, we should not become so overenthusiastic about one particular concept or
method that, so to speak, we cut our feet to fit the already-made shoes.
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