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Large-Scale Algebraic Systems 

Cuido Buzzi-Ferraris and Davide M a m a  

1.1 
Introduction 

In this section, we address the solution of a system of N nonlinear equations: 

f(x) = 0 (1) 

in N unknowns, x, with particular attention given to large systems. 
It is worth noting that the equations of system (1) must not necessarily be alge- 

braic but may originate, for example, from the solution of a differential system with 
some initial conditions, or by the evaluation of the upper limit of an integral equa- 
tion. 

The solution of nonlinear equations is therefore significant not only as a problem 
per se, but it is also connected to the solution of differential-algebraic equation (DAE) 
and ordinary differential equation (ODE) stiff problems. 

In the following, we will describe some iterative methods for the solution of sys- 
tem (1). With the term “iteration” we mean that given a previous point xi the follow- 
ing one is determined by the equation: 

( 2 )  

The numerical methods for the solution of Non Linear Systems, NLSs, are character- 
ized by the selection of direction pi and by the amplitude of the movement (xi along pi. 

X i + l  = Xi + aipi 

Some methods require the evaluation of the Jacobian matrix defined as: 

In the following, fi represents f(xi) and J i  represents J(xi). 
As far as large systems are concerned, it is instinctive to try to reduce the dimen- 

sions of the problem. 
Using this idea, some previous numerical techniques, such as tearing and partition- 

ing, were developed to automatically rearrange the system in order to minimize the 
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16 1 Large-Scale Algebraic Systems 

number of equations to be solved simultaneously. Unfortunately, the following prob- 
lems should not be underestimated 

0 It is not certain that the solution of a small NLS requires less time then a larger 
one. 
In an NLS, the role of unknowns within an equation is not symmetric. In other 
words, a function can be easily solved with respect to a variable but it can be diffi- 
cult to find the solution when another unknown is involved. 

0 In spite of the original NLS being well-conditioned, the reduced NLS obtained 
from the original one can be ill-conditioned. 

I 

The first problem arises from the fact that it is not possible to evaluate the nonlinear- 
ity of a system of equations. In other words, contrary to the linear case, it is not possi- 
ble to determine a priori the time required to solve an NLS as a hndion of its dimen- 
sion. For example, system (4) was shown to be easier to solve than the smaller system 
(5) by Powell (1970). 

The second problem is once again bound to the nonlinearity of the system. An exam- 
ple is given by the conversion c in an adiabatic reactor as a function of the reaction 
temperature T. Often, it is possible to write the following energy balance: 

c = g m  (6) 

Evidently, it is trivial to determine the conversion when T is assigned. Conversely, it 
may not be easy to evaluate the temperature that produces a specific conversion. 
The third problem is due to the fact that a rearrangement of the NLS can introduce 
an ill-conditioning that was not originally present. Let us suppose we have to solve 
the following system: 

x1+ 1000x4 = 1001 
1000x1 + x2 = 1001 
1000x2 + x3 = 1001 

x1 + xz + x3 + x4 = 4 

whose solution is: x1 = x2 = x3 = x, = 1. 

System (7) can be rearranged into: 

XI = 1001 - 1 0 0 0 ~ ~  
x2 = 1001 - 1000x1 
x3 = 1001 - 1000x2 

f4 = x1+ x2 + X )  + x4 - 4 = 0 

(7)  



1.2 Convergence Tests 

The new problem (8),  although being characterized by only one equation with 
unknown x4 has an extremely ill-conditioned form. As a matter of fact, if x4 is evalu- 
ated numerically as: x4 = 0.99999, then the following values are obtained: x1 = 

1.010014, x2 = -9.013580, x3 = 10,014.58 andf(x,) = 10,003.58. It should be empha- 
sized that system (8) is linear (therefore a simpler problem) and that it is reduced to 
a very simple equation in one unknown: x4. Quite often, it is better to avoid any 
manipulation of the system if the goal is to reduce its dimensions. Actually, it is 
advisable to leave the NLS in its original form since it comes from modeling a physi- 
cal phenomenon. Doing so, there are more guarantees that the numerical system is 
well-posed because it describes a real problem. What should be done is something 
that is apparently similar to rearranging the system but it is conceptually quite differ- 
ent. It is advisable to try exploiting the structure of the system without manipulating 
it. 

A very simple example is represented by the solution of a steady-state distillation 
column. The liquid-vapor equilibria and the material balances of the unit should not 
be solved stage by stage, in a top-bottom sequence, while iterating towards conver- 
gence through the overall material balance of the column so to have the input/output 
flowrates consistent. By doing so, the physical structure of the problem would shift 
to obey to a sequential mathematical algorithm that would solve several apparently 
simplified subproblems. Such an approach would not respect the physical structure 
of the equilibrium stage in the sense that it would be equivalent to solving a flash 
problem starting from the known composition of one output stream to determine 
the compositions of the input and second output streams. 

On the contrary, the intrinsic structure of a distillation column brings tridiagonal 
organization to the correlated mathematical problem. Such a tridiagonal structure 
should be exploited to efficiently solve the numerical problem. 

1.2 
Convergence Tests 

Working at the implementation of a numerical algorithm for the solution of NLSs, a 
quite important matter must be addressed. How do we determine if the new esti- 
mate, xi+l. is better or worse than the previous one, xi? 

The typical approach is to accept the new value, xi+,, if: 

Ilf(xi+l)ll2 < Ilf(xi)lll 

or, equivalently, if there is a decrease in the merit function: 

(9) 

1 
2 

N 
1 

@(x) = - C 4 2 ( x )  = -fTf 
j=1 
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The criterion represented by Eqs. (9) and (10) should be avoided within a general- 
purpose program whenever the functions fare unbalanced and have significantly dif- 
ferent orders of magnitude. In those cases, the equations with lower orders of mag- 
nitude do not contribute to the merit function. As an example, we can report the eval- 
uation of a flash, or the modeling of a distillation column. The stoichiometric equa- 
tions (order of magnitude: 1) stay together with the enthalpy balance equations 
(order of magnitude: l.EG-l.E9) and significant differences in terms of orders of 
magnitude are present in the resulting NLS. 

An improvement of the previous criterion is given by weighting each equation 
with a suitable weight, wj. Consequently, the merit function becomes: 

. N  

By introducing the diagonal matrix, W, which has elements equal to the weights, 9, 
the matrix notation follows: 

(12) 
1 1 
2 2 

@,(x) = -(Wf)T(Wf) = -fTW2f 

More generally, the weights can vary with the iterations. Consequently, the weight 
matrix becomes Wi. 

A reasonable criterion for the definition of the weights is to make all equations 
have the same order of magnitude. To do so, it is sufficient to use weights equal to 
the inverse of the order of magnitude of the corresponding equations. 

0 The user directly writes the equations in an adimensionalized form. 
0 The user assigns the weights to be used by the numerical solver. 
0 The numerical solver evaluates the weights of Eq. (11). 

Another approach is to consider whether vector, x, is sufficiently near the solution of 
the problem. Let us suppose we have the following linear system: 

This criterion can be implemented in the following ways: 

(13) Ax=b  

The distance of a point xi from one of the planes, j: 

ajlxl + aj2x2 + . . . + ajNxN = bj (14) 

is determined by calculating the point at which the orthogonal line passing through 
xi intersects the plane itself. The square of the distance between that point and xi is: 

(15) 
2 

[ajl(xl)i + aj2(x2)i + . . . + ajN(xN)i - hi] 
dj = 

N 

m=l 
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7.2 Convergence Tests 

By adopting the following weights: 

2 1 w. = - 
J N  

m=l 

every term of summation (11) evaluated at point x, represents the square of the dis- 
tance between such a point and the planes of system (13). As far as NLSs are con- 
cerned, matrix A becomes an approximation of the Jacobian, J. Since the Jacobian 
matrix changes with the iterations, the weights should also be modified. This strat- 
egy may be adopted to automatically evaluate the weights in Eq. (11). 

Unfortunately, the aforementioned strategy does not benefit from the following 
property (Buzzi-Ferraris and Tronconi, 1993): 

Given a merit function, F(x), applied to a linear system, it is assumed that if F(x,+,) 
< F(x,) then point x ,+~  is closer to the solution than point x,. 

The criteria described so far do not benefit from this property except for the linear 
system (13) consisting of orthogonal planes. 

with reference to system (13), let us suppose we know the exact solution, x,, that 
makes the residuals null: 

b-Axs=O (17) 

Given a point xi, other than x,, we have the residual: 

b-Axi = f i  (18) 

by subtracting Eq. (17) from Eq. (18) we obtain: 

A ( x ~  - Xj) = f j  (19) 

Formally, the Euclidean norm of the distance xi - x, is: 

and the geometric interpretation of Eq. (20) is that the quantity IIA-'f,llz measures the 
distance of xi from the solution x,. With regards to NLSs, Eq. (20) is a measure of the 
distance of point xi from the solution of the linearized system, where A = Ji repre- 
sents the Jacobian matrix evaluated using xi. 

Finally, the distance of a new point xi+,  from the solution of the same system is: 

Whenever a nonlinear system is concerned, the new point must be accepted if 

given that, in the case of linear systems, Eq. (22) means that xi+l is closer to the solu- 
tion than xi is. It is worth highlighting that the Jacobian of Eq. (22) is kept constant 
while f, and f,+, are the residuals at points xi and xi+'. 
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t 

If Newton’s method is adopted to solve the NLS (see subsequent paragraphs) then 
the Jacobian matrix J i  has already been factored to solve the linear system produced 
by the method itself. The evaluation of the merit function using the two points, xi and 
xi+l, is therefore straightforward and manageable. 

Often, besides normalizing the functions, it is also advisable to normalize the vari- 
ables. A practical way to implement the normalization is to scale the variables by 
multiplying them for a coefficient so that all the variables have the same order of 
magnitude. By indicating with D a suitable diagonal matrix of multiplying coefi- 
cients, the proposed transformation is: 

I 

z = DX (23) 

Consequently, the merit function with the new variables becomes: 

1 T 
&D(z) = -f(D-*z) W2f(D-*z) 

2 

1.3 
Substitution Methods 

Before applying the substitution method to the solution of an NLS it is necessary to 
transform the equations into the following formulation: 

h(x) = q(x) (25) 

where system h(x) should be easily solvable if the value of q(x) is known. 
The method consists of applying the iterative formula: 

h(xi+l) = q(xi) (26) 

where xi+l is obtained from xi. 
The easiest iterative formula is: 

x j  = &(XI, x2, . . . , + l ,  x j+ l ,  . . . , XN) (27) 

where each variable is obtained explicitly from the corresponding function. 
The procedure shown in (27) has the same shortcomings as the monodimensional 

case. Moreover, it is quite difficult to find a proper formulation that converges to the 
solution. 

1.4 
Gradient Method (Steepest Descent) 

The gradient of a function is a vector. The function changes more rapidly in the 
direction of the gradient. With reference to the merit function (lo), the gradient in xi 
is given by: 



Consequently, vector 

(29) 
P(x~)  = pi = -gi = - J T f i  

describes the direction where the merit function (10) decreases more rapidly. Obvi- 
ously, the direction of the gradient changes whenever a different merit function is 
adopted. When the merit function (1 1) is involved, the search direction becomes: 

If the variables are also weighted and the merit function (24) is adopted, then the 
search direction becomes: 

The evaluation of the space increment, ai, is performed by a monodimensional 
search. The procedures that adopt the gradient (steepest descent) method, as the 
search direction, have major limits if used alone. Actually, such methods are efficient 
only at the initial steps of the solving procedure. 

The gradient method may be efficiently coupled with Newton’s method since it is 
quite complementary to it. Newton’s method is rather efficient in the final steps of 
the search while the gradient method is efficient in the initial ones. 

1.5 
Newton’s Method 

If the fi of the NLS can be expanded in terms of a Taylor series: 

f(xi + di) = f i  + Jidi + O( lldi 112) (32) 

and point xi is rather close to the solution, it is possible to stop the expansion to the 
first order terms. In this case, the correction vector, Di, to be summed with point xi 
comes from the solution of the system: 

The following iterative procedure represents the elementary formulation of Newton’s 
method: 

where di comes from the solution of the linear system (33): 

J .d .  1 1 -  - - f .  1 (35) 
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Consequently, Newton's method has the following search direction: 
I 

pi = di (36) 

and a, = 1 
Whenever Newton's method converges, its convergence rate is quadratic. 
It is possible to identify one difference between the solution of nonlinear systems 

and multidimensional optimization. Usually, the Jacobian matrix of system (35) is 
not symmetric. Thus, it is not possible to either solve the linear system with the Cho- 
lesky algorithm or to halve the memory allocation. The most efficient methods 
adopted for the Jacobian factorization require twice as much time as the Cholesky 
algorithm. 

The correction, di, obtained from system (35) is independent from either a change 
of scale in the variables or the merit function. In fact, by introducing the scale 
change: 

y = c x + c  (37) 

the new Jacobian, with respect to the variables y, becomes: 

Jy = JS1 (38) 

and the Newton's method estimate for the x variables is: 

X;+I = X; - Ji 'fi 

As a result, the Newton's method estimate is invariant with respect to a linear trans- 
formation using the variables x as well as the merit function (22). 

Vector di represents a direction where all the merit functions decrease. Actually: 

g'd; = (JTfi>' (-JL'fi) = -fTJjJi'f; = -fTfi i 0 

T 
gTd, w 1 -  - (JTWtfi) (-Jr'fi) = -fTWfJiJi'fi = -fTWtfi < 0 

g%,di = (JTWtfiDF2) T (-JL1fi) = 
-Di2fTWffi < 0 

Such a property is valid if the following two conditions are satisfied: 

1. the Jacobian matrix is not singular, i.e., the inverse matrix must exist; 
2. the Jacobian in Eq. (41) must be a good approximation of the true Jacobian matrix 

and not a generic matrix Bi, otherwise: 
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J,B;' # I (45) 

and the previous Eqs. (42-44) may not be true. 
It is also possible to outline another difference between the solution of nonlinear 
systems and multidimensional optimization. 

As far as multidimensional optimization problems are concerned, matrix Bi may 
also be a bad approximation of the Hessian (provided it is positive and definite) 
and at the same time be able to guarantee a reduction of the merit function. Con- 
versely, matrix Bi involved in the solution of NLSs should be a good estimate of 
the Jacobian. 

Besides the previously mentioned advantages, Newton's method also presents 
some disadvantages that suggest not using it with the trivial iterative formulation 
of Eqs. (34) and (35). 

Three different categories for the classification of the problems related to Newton's 
method can be outlined: 

1. Problems related to the Jacobian matrix 
0 The method undergoes a critical point if the Jacobian is either singular or ill- 

conditioned. 
2. Problems related to the convergence of the method 

0 The method may not converge to the solution; 
0 The new prediction may be worse than the previous one with respect to all 

merit functions. 
3 .  Problems related to the Jacobian evaluation and the linear system solution 

0 Every new iteration requires the evaluation of the Jacobian matrix. If the Jaco- 
bian is evaluated numerically, this means that the nonlinear system (1) is called 
N times; 

0 Each new iteration requires the solution of the linear system (35). 

The algorithms derived by the original Newton's method may be divided into two 
classes depending on how the Jacobian matrix is evaluated. 

The first class comprises Newton's modified methods where the Jacobian is evalu- 
ated analyhcally or numerically approximated at point xi. 

The second class comprises the quasi-Newton methods that update the Jacobian by 
means of the information gathered during the iterative process. 

For both classes, as soon as the Jacobian matrix has been either evaluated or 
updated, it is recommended to immediately execute a Newton's iteration in order to 
exploit the efficiency of such a method. 

Consequently, both of the aforementioned classes first verify the point: 

xi+l = xi + di = xi - Ji'fi (46) 

Such a point is accepted if it satisfies at least one of the following tests: 
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ffflW2fi+l < fTWZfi(1 - y )  (48) 

The y parameter guarantees a satisfactory improvement of the merit functions. 

1.6 
Modified Newton's Methods 

In these methods the Jacobian matrix is evaluated analytically or is approximated 
numerically. Since the Jacobian is recalculated at each iteration it is also necessary to 
solve the linear system (35). 

Several expedients and precautions are necessary to reduce the drawbacks of New- 
ton's method. 

1.6.1 
Singular or Ill-conditioned Jacobian Matrix 

The solution of system (35) is performed through the factorization of the Jacobian 
matrix. Whichever factorization is adopted, it is mandatory to evaluate the condition 
number of the system and to properly operate if such a number is too high. 

Actually, it is possible to introduce the auxiliary function: 

The minimum of function (49) is: 

which is equivalent to the prediction of Newton's method (35) applied to the solution 
of the nonlinear system. 

If the Jacobian is well-conditioned then the correction, Di, is achieved by solving 
system (35) instead of system (SO). Conversely, the use of function (49) becomes 
interesting when the Jacobian matrix is quite ill-conditioned or even singular. As a 
matter of fact, the system matrix, JTJi, is the Hessian of function (49) and it is sym- 
metric. By using function (49) instead of the merit function (lo), there is the advan- 
tage of knowing the Hessian without having to evaluate the second derivatives. At 
the same time, it is possible to apply to matrix JTJi, all the expedients exploited when 
an ill-conditioned minimum problem is involved. 

Two algorithms implement the aforementioned idea: 

0 The Levenberg-Marquardt method modifies system (50) in the following way: 
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The ,u parameter may be chosen so to transform matrix (jTiji + p ~ )  in a well- 
conditioned matrix. Besides being an artifice to reduce the ill-conditioning of the 
Jacobian, the LevenbergMarquardt method is also an algorithm that couples New- 
ton’s method to the gradient one. Actually, if the Jacobian is not singular, the solu- 
tion of system ( S l ) ,  with p = 0, is equivalent to Newton’s estimate. Conversely, 
when high values of parameter p are involved, the search direction tends to the 
gradient of the merit function (10). 
The Gill-Murray criterion represents the second alternative. The idea is to make 
the diagonal coefficients of matrix J:Ji positive. If the Jacobian J is QR factored 
and matrix R is worked out in order to avoid any zeros in the main diagonal, then 
matrix JTJ = RTR is symmetric positive definite. 

Buzzi-Ferraris and Tronconi (1986) showed a new methodology for the modification 
of the Jacobian matrix. If the Jacobian is ill-conditioned or singular then some equa- 
tions in system (35) are linearly dependent. Consequently, it is possible to eliminate 
those linearly dependent rows. Since the resulting system becomes underdimen- 
sioned, it is appropriate to adopt the LQ factorization that produces the solution with 
minimum Euclidean norm for vector di. Thus, it is possible to avoid an excessively 
large correction on such a vector. The numerical solution satisfies not only the sub- 
system but also the equations that were removed, since, if compatible, they are 
almost a linear combination of the others. This criterion is often efficient and is pref- 
erable to the previous one since it is not influenced by the merit function. At the 
same time, it does not produce a false solution. By the term false we mean a solution 
of the minimum problem that is not the solution of the NLS. 

1.6.2 
The Convergence Problem 

As mentioned, the Newton’s estimate is not satisfactory whenever point xi+l does not 
meet conditions (47) and (48). In such a case, it is possible to adopt the following 
strategies: 

0 A monodimensional search is performed in the same direction as the Newton’s 

0 The region where the functions are linearized is reduced. 
0 An alternative algorithm to the Newton’s method is adopted. 

Before addressing these points, the following feature should be emphasized: an NLS 
may not have a solution. Moreover, if a solution exists, we are not sure that it will 
be possible to determine it. A numerical program should warn the user about its 
incapability of solving the problem. 

one. 

1.6.2.1 
Monodimensional Search 
Usually, since the monodimensional optimization is both not time-consuming and 
quite efficient, it is adopted in all-purpose solvers. Normally, the monodimensional 
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search algorithm is not pushed to the extreme. Actually, the optimization is intended 
to identify a new point where Newton’s method might easily converge. The merit 
function that is usually adopted is the weighted one (12). At the outset, the following 
data are known: 

0 the value of Qw at point xi; 
0 the gradient g, at point xi and that in the direction di, g:di; 

the value of Qw at point xi + di. 

Since there are three data in the direction di, the merit function Qw may be approxi- 
mated by the parabola: 

Y ( t )  = Y(0) + tY’(0) + t2 [ Y ( U  - y(0) - Y’(O)] (52) 

Tne minimum of the parabola is: 

In the following, we will assume to have a good estimate of the Jacobian matrix. Con- 
sequently, the following equation may be adopted: 

and the minimum of the parabola becomes: 

fTWffi 

f;+,Wff;+, + fTW;fi 
U =  (55) 

It is recommended to check that u is not too small by imposing: 

u > 0.1 (56) 

Since point xi+l does not satisfy Eq. (47), an upper limit for u is automatically set. 

wise the program must stop with a warning. 
If the minimization is not successful then a new artifice should be exploited, other- 

1.6.2.2 
Reduction o f  the Search Zone 
The Levenberg-Marquardt method may be considered from three distinct 
perspectives: 

0 as an artifice to avoid the ill-conditioned problem of the Jacobian matrix; 
0 as an algorithm that couples Newton’s method to the gradient one; 
0 as a method exploiting either a reduced step or a confidence region. 

The third point is the most interesting when a reduction of the search zone is con- 
cerned. In this case, it is required to identify the correction di that minimizes the aux- 
iliary function (49) with the constraint: 
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1.7 Quasi-Newton Methods 

where 6 has a specified value. 
A valid alternative to the Levenberg-Marquardt method is represented by the dog 

leg method, also known as Powell’s hybrid method (1970). Once again, such a 
method couples Newton’s method to the gradient one. The original version of 
Powell’s method was close to the concept of either confidence region or reduced 
step. Powell proposed a strategy for the modification of parameter 6 subject to both 
the successes and failures of the procedure. 

1.6.2.3 
Alternative Methods 
Whenever Newton’s method fails, it is necessary to switch to an alternative method. 
For this reason, the most commonly used method is the gradient of a merit function. 

There are several alternatives. It is possible to perform a monodimensional search 
along the gradient direction. Even better, the two methods may be coupled as it hap- 
pens with the Levenberg-Marquardt algorithm or the dog leg method. Another 
choice is to perform a bidirectional optimization on the plane defined by both search 
directions. 

Unfortunately, there are no heuristic methods for the solution of NLSs. Only for 
very specific problems can a substitution method be expressly tailored and coupled 
to Newton’s method. As an example, in the field of chemical engineering, the boiling 
point (BP) method may be implemented and applied to distillation columns. In the 
following, we will introduce the continuation methods. Such methods transform the 
functions of the NLS and solve an equivalent and dynamically easier problem. 

1.7 
Quasi-Newton Methods 

Let Bi be an approximation of the Jacobian matrix at point xi. As mentioned before, 
matrix Bi must be a good approximation of the Jacobian. Consequently, also in the 
case of quasi-Newton methods, it is necessary to evaluate either analytically or 
numerically the Jacobian matrix. If during the search of the solution the rate of con- 
vergence should decrease, reevaluating the Jacobian is recommended. Therefore, it 
is not possible to implement a quasi-Newton method without a modified Newton’s 
method. 

During the solution procedure the values of functions f, and f,+l are known in the 
points xi and xi+l. Such points must not necessarily correspond to previous Newton’s 
method estimates. Given: 

AX; = ~ i + l  - xi (58) 

if the distance between the two points is not significant, it is possible to link the func- 
tion values f, and fi+l through a Taylor expansion: 
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fi+l = fi + BAxi (59) 

where the Jacobian, B, is evaluated in a suitable point between xi and xi+l .  Specifically, 
it is possible to impose that the Jacobian satisfies the following condition: 

f i+l = f i + Bi+l AX; (60) 

Equation (GO) does not allow univocal evaluation of all components of the Jacobian 
when the number of equations N > 1. In this case, N - 1 more conditions are neces- 
sary. In 1965 Broyden proposed to choose the conditions to be added to Eq. (GO) in 
order to keep invariant the product between the Jacobian, evaluated in xi and in xi+l, 
and an orthogonal vector to Axi. Generally, for any given vector, qi, with: 

qTAxi = 0 (61) 

it must result that: 

This condition is reasonable ifwe consider Eq. (59). Actually, it is possible to modify 
the Jacobian in the direction Axi so as to satisfy condition (GO). On the contrary, in a 
direction orthogonal to the previous one, there is no additional information and the 
behavior of the Jacobian, with respect to a Taylor expansion in that direction, should 
be invariant. 
By coupling conditions (62) and (GO), it is possible to univocally identify the Jacobian 
in xi+l:  

(fi+l - fi - B ~ A X ~ ) A X T  
Bi+l = Bi + 

AX:AX~ 

1.8 
Large and Sparse Systems 

When the number of equations and variables is quite large, often each equation 
depends on a reduced set of variables. As far as the Newton’s and quasi-Newton 
methods are concerned, it is necessary to exploit the sparsity of the Jacobian matrix 
so as to reduce the memory allocation while saving CPU time. In particular, the fol- 
lowing expedients are essential: 

The solution of system (35) should be made by the method that best exploits the 
Jacobian sparsity and structure. 
If the Jacobian has no specific structure that can be directly exploited, it is worth- 
while rearranging both the variables and equations so as to reduce the CPU effort 
and memory allocation required by the factorization of the Jacobian matrix. 
The null Jacobian components should not be evaluated. This happens automati- 
cally if the Jacobian is evaluated analytically. Conversely, whenever the Jacobian 
matrix is approximated numerically, the following computations: 
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J(Xi  + hkek) -j(xi) 

hk 
J i k  = 

should be avoided if it is a pAoA known that: x(x i  + h&) =f;(xi) 

arge and Sparse Systems 

(64) 

It is possible to exploit some formulas to update the Jacobian, which are able to 
preserve its sparsity. At the same time, if some elements are constant, they should 
not be updated by those formulas. Schubert (1970) proposed a modification of the 
Broyden formula (1965), while Buzzi-Ferraris and Mazzotti (1984) proposed a 
modification of the Barnes formula (1965). These formulas take into account the 
coefficients that are known and do not modify them. The update is performed only 
on the coefficients that are unknown. 

0 If the Jacobian is evaluated numerically, it is not convenient to increment a vari- 
able one at a time and to perform a call to the nonlinear system. This point must 
be emphasized. If Eq. (64) is adopted to evaluate a Jacobian matrix that is sup- 
posed to be full, then vector ek is the null array except for position k,  where the 
element is equal to 1. In this case, system (1) is called N times to evaluate the 
derivatives of the functions with respect to the N variables. Let us now consider the 
following sparse Jacobian matrix, where the symbol x represents a nonzero ele- 
ment (see Fig. 3.1). 

It  can be observed that when the system is called to evaluate the derivatives with 
respect to variable xl, the only functions to be modified arefi and&. If at the same 
time variable x2 were modified, it could be possible to evaluate the derivatives with 
respect to this variable since it only influences functionsh andf7. Going on with the 
reasoning, it is possible to show that only three calls to the system of Fig. 3.1 are suf- 
ficient to evaluate the whole Jacobian matrix. In fact, with the first call it is possible 
to increment variables x1x2x3x4x6x9. With the second call we increment variables 
x5x8. Finally, with the third call we increment variables ~7x10. When the system is 
sparse, the total number of calls necessary for the evaluation of the Jacobian matrix 
can be drastically reduced. It is not easy to identify the sequence of variable group- 
ings that minimizes the number of calls to the nonlinear system. Curtis, Powell and 
Reid (1972) proposed a heuristic algorithm that is often optimal and can be easily 
described. We start with the first variable and identify the functions that depend on 
it. We then check if the second variable does not interfere with the functions with 
which the first variable interacts. If this happens, we go on to the third variable. Any 
new variable introduced in the sequence also increases the number of functions 
involved. When no additional variables can be added to the list, this means that the 
first group has been identified and we can go on with the next group until all N vari- 
ables of the system have been collected. It is evident that the matrix structure of the 
Jacobian must be known for this procedure to be applied. This means that the user 
must identify the Boolean of the Jacobian, i.e., the matrix that contains the depen- 
dencies of each function from the system variables (see Fig. 3.1). 

29 
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Figure 3.1 The Boolean matrix 

describes the Jacobian structure 
and the function dependency from 

the variables of the nonlinear sys- 

tem. 

1.9 
Stop Criteria 

When the problem is supposed to be solved or when there are insurmountable prob- 
lems, there are some tests to bring the iterations to an end 

It is advisable to implement a limitation on the maximum number of iterations. 
If the weighted function (12) is lower than an assigned value, there is a good 
chance a solution has been reached. 
The procedure is stopped if the estimate of Newton’s method, di, has all compo- 
nents reasonably small. With multidimensional optimization it is not sufficient to 
check whether a norm of vector di is lower than an assigned value. On the con- 
trary, it is advisable also to to check the following relative: 

Even if a quasi-Newton method is used, a good approximation of the Jacobian is 
known. Consequently, this criterion is adequately reliable. Nonetheless, it should 
be emphasized that this test is correct only when the difference between two con- 
secutive iterations, di = xicl - xi, comes from a Newton-like method and the Jaco- 
bian is not singular. 

1.10 
Bounds, Constraints, and Discontinuities 

Some problems have solutions that are not acceptable since they belong to unfeasible 
regions. In these situations, it can be worthy assigning some bounds to the variables 
in order to avoid the solution from falling in those unfeasible regions. This issue 
requires the adoption of specifically tailored numerical algorithms that are able to 



I 31 
1 . 7  7 Continuation Methods 

depart from the unfeasible attractor while moving towards the feasible region. Simi- 
lar considerations apply when discontinuities are involved. In this case, the numeri- 
cal algorithm should be able to work across the discontinuity while avoiding a crisis 
due to its presence. The discontinuity can be either in the function itself or in its 
derivatives (Sacham and Brauner 2002). 

1.11 
Continuation Methods 

Let us suppose we have a nonlinear system of N equations whose solution is quite 
difficult. For some reason that will be explained in the following we suppose we have 
a vector of adjoint parameters z, of M elements, in the equations of the system. 
Therefore, the NLS can be rewritten as: 

f(x, 2 )  = 0 (66) 

The system must be solved with respect to the N unknowns, x, given a specific value, 
z = zF, of the parameter vector. 

Let us now suppose we know another system, q(x, z) = 0, in some way related to 
the previous one, whose solution, for a given value of parameters z, is quite easy. In 
this case it is possible to write a new system that is a linear combination of the previ- 
ous two: 

The parameter t in Eq. (67) is called the homotopy parameter. When the parameter 
t varies in the interval 0, . . . 1, system h is solved for a value of x that satisfies both sys- 
tems q and f. The parameters z can be a function of parameter t in any way, provided 
that for t = 1 we have z = zF. The most straightforward functional dependency 
between t and z is the linear one: 

(68) z = ZO + (ZF - zo)t 

where zo corresponds to the initial value of the parameters. 
Another functional dependency is the following one: 

There are several alternatives for the auxiliary system q(x, z). The common character- 
istic is that for t = 0 the solution of system q ( q ,  zo) = 0 should be effortless. 

The following are some choices: 

0 Fixed point homotopy: q(x, z) = x - q + z - zo 
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h(x, Z, t )  = tf(x, Z) + (1 - t) [(x - ~ g )  + (Z - ZO)] = 0 (70) 
I 

0 Newton or global homotopy: q(x, z) = f(x, z) - f (q ,  zo) 

h(x, Z, t )  = f(x, Z) - (1 - t)f(Xg, ZO) = 0 (71) 

0 Homotopy with scale invariance: q(x, z) = J(%. ZO) [(x - %) + (Z - ZO)] 

h(x, Z, t) = tf(x, Z) + (1 - t)J(%, 20) [(x - ~ g )  + (2  - Z0)I = 0 

0 Parametric continuation method: q(x, Z) = 0 

(72) 

h(x, Z, t )  = f(x, Z) = 0 (73) 

The fourth criterion (73) deserves some explanation since one could think that the 
original problem has not been modified. In many practical cases, a problem may 
have a simple solution in correspondence to a value zo of the parameters, while there 
are numerical difficulties for zF. In this case the system is solved by setting t = 0 and 
z = zo. We then get a first solution ~0 that satisfies: 

h(xo, zo,O) = f h ,  20) = 0 (74) 

Successively, we change t from 0 to 1 in order to modify continuously the parameters 
from zo to zF. By doing so, several intermediate problems are solved through a step- 
by-step procedure. 

It is worth highlighting two cases: 
1. The parameters, z, correspond to some specifications that should be satisfied. 

Often, the problem can be easily solved if the specifications are mild, while it 
becomes hard when the requirements are tight. A typical example is represented 
by a distillation column. The continuation parameter can be the product purity. If 
the product purity is quite high, there can be some problems concerning the 
numerical solution. In this case, it is recommended to start with a lax specifica- 
tion. Once the solution has been evaluated, the problem is slightly modified by 
tightening the specification. A new solution is performed by adopting as a first 
guess the previous solution. By continuing the procedure, it is possible to reach the 
final product purity. 

2. The problem can be solved easily by introducing some simplifications. The con- 
tinuation method modifies continuously the simplified hypotheses, carrying the 
system towards the detailed model. In the case of separation units, one of the 
problems may be the evaluation of the liquid-vapor equilibrium constants, k. If 
the k vector strongly depends on the compositions then it can be difficult to iden- 
tify the first guess values that make the Newton’s method converge. In this case, 
it is convenient to consider the system ideal. By solving the simplified problem 
under the hypothesis of ideal k values, a solution is easily obtained. Such a solu- 
tion becomes the first guess for the continuation procedure that takes the system 
towards the hypothesis of nonideal liquid-vapor equilibria. The parameter vector 
z comprises the k values as follows: 
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Initially, when t = 0, all parameters are equal to the ideal k values. The homotopy 
parameter, t ,  evolves from 0 to 1. By doing so the k values continuously change from 
the ideal to the real hypotheses. The same reasoning can be applied to the enthalpies 
of the mixture. 

The main advantage obtained by the continuation method is that the intermediate 
problems have a physical implication. Consequently, each intermediate problem has 
a solution where the variables take up reasonable values. 

Another approach to the solution of the continuation problem is to implement an 
ODE system that integrates the x variables and the z parameters from an initial con- 
dition (easy problem) to a final time (difficult problem). Seader and coauthors (Kuno 
and Seader 1988; Seader et al. 1990; Jalali and Seader 1999; Gritton et al. 2001) have 
worked extensively on this approach. 
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