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Distributed Dynamic Models and Computational Fluid Dynamics 

Young-il Lim and Sten Bay Jdrgensen 

2.1 
Introduction 

Chemical and biotechnical processes are often described by distributed dynamic 
models, that is, partial differential equations (PDEs) or partial differential algebraic 
equations (PDAEs) incorporating convection, diffusion, reaction and/or thermody- 
namic property terms. The PDAE models represent temporal as well as spatial varia- 
tion of state variables. Since analytical solutions only exist in few cases, due to non- 
linearity and complexity, computational methods (or numerical analyses) are gener- 
ally required to solve such distributed dynamic models. 

In this chapter numerical methods for solving PDEs are reviewed in the following 
three sections, first treating semidiscretized (method of lines) and fully discretized 
methods before discussing adaptive and moving mesh methods. Several applications 
of distributed models appearing in preparative chromatography, futed-bed reactors, 
slurry bubble columns, crystallizers and microbial cultivation processes are treated 
in section 2.6 as a means to introduce various relevant aspects for the solution of 
PDE/PDAE models for chemical and biotechnical processes. Finally in section 2.7 an 
approach for combining computational fluid dynamic (CFD) technology with pro- 
cess simulation is illustrated and discussed. 

2.2 
Partial Differential Equations 

Chemical and biotechnical processes often take place in spatially distributed systems 
and are therefore most appropriately described by distributed dynamic models, that 
is, partial differential equations (PDEs) incorporating convection, diffusion, reaction 
and thermodynamic property terms (Heydweiller et al. 1977; Kohler et al. 2001). For 
example, the material, energy, and momentum balances on moving fluid phases 
result in PDEs with respect to time and one or more space dimensions. Partial time 
derivatives occur as a direct consequence of the transient operation, while convective 
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and diffusive (or dispersive) effects normally lead to first and second order partial 
space derivatives, respectively. Material and energy balances on stationary phases 
(e.g., the solid adsorbent in a packed-bed adsorberlreactor) may not involve any con- 
vective or diffusive terms and are therefore free of partial space derivatives. The prop- 
erties of such a stationary phase at any single point obey ordinary differential equa- 
tions (ODES). Algebraic equations (AEs) are often used to define chemical equilibria, 
physical properties (e.g., enthalpy in terms of temperature, pressure and composi- 
tion), or other intermediate quantities appearing in the differential equations. There- 
fore, physical models are generally expressed as PDEs coupled with AEs, i.e., so- 
called partial differential algebraic equations (PDAEs) submitted to initial conditions 
and boundary conditions. 

For the purpose of this review, a PDAE system with one spatial coordinate can be 
expressed as follows: 

I 

where u(t, x)  is the state variable as a firnction of time (to I t I tf) and space (xo I 
x 5 xf), F(u) is the convection flux, D is the diffusion (or dispersion) coefficient, r(u, 
8) is the reaction rate equation depending on state variables (u) and parameters (8),  
and g(u) is a nonlinear algebraic equation. On the right-hand side of Eq. ( la) ,  the 
first, second and third terms take into account convection, diffusion and reaction, 
respectively. The partial differential equations govern a family of solutions. A partic- 
ular member of the family of solutions is specified by the auxiliary conditions like 
initial and boundary conditions. For a PDE containing a first-order time derivative, 
one initial condition (IC) is required at an initial time level, t = to along the space (x ) :  

U ( t 0 ,  x )  = uo (2) 

For a PDE containing a second-order spatial derivative like Eq. (la), two boundary 
conditions are required at the physical boundaries of the solution domain. For exam- 
ple, the well-known Danckwert’s boundary condition (BC) can be imposed for 
Eq. (la): 

= 0 at x = xf for all t 

where f(u) 1 1  in is the inlet flux predescribed by the operating condition. In the litera- 
ture, Eq. (3b) is called the Neumann BC and Eq. (3a) is a mixture of the Dirichlet BC 
and the Neumann BC. Proper specification of auxiliary conditions is a necessary con- 
dition to obtain a well-posed problem (Hoffman 1993). 
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Physical mathematical models like the partial differential equations (PDEs) have a 
continuous form, while theose for solution purposes have to be discretized into a 
semidiscrete form (e.g., using only spatial discretization, Ax) or a fully discrete form 
(e.g., combining temporal and spatial discretization, At and Ax) in order to represent 
the models in the temporal and spatial (or computational) domain. 

Among the large number of numerical methods developed for the solution of PDE 
or PDAE systems, the following is a well-established classification: 

0 Method of lines (MOL), including finite difference methods, finite element meth- 
ods and finite volume methods (Finlayson 1980; Schiesser 1991; Leveque 1998; 
Lim et al. 2001a, Mantzaris et al. 2001a and 2001b). 

0 Fully discretized methods (Hoffmann 1993; Chang 1995 and 2002; Lim et al. 
2004). 
Adaptive mesh refinement (AMR) or adaptive grid methods (Berger and Oliger 
1984; Berger and LeVeque 1998; Vande Wouwer et al. 1998). 

0 Moving grid methods (Miller and Miller 1981; Dorfi and Drury 1987; Huang and 
Russell 1997; Li and Petzold 1997; Lim et al. 2001b). 

The semidiscretized method is called MOL, where PDEs (or PDAEs) are converted 
into a system of ODES (or DAEs) with respect to time by spatial discretization (see 
Section 2.3 for details). The main advantage is that well-established time integrators, 
e.g., Runge-Kutta or backward differentiation formula (BDF) methods, can be used 
for solving a large set of ODES or DAEs. A main drawback is, however, that it is diffi- 
cult to control and estimate the impact of the spatial discretization error (Oh 1995). 
For fully discretized methods (Section 2.4), a system of nonlinear algebraic equations 
is obtained after temporal and spatial discretization. 

Adaptive and moving grid methods seem to be most promising since the idea is to 
use a numerical method in which nodes are automatically positioned in order to fol- 
low or anticipate steep moving fronts (Section 2.5). The node positioning may be 
achieved by using two basic strategies, namely AMR (i.e., local mesh refinement) 
and moving mesh methods (i.e., continuous spatial redistribution of a futed number 
of mesh points). These two types of methods are appropriate for solving PDEs in the 
presence of steep moving fronts or discontinuities. 

One of the key challenges facing process modeling today is the need to describe 
the interactions between fluid flow and phenomena models such as chemical reac- 
tions, mass transfer and phase equilibrium (Bezzo et al. 2003). Process simulations 
taking convection, diffusion and reaction into account and using computational fluid 
dynamics (CFD) for fluid hydrodynamics are important tools for the design and opti- 
mization of chemical and biochemical processes. The two technologies are largely 
complementary, each being able to capture and analyze some of the important pro- 
cess characteristics (Bezzo et al. 2000). Their combined application can therefore 
lead to significant modeling and simulation benefits, as will be discussed in Section 
2.7. Before proceeding with this review, several preliminary concepts are summa- 
rized to facilitate presentation of the numerical methods. 
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2.2.1 
ODE (or DAE) Integration 

In the MOL framework, the numerical solution of PDEs (or PDAEs) is obtained by 
the time integration of the ODEs (or DAEs) resulting from spatial discretization. The 
general form of ODEs is expressed 

I 

M(t)u = h(t ,  U) (4) 

where u is the time derivative. When the matrix M(t) is singular, Eq. (4) represents 
a DAE system rather than an ODE system. Solving the DAE system is more compli- 
cated than solving the ODE system (see Section 2.2) because the DAE system only 
has a solution if the initial conditions ~0 are consistent in the sense that the equation 
M(to) uo = h(b, ug) has a solution, &, for the initial slope. Computations in a DAE 
integrator does not require M(t) to be nonsingular (Ascher and Petzold 1998). 

If the time dependent ODE has a condition number that is large, then the problem 

is stiff. In other words, system (4) is stiff if the Jacobian J = - au (in the neighbor- 

hood of the solution) has eigenvalues A,, where 3 >>1. For the stiff ODE/DAE 

systems, implicit BDF time integrators, such as DASSL (Petzold 1983), LSODI 
(Hindmarsch 1980), and DISCO (Sargousse et al. 1999) and o d e l b  in Matlab (The 
Mathworks Inc., MA, USA) are used for accurate evaluation of time derivatives. 

a 
h 

IL I 
lilminl 

2.2.2 
Accuracy and Computational Performance 

How close the numerical solution is to the true solution (or analytical solution, if that 
exists) at the finite temporal and spatial stepsizes (At and Ax)  is assessed by evaluat- 
ing the accuracy of the discretization. As At and A x  converge to zero and as the 
approximation order of derivatives increases, the approximation error generally 
diminishes. However, one must also account for computational efficiency in terms 
of the computational time that increases as the accuracy rises. In this context, there 
is a tradeoff between accuracy and computational efficiency. Thus, to simultaneously 
minimize the approximation error and the computational time, it can be considered 
as a multiobjective problem (Lim et al. 2001a). 

The set of AEs or ODEs obtained after discretization of PDEs differs from the orig- 
inal PDE by the presence of the truncation error terms, which implicitly contribute 
to the numerical difision or dissipation. The truncation error related to accuracy is 
always present in the finite approximation of a PDE. An appropriate numerical 
method should be selected for a given PDE system in order to meet a tolerable 
numerical error within a reasonable computational time. 
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2.2.3 
Automatic Differentiation 

The numerical methods employed in the solution of many scientific computing 
problems require the computation of derivatives of some functions. Probably the 
best known are the gradient methods for optimization (e.g., successive quadratic pro- 
gramming, Powell 1971; see also Section 2.4), Newton’s method for the solution of 
nonlinear algebraic equations (see Section 2.1), and the numerical solution of ODEs 
and PDEs. Both the accuracy and computational requirements of the derivative com- 
putation are usually of critical importance for the robustness and speed of the 
numerical solution (Bischof et al. 1992). 

Taking a system of ODEs converted from a partial differential equation with MOL 
(see Section 2.1) as an example, the system is given as: 

du - = h(t, AX, U) 
dt (5) 

where the state variable u = [u1 . . . uN and the nonlinear function h = [h, . .. hN are rep- 
resented (or approximated) on N discrete spatial mesh points (or finite elements). 
ODE solution methods, such as implicit Runge-Kutta and BDF methods, require a 

(N x N) Jacobian - , which is either provided by the user or approximated by a 

difference quotient also called divided differences. 
In fully discretized methods (e.g., the conservation element and solution element 

(CE/SE) method, see Section 2.2) for the numerical solution of a PDAE, a nonlinear 
system is obtained as a function of time, spatial stepsizes, and state variables. 

(3 

0 = h(At, AX, U) (6) 

For a futed time and spatial stepsizes, Eq. (6) is solved by a Newton-type iteration 

requiring the Jacobian - . Therefore, the computation of derivatives (or Jaco- 

bian) is a crucial ingredient in the numerical solution of PDEs or PDAEs. 
Hand-coding is increasingly difficult and error prone, especially as the problem 

complexity increases. Numerical approximation by divided differences has the 
advantage that the function is only needed as a black box. For example, a central 
divide difference is expressed as: 

dh 
d U  

The main drawback of divided differences is that their accuracy is difficult to assess. 
In addition, they are computationally expensive. 

The basic idea of automatic differentiation (AD) is to avoid not only numerical 
approximations, which are expensive and contain rounding errors, but also hand- 
coded differentiation, which is error prone. Automatic differentiation techniques rely 
on the fact that every function, no matter how complicated, is evaluated on a com- 



40 2 Distributed Dynamic Models and Computational Nuid Dynamics 

puter as a sequence of elementary operations such as additions, multiplications and 
elementary functions (Bischof and Hovland 1991). By applying the chain rule 

I 

over and over again to the composition of those elementary operations, one can 
compute derivative information of h(u) exactly and in a completely mechanical fash- 
ion. Several AD packages such as Automatic Differentiation in FORTRAN (ADI- 
FOR) (Bischof et al. 1998) are available from the AutoDiff organization Web site 
(http:/ /www.autodiff.org/)). 

2.2.4 
Fixed, Adaptive and Moving Grids 

The numerical study of evolutionary PDEs with steep moving fronts has demon- 
strated the need for numerical solution procedures with time and space adaptation. 
Over recent years, a great deal of interest has developed in adaptive mesh methods 
(Vande Wouwer et al. 1998). The objective of such approaches is to obtain solutions 
as accurately as could be obtained if a fine mesh was used over the entire physical 
domain, but at significantly lower computing cost. One would normally like to con- 
centrate a large proportion of the nodes in regions where the solution exhibits rapid 
variation with respect to space. In the solution of many chemical engineering prob- 
lems, steep moving profiles also appear. Common examples are (1) concentration 
breakthrough curves in fixed-bed absorbers (Kaczmarski et al. 1997), (2) particle (or 
crystal) size distribution governed by a population balance equation (Kumar and 
Ramkrishna 1997), and (3) heat conduction problems with a phase change (Macken- 
zie and Robertson 2000). 

The futed grid method uses the constant spatial mesh size (Ax) during time inte- 
gration, whereas the moving mesh method continuously moves a fued number of 
nodes to the regions of rapid solution variation over time. In the adaptive grid 
method (or AMR), meshes are locally added or removed at certain time levels accord- 
ing to solution steepness. In Section 2.3 adaptive and moving mesh methods are 
reviewed and compared. 

2.3 
Method of Lines 

Time-dependent PDEs can be solved by means of the following two-stage proce- 
dures. First, the spatial variables are discretized on a selected spatial mesh so as to 
convert the original PDEs (or PDAEs) into a system of ODES (or DAEs) with time as 
an independent variable. Secondly, the discretization in time of the ODE/DAE sys- 
tem then yields the required fully discretized scheme, normally using an ODE/DAE 
solver. This two-stage approach is often referred to as the method of lines (MOL) in 
the literature. 
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The spatial discretization means that the physical spatial domain (x E Rd, in d 
dimensions) is discretized, replacing the analytical domain by its discrete equivalent 
domain (computational domain, 5 E Rd) satisfylng the original PDE in a finite num- 
ber of discrete points distributed over the physical domain. 

The discretization of PDEs on spatial domains normally leads to a Jacobian matrix 
whose elements lie within a narrow band (band Jacobian matrix). But, the bounded 
structure will be destroyed by the equations resulting from the boundary conditions, 
recycle streams or other nonlinear features. Hence, a sparse matrix would often be 
seen. In the ODE/DAE solver, the user will define the appropriate type of the Jaco- 
bian matrix to be evaluated by numerical difference, user-provided code or automatic 
differentiation, as discussed above. 

The discretization techniques are important since not satisfying local conservation 
equations will give meaningless results. The numerical scheme has to closely mimic 
the behavior of the original PDEs and guarantee local conservation of flow proper- 
ties. To achieve this, it is necessary to not only use conservative formulation of the 
governing equations but also a conservative numerical scheme. 

The discretization of the spatial derivatives in Eq. (1) can be accomplished using 
three main categories: the finite difference method (FDM), the finite volume method 
(FVM) and the finite element method (FEM). The grid system may be a fixed grid, an 
adaptive grid or a moving grid. 

2.3.1 
Finite Difference Methods 

The finite difference approximation of Eq. (la) can be expressed in a simple way on 
N mesh points as follows: 

where the first-order spatial derivative is approximated by a first-order upwinding 

scheme under the condition I 2 0 (or positive convective flow) and the second- 

order derivative by a central difference scheme. For i = 1 and N, boundary conditions 
such as Eq. (3) are applied. 

The spatial discretization of the parabolic PDE (1) may cause stiffness due to 
second-order spatial derivatives, while that of the convection-dominated PDE (i.e., 
large convection velocity relative to diffusion coefficient) may cause instability, which 
is associated with oscillatory behavior of their solution due to first-order spatial deriv- 
atives (Finlayson 1980). The instability is encountered in using central schemes and 
higher-order upwinding schemes. To improve the accuracy of the FDMs for the 
PDEs, numerous attempts have been focused on approximating the first-order spa- 

tial derivatives, x i n  Eq. (la). Some guidance is provided in the selection of 

upwind methods in the FDM solution (Saucez et al. 2001). 

af 
3U 

a x  
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In the traditional finite difference discretization (i.e., the fixed-stencil approach to 
be introduced later), the stencil (Si) used to approximate spatial derivatives is fixed in 
both size (number of grid points) and position of the stencil points over the discret- 
ization procedure. Fixed-stencil (FS) approximations may not be adequate near dis- 
continuities or steep fronts where they may give rise to oscdlations. These problems 
have motivated the idea of an adaptive stencil (AS) (Shu and Osher 1989) and a 
weighted stencil (WS) (Jiang and Shu 1996). Namely, the left stencil shift (r) changes 
with the location xi (see Fig. 2.1), but retaining the total number of points in the sten- 
cil. 

We consider the cell-centered grid rather than vertex-centered grid, as shown in 
Fig. 2.1. Cells (Ci), cell centers (xi),  and stencils (Si) in one spatial dimension are 
defined by 

I 

C i  = [xi-1/2,  x i + 1 / 2 1 ,  (10) 

xi = 0 . 5 ( x i - 1 / 2  + x i + 1 / 2 ) ,  (11) 

Si [Ci -r ,  C i - r + l , .  . ., Ci, C i + l , .  . . , Ci+sl = 
(12) 

Si [x i - r -1 /2 ,  ~ i - r + 1 / 2 ,  . . . ,  x i - 1 / 2 , 3 ~ i + 1 / 2 ,  . . . , ~ i + s - 1 / 2 ,  xj+,+l/Z] 

where rand s denote the left and right stencil shifts, respectively. The approximation 
order (k) is defined as: 

k - l = r + s  

Consequently, FS approximations can be classified according to the left stencil shift 
(r) at the given @-order accuracy (see Table 2.1). For the AS methods (e.g., essen- 
tially nonoscillatory (ENO) schemes, Shu and Osher 1989), the left stencil shift (r) 
changes with locations (x i )  in order to avoid including a discontinuous (or steep 
front) cell (Ci) if possible. Just one stencil is selected out of some candidate stencils 
changed by r when doing the reconstruction, retaining the same order of accuracy. 

r -  i ;  
I fl- r=3 , s=3 -v ' I I  Left stencil shift (r) i Right stencil shift (s) 1 
' I  I I I 1  

Si=[C,-,, Ck2, c ,-,' ci. ci+,. c 

Figure 2.1 Stencil (5,) and cell (C,) structures in one dimensional problems 
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As a result, there are no oscillations and peaks are sharpened. The weighted stencil 
(Jiang and Shu 199G), however, uses all candidate stencils, each being assigned a 
nonlinear weight that depends on the local smoothness of the numerical solution. 

For convective conservation laws, the one-dimensional hyperbolic PDE is 
expressed by, 

(14) 

where the subscripts t and x indicate temporal and spatial partial derivatives (du/dt 
and df/dx), respectively. If a function h(x)  satisfies at a discrete point xi, 

Ut = -A 

then, its derivative with respect to x (i.e., fx) can be expressed as follows: 

Therefore, if a numerical flux f;+1/2 approximates h ( ~ , + ~ / ~ )  to a kth-order accuracy, the 
convection term can be discretized into k"-order accurate conservative forms: 

where fi+llz and are numerical upflux and downflux, respectively, and the uni- 
form mesh size (Ax) is used. Note that in the spatial direction, Eq. (17) can be consid- 
ered as the finite volume discretization (see Section 2.3.3). The two numerical fluxes 
are exactly symmetrical with the one mesh distance. So, we only define the numeri- 
cal upflux, in this text. 

2.3.1.1 
Fixed-Stencil Approach 
In the FS approach, the stencil ( Si)  is fixed both in number and position. The numer- 
ical flux is approximated in a conservative manner from the flux point values with 
constants to meet k*-order accuracy: 

The constants ci are shown in Table 2.1 only for r 2 0 (Shu 1997). Note that the 
constants ci are obtained from the derivative of the Newtonian interpolation polyno- 
mial (see Eq. (25) for details). For instance, FS-upwind-1 stands for a method of the 
futed stencil with the first-order accuracy (k = 1) in the upwind direction. When the 

convection velocity is 2 2  0 in Eq. (14), its numerical upfluxldownflux are given by 

Eq. (18) and Table 2.1: 
dU 
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Table 2.1 The constant ci up to fifth-order accuracy ( r  2 0) 

I 

j = 3  j = 4  Accuracy Left stencil 
= O  j = i  j = z  

order (4 (3 

1 0 I 1  

0 
1 

2 

0 
3 1 

2 

0 
1 
2 

4 

3 

0 
1 

5 2 
3 
4 

1 I2 112 
-112 312 

113 516 -116 

-116 516 113 
113 -716 1116 

114 13/12 -5112 1/12 
-1112 7/12 7/12 -1112 

1/12 -5112 13/12 114 
-114 13/12 -23112 25/12 

115 77/60 -43160 17/60 -1112 
-1120 9/20 47/60 -13160 1/30 

1/30 -13160 47/60 9/20 -1120 
-1120 17/60 -43160 77/60 115 

115 -21120 137160 -163160 137160 

Reference name in 
this section 

FS-upwind-1 

FS-central-2 
FS-back-Z(TPB) 

FS-upwind-3 

FS-central-4 

FS-upwind-5 

( J  + I )  af for - > 0 
Ax a u  - f x =  

which was also introduced in Eq. (9). When the convection velocity is a f  <0, Eq. 

(20a) is modified symmetrically in the opposite direction: 
dU 

The first-order upwind scheme (FS-upwind-1) in Eq. (20) gives a very stable solution 
while poor accuracy because of low accuracy ( k  = 1). When k = 2 and r = 0, the FS- 
central-2 is obtained 

(J+l -J-1) 

2 A x  
f x = 

which is called the second-order central scheme. The FS-back-2 is equivalent to the 
three-point backward (TPB) method (Wu et al. 1990). In approximating the first- 
order spatial derivative, the central difference formulas (e.g., FS-central-2 and FS- 
central-4) tend to induce phase errors that appear in the form of numerical oscilla- 
tions, as mentioned earlier. Higher-order upwinding schemes (e.g., FS-upwind-3 
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and FS-upwind-3 in Table 2.2) cannot remove the numerical oscillatory behavior in 
steep regions (Lim et al. 2001a). 

2.3.1.2 
Adaptive Stencil Approach 
Finite difference E N 0  schemes were developed by Harten et al. (1987). They 
employed adaptive stencils in order to obtain information of solution gradients from 
smooth regions near discontinuities. This provides a sharp, E N 0  shock transition 
coupled with a formal uniformly high-order accuracy in smooth regions. Shu and 
Osher (1988, 1989) have proposed an efficient implementation of E N 0  schemes on 
the basis of fluxes rather than cell averages. The numerical are evaluated 
using high-order interpolating polynomials constructed from adaptive stencils in the 
upwind direction. 

The primitive of h(x) from Eq. (15), N(x) ,  can be defined by: 

Once H ( x )  is approximated by a k*-order Newtonian interpolation polynomial P(x), 
using central divided differences (DD) at the k + 1 points, 

k j-1 

, 
We can obtain the numerical flu through the derivative of the above equation. 

dP(xi+1/2) 

dx J+1/2 = 

The O* degree divided differences (DDdi(')) are defined by: 

(26) 
(0) DDi [~i-1/2. x i + l / ~ I  =J 

and in general the kth degree divided differences, for k 2 1, are defined by: 

(k) . DD tx,-r-1/2,  ~i-r+1/2, . . ., xi-r+j-1/2, ~ i - r+ j+1/21  = 

(27) 
DD'"''[~i-~+lp . . . x;-,+j+1/2] - DD(k-1)[~i-r-1/2 . . . ~ i - ~ + j - ~ p ]  

Xi-r+j+1/2 - xi-r-1/2 
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For first-, second-, and third-degree divided differences, DD1)i+l/l, DD!2) and DDJ)i+lj2 
are defined, respectively, as flux point values (6): 

I 

In the case of a fmed left stencil shift ( r ) ,  Eq. (25) becomes equal to Eq. (18). Note that 
the constants ci (see Table 2.1) are obtained from Eq. (25), when the accuracy order 
(k) and the stencil shift (r)  are given. 

In the AS approach, the stencil shift (r) is adaptively chosen in Eq. (25). Since a 
smaller I D D ~ ~  implies that the function is smoother in that stencil, a smaller one (i.e., 
r) is chosen through the comparison of two relevant divided differences (e.g., IDDil 
and IDDi-ll). The E N 0  schemes are nonlinear even for linear problems and are espe- 
cially suitable for problems containing both shocks and complicated smooth flow 
structures (Shu and Osher 1989). 

The E N 0  schemes also have some drawbacks. One problem is the freely adaptive 
stencil, which could change by a rounding error perturbation near zeroes of the solu- 
tion and its derivatives. Also, this free adaptation of stencils is not necessary in 
regions where the solution is smooth. Another problem is that the E N 0  schemes are 
not cost-effective because the E N 0  stencil selection procedure involves many logical 
statements (i.e., if/then statements). 

2.3.1.3 
Weighted Stencil Approach 
The weighted stencil (WS) method (i.e., WENO scheme) is an approach used to over- 
come the aforementioned drawbacks while keeping the robustness and high-order 
accuracy of E N 0  schemes. The idea of WENO is to use a convex combination of all 
candidate stencils instead of approximating the numerical flux by using only one of 
the candidate stencils (Jiang and Shu 1996). 

For the third order WENO scheme in the upwind sense, two candidate stencils are 
used to define the numerical upflux That is, based on the FS approximation at 
k = 2 (see Table 2.1), two numerical fluxes (i.e., qo and ql) from the two stencils (Si 
and Si+l for r = 0) are incorporated with the weighting: 

ff1 and w1 = ~ . where, wo = ~ 

a0 

ffo + ffl ffo + f f l  
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qr is obtained as in the FS approach of Eq. (18) for k = 2 in Table 2.1: 

1 

40 = C Qjfi+j = COO& + ~ l f i + l  = ( J ;  + ~ + 1 ) / 2  
j = O  

1 

41 = C Cljj+j-1 = c10J-l + SIJ = (-J-I + 3J)/2 
j = O  

The question now is how to define the weighting parameters (ao and al), such that 
the E N 0  property is achieved. The weighting parameters are calculated by divided 
differences (DDi)i+112 from Eq. (28): 

213 

1/3 

(334 

where E is a small positive real number that is introduced to avoid the denominator 
becoming zero (often, E = lo-' - lo-"'). It is suggested in Jiang and Shu (1996) that 

the power p = 2 is adequate to obtain E N 0  approximations. If a flow speed 1 is 

negative, the numerical flux is defined in the reverse order as fi, fi-l). Thus, 
the WENO scheme is a type of upwinding scheme. 

The WENO scheme has the following properties: (1) it involves no logical state- 
ments, which do appear, however, in the basic E N 0  schemes, (2) the WENO scheme 
based on the (k - 1)* order EN0 scheme is a k* order approximation in smooth 
regions, (3) it achieves the E N 0  property by emulating EN0 schemes at discontinu- 
ities, (4) it is smooth in the sense that the numerical flux fi+1/2 is a smooth function 
and (5) the WS method combines the FS method with the AS method. Hence, the 
WENO scheme (Jiang and Shu 1996) improves on the EN0 scheme in robustness, 
smoothness of fluxes, convergence properties and computational efficiency (Shi et 
al. 2000). 

dJ+l2 . 
d X  

2.3.1.4 
Comparison of FS, AS and WS Approaches 
Table 2.2 displays the formulation of 12 spatial discretization methods. The notation 
X-Y-k is used, where X stands for stencil type (FS, AS or WS), Y indicates the high- 
lighted characteristics (upwind, central or backward), and k is the approximation 
(or accuracy) order. 

Table 2.3 shows how the stencil structure (i.e., mesh points used for the numerical 
upflux) changes the position of a shock. In the FS and WS approaches, the position 
and number of the mesh points do not vary with the shock position. However, a sten- 
cil xi, xi+l] 0fj+lj2 for the WS scheme is composed of two substencils Si-1/2[x,-l, 
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Table 2.3 
a numerical upflux 

Stencil structures of  third order FS/AS/WS methods for 

in a positive flow velocity 

FS AS WS 
(FS-upwind-3) (AS-upwind-3) (WS-upwind-3) 

shock Right t n + l ~ ~  j--#fl~j-j--f-& 
t" 

X I 1  X I 1  x, I X I  x,+, X,+? X I 1  xi2 x i ,  x, x*, X,+i X I 1  X I 1  x , ,  x, X,+, XI*? 

* The arrows indicate the position of shocks. 

x]  and Si+l12[x, xi+l] weighted with respect to the magnitude of neighboring divide dif- 
ferences (DD). In the third-order AS scheme in Table 2.3, the position of mesh 
points for the numerical upflux shifts to avoid a cell involving the shock. That is, the 
stencil adapts to solution variations. 

To compare numerical performance for the three approaches, a linear equation of 
the conservation law is tested with an initial condition (uo) of various wave forms: 

Ut + u, = 0, -1.0 < x < 1.0, (34) 

u(x, 0)  = uo(x) (35) 

where the initial condition 

u' = I (Jmax(1 - 1OO(x - 0.495)2, 0) 

fJmax(1 - 1OO(x - 0.505)2, 0)  
+4Jmax(l - 1OO(x - 0.5)2, 0)  0.4 5 x 5 0.6; I '  

1 0  otherwise 



50 2 Distributed Dynamic Models and Computational Fluid Dynamics 

contains a smooth but narrow combination of Gaussians (e-"(x-m2), a square wave, a 
sharp triangle wave and a half-ellipse (Jiang and Shu 1996). Since this PDE only has 
a linear convective term, its analytic solution shows the same shape as the initial con- 
dition, i.e., u(x, t) = uo(x - t). 

Using a BDF ODE integrator (DISCO, Sargousse et al. 1999), the ODE system is 
solved on a PC. The band Jacobian matrix is numerically evaluated. To check accu- 
racy at a given time level, the L1-error is measured: 

I 

L1-error = (U(x)analytical- U(x)numerical I dx (36) 
sx=l x=-1 

Table 2.4 shows the benchmarking results achieved from the 12 discretization meth- 
ods on uniform 200-mesh points ((Ax = 21200). The L,-error is measured at t = 0.4 s 
and the computational time required is for time integration of 0.4 s. Instability is 
indicated by spurious oscillatory behavior in the numerical solutions. 

Figure 2.2 depicts numerical performance within L1-error vs. CPU time spaces 
from the data of Table 2.4. In general, as the approximation order increases, the error 
decreases. However, the fourth-order central discretization method (FS-central-4) 
produces much error over the FS-upwind-3 because of strong oscillations near the 
shock. Minimizing both the L1-error and the computational time simultaneously, the 
six methods (FS-upwind-1, AS-upwind-314, and WS-upwind-3/4/5) are selected as 
the effective methods with consideration of the stability of the numerical solution 
(Lim et al. 2001a). It is found that the AS-upwind-2 takes an abnormally long compu- 
tation time due to excessive iterations required for convergence. 

In Fig. 2.3, the numerical solutions of FS-upwind-1 (shortest computational time) 
and WS-upwindd (smallest L1-error) are compared to the FS-upwind-5. The numeri- 
cal results of FS-upwind-1 are stable but not accurate due to the truncation error. The 

Table 2.4 Accuracy, computational performance, and stability evaluation 
of the FDM in a linear convection equation ( N  = 200, L,-error at t = 0.4 s 

and CPU time during 0.4 s integration time) 

Stencil Type Name Accuracy Computational performance Stability* 
(b enor) (CPU time, s) 

FS FS-upwind-1 0.2696 0.8 

FS-upwind-3 0.0538 1.1 

F S -central-2 0.1878 1.1 
FS-back-2 0.1345 1.1 

FS-central-4 0.1219 1.3 
FS-upwind-5 0.0379 1.4 

AS AS-upwind-2 0.0961 9.1 
AS-upwind-3 0.0548 4.6 
AS-upwind-4 0.0440 4.8 

0 
0 
0 

ws WS-upwind-3 0.0841 3.5 
WS-upwind4 0.0452 4.9 
WS-upwind-5 0.0421 5.7 

0 
0 
0 

* Stability evaluation: 0 (stable), X (not stable) 
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Figure 2.2 
comparison of FS, AS and WS methods 
for the linear convection law (each curve 
follows the point from right to left). (1) 

FS: FS-upwind-1 + FS-central-2 + 
FS-back-2 + FS-upwind-3 + FS-central-4 
+ FS-upwind-5, (2) AS: AS-upwind-2 + 
AS-upwind-3 + AS-upwind-4, (3) WS: 
WS-upwind-3 + WS-upwind-4 + WS- 
upwind5 

Error and computational time -(l)FS 

-A- (2) AS 

-9-(3)WS -4 

n 
-0.2 

Axial direction (x) 

Figure 2.3 
ing to  discretization methods on 200 fixed-grid points at t = 0.4 s and 
-1 .o 5 x 5 1 .o 

Numerical solutions of a linear convection equation accord- 

FS-upwind-5 method yields a stable solution in smooth regions, but produces some 
oscillations near discontinuities. One of the WS approaches, WS-upwind-5, is stable 
and accurate over all regions but computationally somewhat prohibitive (see Table 
2.4). 

2.3.2 
Finite Element Methods 

The finite element method (FEM) divides the physical domain into many smaller 
subdomains (elements) and applies weighted residual methods within each element. 
Each physical variable over the entire domain is expressed as a sum of finite ele- 
ments. Additional restrictions are introduced to ensure various degrees of continuity 
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of the solution at the element boundaries. In principle, any weighted residual meth- 
ods can be combined with the finite element concept to yield a corresponding finite 
element method. In practice, the most commonly used method is the orthogonal col- 
location on finite elements (Finlayson 1980). 

I 

- -  

2.3.2.1 
Orthogonal Collocation Method on Finite Elements 
The method of orthogonal collocations on finite elements was presented in Villadsen 
and Michelsen (1978). An orthogonal collocation method approximates the solution 
by weighted combinations of orthogonal polynomials of degree M, and demands that 
the describing equations be satisfied exactly at a finite set of points called collocation 
points, which are the zeroes of an orthogonal polynomial. Table 2.5 lists the normal- 
ized collocation points for the orthogonal Legendre polynomials of degree of 2,3 and 
4 (Finlayson 1980). 

- -  

Table 2.5 
gonal Legendre polynomials of degree 2, 3 and 4 

Normalized collocation points for ortho- 

- 

Degree of polynomial Collocation points 

- -  

2 0, 0.5, 1 
3 0, 0.21132, 0.78868, 1 
4 0, 0.1127, 0.5, 0.8873, 1 

In many areas, such as reaction engineering, the orthogonal collocation method 
has proved to be a powerful method leading to accurate results. However, when the 
solution has steep gradients, it is more beneficial to use it in conjunction with a finite 
element approach. As shown in Fig. 2.4, the physical domain is divided into a num- 
ber of elements and an orthogonal collocation method is applied in each element. 
This gives rise to the orthogonal collocation method on finite elements. 

The position of thefh point in element i is denoted by xp The approximated solu- 
tion G ( x )  in the element i can be given by: 

M 
;(xi) zz U(~y)Ly(g), i = 1.. . N (37) 

j=O 
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where ~ ~ ( 3 2 )  GE0 - is the Lagrange interpolation polynomial of degree M, 

N is the number of elements, and is the normalized position within the element i: 

92 - sk 
k#j xj - xk J 

X"  - xi0 
osi=" ( 1  

Ax - 

where Ax is the equidistant element length 

From Eq. (37), the first-order derivative of the approximated solution I+) at position 
k in element i becomes: 

l M  

A x  j=o 

du(xik) x - 
U(xij)A$, i = 1 . .  . N, k = 0 . .  . M 

dx 

where AYk is a constant (M + 1) X (M + 1) matrix defined by 

dLy(92k) 
AM ~ , j , k = O  . . .  M 

Jk d32 

(39) 

From the definition of the Lagrange polynomial and the normalized collocation 
points in Table 2.5, the constants AM for M = 2, 3 and 4 are evaluated: 

-3.0 -1.0 1 
A'= [ f l  ;4] (414 

1 -0.73205 2.73205 7 1 -7 -2.73205 0.73205 
3 8.19615 1.73205 -1.73205 2.19615 

-2.19615 1.73205 -1.73205 -8.19615 
A = [  

-2.06559 2.66667 ( 4 V  

13 I 1  

-13 -5.32379 1.5 -0.67621 
14.78831 3.87298 -3.22749 1.29099 -1.87836 
-2.66667 2.06559 0 
1.87836 -1.29099 3.22749 -3.87298 -14.78831 

-1 0.67621 -1.5 5.32379 

The second-order derivative of the approximated solution a ( x )  at position k in ele- 
ment i can be obtained using a similar procedure: 

M 
d2k(X;k) 1 

x - c U ( ~ j j ) B $ ,  i = l  ... N ,  k = O  ... M 
dx2 Ax2 j=o 

where BYk is a constant (M + 1) x (M + 1) matrix defined by 

(42) 

d2LJM(?k) 
BM = , j , k = O  . . .  M 

Jk - d922 
(43) 



54 2 Distributed Dynamic Models and Computational Fluid Dynamics 

Using Eq. (37), the formula for the integral of ii(x) over any one of the subintervals 
I 

Xi,k+lI can be derived as: 
M 

X i , k + l  

G ( x )  dx x AX C ii(~ij)C’, i = 1 . .  . N, k = 0.. . M - 1 
l i k  j = O  

where Cyk is a constant (M + 1) x M matrix defined by: 

Using the orthogonal collocation method on finite elements, Eq. (la) can conse- 
quently be approximated by: 

It is interesting to note that the FDM and FEM presented here can be derived in a 
very similar fashion, namely by defining and manipulating interpolating polynomi- 
als over a finite set of points (see Eqs. (24) and (37)), despite their apparent differ- 
ences. In both cases, spatial derivative approximations at a point xi (or integral 
approximations over an interval xi+llz]) involve the values of the function at a 
set of neighboring points. The main difference between the two methods is in the 
composition of the set. For the FDM, this normally involves a fixed number of points 
(i.e., stencil shift in Section 2.3.1) to the left and right of the current point xi. For 
orthogonal collocation of the FEM, it involves all points within the element to which 
xi belongs (Oh 1995). 

2.3.2.2 
Continuity at Element Boundaries 
An important facet of all finite element methods is the treatment of the boundaries 
between elements. In general, the solution values are assumed to be continuous at 
the element boundaries, and this normally corresponds to physical reality. One could 
also make the first spatial derivative continuous across the interface, thus resulting 
in continuous solution approximations throughout the domain. However, in some 
cases (e.g., for inhomogeneous domains), it may be more appropriate to enforce con- 
tinuity of some other quantity at the element boundaries, for instance, dispersive 
mass flux or conductive heat flu (Oh 1995). 

The continuity of the first derivative at each boundary can be written as: 

and can be described in the computational domain as follows: 

M M 

C i i ( ~ q ) A g  = C U(xi+lj)A$, 
j=O j=O 

i = 1. .  . N - 1 
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- -  - 

In general, the discretization of a PDE and its associated boundary conditions using 
the orthogonal collocation method on finite elements results in three different das- 
ses of relation being applied at three different types of points (see Fig. 2.5): 

0 the appropriate boundary conditions are applied at the physical domain boundary 

0 the discretized PDE is enforced at the collocation points within each element + 

0 element boundary continuity is enforced at the boundaries between elements -+ 

such as Eq. (3) + 2 AEs (or 2 ODEs). 

N(M - 1) ODES 

(N - 1) ODES 

Therefore, (NM + 1) DAEs (or ODEs) are obtained for one PDE. 

- 

2.3.3 
Finite Volume Methods 

- -  

For conservation laws, it is often preferable to use a finite volume method rather 
than a finite difference method in order to ensure that the numerical methods con- 
serve the appropriate quantities of physical PDEs (Leveque 1998). 

Consider the numerical solution of time dependent one-dimensional conservation 
laws, 

for (x, t )  ES2 = (xL, xR) x (0, r) ,  where r(u) accounts for all considered source and 
sink terms. We consider that the domain S2 is partitioned into strips such that 

where Ntime is the number of time steps. Each strip is made up of two spatial grids in 
the case of nonuniform spatial grid, while in the fxed grid strips of control volume 
are rectangular as shown in Fig. 2.6. 
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X Figure 2.6 Time and space 
control volume filled with dots 
(Q:) and its path line (any) 
used on a uniform fixed grid 

I 

The midpoints of spatial grids (xi+li2) are defined at t" simply as 

The finite volume approximation of Eq. (49) over the control volume Q: is derived 
from the original integral expression of the conservation law 

1 (e + ""> dx dt = J, r( u) dx dt 
a t  ax 

Application of the divergence theorem based on Green's theorem' to Eq. (52) yields 
a line integral along the boundary, 8Qp. Performing the line integral on the left hand 
side of Eq. (52) yields: 

is obtained. For the right hand side, the source term is simply approximated: 

~ ( u )  dxdt = T(u)AxiAt, (54) 

where Axi = xi+lj2 - ~ i - ~ / ~ a n d  Atn = t"+l - P. An approximation of Eq. (53)  is obtained 
using a numerical quadrature. A number of possibilities are available that give rise 
to either explicit or implicit methods. For example, using the midpoint formula to 
integrate along the bottom and top edges of Q y  we get the approximations: 

1) 1 Green's theorem: Let R be a closed region bounded by C in the xy-plane. Let P(x,y) and Q(x,y) be functions 
defined and continuous first partial derivatives. Then 
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For the right and left hand side edges, we use the following family of approximation: 

Finally, the numerical results of the line integral yield: 

p [f(u) dt - udx] = axi (u:+~ - .r> 
aay (59) 

+ 0.5 (&2 +A;;;* -fi’lt1/2 -A:;;2) 
For the explicit form of f(u), approximating f”+1i+l/2 and fl+’i-1/2 to f ? + l p  andf?-1,2, 
respectively, we can obtain a simple numerical form of the conservation law as 
follows, 

which is a fully discrete formula for Eq. (49) where the convection term is discretized 
by the second-order central scheme (i.e., FS-central-2 in Section 2.3.1). Therefore, it 
seems that the explicit FVM for one-dimensional conservation law has almost the 
same formulation as the conservative FDM of Eq. (15). However, there are differ- 
ences between the FVM and the FDM in accordance with the definition of the 
numerical f l w t e ~ f ? + ~ ~ ~ .  In Eq. (60),f?+l12 is in fact an approximation to the average 
flux at x = along the finite volume Q:: 

and for the conservative FDM at t = t,, like Eq. (15): 

Note that a complete FVM (namely the CE/SE method) in space and time domains 
is introduced in Section 2.4.3. 
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2.3.3.1 
Spatial Finite Volume Method 
Rather than attempting to discretize simultaneously in space and time, our attention 
is paid to discretization of spatial derivatives in the MOL using an adaptive time inte- 
grator, e.g., a BDF ODE solver. A naturally conservative spatial discretization proce- 
dure is provided by finite volume methods, where the discrete value viewed as an 
approximation to the average value of f(xi, P) over a cell Ci[xi-l,z, in Fig. 2.1, 
rather than as an approximation to a point-wise value of f(xi, t") (Leveque 1998). 

I 

where 

The advantage of the semidiscretized approach is to achieve high accuracy in space. 
The cell average is simply the integration of f(x, t) over the cell divided by its area, so 
conservation can be maintained by updating this value based on fluxes through the 
cell edges. Although the derivation of such methods may be quite different from that 
of the conservative FDM, the resulting formulas are identical to Eq. (17). 

The flux function$+l,2 delivering high-order accuracy in space can be obtained by 
using higher-order interpolation polynomials like E N 0  schemes and WEN0 
schemes (see Section 2.3.1). 

2.4 
Fully Discretized Method 

The generic PDE with convection, diffusion and reaction terms can also be solved by 
temporal and spatial discretization of the original PDE. The time discretization pro- 
cedure can be explicit or implicit. Several Mly discrete schemes are introduced in 
finite difference and finite volume approximations. 

2.4.1 
Explicit Time Discretization 

In this section we consider a PDE with the flow velocity (a) and diffusivity (D) like in 
Eq. (la): 

ut = -au, - Dux, - r(u) (65) 

The above equation is discretized by the forward-time methods. For example, the 
Leapfrog scheme can be expressed on equidistant At and A x  as: 
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V 

(66) .;+" = UP , - - (UP ,+I - u:-1) + P - 2u: + + Atr  (ur)  

a A  t 
A x  

where v = - is called the Courant-Friedrichs-Lewy (CFL) number or convection 

number and p = - DAt is the diffusion number (Hoffman 1993). The partial time 
A d  

derivative (u,) is approximated by a first-order forward difference and the partial 
space derivatives (u. and uxx) are approximated by a second-order central difference. 
Since the central scheme of the first-order spatial derivative is unconditionally unsta- 
ble as mentioned in Section 2.3.1, an upwind scheme is given by the equation below 
when a 2 0: 

The method is shown to be convergent but only conditionally stable. It introduces 
significant amounts of implicit numerical dissipation into the solution in the pres- 
ence of steep fronts. 

The Lax-Wendroff scheme (1960) is a very popular explicit finite difference method 
for hyperbolic PDEs (i.e., D = 0 in Eq. (65)). To suppress numerical instability caused 
by the central discretization, an artificial diffusion term is introduced by a second- 
order Taylor expansion in time: 

1 2  2 (68) 
1 

2 2 

where the time derivatives ut and utt are determined directly from ut = -au,. Applying 
central discretization to Eq. (68), Lax-Wendroff scheme is given for Eq. (65): 

ur'" x ur + (u t ) lA t  + -(utt):At2 = u: - a(ux)lAt  + -a (u,,)lAt 

(69) 
V V 2  

un+" = UP - - (UP 1+1 - u:,) + (uG1 - 24'  + u,?_,) + Atr (ur)  

From a stability analysis, the method is stable only if 11'1 5 1. However, it is not 
often used to solve convection-diffusion PDEs (Hoffman 1993). The Dufort-Frankel 
method (1953) proposed a modification of the Leapfrog scheme Eq. (GG), which 
yields a conditionally stable explicit method. In this modification, u? is replaced by 

the approximation u l =  
U:fl - $1 

2 

At + ( r (uf+l)  + + - I ) )  

Solving Eq. (70) for u:+' yields: 

(1 + 2y)u;+l = -v (US" - U,P_") + (1 - 2y)uy-l  + 2 p  - 
(71) At + - 2 (r(uf+')  + r@-1)) 
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The scheme cannot be used for the first time step because of the term u7-l. The 
method is stable only if ( Y I  5 1. However, large values of p result in inaccurate solu- 
tions and a starting method is required to obtain the solution of the first time step. 

The MacCormark method (1969) is based on the second-order forward time Taylor 
series as Eq. (68). 

I 

(72) 
1 1 
2 2 

u:+' u: + (ut):At + -(utt);At2 2: u: + - ((ut): + (u,):") At 

where (h); is obtained from the approximation (u)C = (-au? + D(u.)"&. The method 
is composed of a predictor and a corrector step. In the predictor step, ur+' is approxi- 
mated by the first-order forward difference: 

;;+I = u: - v (u? 1+1 - ur) + p (u,?+' - 24' + u,?-,) + Atr(ur) (73) 

For the corrector step, u?' is given: 

= - 1 (.: + q + 1 )  - "(;;+I - *n+l  p ui-') + ?(": - 26;" + a;::) + Atr (uF)(74) 

The two-sep method that shows second-order accuracy in both time and space is very 
popular for solving Eq. (65) and is conditionally stable. 

A numerical solution can be convergent only if its numerical domain of depen- 
dence contains the true domain of dependence of the PDE, at least in the limit as At 
and Ax go to zero. The necessary condition is called the CFL condition. All fully dis- 
crete explicit schemes require fulfillment of the CFL condition: 

l 2  

For stiff PDEs, implicit time discretization is usually preferred. The method of lines 
(see Section 2.3) using implicit time integrators is originally motivated to solve stiff 
PDEs, as mentioned above. In the next section, implicit methods fully discretized in 
both time and space are presented. 

2.4.2 
Implicit Time Discretization 

The implicit Euler central difference method is: 

U!+1 = UP - - p ( .?+I 1+1 - .?+I 1-1 ) + p(uz: - 2u7" + ~7::) + Atr (u:) (76a) 

Rearranging Eq. (76a) yields: 

-( i v  + p )  u::: + (1 + 2p)u:" + 1.4:': = ur + Atr (ur) (76b) 
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Eq. (76) cannot be solved explicitly for un+'i, because the two unknown neighboring 
values ~ ~ + ~ i + ~  and ~ " + ' i + ~  also appear in the equation. Due to the implicit feature, this 
scheme, which has first-order accuracy in time and second-order accuracy in space, 
is unconditionally stable and convergent (Hoffman 1993). This implicit Euler 
method yields reasonable transient solutions for modest values of Y and p. 

The Crank-Nicolson central difference scheme is constructed by a second-order 
approximation in both time and space: 

V 
.?+I = un - - , [(u::;' - qy) + (U>l - .;-,)I 

(77) - 2u;+l + u;-+;) + (u;+l - 2u; + u;-l)] 

At + - 2 [r(u;+l) + I($)] 

The Crank-Nicolson method is also unconditionally stable and convergent. 
The implicit nature of these methods yields a set of nonlinear algebraic equations, 

which must be solved simultaneously. Therefore, the iterative calculation requires 
substantial computational time, especially for multidimensional problems. 

Recently, an explicit fully discrete method called the CE/SE method has been 
developed as a finite volume approach to solve fluid dynamics problems. The CE/SE 
method enforces flux conservation in space and time, both locally and globally. The 
method is explicit and, therefore, computationally efficient. Moreover, it is conceptu- 
ally simple, easy to implement and readily extendable to higher dimensions. Despite 
its second-order accuracy in space, this method possesses low dispersion errors (Aya- 
soufi and Keith 2003). 

2.4.3 
Conservation Element/Solution Element Method 

The CE/SE method has many nontraditional features, including a unified treatment 
of space and time, the introduction of conservation element (CE) and solution ele- 
ment (SE) and a novel shock capturing strategy without special techniques. Space- 
time CE/SE methods have been used to obtain highly accurate numerical solutions 
for l D ,  2D and 3D conservation laws involving shocks, boundary layers or contacting 
discontinuities (Chang 1995; Chang et al. 1999). The CFL number insensitive 
Scheme I1 (Chang 2002) has recently been proposed for the Euler equation (i.e., con- 
vection PDEs for mass, momentum and energy conservation). Stiff source term (e.g., 
a fast reaction) treatment for convection-reaction PDEs (Yu and Chang 1997) is also 
presented for the space-time CE/SE method. The extension to a PDAE system (Lim 
et al. 2004) derived from the original CE/SE method (Chang 1995) and Scheme I 1  
(Chang 2002) is presented in the following. Consider a PDE model like Eq. (65): 

Ut = -6 - p ( u )  (78) 
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where the flux (F, implying convection and difision is defined as 
I 

f = au - D U X  (79) 

Thus, Eq. (78) is identical to Eq. (G5). By the divergence theorem the equation is 
equal to flux conservation as follows: 

V . h = p  (80) 

. By using Gauss's divergence theorem (or Green's 

theorem) in a space-time E,, it can be shown that Eq. (80) is the differential form of 
the integral conservation law: 

where S (V) is the boundary of an arbitrary space-time region V in E2, and ds = d 
(a . n with d a  and n, respectively, being the area and the outward normal vector of 
a surface element on S(V). Note that, because h . ds is the space-time flux of h leav- 
ing the region Vthrough the surface element ds, Eq. (81) simply states that the total 
space-time flux of h leaving Vthrough S (V) is equal to the integral of p over V. Also, 
since in E,, dais the length of a differential line segment on the simple closed curve 
S (V), the surface integral on the left-hand side of Eq. (81) can be converted into a line 
integral. In fact, Eq. (81) is equivalent to (Chang 1995): 

i;?; (-udz+fdt) = p d v ,  s, 
where the notation C.C. indicates that the line integral should be carried out in the 
counterclockwise direction. 

In Fig. 2.7, the mesh points (e.g., points A, C and E) are marked by circles. They 
are staggered in space-time. Any mesh point 0, n)  is associated with a solution ele- 
ment S E 0 ,  n) and two conservation elements CE-0, n) and CE+(I', n). By definition, 
SEO, n) is the interior of the shaded space-time region depicted in Fig. 2.7a. It 
includes a horizontal line segment, a vertical line segment, and their immediate 
neighborhood (Chang 1995). Also, by definition, (1) CE-(j, n) and CE+(j, n), respec- 
tively, are the rectangles ABCD and ADEF depicted in Fig. 2.7a and b; and (2) CE(j, 
n) is the union of CE_(j, n) and CE+(j, n), i.e., the rectangle BCEF. 

Let the coordinate of any mesh point (j, n) be (3, t") with xj = j A x  and t" = nAt. 
Then, for any (x ,  t )  E SE(j ,  n), u(x, t ) , f (x ,  t)  and h(x, t ) ,  respectively, are approximated 
by a first-order Taylor expansion: 

.(xj, t " )  = uj" + (U.)j"(X - X j )  + (ut)j"(t - t " )  (83) 
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Figure 2.7 Solution element (SE) and conservation element (CE) atPh 

position and nfh time level (Chang 1995). (a) Space-time staggered grid 
near SE(j, n). (b) CE-(j, n) and CE+(j, n) 

so that, 

q x j ,  t") = (J ' (X j ,  t " ) ,  qzj, t")) . (85) 

Here u;, (ux);, (ut)T,J, (f")? and v;); are constants in SEG, n). In the CE/SE frame- 
work, (ut);,J, &); and, v;)) are considered as functions of (u); and (ux);. These func- 
tions will be defined as follows. According to Eq. (79), one has: 

(86) f" J = QU; - D(U,); 

Also, by neglecting the contribution from the second-order derivative, 6); may be 
obtained using the chain rule: 

In order that (ut)? can be determined in terms of (ux);, it is assumed that for any (x ,  

t )  E SEG, n), 

v .  q * j ,  t")  = 0 (88) 

Thus, within SE(j ,  n) ,  the contribution of the source term (p) that appears in Eq. (80) 
is not modeled in Eq. (88). Note that (1) because it is the interior of a region that cov- 
ers a horizontal line segment, a vertical segment and their immediate neighborhood, 
as shown in Fig. 2.7, SEO, n) is a space-time region with an infinitesimally small vol- 
ume; and (2) as will be shown, the contribution of source terms will be modeled in 
a numerical analogue of Eq. (82). As a result, Eq. (88) implies: 
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(J)Jn = (”In (y 25 - (f.); . (f.); (&); -a 2 (ux)jn 
a. a t  

Note that, by using Eqs. (86), (87), (89) and (9O),J, V;)j”, (ut)j” and v;): can be deter- 
mined explicitly in terms of uj” and (.&. 

2.4.3.1 
Iterative CE/SE Method 

The approximated conservation flux, in Eq. (82), is defined within CElj, n): 

C.C. 

Fn = # (-iidx+fdt) 
S(CE(j,n)) 

With the aid of Eq. (83) and (84), the line integral in Eq. (91) results in: 

The approximated source term flux (Pj”) is obtained within V(CE(j, n)) as: 

f‘,? ~fv(p)jn dV 

The volume integral in Eq. (94) leads to: 

At/2 AxAt A x  

y=pjnl d x l  dt=-  2 Pj” 

The numerical analogue of Eq. (82) becomes: 

With the aid of Eqs. (92) and (95), Eq. (96) implies that: 

Equation (97) is a nonlinear algebraic equation in terms of uy, which originates from 
a nonlinear source term (py), Since this system of equations should be solved itera- 
tively (e.g., using a Newton’s iteration method), it is called the iterative CE/SE 
method, where Jacobian matricesf, and pu are required in Eq. (90) and (97). 

Here, A x  and At are user-supplied parameters. How their values should be chosen 
is problem-dependent. A small spatial step size (Ax) should be chosen for a problem 

associated with steep moving fronts. Also, a small CFL number 
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ferred for a problem that is stiff with respect to time. Note that the stability of a CE/ 
SE scheme requires that the CFL number I Y I  < 1 (Chang 1995), as mentioned for 
explicit schemes in Section 2.4.1. 

Without using special techniques that involve ad hoc parameters, the numerical 
dissipation associated with a CE/SE simulation with a fixed total marching time gen- 
erally increases as the CFL number decreases. As a result, for a small CFL number 
(say J Y ~  < O . l ) ,  a CE/SE scheme may become overly dissipative. To overcome this 
shortcoming, a new CFL number insensitive scheme, i.e., the so-called Scheme 11, 
was introduced in Chang (2002). The new scheme differs from other CE/SE schemes 
only in how (ux)Y is evaluated. Refer to Chang (2002) or Lim et al. (2004) for the 
detailed formulation. 

2.4.3.2 
Noniterative CE/SE Method 
The noniterative CE/SE method is simply obtained from a first-order Taylor approxi- 
mation of the source term (Molls and Molls 1998; Lim and Jarrgensen 2004). 

jP J =p"p"(X-xj)+p;(t- J xj J t") (98) 

Using the above equation, Eq. (95) is replaced by 

where the time and space derivatives of source terms (p) are reformulated through 
the chain rule: 

ap a u  
au  a t  

p[ ZE - - =puU[ 

With the aid of Eq. (99), Eq. (97) evaluated on CE(j, n) is replaced by: 

(100a) 

(100b) 

At 
8 

where w;;l)lzz= - (4p;;;%z+ AxpZ;'{h+ Atp$#$). (u,),!'is also evaluated by Scheme I1 

proposed by Chang (2002). Thus, two unknowns (u5 u5) are obtained from four 
known values (u;!y: U;;Y,~) at the previous time level (tn-'I2). u; in Eq. (101) is 
obtained without nonlinear iteration procedure. This scheme is a noniterative CE/SE 
scheme, where Jacobian matrices fu and pu evaluated at the previous time level ( t  = 

t"-'I2) are required in Eq. (101). 
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2.4.3.3 
Boundary Conditions 
Boundary conditions (at j = 1 and Nmesh) for state variables (u) and its spatial deriva- 
tives (u,.) are needed only at each integer-time level (n = 0, 1, 2, 3, ...) because of the 
staggering mesh structure and the intrinsically space-time triangle computational 
elements (see Fig. 2.7). At each half-time level (n = 1/2, 1 + 1/2,  2 + 1/2,  ...), the Val- 
ues of u and u, for all mesh points (j = 1 + 1/2, 2 + 1/2, ..., NmeSh-1/2) are calculated 
on the basis of the values at the previous integer-time level without requiring bound- 
ary values. 

When the Danckwert boundary condition Eq. (3) is applied, conservative boundary 
conditions (BCs) at x = ~0 and x = xfcan be constructed within CE+(I, n) and CE-(- 
Nmesh, n), respectively. Performing a line integral along CE+(l, n) and using Eq. (3a), 
the boundary condition at x = xo (i.e., j = 1) for the iterative CE/SE method is 
obtained: 

I 

u? - 
J 

n-112 n-112 (102a) At - p ? + q ?  = u. - 
2 J J J + ~ P  ' j+1/2 

(102b) 

A t  At2 -fyj andfk is the inlet flu predefined by the where q; = -u 

operation condition. Eq. (102) leads to a nonlinear equation with respect to two vari- 
ables, urand uz'when j = 1. 

The boundary condition at x = xf (i.e.,j = Nmesh) for the iterative CE/SE method is 
obtained in the same way but by performing a line integral along CE- (N-h, n): 

A x  - - 
4 A$' 4 A x  

(103a) 

u,", = 0 (103b) 

Here, since q; can reduce to q;= - - with the aid of Eq. (90) and (103b), ur is 

computed from Eq. (103a) through a nonlinear iteration. 
For the noniterative CE/SE simulation, Eq. (102a) and (103a) are replaced, respec- 

tively, by: 

J 

A t  
A J  

When other boundary conditions are imposed, appropriate formulations can be 
derived in a conservative manner within the conservation elements (CE, (j, n)). 
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2.4.3.4 
Comparison of CE/SE Method with Other Methods 
The iterative CE/SE method, at each time level, is associated with a block diagonal 
Jacobian matrix. Let the number of PDEs and spatial mesh points be N p D E  and Nmesh, 
respectively. The maximum number of nonzero Jacobian elements for the CE/SE 
method, JgZLsE, is: 

= (NPDE x NPDE) x Nmesh (106) 

In the case of linear source terms or noniterative CE/SE simulations, the Jacobian 
matrix is further reduced to a diagonal form: 

(107) 
CE/SE - 

Jmi, - (NPDE x 1) x Nrnesh 

When an implicit ODE integrator is used in the MOL framework for Eq. (78), a band 
matrix is obtained. Let the length of the upper and lower band matrix be M U  and M L  
dependent on the spatial discretization and nonlinearity of the PDE considered. The 
maximum number of nonzero band-Jacobian elements for the MOL is known as 
(Lim et al. 2004): 

1 1 

2 2 
JEzL = NPDE ' Nrnesh(ML + MU + 1) - - M L ( M L  + 1) - - M U ( h f U  + 1) (108) 

For example, in the simple case where the convection term is discretized by a first- 
order backward scheme and the diffusion term by a central scheme like Eq. (9), ML 
= M U  = N p D E .  The smallest number of nonzero Jacobian elements in this case, Jip,  
can be approximated at each time step: 

(2NPDE X NPDE) X Nmesh (109) 

As a result, the following relation can be derived 

CE/SE 
Jmi, < ]:YE I J:p I JgL 

Eq. (1 10) means that the number of nonzero Jacobian elements for the MOL, JizL, is 
not less thanJ$EfE. The computational time is normally proportional to the number 
of nonzero Jacobian elements u) multiplied by the number of time steps (N,im), i.e., 
J x Ntime. Therefore, it is expected that the computational time of the CE/SE method 
is shorter than the MOL for the same number of time steps. Especially for nonstiff 
systems (e.g., chromatographic adsorption problems), the CE/SE method will save 
computational time because a small number of time steps can be used (Lim et al. 
2004). In Section 2.6, the MOL and the CE/SE methods are compared for several 
PDE problems in terms of accuracy and computational efficiency. 

In Chang et al. (2000), the CE/SE method is compared with the Leapfrog, Lax- 
Wendroff, DuFort-Frankel and MacCormarck schemes (see Section 2.4.1). Here, the 
CE/SE method shows promising performance compared to these fully discrete 
methods. 
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While the implicit ODE integrator has a self-adaptive feature, i.e., variable order 
and time stepsize (At), the present CE/SE method has a fixed value of At satisfylng 
the CFL condition. Thus, for stiff problems a main disadvantage of the CE/SE 
method could be the futed time step (At). 

I 

2.5 
Advanced Numerical Methods 

Adaptive mesh methods can improve the accuracy and efficiency of the numerical 
approximations to evolutionary PDE systems that involve large gradients or disconti- 
nuities. As the solution changes in an evolutionary PDE, the mesh must also change 
to adaptively refine regions where the solution is developing sharp gradients, and to 
remove points from regions where the solution is becoming smoother (Li 1998). 

Over the past years, significant interest has been devoted to adaptive mesh meth- 
ods. Various sophisticated techniques have been proposed. For example, adaptive 
mesh refinement (AMR) removes/adds the nodes at discrete time levels and moving 
grid methods function by moving the nodes continuously over time (Vande Wouwer 
et al. 1998). 

Adaptive mesh methods have important applications for a variety of physical and 
engineering problems (e.g., solid/fluid dynamics, combustion, heat transfer, etc.) 
that require extremely fine meshes in a small part of the physical domain. Successful 
implementation of the adaptive strategy can increase the accuracy of the numerical 
approximation and also decrease the computational cost. This section addresses two 
different strategies: AMR and the moving mesh method. 

2.5.1 
Adaptive Mesh Refinement 

The AMR approach (Berger and Oliger 1984; Berger and LeVeque 1998) has been 
shown to be one of the most effective adaptive strategies for PDEs and refines in 
space and/or time. The AMR process is composed of three steps: error estimation, 
mesh refinement and solution interpolation. An AMR package called the conserva- 
tion laws package (CLAWPACK) from the University of Washington is available 
from http://www.amath.washington.edu/ - claw/. 

2.5.1.1 
Error Estimation 
One way to estimate errors is to use a weighted combination of first and second solu- 
tion differences. The error (Ei) at x = xi is estimated to be: 

NPDE 

Ei = C W1 Iuk,i+l - 4 , i l  + w2 Iuk,i+~ - 2 4 . i  + Uk,i-ll 1 i = 2 . .  . (Nm& - 1) (111) 
k = l  
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where NpDE denotes the number of PDEs and the weighting factors w, and w2 are 
user-defined. In the adaptive algorithm, the mesh is refined in portions of the physi- 
cal domain where the inequality 

(112) Ei 2 F 

is satisfied and where E is a user-specified error tolerance. 

2.5.1.2 
Mesh Refinement 
AMR adds new refinement grids where the error is estimated to be large. The refine- 
ment grids are usually aligned with the underlying base grid. The refinement grids 
are arranged in a hierarchy, with the base grids belonging to level one, the next grids 
being added to level 2 and so on. Grids on level m are refined by a refinement ratio 
r, (usually 2 or 4) from the grids on level (m - 1). The grids are normally properly 
nested so that a grid on level m is completely contained in the grids on level (m - 1). 
A hierarchical block grid structure for two-dimensional AMR with r = 2 is shown in 

overall 
structure 
overall 
structure 

t I I I I I I I  I I 

>, r e 
.- f 
I 

Figure 2.8 A hierarchical block grid structure of AMR 
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Fig. 2.8 (Li 1998). Each refinement level consists of several blocks. A block is a 
logically rectangular grid. After each refinement, the refined cells are clustered into 
several blocks. Buffer zones and ghost boundaries may be added to each block. All 
the blocks are managed by a hierarchical data structure. 

The data structure in the AMR algorithm is complex due to the existence of several 
levels (m). If u(xi,  t", m) were used to store the data, it would be a waste of memory, 
because at higher refined levels, only a small part of the grid is used. In order to effi- 
ciently manage all the discrete points at the same level, we need to cluster them into 
several disconnected segments, called patches, and treat the patch as the basic data 
unit (Li 1998). The patches are building blocks of the hierarchical grid structure. 

I 

2.5.1.3 
Solution Interpolation 
The regridding includes computing the physical locations for each fine grid and 
copying or injecting the solution from the old grid to the new grid. The physical 
mesh positions are easy to compute by linear interpolation. The solution needs more 
attention. Although the solution can be obtained from the coarse grid by injection or 
interpolation, a more accurate solution is obtained from the old grid at the same 
level, which partially overlays the new grid. 

One of the secrets behind the success of the AMR algorithm is that flow disconti- 
nuities always fall within the overlay regions between the new and old grid. Thus the 
adaptation process cannot introduce further errors in these problem regions by solu- 
tion interpolation. The method used to interpolate the solution from the coarse grid 
needs to be chosen with care. 

Conservative interpolation is useful in regions near a discontinuity. The coarse 
grid solution is assumed to be piecewise linear. The slopes for each grid are found by 
applying a MinMod limiter function to the forward and backward slopes between cell 
centers (Li 1998). So, for a coarse cell i, 

ui+lp - ui-lp = MinMod(ui+l - ui, ui - ui-1) 

ifab < 0 (" sign(a) . min(la1, Ibl), elsewhere 
where MinMod(a, b) = 

2.5.1.4 
Boundary Conditions 
There are two types of boundaries in an AMR system: external boundaries and inter- 
nal boundaries. External boundaries are given by the problem definition and internal 
boundaries are generated by refinement. Each patch in one-dimension has two ends: 
the left and the right. The boundary values are often collected only at the backward 
time t"-' just before the integration from t"-' to t". This causes a problem when the 
time integration is performed by an implicit or higher-order MOL, because the 
boundary values at t" are usually required to compute the intermediate time deriva- 
tives of the boundary cells in an MOL approach. This problem can be solved by col- 
lecting the values for the internal boundaries from the parent coarse grid at the for- 
ward time t" before integrating the current time level. 
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2.5.2 
Moving Mesh Methods 

Although AMR or local mesh refinement is quite reliable and robust, Furzeland et al. 
(1990) stated that it is cumbersome in some cases to apply it because of the interpola- 
tion procedure, nonfxed number of grid points, restart of integration at certain time 
steps, etc. The moving grid methods (Miller and Miller 1981; Dorfi and Drury 1987; 
Huang and Russell 1997), where the number of mesh points is kept unchanged, 
could be very powerful due to the continuous grid adaptation with the evolution of 
the solution. 

In the MOL framework, Furzeland et al. (1990) consider the moving finite differ- 
ence (MFD) approach (Do15 and Drury 1987; Huang and Russell 1997) as promising 
with respect to reliability, efficiency and robustness. The moving finite element 
(MFE) approach (Miller and Miller 1981; Kaczmarski et al. 1997; Liu and Jacobsen 
2004) that enables one to handle more complicated physical domains may be consid- 
ered difficult to use because of tuning parameters and to be computationally ineffi- 
cient. 

Moving mesh methods have traditionally used a finite difference method (nor- 
mally with a simple three point central difference) to discretize both the physical 
PDE and moving mesh PDE (MMPDE). The MFD approach using the central 
discretization proposed by Huang and Russell (1997) and Dorfi and Drury (1987) is 
still unstable in some cases because of the central discretization of first-order deriva- 
tives. 

The E N 0  and WEN0 methods (Shu and Osher 1989; Jiang and Shu 1996) are uni- 
formly high-order accurate right up to the discontinuity. Moreover these methods 
may well be applied to the moving grid method due to the reliable numerical results 
of first-order derivatives. Li and Petzold (1997) presented a combination of the mov- 
ing grid method of Dorfi and Drury (1987) with the E N 0  schemes (Shu and Osher 
1989) in order to improve stability and accuracy in the discretization procedure. 

We are interested in the numerical solution ofwell-posed systems of PDEs, e.g., in 
Eq. (la). If meshes are moving continuously with time, i.e, xi = xi@), by the chain 
rule, the solution of Eq. (la) satisfies the following equation (Dorfi and Drury 1987): 

where U and x denote the time derivatives of u and x ,  respectively, when nonuniform 
physical meshes (xi) are transformed into uniform computational meshes (5;). Mesh 
movement is governed by m(u, x,  3;). The PDE and the mesh equation are intrinsi- 
cally coupled and are generally solved simultaneously. 

2.5.2.1 
Equidistribution Principle 
The grid equation, m(u, x,  X), is induced from the equidistribution principle (EP), 
which means that the grids are spaced in order to make each arc length of discrete 
solutions equally distributed at each grid step. Therefore, the nodes are concentrated 
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Figure 2.9 Arc length 
tion a t  a time level (t) 

(ds = of the solw 

0 X 1 

in steep regions. The one-dimensional EP can be expressed in its integral form with 
the computational coordinate (0 I 5 5 1) and the monitor function, M(x, t), as a met- 
ric of each arc length (see Fig. 2.9): 

where M (x, t) is called the monitor function. For example, as shown in Fig. 2.9, the 
arc length monitor function is given: 

ds 
dx 

M ( x ,  t )  = - = d m  
1 

Let the total arc length of a numerical solution at a time t be 0( t (  = J-M (x ,  t )  dlj. 
Therefore, Eq. (1 15) is replaced by: 0 

where lji = i/Nmcsh is the uniform computational coordinate mentioned above. O(t )  is 
fmed at a given time regardless of 5 and is unknown. As it is difficult to treat this 
unknown term, O ( t ) ,  in the numerical procedure, it is eliminated by differentiating 
Eq. (117) with respect to once and twice. A quasistatic EP is so obtained 

From equation (118) one can obtain various mesh equations involving node speeds 
(X), the so-called moving mesh PDE (MMPDE), which are employed to move a mesh 
having a fxed number of nodes in such a way that the nodes remain concentrated in 
regions of rapid variation of the solution (Huang and Russell 1997). 

For most discretization methods of Eq. (114), abrupt variations in the mesh will 
cause deterioration in the convergence rate and an increase in the error (Huang 
and Russell 1997). Moreover, most discrete approximations of spatial differen- 
tial operators (e.g., u, in Eq. (114)) have much larger CFL condition numbers 
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(e.g., = ($+ k ) e  in Eq. (114)) on an abruptly varying mesh than they do on a 

gradually varying one. The ill-conditioned approximations may result in stiffness 
in the time integration in the framework of MOL. Robust mesh equations spati- 
ally smoothed are proposed by Dorfi and Drury (1987) and Huang and Russell 
(1997). 

As an illustration, the well-known Burgers’ equation with a smooth initial condi- 
tion is considered: 

(119) Ut = -uux + 10-~~,,  o 5 I 1 

(120) U ( X ,  0) = sin(2nx) + sin(rrx)/2 

The boundary condition is given as u(0, t )  = 0.0 and u(1, t )  = 0.0. A uniform 
grid structure is used as the initial grid position. The solution is a wave that develops 
a very steep gradient and subsequently moves towards x = 1. Because of the 
zero boundary values, the wave amplitude diminishes with increasing time. This is 
quite a challenging problem for both fmed and moving mesh methods. Proper 
placement of the fine mesh is critical, and a moving grid method tends to generate 
spurious oscillation as soon as the mesh becomes slightly too coarse in the layer 
region, just like nonmoving mesh methods with a central difference (Lim et al. 

Figure 2.10 shows numerical results of the Burgers’ equation solved by the MOL 
with the third-order WEN0 scheme on 40 moving grid points (Lim et al. 2001b). The 
mesh points are well concentrated on the moving front and adapt to physical fluid 
flow. In Fig. 2.11, grid evolution with time is shown for this case. The mesh points 
move continuously according to variation of the solution. The moving grid method 
attains a resolution corresponding to 5000 equidistant grid points near the shock, 
and to 7.5 equidistant grid points near the smooth regions. 

2001b). 
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Figure 2.10 Numerical solu- 
tions of Burgers’ equation on 40 

-1.0 1 moving grid points 
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Figure2.11 Grid evolution with time on 40 moving grid points 

2.5.3 
Comparison between AMR and Moving Mesh Method 

In the numerical analysis of PDAEs, discretization methods on fixed mesh points are 
generally more robust and easy-to-use than those on adaptive mesh points. In the 
cases involving steep moving fronts, the adaptive mesh methods are efficient with 
respect to accuracy and computational time. AMR and moving mesh methods are 
two of the most successful adaptive mesh methods. However, some care is needed to 
successfully use them. AMR has been developed for explicit temporal integration, 
while the moving mesh method works efficiently for implicit temporal integration 
(e.g., MOL in Section 2.3) because of stiffness of the grid. 

Moving-grid methods use a fixed number of spatial grid points, without need for 
interpolation. Moving mesh methods implemented via implicit time integration take 
advantage of the fully automatic adaptation of temporal and spatial stepsize (At, and 
Ax,). However, simultaneous solution procedures of physical and mesh equations 
typically suffer from the large computation time due to highly nonlinear coupling 
between the two equations, often requiring an excessive Newton iteration at each 
time step. This problem is further exacerbated by the dense clustering of mesh 
points near discontinuities, which degrades the convergence of the iteration (Stockie 
et al. 2001). Moreover, the extension of moving mesh methods from one dimension 
to higher dimensions in not straightforward (Li 1998). The two-dimensional moving 
mesh equation is much more complicated, because it includes many factors such as 
temporal smoothness, orthogonality and skewness of the mesh (Huang and Russell 
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1999). Simplicity and efficiency for the extension from 1 D  to 2D/3D motivate devel- 
opment of the local refinement method such as AMR (Li 1998). Data structure and 
algorithms in AMR for a one-dimensional grid can be extended to higher dimen- 
sions without difficulty. 

Adaptive mesh methods also introduce overhead. For the moving mesh, such over- 
head includes evaluation of the monitor function, regularization of the mesh func- 
tion, computation of the mesh velocity and solving additional mesh equation for the 
node positions. Compared with the moving mesh method, the overhead for the AMR 
method is much less. The evaluation of the monitor function is much cheaper and 
there is no need for regularization of the mesh function. Most of the overhead comes 
from the refinement and management of the hierarchical data structure (Li 1998). 

Recently, the combination of the two adaptive mesh strategies was presented 
(Hyman et al. 2003) and the two methods are compared and reviewed. 

2.6 
Applications 

This section illustrates applications of the introduced numerical methods for the 
solution of PDE or PDAE systems in several dynamic chemical/biochemical pro- 
cesses. In Table 2.6, the five examples to be presented are characterized according to 
the type of equations and physical dominant phenomena. Each of the five problems 
is described by a time-dependent process model within one-dimensional space. 

First, chromatography columns modeled by a PDAE system are presented in Sec- 
tion 2.6.1. Here, numerical performances of several MOL methods and the CE/SE 
method are compared for both linear and nonequilibrium adsorption. In the fmed- 

Table 2.6 Classification o f  application examples 

Section Type o f  equations Physical meanings Characteristics 
related 

2.6.1 Chromatography PDAE with source Convection, diffusion, Steep moving fronts 
term and adsorption 

2.6.2 Fixed-bed reactor PDE with source Convection, diffusion, Mass and heat recycle 
term and recycle and reaction and oscillation profiles 

2.6.3 Sluny bubble PDE with source Convection, difFusion, Chemical reaction 
column reactor term and reaction related to three-phase 

hydrodynamics 

2.6.4 Population Integro-PDE with Growth, nucleation, Dynamic behaviors of 
balance equation source terms agglomeration, and the particle size with 

breakage discontinuous fronts 

2.6.5 Cell population Integro-PDE with Growth and cell Oscillatory behaviors 
dynamics source terms division of cell populations 
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bed reactor model (see Section 2.6.2), oscillatory behaviors of state variables caused 
by mass/energy recycling are examined and several numerical methods are com- 
pared. In Section 2.6.3, a slurry bubble column reactor for Fischer-Tropsch synthesis 
is considered, where three-phase hydrodynamics are modeled by empirical equations 
given by De Swart and Krishna. (2002). The dynamics of gaslliquid concentrations 
and temperature are predicted at the beginning of operation. A population balance 
equation modeling crystal growth, nucleation, agglomeration and breakage is solved 
in Section 2.6.4, where discontinuous moving fronts appear due to initial seed crys- 
tals. Finally, Section 2.6.5 considers cell population dynamics in microbial cultures 
described by cell population balance equation (PBE) coupled to metabolic reactions 
relevant to extracellular environment (Zhu et al. 2000). 

I 

2.6.1 
Chromatography 

Packed-bed chromatographic adsorption between the stationary and mobile phases 
leads, for each component, to a partial differential algebraic equation (PDAE) system 
involving one partial differential equation (PDE), one ordinary differential equation 
(ODE) and one nonlinear algebraic equation (AE) (Lim et al. 2004): 

dn _ -  - k(n* - n) 
dt 

(121a) 

(121b) 

0 = g(C, n*) (121c) 

where vL is the interstitial velocity, D,, is the axial dispersion coefficient, a is the vol- 
ume ratio between the two phases, and k refers to the mass transfer coefficient. The 
liquid and solid concentrations for each component are referred to as C and n, 
respectively. n* is the equilibrium concentration (or adsorption isotherm). Since the 

Peclet number (ratio of convection to diffusion, Pe = where L, is the column 

length) is often large in chromatographic processes (Poulain and Finlayson 1993), 
Eq. (121) is classified as a convection-dominated parabolic PDAE system. 

The padted-bed chromatographic problem in Eq. (121), is solved for one compo- 
nent with the volume ratio a = 1.5, the fluid velocity vL = 0.1 m/s, the axial dispersion 
coefficient D, = 1.0 x lo-’ m’/s, and the adsorption rate coefficient k = 0.0129 s-’. 
A linear adsorption isotherm is used for the algebraic Eq. ( 1 2 1 ~ ) .  

YLL 

Da, 

(122) 

The column length is in the interval 0 5 z 5 1.5 and the integration time is 0 5 t 5 
10 s. As the initial condition, C(0, z )  = 0, n(0, z)  = 0 and n*(O, z)  = 0 for all z except 
z = 0 and z = 1.5. 

n* = 0.85C 
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Suppose that the Danckwert's boundary condition for Eq. (121a) is imposed as 

a C  
U L ( C  - Cin) = D,, . - 

below: 

At z = 0 and Vt, (123a) 

- 0  (123b) Atz=l.SandVt,  -- 

az 
ac 
az 

where Ci, is a known feed concentration just before entering to the column. Here, an 
inlet square concentration pulse is considered as follows: 

Ci, = 2.2, for 0 5 t 5 2.0s ( 124a) 

Ci, = 0.0, for 2.0s 5 t 5 10.0s (124b) 

The numerical solutions are obtained on 201 equidistant spatial mesh points. The 
CFL number for the iterative CE/SE method (Lim et al. 2004; see also Section 2.4.3) 
is given at Y = 0.4. The reference solution is obtained on 401 equidistant mesh points 
through the iterative CE/SE method. The error is estimated using Eq. (36). 

Table 2.7 reports numerical performance on accuracy, computational efficiency 
and stability for the chromatographic adsorption problem with axial dispersion on 
201 mesh points. The second-order central and fifth-order upwinding schemes give 
spurious oscillatory solutions near steep regions. Thus, the two methods seem to be 
inadequate for convection-dominated problems as mentioned in Lim et al. (2001a). 
The first-order upwinding scheme (called first-order upwind, or FS-upwind-1) is not 
accurate because of its low order of accuracy. The two WEN0 schemes (third-order 
and fifth-order) enhance accuracy and stability but at the cost of longer computation 
time. The CE/SE method gives, in this case study, the most accurate solution with 
very short calculation times in a stable manner. 

In Fig. 2.12 numerical solutions of the fluid concentration (C) are depicted near z 
= 0.9 at t = 10 s for the adsorption problem. The reference solution is a smeared 
square profile at z = 0.8 and 1. The CE/SE method shows the best solution without 

Table 2.7 Accuracy, temporal performance and stability evaluation for a chromatographic adsorption 
PDAE with axial dispersion and square input concentration on 201 mesh points 

Accuracy (LI error)** CPU time (s)*** 

FS-upwind-1 0.2075 1.6 
FS-central-2 0.0979" 1.9 

MOL FS-upwind-5 0.0060" 2.9 

WS-upwind-5 0.0168 11.3 

Iterative CE/SE (CFL = 0.4) 0.0087 1.3 

W S-upwind-3 0.0449 7.7 

-L Unstable numerical solution. 
** L1 error at t = 10 s. 

*t* CPU time during 10-s integration time. 
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Figure 2.12 Fluid con- 
centration (C) profiles 
for different numerical 
schemes around z = 0.9 
at t = 10 s for the single 
component chromato- 
graphic adsorption prob- 
lem with axial dispersion 
(Dax = 1.0 x lo-') and 
square input concentra- 
tion on 201 mesh points 

spurious oscillation of the six schemes tested. As expected, first-order upwind (or FS- 
upwind-1) is not accurate and second-order central (or FS-central-2) is highly oscilla- 
tory. The MOL with fifih-order WENO (or WS-upwind-5) and the CE/SE with CFL = 

0.4 exhibit similar resolution in steep regions. 
Figure 2.13 shows the propagation of steep waves with time. Note that the fifth- 

order WENO scheme (circles) and the CE/SE method (solid line) have a nondissipative 
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feature owing to conservative discretization, since the waves do not widen with time. 
In contrast, the peak of the first-order upwinding scheme (dashed line) broadens con- 
tinually as time increases. 

2.6.2 
Fixed-Bed Reactor 

Recycling is often used in industrial processes to reduce the costs of raw materials 
and energy. The nonlinear effects of introducing recycling on a futed-bed reactor are 
considered in plant-wide process control and bifurcation analysis (Recke and Jmgen- 
sen 1997). This nonlinearity has the most pronounced effect around bifurcation 
points, i.e., points where the system solutions change stability and/or number of 
possible solutions. 

The fEed-bed reactor we consider here is a packed-bed tubular reactor with a sin- 
gle irreversible exothermic reaction of hydrogen’s catalytic oxidation to form water 
(Hansen and Jnrrgensen 1976). 

The reactor is mass- and heat-integrated, which means that unconverted reactants 
are recycled and the reactor effluent is used to preheat the reactor feed in an external 
heat-exchanger, as shown in Fig. 2.14. 

The reaction is assumed to be first order in oxygen concentration with Arrhenius- 
type temperature dependence. The model describing the reactor with both mass and 
energy recycling is given by: 

I 
Fresh feed 

Figure 2.14 
energy recycles 

Schematic drawing of the fixed-bed reactor with mass/ 
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where the ratio of mass to thermal residence time x = 1/600, the dimensionless flow 
rate Y ) 1.0, the axial dispersion mass Peclet number Pe, = 270, the Damkohler num- 
ber Da = 0.376, the Arrhenius number y = 9.0, the axial dispersion heat Peclet num- 
ber PeH = 118, the Biot number Bi = 0.5, the dimensionless surrounding temperature 
0, = 0.79, and the dimensionless heat reaction Be = 0.49 are used for simulation. The 
variables t, 6, y and O are the dimensionless time, axial direction, oxygen concentra- 
tion and temperature, respectively. The mass and energy recycling are assumed to 
follow first-order dynamics: 

where z, and re denote mass and energy recycle time lag constants with the units 
[t-'1, respectively. The above two ordinary differential equations have analFc solu- 
tions as follows: 

(130) 

(131) 

-rmt 
Yrec = ~ C = I  - (Yrec,o - YO=I,O) e 

erec = e,=l - (&c,o - ec=l,o) ecTet 

where yreC,(, and y5=l,o are the initial conditions for yrc0 and ybl  and Orec,O and OE=~,O are 
those for Ore, and E = ~ .  Tqe ~ e q w q h s  tipe hay q o v m a v t a  z,, = 30 and te are used in 
this Simulation. The Danckwert boundary conditions at the inlet point (6 = 0) are 
expressed as: 

where the dimensionless feed oxygen concentration ( y f e d )  and temperature ( Ofeed) are 
given as y f d  = 1.0 and Ofe, = 0.8 and the mass and energy recycle ratios are assumed 
to be cr, and ae. The boundary conditions at the outlet point (ij = 1) are given as: 

The bed is initially set to no reactant (i.e., yo = 0 for all g at t = 0). The initial bed tem- 
perature is Oo = 0.79 for all 5. 

The model is solved by the MOL and the noniterative CE/SE method for solution 
comparison. In the framework of the MOL, the convection term is discretized on 
uniform 201-mesh points by the first-order upwinding scheme (FS-upwind-1) and 
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the third-order WEN0 scheme (WS-upwind-3), and the diffusion term by the central 
scheme (see Section 2.3.1). The boundary conditions Eqs. (132)-(134) are converted 
into nonlinear algebraic equations (AEs) by spatial discretization. The band Jacobian 
structure is broken by mass and energy recycles. The resulting system is thus a set 
of DAEs with a sparse Jacobian matrix. 

Using the noniterative CE/SE method, the two coupled PDEs are fully discretized 
on uniform 201-mesh points at CFL = 0.6 The resulting system has 402 linear alge- 
braic equations at each time level for uyand u zj respectively. 
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Figure 2.15 Comparison of  numerical solutions for dimensionless oxy- 
gen concentration ( y )  and temperature (0) variations with respect to the 
reactor length (x )  at (a) t = 3 and (b) t = 3 5 
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Figure 2.15 shows the spatial distribution of dimensionless oxygen concentrations 
(y) and temperatures (8) at two time levels, t = 3 and t = 3.5, for each of the three 
numerical methods. Even though smooth fronts move with time, the solution pro- 
files depend highly on the numerical methods used due to mass/energy recycling. A 
different numerical method provides a different oscillatory frequency, phase degree, 
and/or amplitude. In Fig. 2.16, it is shown that a steady-state solution is reached dif- 

I 

ferently depending on the numerical method used. 

2 
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Figure 2.16 
concentration ( y )  and temperature (0) variations with respect to time, 
(a) 1 < t < 6 and (b) 1 5  < t < 20, at the reactor outlet point (5 = 1) 

Comparison of  numerical solutions for dimensionless oxygen 
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Liu and Jacobsen (2004) stated that some discretization methods such as finite dif- 
ferences and finite elements can result in spurious bifurcation and erroneous predic- 
tion of stability. To minimize discretization error, they proposed a moving mesh 
method (see Section 2.5.2), i.e., an orthogonal collocation method on moving finite 
elements, for solving a futed-bed reactor model with energy recycling. For the futed 
bed reactor system, there is clearly a need for checking the approximation error of 
spatial and temporal derivatives as the fronts move. This would mean for the CE/SE 
method that an adaptive mesh method is applied. In addition, it is questionable 
whether the exit boundary conditions Eq. (134) are physically reasonable, especially 
when steep fronts are moving out of the reactor. 

2.6.3 
Slurry Bubble Column Reactor 

Slurry bed reactors are applied increasingly in the chemical industry. The specific 
example selected here focuses on Fischer-Tropsch (FT) synthesis. FT synthesis tech- 
nology, such as fluidized bed, multitubular futed-bed, and three-phase slurry bed, 
forms the heart of many natural gas conversion processes that have been developed 
by various companies in recent years (e.g., SASOL, Shell, Exxon, etc.). The FT reac- 
tion converts the synthesis gas (H,+CO) into a mixture of mainly long straight chain 
paraffins. This example concerns the Fe-based (or Co-based) catalyk slurry bed reac- 
tor, as shown in Fig. 2.17. 

Unconverted gas 

- I  - 

Synthesis gas 

I+ 

Slurry 
t 

Model - 

Figure 2.17 Hydrodynamic model of slurry bubble column reactor 
(SBCR) in the heterogeneous flow regime (Van der Laan et al. 1999) 
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A highly exothermic reaction takes place on the Fe-based catalytic surface at high 
I 

temperature (about 250°C): 

1 

n 
CO + (1 + E) H2 + -CnH, + H2O + 165 kJ/mol 

CO + H 2 O  ++ C 0 2  + H 2  + 41 kJ/mol 
(135) 

where n is the average length of the hydrocarbon chain and m is the number of 
hydrogen atoms per carbon. Since hydrogen is considered the limiting component, 
balance equations can be set up for hydrogen only (De Swart et al. 2002). The com- 
plex hydrodynamics of gas bubbles are simplified by gas holdups (&&big) of large 
bubbles (dg,big = 20-80 mm) and those ( E ~ , ~ , , , ~ U )  of small bubbles (dg,smll = 1-6 mm), as 
shown in Fig. 2.18. The dimensionless mass and energy balances for hydrogen are 
described for the three phases: 

0 gas phase 

a y  big 1 f acont (usg - udf) aYbig 
& g , b i g F  = - 2 (1 + acont . Ybig) ugo a t  

0 liquid phase 

0 solid phase 

The dimensionless energy balance for the slurry phase is: 

The dimensionless variables are denoted ybig = CH2,g,big/ CH2g07 ysmall = C H ~ , ~ , ~ ~ U / C H ~ , ~ ~ ~  x 

= mCH,,L/CH,,g@ 8 = T/T,, = h/H and z = tugO/H, where the initial hydrogen concen- 
tration CHz,go  = 0.38412 kmol/m3, the distribution coefficient of hydrogen between gas 
and liquid phases m = 5.095, the heat-exchanger wall temperature T, = 501 K, the 
slurry reactor height H = 30 m, and the inlet gas velocity ugo = 0.14 m/s are prelimi- 
narily given for simulation. 
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For the gas phase mass balance, the gas holdup of large bubbles ( ~ ~ , b ~ ~ )  can be esti- 
mated by the following relation with the gas superficial velocity (usg = 0.14 m/s), the 
small bubble superficial rising velocity (u& the gas density (pg - 7 kg/m3 at P - 40 
atm and T- 500 4, and the reference gas density (& - 1.3 kg/m3 at P = 1 atm and 

The gas holdup of the small bubbles is given where the transition from the homoge- 
neous to the churn turbulent flow regime occurs (van der Lann et al. 1999): 

where the small bubble holdup in solids-free liquid is .&= 0.27 and the solid holdup 
is given as q, = 0.25. The gas contraction factor is assumed to be a,,,, - -0.5 in Eq. 
(136). The gas phase Peclet numbers for large and small bubbles are assigned to be 
Peg,big - 100 and Peg,small = u@G/EL - 80, respectively. The Stanton numbers of the 
large bubbles (St,b, = kL,H2,bigabigH/m/ug0 - 4.51) and the small bubbles (St,,,lI = 

kL,Hl,smallClsmallH/m/upo - 24.7) are calculated as an empirical correlation proposed by 
Calderbank and Moo-Young (1961). The superficial velocity of small bubbles, udf, is 
defined as: 

Pa . s, surface tension u= 0.019 Pa . m, liquid density 
= 7.0 kg/m3 and gravity g = 9.81 m/s2. 

= 680 kg/tn3, gas density 

For the liquid phase mass balance, the liquid hold up is determined by: 

&L = - E p  - (&g,big + Eg.small(1 - &g.big)) (144) 

The liquid phase Peclet number (PEL = u@H/Er) is assumed to have the same value 
as the small bubble Peclet number. The liquid Stanton number for large bubbles and 
small bubbles are defined as Stg,big = ~,~~,bipa~,i~H/u@ (- 22.97) Stg,rmall = kL,H2,srnaiias. 

mallH/~gO (- 125.87), respectively. The superficial slurry velocity is equal to us, = 0.01 
m/s in the simulation and the average catalyst concentration fraction is rs = 0.25. The 
Damkohler number as the dimensionless pre-exponential kinetic factor is defined 
as: 

Da = AmELH/ugo (145) 

where the preexponential kinetic factor (or collision frequency factor) is A = 5.202 X 

10” s-’. The Arrhenius number is given from the kinetic data (De Swart et al. 2002): 
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E, 1.175 x lo5 J/mol 

RT, 8.314 J/mol/K. 501 K 
y = - =  = 28.209 

For the liquid phase energy balance, the heat transfer Peclet number 

x 7.0), (Pe, = - x 7Q)the heat transfer Stanton number ( S ~ H  = ~ 

and the dimensionless heat reaction (Be = -AHRCH2’go x 0.0488) are from 

De Swart et al. (2002). 
The model described by the above set (i.e., Eqs. (136)-(140)) of partial differential 

equations (PDEs), which include convection, diffusion and reaction, is solved with 
initial conditions and Danckwert’s boundary conditions (see Eq. (3)). De Swart et al. 
(2002) solved the above model numerically using the MOL with finite difference 
method (FDM) and a BDF ODE integrator. We here use the noniterative CE/SE 
method (see Section 2.4.3) to solve the model. Figure 2.18 shows dynamic contours 
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Figure 2.18 Unsteady-state concentration contour o f  (a) large bubble 
gas concentration; (b) small bubble gas concentration; (c) liquid con- 
centration; and (d) slurry temperature with respect to the reactor height, 
within 5 min 
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of large bubbles, small bubbles and liquid concentrations of hydrogen, and bed tem- 
peratures along the reactor height. These profiles show how to reach steady state 
within 5 min. 

From the model-based dynamic simulation we can predict conversion ratio and 
temperature changes with feed composition, heat-exchanger temperature, feed flow 
rate, and catalyst types. The optimal operating conditions can be obtained for a given 
objective function (e.g., cost-benefit function) using the method of nonlinear pro- 
gramming (NLP, see also Section 2.4). 

The three-phase bubble column shows complex hydrodynamics of reactant gas 
bubbles at elevated pressures (e.g., 10-40 atm). Several recent publications have 
established the potential of computational fluid dynamics (CFD) for describing the 
hydrodynamics of bubble columns (Krishna and van Baten 2001). Using a commer- 
cial CFD code (CFX, AEA Tech., UK) to solve mass/momentum conservation equa- 
tions in the three phases, fiishna and van Baten (2001) predict the gas holdup and 
the liquid velocity within a cylindrical two-dimensional reactor at different column 
dimensions, pressures, and superficial gas velocity. The empirical correlations of the 
gas holdups in Eqs. (141) and (142) can be verified or predicted for different column 
dimensions by the CFD simulation results (Krishna et al. 2000). In Section 2.7, we 
will present in detail a combination of process simulation and CFD. 

2.6.4 
Population Balance Equation 

The population balance equation (PBE) has been demonstrated to describe the parti- 
cle size distribution (PSD) in various chemical/biological engineering problems 
such as crystallization, polymerization, emulsion, and microbial cultures. Indeed, 
modeling with the PBE provides a good description for parameter identification, 
which may be used for determination of operating conditions, and for process design 
and control. In crystallization processes, the PBE, which governs the crystal size dis- 
tribution (CSD), is solved together with mass/energy balances and crystallization 
kinetics such as nucleation, crystal growth, breakage, and agglomeration. The sys- 
tem, which often leads to hyperbolic-like integro-partial differential equations 
(IPDEs), is complex due to a lot of feedback relationships between the equations 
(Wey 1985). To determine the CSD, all equations (e.g., PBE, mass, and energy bal- 
ances) must be solved simultaneously. An inaccurate solution of a PBE will affect 
particle nucleation and subsequently particle growth and results in an incorrect CSD. 
Therefore, a numerical procedure to obtain an accurate solution of PBEs is necessary 
(Lim et al. 2002). 

The crystal size distribution (CSD) is usually expressed as the crystal number (N, 
no.) or number density (n, no./m, or no./m3) with respect to the crystal size (L, m) or 
volume (v, m3). A simple relationship between the crystal number (N) and the crystal 
number density (n) is given as follows using the finite volume approach: 
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Li+l "if1 

I 
ndu x ni(ui+l - ui) (147) Jci ndL n;(Li+l - Li) or Ni = Li Ni = 

Both bases (i.e., Nand n) can give a good description of the CSD. However, the CSD 
based on the number (N)  is often preferred, for conservation of the mass and the 
number of crystals, in the cases involving agglomeration and breakage kinetics 
(Kumar and Ramkrishna 1997). 

A number-based PBE as a governing equation ofthe CSD is usually described in 
terms of the birth of nuclei, their growth, agglomeration, and breakage: 

' 

(148) 
d Ni + -  

dt ( dt )breakage 

Nrnesh La 
yoAL. 2. N. J' i = l  

j=i+l Lj 

(152) Nmesh La La 
yo AL . . N; + 2y0 A L . . N j  - y0Lq . Ni, i = 2 . . . ( Nmesh - 1) 

Li j=i+l Lj 
La 

Li 
yoAL. 2 . Ni - yoLq . Ni, = Nrnesh 

where 
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2.6.4.1 
Method of Characteristics 

It is well known that for the scalar linear conservation law (e.g., PBE considered here) 
there usually exists a unique characteristic curve along which information propa- 
gates. If the solution moves along the path line of propagation, the convection term 

a(GN) in the PBE disappears. Hence, numerical error and instability caused by 

approximation of the convection term is removed. 
8L 

Kumar and Ramkrishna (1997) derived a modified MOC formulation for the PBE: 

!Lo-($) , +(%) 
dt nucleation agglomeration 

dL; 
= G; - 

dt 

(153a) 

(153b) 

where Eq. (153b) is the mesh movement equation. The MOC formulation is numeri- 
cally solved by using the MOL. To overcome the nucleation problem, a new mesh of 
the nuclei size (Ll) is added at given time levels. The system size can be kept constant 
by deleting the last mesh at the same time levels. Since the number of crystal nuclei 
can vary with the number of mesh points added or deleted, a proper number of 
added mesh points should be selected according to stiffness of nucleation. 

Suppose that a stiff nucleation takes place only at a minimum crystal size ( L ,  = 

as a function of time: 

n(t, L1) = 100 + lo6 exp ( l O P 4 ( t  - 0.215)2) (154) 

Within the size range 
well as break for 0.0 5 t 5 0.5. A square initial condition as seeds is also given: 

5 L 5 2.0, the nuclei grow and the crystals aggregate as 

n(0, L )  = 100, for 0.4 5 L 5 O h  
n(0, L )  = 0.01, elsewhere 

(155) 

The kinetic parameters are given: G = 1 (linear growth rate), (constant 
agglomeration kernel) and y = 1.0 x L2 (breakage kernel). See Lim et al. (2002) for 
details. The discretized PBE based on the crystal number (N, )  or the crystal density 
(ni) is solved by using the implicit BDF O D E  integrator in the framework of the 
MOL. 

= 1.5 X 

2.6.4.2 
Nucleation and Growth 

When the PBE with the nucleation and growth terms is considered on the basis of 
the crystal density (n), its analFc solution is derived from the MOC: 

2 n(t, L )  = 100 + lo6 exp (- 104((Gt - L )  - 0.215) ), for 0.0 5 L p Gt, (156a) 

n(t, L )  = 100, for 0.4 5 ( L  - Gt) 5 O h ,  (15Gb) 
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Figure 2.19 CSDs for the stiff nucleation case without agglomeration 
and breakage 

n(t, L )  = 0.01, elsewhere (156c) 

In the solution, a discontinuous front (due to square seed) and a narrow wave (origi- 
nating from nucleation) move along the propagation path line, L = LI+Gt. The 
numerical tests are carried out on the 200 fEed grids for both the numerical MOC 
and the WENO schemes. In Fig. 2.19, the numerical results of the WS-upwind-3/5A 
(see Lim et al. (2002) for details) and MOC-50p (i.e., numerical MOC with an addi- 
tional 50 mesh points) are compared to the analybc solution Eq. (155) at the end time 
(t  = 0.5). While moving fronts are smeared near discontinuities using the WENO 
schemes on the weighted stencil, the numerical MOC-50p shows a quite good resolu- 
tion even at the discontinuous fronts. 

2.6.4.3 
Nucleation, Growth, Agglomeration, and Breakage 
When the agglomeration and breakage kinetics are added to the previous PBE, the 
analytic solution can not be derived. The numerical solution of Eqs. (148) or (153) is 
obtained on 101 points of the uniform grid, using MOC-2Op or WS-upwind-5. 
Employing the MOC-2Op (insertingldeleting 20 mesh points), the following mesh 
equations are used 

dL1 d Li 
- = O ,  - = 1  f o r i = 2  . . .  101 
dt dt (157) 

In Fig. 2.20, CSD changes obtained from MOC-20p are depicted according to the 
kinetics used. The solid line is the analytic solution for the pure growth problem 
without agglomeration and breakage. Since numerical diffusion error is small, high 
resolution is observed at the corners of steep fronts. Due to the agglomeration term, 
the CSD spreads out and the population of large crystal sizes increases (see Fig. 
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Figure 2.20 CSD changes obtained by the MOC-20p on 102 meshes 
according to the growth, agglomeration, and breakage terms (solid line: 
analytic solution for pure growth) 

2.20b). In contrast, the breakage term increases the population of small crystal sizes 
(see Fig. 2.20~). The CSD of the PBE with four kinetics is dispersed more broadly, as 
shown in Fig. 2.20d. 

Using the fifth-order WENO scheme (WS-upwind-5), Fig. 2.21 also shows effects 
of the growth, agglomeration, and breakage terms on the CSD. Considerable numer- 
ical dissipation is found in steep regions (or discontinuities) in Fig. 2.21, and also 
shown in Fig. 2.19. However, comparing Fig. 2.20d with Fig. 2.21d, the two solutions 
are similar due to the effects of agglomeration and breakage on the CSD. 

Though the modified MOC gives more accurate numerical results than the WENO 
scheme, there are some limitations to using it such as the need for careful determi- 
nation of addingldeleting time levels and a unique mesh velocity equation (or growth 
rate, see Eq. (153b)). Using the spatial discretization methods (e.g., MOL with WENO 
schemes) to circumvent these limitations, attention must be paid to discretization of 
the growth term (convection term), which can cause much numerical error and 
instability in the presence of steep fronts or discontinuities. 



92 2 Distributed Dynamic Models and Computational Fluid Dynamics I 
(a) Pure growth 

1 o4 

C 

2 
v) 
C 
W 
U 

I I 

0 0.5 1 1.5 2 

crystal size, L 

1 o6 
(c) Growth+Ereakage 

C 

.- 2; 
u) 
C 
W 
U 

I I 

0 0.5 1 1.5 2 

crystal size, L 

C 

u) 
C 
W 
U 

.- 25 

lo6 , h '  I 

(b) Growth+Agglomeratio 
1 o4 

1 o2 

1 oo 

10" 
I I 
0 0.5 1 1.5 2 

crystal size, L 

1 o6 

1 o4 

1 o2 

1 oo 

10" 

0 0.5 1 1.5 2 

crystal size, L 

Figure2.21 
101 meshes according to the growth, agglomeration, and breakage 
terms (solid line: analytic solution for pure growth) 

CSD changes obtained by the WS-upwind-5 scheme on 

2.6.5 
Cell Population Dynamics 

Cell cultures are composed of discrete microorganisms whose population dynamics 
play an important role in bioreactor design and control. The cell cultures are known 
to exhibit autonomous oscillations that affect bioreactor stability and productivity. To 
increase the productivity and stability, it is therefore desirable to derive a dynamic 
model that describes the oscillatory behavior and to develop a control strategy that 
allows modification of such intrinsic reactor dynamics (Henson 2003). 

As a model example for cell culture dynamics, consider a segregatedlunstructured 
modeling based on the cell population balance equation (PBE) coupled to metabolic 
reactions that are relevant for the extracellular environment (Zhu et al. 2000; Mhas- 
kar et al. 2002). The segregatedlunstructured model provides a realistic description 
of the cell cycle events that lead to sustained oscillation in cell cultures under the 
assumption that oscillations arise as a result of interactions between the cell popula- 
tion and the extracellular environment. 
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The cell population dynamics including cell growth and cell division is described 

by a partial differential equation including a convection term Xw , newborn-cell 

birth term (I 2 p r w d m ) ,  mother-cell division death term (-rW) and dilution loss 
(-DW): 

(a,) 

a w ( m ,  t )  - -  a(v,(s’). ~ ( m ,  t ) )  
- 

(158) 
a t  a m  

2p(m, m’)r(m’, S’) W(m’, t )  dm‘ - [ D  + r ( m ) ]  W(m, t )  
+ I” 

where W(m, t) is the cell number concentration as a function of mass (m) and time 
( t ) ,  vS(S’ is the overall single cell growth rate at the substrate concentration ( S ’ ) ,  
p(m, m’) is the newborn-cell mass distribution function with newborn-cell mass m 
and mother-cell mass m’, r ( m ’ ,  S’), is the division intensity function, and D is the 
dilution rate. Detail models and their parameters are given below on the basis of 
Mhaskar et al. (2002) for a S. cerevisiae (or yeast) culture. For convenience, all of the 
masses have the units [ x g] and the cell number concentration (W (m, t )  has 
the units [ X  10-l~ no./g]. 

The division intensity function is introduced to account for the probability nature 
of cell division: 

where m“, is the cell transition mass, mo = 1 is the minimum cell mass for division, 
and m“’d is the division mass. E = 5 and y = 200 are the constant parameters that 
determine the transition rate and the maximum intensity value, respectively. 

Sustained oscillations are generated through the introduction of a synchronization 
mechanism in which the transition and division masses are functions of the nutrient 
concentration. The following saturation functions are used 

(1 GOa) 

(1GOb) 

where the substrate concentration is S’ = G’ + E ,  and the constants are given as Sl = 

0.1 g/l, S ~ = ~ , O ~ , ~ , , , ~ O  = 4.55, mdo = 10.75, Kt = 0.01 . 1-l and & = 3.83 * 1-’. 
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The newborn cell probability function p (m, m’) has the form: 
I 

(161) 
(y . e-~(m-m;)2 + . e-~(m--m’+m;)2 , m’ > rn and rn’ > rn: + mg 

lo .  elsewhere 
p(m,  rn’) = 

Here the constants are set to a = and p = 40. This function yields two Gauss- 
ian peaks in the cell number distribution, one centered at mgrt corresponding to 
mother cells and one centered at m*, - m’ corresponding to daughter cells. 

Oscillatory yeast dynamics are observed in glucose-limited growth environments. 
Under such conditions, both glucose and the excreted product ethanol can serve as 
substrates for cell growth. The following reaction sequence accounts for the relevant 
metabolic pathways, glucose fermentation, glucose oxidation, and ethanol oxidation: 

where G’ and E represent intracellular glucose and ethanol concentrations, 
respectively, and 0 is the dissolved oxygen concentration. hgf= 30( x lo-’’ g/h), hgo 
= 3.25 ( x 10-13 g/h), and he,, = 7( x g/h) are maximum consumption rates, 
Km&= 40 g/l, KMgo = 2 g/l, Kmgd = 0.001 g/l, K,,, = 1.3 g/l, and Kmed = 0.001 g/l are satu- 
ration constants, Kinhibit = 0.4 g/l is a constant that characterizes the inhibitory effect 
of glucose on ethanol oxidation. The overall single cell growth rate vg(g(s’) is the sum 
of the growth rates due to the three metabolic reactions. 

(164) vg(S’) = Kgf(G’) + Kgo(G’, 0) + Keo(G’, E’, 0) 

For intracellular glucose and ethanol concentrations (GI, E )  and liquid oxygen con- 
centrations (0) in Eq. (163), the mass balance equations of these substrates are 

d G’ 
- = kg(G - G’) 
dt 

d E’ 
- = ke(E - E’) 
dt 

d o  (192 Kgo(G’) 96 Q,(E’)) 
- = koa(O* - 0) - -~ +-- Ntotal dt 180 Ygo 46 Ye, 
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where G and E are extracellular concentrations, kg and k, = 20 h-1 are glucose and 
ethanol uptake rates, respectively, k,a = 1500 h-’ is the oxygen mass transfer rate, and 
Ygo = 0.65 g/g and Ye, = 0.5 g/g are the yield coefficients in the glucose oxidation and 
ethanol oxidation reactions, respectively. The total cell number ( of microorgan- 
isms is defined by 

The saturation oxygen concentration, 04, is obtained from the oxygen solubility, 
RT 

which is assumed to be governed by Henry’s law: 0” = H, -Ooul with the Hen- 
MW.02 

ry’s rate constant (H, = 0.0404 g/l/atm), the gas constant ( R  = 0.082057 1 . atm/mol/ 
K ) ,  the absolute temperature ( T  = 298 K ) ,  the molecular weight of O2 (M,,o, = 32) and 
the oxygen concentration in the gas exhaust stream (Ooul). The gas phase oxygen bal- 
ance is: 

V * = F(Oi, - Oout) - koa(O* - 0) . y 
dt 

where Vg = 0.9 l and V, = 0.11 are the gas phase and liquid phase volumes, respec- 
tively, F = 90 l/h is the volumetric air-feed flow rate, and Oi, = 0.275 g/l (= 0.21 atm) 
is the oxygen concentration in the air-feed stream. 

For extracellular glucose and ethanol concentrations (G and E), the substrate mass 
balance equations are: 

where D = 0.18 h-’ is the dilution rate, Gf= 30 g/l and Er= 0 g/l are the feed glucose 
and ethanol concentrations, respectively, and Yd= 0.15 g/g is the yield coefficient in 
the glucose fermentation reaction. The total cell number for microorganisms related 
to ethanol excretion is denoted in Eq. (171) as: 

Experimental data suggests that key products, such as ethanol, are excreted primarily 
by budding cells. This behavior is modeled byf(m): 

where ye = 1.25, E, = 15 and me = 1.54 are constant parameters. 
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The liquid phase carbon dioxide balance (C) is 
I 

where k,a = 1500 h-' is the C 0 2  mass transfer rate and C? is the saturation C02 con 

centration modeled by c;' = H, - RT C,,, with the Henry's rate constant (H, = 

1.48 g/l/atm at pH = 5.0), the molecular weight of C02 (Mw,co, = 44) and the COz con- 
centration in the gas exhaust stream (C,,,,). The gas phase C02 balance is: 

Mw,co* 

V = F( Ci, - Gout) - kca( C" - C) . Vl 
dt 

(175) 

where Ci, = 0.00054 g/l (= 0.0003 atm) is the carbon dioxide concentration in the air- 
feed stream. 

In summary, this cell PBE model is described by a PDAE system containing one 
PDE for the cell population (W(m, t ) )  and eight ODES for eight substrate variations 
(G, E, G' ,  E ,  0, C, O,,,, and COu,). The single cell growth rate (vg(G', E ,  0)) is com- 
puted in Eq. (164). 

The initial condition of W(m, t)  is set to W(m, 0) = 0.5 e-S.(m-G)', 1 5 m 5 11. The 
boundary condition of W(m, t )  is also given as W(11, t) = 0 for 0 5 t 5 6 hr. For the 
eight-substrate concentrations, their initial values are G' = G = 0.8, E = 0.01, E = 

0.0001, 0 = 0.008, C = C,,, = 0.003, and O,,, = 0.275. 
For the solution of cell PBE models, Zhu et al. (2000) and Mhaskar et al. (2002) 

used the orthogonal collocation FEM (Finlayson 1980). Motz et al. (2002) reported 
that the CE/SE method gives better performance in terms of accuracy and computa- 
tional time than a flux limited finite volume method. Mantzaris et al. (2001a,b) com- 
pared several numerical methods such as finite difference methods (FDM) with 
explicit/implicit time integration and finite element methods (FEM) with explicit/ 
implicit time integration, where they suggested (i) the time-explicit scheme (e.g., 
Runge-Kutta method) is better for computational-efficiency than the implicit time- 
integration scheme (e.g., BDF-types) and (ii) the finite difference method is preferred 
for multidimensional PBEs to the finite element method due to computational efi-  
ciency. 

Fortunately, this model can be solved by the modified MOC (see Eq. (153)), since 
there is a unique growth rate Eq. (164). The integration terms appearing in Eqs. 
(158), (168), and (172) are simply evaluated by the Trapezoidal rule: 

where Nmsh is the number of mesh points. 
When the numerical MOC is used in the framework of the MOL, it is not easy to 

provide its Jacobian full matrix with hand-coding due to strong nonlinearity and it 
will be prohibitive to numerically evaluate the Jacobian because of the large system 
size (i.e., the number of equations is (2 X N,& + 8), and the Jacobian matrix is 2 X 
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N,& + S)2). The automatic differentiation technique is appreciated in this case for 
accuracy and computation efficiency. 

Figure 2.22 shows the dynamics of the cell population number density (W(rn, t ) )  is 
solved by the numerical MOC on 82 mesh points (N,,&,) where 135 mesh points are 
added at rn = 1 and also deleted at rn = 11. Due to cell division, the cell number den- 
sity of small sizes tends to increase with time and the oscillatory behavior of the cell 
number density are regularized after about t = 6 hr. 

The oscillatory behaviors of the cell number (Ntotal) in Eq. (168) and the cell mass 

are shown in Figs. 2.23a and b. The cell number varia- 
Nrnesh-l (= c Ni 

(mi + mi+l) 

i=l  

tion affects the extracellular glucose/ethanol (G and and oxygen/carbon dioxide 
(O,,, and C,,,) concentrations in the gas exhaust stream (see Figs. 2.23~-f, respec- 
tively). As ethanol is excreted, primarily by budding cells (see Eq. (173)), it is shown 
that the extracellular ethanol concentration ( E )  slowly reaches a regular oscillatory 
state in Fig. 2.23d. Figures 2.23g,h depict the dynamics of the consumed oxygen con- 

centration ratio 100 x and evolved carbon dioxide concentration ratio 

100 x (9) , respectively. 
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All of the parameters used for this simulation need to be adjusted to experimental 
data, as shown in Mhaskar et al. (2002). 

2.7 
Process Model and Computational Fluid Dynamics 

A multiscale model is a composite mathematical model formed by combining partial 
models that describe phenomena at different characteristic length and time scales. 
For example, modeling of a packed-bed catalytic reactor involves microscale chemical 
kinetics at the active sites on the catalyst, mesoscale transport processes through the 
pores of the catalyst pellets, and macroscale flow and heat exchange at the reactor 
vessel level. Computational tools such as molecular dynamics (MD), computational 
fluid dynamics (CFD), and process simulation have been used to help fill particular 
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length- and timescale gaps. In general, despite their obvious connection, phenomena 
at different characteristic scales have usually been studied in isolation (see Section 
2.5). 

One of the key challenges facing process modeling today is the need to describe 
complex interactions between hydrodynamics and the other physical/chemical phe- 
nomena. This is particularly important in the case of complex systems (e.g., polymer- 
ization, crystallization, and agitated bioreactors) in which the constitutive phenom- 
ena interacts with mixing and fluid flow behavior. 

Process simulation tools, which play an increasingly central role within most pro- 
cess engineering activities are able to represent (i) multicomponent, multiphase, and 
reactive systems, (ii) individual unit operations, multiple interconnected units, or 
entire plants, and (iii) thermodynamic properties. However, most of the models used 
by process simulation tools either ignore spatial variations of properties within each 
unit operation (invoking the well-mixed tank assumption) or are limited to simple 
idealized geometries. Moreover, the treatment of fluid mechanics is usually quite 
rudimentary (Bezzo et al. 2003). 

CFD techniques solve fundamental mass, momentum, and energy conservation 
equations (e.g., the Navier-Stokes equation) in complex three-dimensional geome- 
tries. From CFD simulation, some valuable information (e.g., mass flow rate, heat 
transfer coefficient, velocity, etc.) for process simulation can be obtained. However, 
CFD’s ability is still limited in application to complex reactive systems and multi- 
phase processes with multicomponent phase equilibria. Furthermore, performing 
realistic dynamic simulation often requires excessive computational time. In view of 
the above, CFD and process simulation technologies are highly complementary 
(Bezzo et al. 2000). Combination of process simulation and CFD can therefore lead 
to significant advantages in accurate modeling of processes. 

2.7.1 
Computational Fluid Dynamics 

The CFD technique has focused on the solution of PDEs representing conservation 
equations describing fluid flow over domains of often complex geometry. There are 
several commercial CFD packages such as Fluent (Fluent, Inc.), CFX (AEA Tech., 
Hanvell, UK) and FemLab (COMSOL). 

The CFD packages usually comprise three distinct elements, namely preprocess- 
ing (geometry specification, model selection, parameter specification, and grid gen- 
eration), numerical solution procedure and post-processing (visualization and data 
treatment). In the solution procedure, mass/momentum/energy conservation equa- 
tions are solved within the specified geometry. Generic conservation equations may 
be described by PDEs with advection, viscosity/diffusivity and source terms: 

- + -  ~ 4 - r ~ -  - s 4 = o  a4 at ax a ( aal) (177) 
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where @ is a conserved quantity such as mass, energy or momentum, rQ the viscos- 
ity or difisivity, sg the source or sink and x the set of spatial dimension variables. 
The models are called the compressible (or incompressible) Navier-Stokes equation. 
When the viscosity/diffusivity terms can be neglected due to relatively small influ- 
ence on the result, the inviscid Euler equation is obtained. Let p, u, p, and e be the 
mass density, velocity, pressure, and energy per unit volume, respectively. The invis- 
cid Euler equation of a perfect gas can be expressed as: 

I 

1 
where u = (p, p, e)' andf= (p, p + eu2, ue + We may write e = @eint,,r + - 

2 
p2, where eintemr is the internal energy per unit mass. Therefore, this equation is the 
three-dimensional hyperbolic PDE. Most CFD packages do not use the MOL 
approach (see Section 2.3) of reducing PDEs into ODEs in time. Instead, they choose 
to discretize both temporal and the spatial dimensions (i.e., fully discrete methods, 
see Section 2.4), thereby reducing the PDEs into a set of nonlinear algebraic equa- 
tions (Oh 1995). 

The process simulation models mentioned in Section 2.6 represent specific and sim- 
plified conservation equations related to the macroscopic process level. Here, com- 
plex fluid dynamics is lumped by parameters or simple empirical equations (e.g., the 
three phase bubble column model in Section 2.6.3). Microscopic chemical reactions 
are simplified by kinetic equations as a function of temperature, pressure, and con- 
centrations. If we use a full CFD simulation including complex reactions, thermody- 
namics, population dynamics and hydrodynamics, it would be practically infeasible 
because of high computing load and lack of existing tools. 

To effectively take into account interactions between hydrodynamics and the other 
physicallchemical phenomena, a hybrid approach, namely, multizonal/CFD simula- 
tion (Bauer and Eigenberger 1999 and 2001; Bezzo et al. 2003), is proposed (see Fig. 
2.24). Several zones, assumed to be well-mixed compartments, are described by pro- 
cess models (e.g., AEs, ODEs, PDEs or PBEs) with the exception of the fluid-flow 
ones, and CFD simulation provides each zone with the mass flow rate at interzonal 
interfaces and additional fluid dynamical properties such as mass transfer coefficient 
and turbulent energy dissipation rate (Bezzo et al. 2003). 

2.7.2 
Combination of  CDF and Process Simulation 

Figure 2.24 shows a structure of the general multizonal/CFD model. The spatial 
domain of interest is divided into several zones (z1-z5). Each single zone (2) is con- 
sidered to be well mixed and homogeneous. Two zones can interact with each other 
via an interface that connects a port (p) of one zone with a port of the other. The flow 
of material and/or energy across each interface is assumed to be bidirectional. The 
transient behavior of a zone is described by a set of algebraic equations (AEs), ordi- 
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Structure of the general multizonal/CFD model (Bezzo et 

nary differential equations (ODES), partial differential equations (PDEs) or popula- 
tion balance equations (PBEs). The multizonal model uses detailed dynamic model- 
ing of all relevant physical phenomena, with the exception of fluid-flow, over a physi- 
cal domain divided into a relatively small number of zones. 

Mixing parameters and interzonal mass flow rates are determined by solving a 
detailed CFD model over the same physical domain. The CFD model focuses solely 
on fluid-flow prediction, trylng to do this as accurately as possible by dividing the 
space into a relatively large number of cells and solving the total mass and momen- 
tum conservation equations. Thus, the CFD model does not attempt to characterize 
intensive properties such as composition, temperature or particle size distribution. 
The transient behavior is ignored, based on the assumption that fluid-flow phenom- 
ena operates on a much shorter time scale than all other phenomena. 

The solution of the CFD model will require knowledge of the distribution of physi- 
cal properties (e.g., viscosity, density, compressibility factor, etc.) throughout the 
physical domain of interest. These properties are usually a function of the system- 
intensive properties and are computed within the multizonal model. 

The hybrid model is formed by the coupling of the multizonal model with the CFD 
mode, both representing the same spatial domain. The mapping between the zone 
and cell is achieved by means of appropriate disaggregation and aggregation proce- 
dure (Bezzo et al. 2003). 

The multizonal concept and CFD simulation is applied to bubble column reactors 
(Bauer and Eigenberger 1999, 2001) and to a bioreactor processing and mixing a 
highly viscous fluid (Bezzo et al. 2003). 
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2.8 
Discussion and Conclusion 

I 

In many chemical and biotechnical processes, partial derivatives result from a conse- 
quence of dynamic behaviors of mass, energy and momentum in space. The deriva- 
tive or algebraic terms describe fluid flow, physical phenomena and/or constitutive 
relations in the different phases. The description of convective and diffusive (disper- 
sive) fluxes introduces first and second order spatial derivatives. Mass exchanges 
between the fluid and stationary phases (e.g., reactions and adsorptions) are 
described by time-dependent differential equations. Equilibrium relations and physi- 
cal properties are described with algebraic equations (AEs). Thus process models are 
in general represented as partial differential equations (PDEs) coupled with algebraic 
equations (AEs), i.e., PDAEs with pertinent initial and boundary conditions. 

In this chapter, a large class of one-dimensional PDAE models is presented in Sec- 
tion 2.6 to introduce the most frequently applied numerical methods for their solu- 
tion (Sections 2.3-2.5). Finally, the complementary relations between process simu- 
lation and computational fluid dynamics most often employed to solve models with 
fully developed flow field are demonstrated (Section 2.7). 

A very important element for a correct discretization is to ensure that the discret- 
ized formulation (or numerical approximation) indeed converges to the continuous 
formulation (or physical model), as the discretization (or spatial and/or temporal 
stepsize) is refined. However, this issue contains several subtleties and is not dealt 
with in detail in this chapter. 

To improve accuracy and efficiency of numerical solutions, it is desirable to select 
appropriate numerical methods according to the physical models considered. The 
method of lines (MOL), which includes time integration and spatial discretization, is 
adequate to solve stiff problems such as diffusion-dominated models and fast reac- 
tion problems (Section 2.3). In the presence of steep moving fronts, the MOL incor- 
porating adaptive and moving mesh methods to capture large spatial variations pro- 
vides efficient solutions (Section 2.5). 

When there is a unique solution propagation path line, the method of characteris- 
tics (MOC) can be formulated. The MOC formulation can be solved in the frame- 
work of the MOL (Section 2.6.4). Since the solution moves along the propagation 
path line, numerical error and instability caused by approximation of the convection 
term is avoided. 

In solving convection-dominated models, the conservation element and solution 
element (CE/SE) method is appreciated for accuracy and efficiency due to a finite vol- 
ume approach and explicit time integration (Section 2.4.3). The CE/SE method pos- 
sesses low numerical dissipation error but a fine time stepsize is needed for stiff 
models. 

Most CFD packages use fully discrete methods (Section 2.4) rather than the MOL 
(Section 2.3) for solving conservation laws for fluid flow within an often complex 
multidimensional geometry. Combination of process simulation and CFD is useful 
to describe complex interactions between fluid hydrodynamics and other physical/ 
chemical phenomena (Section 2.7). 
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Although many efficient methods have emerged for solving PDEs/PDAEs, several 
challenges remain. The numerical method of PDEs with stiff nonlinear source terms 
is one of the currently active research areas (Ahmad and Berzins 2001; Hyman et al. 
2003), where mesh refinement by an efficient control of space-time errors is needed. 
Simulation methods for the processes considerably influenced by fluid hydrodynam- 
ics should be improved by combining CFD technologies. Hybrid dynamic systems 
that exhibit coupled continuous and discrete behaviors have also attracted much 
attention (Ma0 and Petzold 2002). When a reactant within a phase of a spatially dis- 
tributed reactor disappears and appears, special considerations are required for the 
hybrid system to be properly handled by the numerical methods. 
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