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Modeling Frameworks of Complex Separation Systems 

Michael C. Georgiadis, Eustathios 5. Kikkinides, and Margaritis Kostoglou 

4.1 
Introduction 

Process modeling has always been an important component of process design, from 
the conceptual synthesis of the process flow sheet, to the detailed design of special- 
ized processing equipment such as advanced reaction and separation devices, and 
the design of their control systems. Recent years have witnessed the traditional mod- 
eling approach being extended to the design of complex processes such as fuels cells, 
hybrid separation systems, distributed systems, etc. Inevitably the process modeling 
technology needed to fulfil the demands posed by such a diverse range of applica- 
tions on different scales of complexity (Marquardt et al. 2000; Pantelides 2001). Years 
ago at the Foundations of Computer Aided Process Design Conference 1994, Pant- 
elides and Britt (1995) presented a comprehensive review of some of the early devel- 
opments in the area of multipurpose process modeling environments, i.e., software 
tools aiming at supporting multiple activities based on a common model. Recently, 
Pantelides and Urban (2004) presented a critical review of the progress achieved over 
the past decade and identified the key challenges for the next decade (Pantelides and 
Urban 2004). 

In recent years, complex processing systems such as periodic pressure-swing 
adsorption processes, zeolite membranes and hybrid separations processes have 
been finding increasing applications as energy efficient alternatives to other tradi- 
tional separation techniques (such as cryogenic separation), and much progress has 
already achieved in improving their performance with respect to both the process 
economics and the attainable purity of the products (see, for instance, Ruthven et al. 
1994). The performance of these processes is critically affected by a number of 
design and operating parameters (design of the processes, duration of the various 
processing steps, operating levels at each step, etc.). Therefore, their accurate model- 
ing in a compact and robust way is a necessity so as to minimize the capital and oper- 
ating costs of the process while ensuring that minimum purity and throughput spec- 
ifications are met. 
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This chapter presents a review of modeling frameworks for complex processing 
systems with an emphasis not only on the models themselves but also on specialized 
solution techniques related to these models. More specifically, due to their increased 
industrial interest, a general modeling framework for adsorption-diffusion-based gas 
separation processes is presented in Section 4.2 with a focus on pressure-swing 
adsorption and membrane-based processes for gas separations. The subsequent sec- 
tions present a critical review of models and specialized solution techniques for crys- 
tallization and grinding processes. Finally, concluding remarks are drawn in the Sec- 
tion 4.4. 

I 

4.2 
A Modeling Framework for Adsorption-Diffusion-based Gas Separation Processes 

4.2.1 
General 

Gas separation is important in many industries ranging from the development of 
natural gas and oil resources to petrochemicals and foodstuffs. Moreover, separation 
and recovery from gaseous industrial effluents are issues of considerable environ- 
mental significance to a world-wide level and constitute a major problem demanding 
efficient solutions. It is generally accepted that the greatest energy consumption gen- 
erally derives from the separation sections of the processes, which may also account 
for in excess of 50% of the total capital costs. The principal gas separation technolo- 
gies include absorption, fractional distillation and adsorption-diffusion-based pro- 
cesses. The market leaders are absorption and distillation, both of which are capital 
and energy intensive. Adsorption-diffusion-based processes, compared with the 
other two processes, possess several advantages: 

0 low energy requirements, 
0 small, easily operated, low cost units, 
0 compactness and light weight, 
0 non-labor-intensive, 
0 modular design allowing easy expansion or operation at partial capacity. 

The selection of separation techniques depends primarily on the process scale. Distil- 
lation and, to a lesser extent, absorption exhibit large economies of scale. Conversely, 
adsorption-diffusion-based separation techniques are modular with relatively fixed 
capital/throughput ratios for a given separation and hence are favored for smaller 
scale operations (Yang 1987; Ruthven et al. 1994). 

The basic requirement in an adsorption separation process is the existence of an 
appropriate material (adsorbent) that preferentially adsorbs one component from a 
gas mixture. The selectivity of each adsorbent depends on a difference in adsorption 
equilibrium or kinetics (diffusion through the pore space of the adsorbent). All 
adsorption separation processes involve two major steps: (1) adsorption, during 
which the preferentially adsorbed species are captured from a feed mixture by the 
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adsorbent, and (2) desorption during which the adsorbed species are removed from 
the adsorbent in order to regenerate the material. It is evident that the emuent dur- 
ing the adsorption step corresponds to the light (weakly adsorbed) product of the sep- 
aration process (often called the raffhate), while the effluent during desorption cor- 
responds to the heavy (strongly adsorbed) product of the process. 

The need for process commercialization has lead to the use of cyclic or periodic 
adsorption separation processes where fxed beds packed with adsorbent operate at a 
certain sequence and are periodically regenerated by total or partial pressure 
decrease (pressure-swing adsorption (PSA), vacuum-swing adsorption (VSA)), or 
less often by temperature increase (temperature-swing adsorption (TSA)). Periodic 
adsorption processes are thus dynamic in nature and operate in a periodic mode hav- 
ing fued adsorption and desorption cycle times. The periodic excitation is achieved 
by regular periodic variation of the boundary conditions of certain properties of the 
gas mixture (temperature, pressure, concentration, velocity) at the two ends of each 
bed and the connectivity between two or more beds that operate in a certain 
sequence depending on the complexity of the process. After a certain number of 
cycles each bed approaches a so-called “cyclic steady state” in which the conditions at 
the beginning and at end of each cycle are identical to each other. Over the last two 
decades PSA-VSA processes have gained increasing commercial acceptance over 
TSA, which is preferred only if the preferentially adsorbed species is too strongly 
adsorbed imposing high vacuum demands for adequate adsorbent regeneration 
(Ruthven et al. 1994). 

An alternative technology employed in adsorption-desorption processes for gas 
separations is membrane technology. Membranes are thin films ranging from a few 
micrometers down to the order of several nanometers, which are made of organic 
(polymers) or inorganic materials and can be nonporous (dense) or porous. Inor- 
ganic membranes have considerable advantages in many gas separation processes, 
which are required to operate under demanding conditions, such as high tempera- 
tures and in corrosive environments. Recently there has been considerable interest 
in the potential of microporous zeolite membranes because of their regular and con- 
trolled pore size and geometry. Commercialization of membrane technology has 
prompted the growth of coherent, crack-free membrane films on top of planar or 
cylindrical macroporous supports (pore size of the order of 0.1-10 pm) that provide 
mechanical strength and do not significantly affect the separation performance of 
the membrane (Burggraaf 1996; Baker et al. 1997; Strathman 2001). Consequently a 
membrane unit or module is made using standard geometric arrangements (hollow 
fiber, spiral wound, etc.). The simple design of a membrane enables straightforward 
expansion of capacity compared to periodic adsorption processes. 

The concept of a membrane process is straightforward: the separation is achieved 
through preferential permeation of a species from a gas mixture through the mem- 
brane. The key parameters that determine membrane performance are the selectivity 
towards the gas to be separated and permeate flux or permeability. The former is 
related to product purity and recovery while the latter is related to throughput or pro- 
ductivity and determines the membrane area required. 
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4.2.2 
Process Description 

I 

4.2.2.1 
The PSA Processes 
A typical PSA-VSA process consists of a high pressure, adsorption step during which 
the gas is fed through the bed co-currently and separation is achieved followed by the 
recovery of the light product (raffinate), and a low pressure, desorption step, where 
the bed is regenerated (usually in counter-current fashion) with the possible simdta- 
neous recovery of the heavy product (extract). These two basic steps are intercon- 
nected through the necessary depressurization (blow down) and pressurization steps 
that are employed either co-currently or counter-currently in the respective beds, 
depending on the specific needs of each particular application. These four basic steps 
constitute a single PSA or VSA cycle, which is repeated until cyclic steady conditions 
are achieved. Note that the desorption step is achieved by purging the bed with a frac- 
tion of the light product at low pressure (PSA) or by evacuation of the bed using 
pumps (VSA). The former method is favored in terms of energy-savings since the 
use of a pump is avoided, but on the other hand it produces a light product with sig- 
nificantly reduced recovery. The basic four-step cycle described above requires the 
use of only two beds and is shown schematically in Fig. 4.1. In practice more beds 

Feed Blowdown Purge Pressurization 

Bed1 

II -1 
Purge Pressurization Feed Blowdown 

Bed 2 

Figure 4.1 A typical four-step 
two-bed (Skarstrom) PSA cycle 
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are normally employed in typical industrial applications, based once again on the 
specifications of each application and the economics of the process. 

The performance of a PSA process is assessed on the basis of several important out- 
put quantities. These are, the (light) product purity collected during the adsorption 
step, the (light) product recovery defined as the amount of light product collected in 
the adsorption step minus the amount of product used to purge the bed in the desorp 
tion step normalized by the amount of the light product in the feed. If this amount is 
normalized on the basis of the amount of adsorbent used in the bed then one defines 
the (light) product productivity per unit time. Although in most cases PSA processes 
involve the recovery of the light product in a gas mixture there have been a few theoret- 
ical and experimental studies in the literature that deal with the additional recovery of 
the heavy product from the exhaust, during the blow down and purge steps (Ritter and 
Yang 1989; Kikkinides and Yang 1991, 1993; Kikkinides et al. 1993, 1995). 

The performance of the PSA process is critically affected by a number of design 
and operating parameters. The first category includes the size of the bed(s) in the 
process and the physical characteristics (e.g., particle size) of the adsorbent. On the 
other hand, important operating parameters include the duration of the various steps 
and the overall cycle and the pressure and/or temperature levels in each step. The 
process designer is therefore confronted with an optimization problem typically aim- 
ing to minimize the capital and/or operating costs of the process while ensuring that 
minimum purity and throughput specifications are met. In view of the large number 
of degrees of freedom, a mathematical programming approach to the optimization of 
PSA appears to be highly desirable, but this has to address the intrinsic complexity 
of the processes being studied and in particular the complications arising from their 
periodic nature. To this end, the optimization of periodic PSA systems has received 
some attention by the process systems engineering community. Smith and Wester- 
berg (1991) presented a mixed-integer nonlinear program (MINLP) to determine the 
optimal design of PSA separation systems (operating configuration, size and operat- 
ing conditions) using simple models and simple time-integrated balances to describe 
the initial and final concentrations and temperature profiles for each stage. The work 
of Nilchan and Pantelides (1998) is a key contribution to the optimization of periodic 
adsorption processes. They presented a rigorous mathematical programming-based 
approach to the optimization of general periodic adsorption processes. Detailed 
dynamic models taking account of the spatial variations of properties within the 
adsorption bed(s) are used. A new numerical method was proposed for the solution 
of the optimization problem and the calculation of the cyclic steady state, employing 
simultaneous discretization of both spatial and temporal variations to handle the 
complex boundary conditions. The approach is capable of handling interactions 
between multiple beds. Bechaud et al. (2001) investigated stability during cyclic gas 
flow with dispersion and adsorption in a porous column, as encountered during 
PSA. KO et al. (2003) presented a mathematical model and optimization procedure of 
a PSA process using zeolite 13X as an adsorbent. Serbezov and Sotirchos (2003) 
investigated a semianalyhcal solution of the local equilibrium PSA model for multi- 
component mixtures. The solution involves simple algebraic and ordinary differen- 
tial equations and can provide the basis for quick evaluation of different design alter- 
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natives and optimization studies. Recently, Cmz et al. (2004) presented a strategy for 
the evaluation, design, and optimization of cyclic adsorption processes. Jiang et al. 
(2003) developed a direct determination approach using a Newton-based method to 
achieve fast and robust convergence to cyclic steady state of PSA processes. An efi-  
cient, flexible and reliable optimization strategy that incorporates realistic detailed 
process models and rigorous solution procedures was investigated. 

I 

4.2.2.2 
Membrane Processes for Gas Separations 
Contrary to the PSA-VSA process where there is a certain degree of complexity in 
synchronizing the cyclic operation of two or more fured beds, the case of a membrane 
separation process is much simpler. In the latter case the membrane unit has a sim- 
ple geometrical arrangement operating at steady state conditions. In this arrange- 
ment there are two main compartments: the retentate at high pressure where the 
feed is introduced, and the permeate at low pressure where the product is collected. 
The two compartments are separated by the membrane layer, which controls the sep- 
aration performance of the process and the production rate of the product. Since the 
driving force for permeation is the difference between the partial pressures of the 
product in the two compartments, it is obvious that there will be a back-pressure 
effect that deteriorates the separation performance of the membrane. In order to 
reduce the back-diffusion effect one needs to reduce the partial pressure of the prod- 
uct in the permeate side as much as possible. This is once again achieved by either 
evacuating the permeate section with the use of a pump or by sweeping the product 
away with the use of a sweep or purge inert gas that lowers the partial pressure of the 
permeate product. In most commercial applications the sweeping is done counter- 
currently to the feeding achieving the maximum possible separation performance for 
the membrane unit. A typical single-stage membrane unit for separation is shown in 
Fig. 4.2. Again practice has prompted the use of more complex configurations using 
recycle streams or membrane cascades depending on the specifications and the eco- 
nomics of each application. 

membrane Retentate 

Sweep Permeate 

(a) Co-current operation 

Feed d F b  Retentate 

Retentate Sweep 

(b) Counter-current operation 

Figure 4.2 Single stage (a) co-current 
and (b) counter-current membrane pro- 
cesses 
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The optimization of membrane-based gas separation systems has received limited 
attention. This can be mainly attributed to the complexity of the underlying mathe- 
matical models. Tessendorf et al. (1999) presented various aspects of modeling, sim- 
ulation, design and optimization of theses processes. A membrane module model 
was developed capable of handling multicomponent mixtures and considering 
effects of pressure drop and energy balance. The module has implemented and 
tested in an external process simulators. Kookos (2002) proposed a superstructure 
representation of the membrane-based gas separation network along with a targeting 
approach to the synthesis of membrane networks. Using simple models, the mem- 
brane material is optimized together with the structure and the parameters of the 
network. Vareltzis et al. (2003) presented a mathematical programming approach to 
optimize complex structures of zeolite membranes using detailed models. Various 
tradeoffs between different optimization objectives were systematically revealed. The 
impact of detailed modeling on the optimization results was investigated through a 
comparison with corresponding results obtained using simple models. 

4.2.3 
A General Model of Adsorption-Diffusion-based Gas Separation Processes 

In modeling the separation performance of each process we will assume for the sake 
of generality that the same material is used to develop the microporous adsorbent par- 
ticles and the membrane layer. Furthermore, we will assume that essentially the same 
material is used to make the macroporous binder of the adsorbent particles and the 
macroporous support on top of which the thin membrane layer is formed. This 
assumption will enable us to uncouple any effects that depend on the physicochemical 
characteristics of the materials used in the two separation processes from the effect of 
the inherent process characteristics of each process. Of course this assumption is often 
difficult to hold in practice since there are materials that are easier to make in the form 
of adsorbent particles than coherent membrane layers and vice versa. 

Mass Balance in the Fixed Bed and/or the Membrane Compartments 
For the sake of simplicity we will consider 1D transport along the axial direction 
neglecting any radial variations. This assumption is seen to be valid for the majority 
of theoretical and experimental cases found in the open literature. Thus, the mass 
balance for component i in the interstitial fluid is given by the following equation: 

For i = 1, N where N is the total number of species. Alternatively it is equivalent to 
write the above equation for the first N -  1 species and include an overall material 
balance. 

The total concentration of the gas mixture C is related to the temperature T and 
total pressure P from an equation through an equation of state, which in most cases 
is represented by the ideal gas law: 
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P 

RT 

N 
c = c c j = -  

j=1 

The flux term kJi(Ci - CRPi) in the above equations accounts for interparticle (film) 
diffusion in the gas phase of component i, transported from the interstitial fluid to 
the surface of the adsorbent particles or the membrane layer. 

For a membrane process, Eqs. (1) and (2) hold for the case of gas transport through 
a Ci 

the retentate and permeate units by simply neglecting the accumulation term, - 
at ’ 

due to the steady state operation of the process, and by putting &b = 1 since in this 
case the compartments are completely empty. Also in this case the values of the mass 
transfer coefficients D L , ~  and k,-i will be different for the same reason. 

Equilibrium Adsorption Behavior at the Particle or Membrane Surface 
In many cases the adsorption equilibrium behavior of a multicomponent gas mix- 
ture at the surface of the adsorbent is adequately represented by the Langmuir iso- 
therm: 

j=1 

The advantage of the Langmuir equation is that it is relatively simple and can be eas- 
ily inverted and solved for the gas phase concentrations, while the parameters qyt 
and bi can be evaluated from the respective simple component equilibrium isotherm 
data. The main drawback of the above equation is that is predicts a constant separa- 
tion factor an assumption that is often violated especially for the case of nonideal gas 
mixtures (Krishna 2001; Karger and Ruthven 1992). In the latter case more involved 
modes based on the ideal adsorption solution theory (IAST) should be employed. 

Mass Balance in the Microporous Particle or Membrane Surface 

Where Ni is the flux of component i transported through the pore space of the parti- 
cle. 

It is straightforward to show that: 

Where 

mulation terms, due to steady state operation. 

denotes the volume-averaged adsorbed phase concentration. 
For a membrane process, Eqs. (4) and (5) hold after neglecting the respective accu- 
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Evaluation of the Flux Terms 
Evaluation of the flux terms Ni in Eqs. (4) and (5) requires the identification and 
description of the major transport mechanisms that take place in the pore space of 
the adsorbent particles. Transport in the pores can take place through various mech- 
anisms, depending on the strength of the interaction of the gas molecules of one spe- 
cies with the molecules of the other species and with the pore walls, and by the rela- 
tive magnitude of three different length scales characterizing, the size of the mole- 
cules, the distance between the pore walls and the fluid density in the pores, respec- 
tively. In many cases the adsorbent particle consists of two interpenetrating networks 
of pores, one representing the pore structure of the particle crystallites (e.g., zeolites, 
silica gel, etc.) and consists of micropores (0.1-1.0 nm) according to the IUPAC clas- 
sification and another one that represents the structure of the binder or support and 
consists ofmeso- (1-50 nm) and macropores (50-5000 nm) in the IUPAC classifica- 
tion (Gregg and Sing 1982). It is evident that different mass transfer mechanisms 
prevail at each pore network, with the micropores providing the necessary features 
for gas separation by selective diffusion through the micropores and/or adsorption at 
pore surface. The effect of the binder or support, on the other hand, is an additional 
resistance to the mass transfer of the species with no selective features in either 
adsorption or diffusion through the macropores of the material. Thus it is desirable 
to minimize as much as possible the effect of transport through the support in order 
to achieve a better separation performance. Fortunately, in many cases the resistance 
to mass transport through the micropores of the crystallites in much stronger com- 
pared to that through the support and thus the latter can be either completely 
ignored or approximated through a linear driving force expression assuming fast dif- 
fusion or permeation kinetics in the pore space of the support. In this case the addi- 
tional diffusion resistance is incorporated into the film diffusion coefficient kJi. 

The generalized Maxwell-Stefan (GMS) equations provide an adequate basis for 
the accurate description of multicomponent mass transfer in porous media with 
minimum unary data (fiishna and Wesselingh 1997; Kapteijn et al. 2000; Krishna 
2001; Karger and Ruthven 1992). The basis of the Maxwell-Stefan theory is that the 
driving force for movement, acting on a species, is balanced by the friction experi- 
enced by that species and each friction contribution is considered to be proportional 
to the difference in the corresponding diffusion velocities. The application of this 
theory on microporous or surface diffusion yields: 

e j ~ i  -eiiNj N~ +- qTtqTtD.. qT'Di 
8; 

--vjLi = c 
j=l tr 

R .  T 

The driving force for diffusion is the chemical potential gradient (Vp i ) .  Parameters 
DV and Di are the Maxwell-Stefan surface diffusivities and represent inverse friction 
factors between molecules and the solid surface, respectively. In of a binary mixture 
with adsorption equilibrium behavior represented by the Langmuir isotherm and 
after some algebraic manipulations the surface flux Ni is given by the following 
expression: 



146 4 Modeling Frameworks ofCornplex Separation Systems I 

Note that if we assume DQ + 00 the above equation becomes: 

[(I - ej)]vei + eivej 
(1 - ei - ej) 

N. - -N. 
1 - 10 

The above equations correspond to the GMS (DQ + m) model, which basically 
assumes negligible difhsional adsorbate-adsorbate interactions and has been fre- 
quently employed to describe diffusion of binary mixtures in zeolites (Ruthven et al. 
1994). 

Finally, in the limit of dilute systems (4; << l), Eq. (8) becomes: 

Ni = --NioVtli (9) 

which is the classic Fick's law applied in the microporous adsorbent. 
For the case of fast diffusion kinetics in the pore space of the microporous particle 

it has been shown that the adsorbed phase concentration has a parabolic profile in 
space. Combining this assumption with Eqs. (3), (5), and (7) we come up with the lin- 
ear driving force approximation (LDF) often employed to describe diffusion kinetics 
in the adsorbed phase: 

Heat Effects 
The exothermic nature of the adsorption process can result, under certain conditions 
and system sizes, in significant temperature variations resulting in the heating and 
freezing of the bed during adsorption and desorption, respectively. Considering 1 D  
adiabatic heat transport along the axis and assuming negligible variation between the 
temperature in the solid and fluid phase the following heat balance equation holds in 
the bed: 

Where .p8 and cpa are the total density and heat capacity of the mixture in the gas 
phase and .pS and c ~ , ~ ,  are the density and heat capacity of the adsorbent. Note that sev- 
eral alternative heat balance models with different levels of complexity can be devel- 
oped, depending on the available degree of information for the above quantities. 

For the case of a membrane unit the heat effects are in most cases negligible and 
the process can be safely considered as an isothermal one. In the rest of the manu- 
script and without loss of generality we will consider isothermal operation in order to 



4.2 A Modeling Frameworkfor Adsorption-Diflirsion-based Gas Separation Processes I 147 

have a better comparison between the two types of processes. Inclusion of the heat 
balance is straightforward and only adds more unknown parameters without signifi- 
cant changes in the solution approach during the simulation and optimization proce- 
dures. 

Pressure Drop Effects 
In many applications the use of long beds and/or small adsorbent particles can 
induce a pressure drop of appreciable magnitude that results in certain changes in 
the propagation of the concentration and temperature waves through the bed. The 
pressure drop along the axial direction of the adsorption bed is usually determined 
by the Ergun equation: 

Where p is the viscosity of the gas mixture and dp is the diameter of the adsorbent 
particles. 

For the case of a membrane unit the simpler Hagen-Poiseuille equation for paral- 
lel laminar flow is used to calculate the pressure drop through the axial direction of 
each section (Pan 1983, Giglia et al. 1991). Nevertheless, the pressure drop effects are 
many cases negligible and can be safely ignored. 

Boundary Conditions 
The appropriate boundary conditions for the solution of the problem are described 
by the following set of equations: 

1. Adsorption step or retentate compartment 

a ci 
az 

u(0) = Uf 

- = o  a t z =  L 

a t z = O  

(1 3a) - (1 3d) 

P(0)  = PH a t z = O  

2. Desorption step or permeate compartment 

a ci 
az 
- = o  a t z = O  

(14a) - (14d) 
u(L) = up a t z =  L 

P ( L )  = PL a t z =  L 
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3. Blow down step 
I 

a ci 
az 

- = o  

u(L) = 0 

4. Pressurization step 

a ci - = o  
az 

u(L) = 0 

a t z = O a n d z =  L 

a t z =  L 

a t z = O  

a t z = O  

a t z =  L 

a t z =  L 

a t z = O  

(15a) - (15d) 

(16a)-(16d) 

Note that the pressure histories at the feed end of bed during the pressurization and 
blow down steps, respectively, are known functions of time. 

4.3 
Modeling of PSA Processes in gPROMS 

The advanced distributed process modeling capabilities of gPROMS (trademark of 
Process Systems Enterprise Ltd.) permit a detailed description of the complex phe- 
nomena taking place inside adsorption columns. A major advantage of gPROMS is 
its ability to describe detailed operating procedures and to handle discontinuities 
arising from major changes in the structure of the underlying models. In the context 
of PSA processes this is particular important since the boundary conditions depends 
on the operating stage. Furthermore, the entire operation involves successive tran- 
sitions between the various operating stages thus introducing extra discontinuities 
in the model. For the simple case of one PSA column but with no loss of gene- 
rally boundary conditions can be efficiently implemented in gPROMS as seen in 
Fig. 4.3. 

The implementation of the PSA operating schedule is also a complex simula- 
tion task given the transition between the various processing steps. Figure 4.4 illus- 
trates the process scheduling task for a specified number of cycles (one PSA 
column). 
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;ELECTOR 
OperationMode AS (Pressurization, Depressurisation) 

IOUNDARY 

:At the feed end 
:ASE OperationMode OF 

#Pressurization Step 

WHEN Pressurization 
FOR i:=l TO NoComp DO 
Heed * Yfeed(i) = C(i,O) * R * Tfeed; 
END #FOR 

P(0) = Heed; 

#Depressurisation Step 

WHEN Depressurisation 

FOR i:=l TO NoComp DO 
PARTIAL(C(i,O), Axial) = 0; 
END #FOR 

P(0) = h a s t e ;  
:ND # Case 

At the product end 
Pressurization I Depressurisation step 

'ARTlAL(C, BedLength), Axial) = 0; 
J(BedLength) = (Qvol*Patm) / (BedArea*P(BedLength)); 

Figure 4.3 Boundary 
conditions of  a single PSA 
column in gPROMS 

4.4 
Efficient Modeling of Crystallization Processes 

4.4.1 
General 

Crystallization from solution is one of the oldest and economically most important 
industrial separation processes. It is applied both as a large-scale continuous process 
for the production of inorganic (e.g., ammonium sulphate) and organic (e.g., adipic 
acid) material and as small-scale batch processes for the production of high purity 
pharmaceuticals or fine chemicals (e.g., aspartame). In order to optimize and control 
the crystallization process, reliable mathematical models are necessary. Detailed 
modeling of the crystallization process requires knowledge of phenomena on a 
microscopic as well as on a macroscopic scale. On the microscopic scale the basic 
phenomena are the primary (heterogeneous or homogeneous) nucleation, secondary 
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SCHEDULE 

SEQUENCE 
Cycle := 1 ; 

WHILE Cycle <= NoCycles DO 

SEQUENCE 

CONTINUE FOR CycleTirne/2 

SWITCH 

END # Switch 
Column.OpexationMode := Co1umn.Depressurisation ; 

CONTINUE FOR CycleTime/2 

SWITCH 
Column.OperationMode := ColumnPressurisation ; 
END # Switch 

RESET 
# Oxygen product purity 
Column.Purity := OLD(Column.Mgroduct(2)) I SIGMA(OLD(Co1umn.M-product)) ; 
# Oxygen product recovery 
Column.Recovery := OLD(Column.M-product(2)) / OLD(Co1umn.M-fed(2)) ; 

END # Reset 
Cycle := Cycle + 1 ; 
REINITIAL 

WITH 
Co1umn.M-fed, Co1umn.M-product, Co1umn.M-waste 

Co1umn.M-fed = 1E-6 ; 
Co1umn.M-product = 1E-6 ; 
Co1urnn.M-waste = 1E-6 ; 

END # Reinitial 

END # Sequence 

END #While 
END # Sequence 

END #Task OperateColum 

Figure 4.4 Operating schedule of  a single PSA column in gPROMS 

nucleation, crystal growth, coagulation between crystals, and crystal fragmentation. 
A great variety of models with different degrees of complexity have been presented in 
the literature for the above processes. On the macroscale, the macromixing in the 
crystallizer is very important. Coagulation and fragmentation phenomena depend on 
local energy dissipation, which can be varied by orders of magnitude in a stirred 
tank. 
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The modeling of crystallization processes poses special problems not encountered 
in more conventional process operations. The state of such systems is usually charac- 
terized by particle size distribution functions instead of, or in addition to, standard 
point properties such as concentrations. Moreover, the steady state and dynamic 
behavior of these systems is described by population balance equations rather than 
simple mass balances. Finally, the physical properties of solids encountered in crys- 
tallization processes are generally much less well characterized than those of fluids. 

Traditionally, most process modeling and simulation tools have been aimed pri- 
marily at the mainstream chemical and petrochemical industry. Commercial steady 
state simulation packages have now reached a high degree of sophistication, encom- 
passing extensive libraries of unit operation models, as well as large compilations of 
physical property data and calculation techniques. However, given the differences 
outlined above, it is hardly surprising that the area of crystallization and grinding 
processes has not been served well by tools now used routinely by process engineers 
in other areas. It has been long realized that even with relatively sophisticated gen- 
eral process modeling tools, the modeling and simulation of particulate processes 
still presents serious difficulties. One key problem is the mathematical complexity of 
the models: population balances invariably lead to partial differential equations, and 
these are often coupled with other equations describing the evolution of properties in 
the fluid surrounding the particles through integral terms. This results in systems of 
integral-partial differential equations, which may be very difficult to solve. In fact 
most current equation-oriented modeling frameworks cannot even describe directly 
such distributed parameter systems (Pantelides and Oh 1996). To this end the rest of 
this part of the chapter will focus on presenting state-of-the-art techniques for reduc- 
ing the modeling complexity of crystallization and grinding processes, without any 
loss of accuracy and generality, to a level where standard modeling tools can be used 
for simulation and optimization purposes. 

4.4.2 
A Comprehensive Modeling Framework of Crystallization Processes 

A generally accepted concept for the modeling of dispersed phase systems is the pop- 
ulation balance approach introduced for the particular problem of crystallization by 
Randolph and Larson (1971). Each crystal in the system is described by a vector of 
properties x (internal coordinates) and its position in the crystallizer r (external coor- 
dinates). A very detailed model of the process would require as much internal coordi- 
nates as possible (which can be supported by experimental findings) and must be 
spatially distributed. The most extensively used crystallization model until today is 
based on a spatially homogeneous population balance (zero external variables) with 
one internal variable (crystal volume or linear size). Recently, several efforts have 
been made towards an increase of the number of internal or external variables to 
describe more accurately the process. Here, this relatively simple model will serve as 
the basis for a comprehensive discussion of the difficulties, existing solutions tech- 
niques and possible extensions of current crystallization process models. 
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Apart for the common variables used for modeling of any chemical reactor (tem- 
perature, concentrations, etc.) an additional variable used for the crystallizer is the 
crystal size distribution (CSD), which is described by the differential crystal volume 
distribution functionf(x, t) where x is the crystal volume andJx, t)dx is the number 
concentration of crystals with volumes between x and x + dx. The evolution of the 
CSD (f(x, t)) is determined by the following population balance equation: 

I 

where the vector c contains composition and temperature of the liquid phase and is 
used to denote dependence of the undergoing phenomena on this. The function G(x ,  
c) is the volumetric growth rate of a crystal with volume x. The function K(x,  y; c) is 
the so-called coagulation kernel defined such that the expression K ( x ,  y;  c)f(x,  t ) f ( y ,  
t)dxdy is the rate of coagulation events per unit fluid of volume between a crystal 
with volume in [x ,  x + dx] and a crystal with volume in [y, y + dy]. This is in general 
a symmetric function with respect to x and y. 

The function b(x)  is the fragmentation frequency for a crystal of volume x while 
B(c) is the nucleation rate (i.e., the rate of generation of nucleus which are crystals 
with size a(c)).  The function p ( x .  y) is called the fragmentation kernel and is such 
that p ( x ,  y)dx is the probability for having a fragment of volume in [x,  x + dx] as a 
result of fragmentation of a crystal with volume y. Finally z is the residence time in 
the system and%(%) is the inlet particle size distribution function. The initial condi- 
tion for the solution of the Eq. (17) isf(x, 0) =fo(x).  

The above equation is rather comprehensive in the sense that includes processes 
with different features and different computational requirements (continuous versus 
batch system, precipitation versus crystallization). For the sake of clarity of our dis- 
cussion it would be useful to discriminate between the process of crystallization 
(Mullin 1993) and precipitation (Sohnel and Garside 1992). Although the physical 
phenomena are the same (precipitation is a type of crystallization) the features exhib- 
iting by the two processes (e.g., crystal sizes, supersaturation, etc.) are quite different 
requiring a different modeling approach. From the practical point of view precipita- 
tion is the crystallization of sparingly soluble substances (mainly salts). The mass of 
the active species in precipitation is small and thus the final volume fraction of the 
solid phase is also small and the crystal radius doe not usually exceed 1 pm. On the 
other hand in crystallization the mass fraction of the solid phase can be large and the 
size of crystals is of the order of millimeters. We can now focus our attention on the 
modeling of the different phenomena described in generic Eq. (17). 

Generally, the nucleation rate is the sum of the primary nucleation rate (given by 
the theory of homogeneous nucleation) and the secondary nucleation rate (produc- 
tion of small crystals from the fragmentation of the large ones) (Dirksen and Ring 
1991). In case of precipitation there is no crystal fragmentation and secondary nucle- 
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ation so B(c) ,  a(c) can be directly computed from the homogeneous nucleation the- 
ory (a slight modification is needed for heterogeneous nucleation which is usually 
the case). In the case of crystallization, the nucleus size is extremely small in compar- 
ison with the mean crystal size in the system so it can be assumed equal to zero and 
the nucleation term in Eq. (17) can be replaced by the following boundary condition 
on particle size distribution (PSD). 

From the mathematical point of view this is an important simplification which weak- 
ens the problem of multiple crystal size scales existing in Eq. (17). Although the sec- 
ondary nucleation can be rigorously simulated using an appropriate fragmentation 
kernel (of attrition type), it is more convenient to be included in B(c) as a term pro- 
portional to total solid mass concentration (Mahoney and Ramkrishna 2003). 

The coagulation rate is the product of the collision frequency and the collision effi- 
ciency. For the case of precipitation the collision between the crystals is due to their 
Brownian motion and the carrier fluid flow field. The collision efficiency is the result 
of the microscopic interaction between the crystals (given by the DLVO theory) and 
does not depend on concentration c. Rigorous models based on first principles can 
be derived for the above phenomena (Elimelech et al. 1995). On the other hand, in 
case of crystallization the coagulation phenomenon is included in a purely phenome- 
nological manner to achieve a fit of the model to the experimental data. The collision 
rate is usually assumed constant and the coagulation efficiency is associated with the 
creation of solid bridges between the collided particles so it depends on growth rate 
and thus on c. 

The growth rate for the case of precipitation is computed rigorously taking into 
account the bulk diffusion and surface reaction steps for each substance participat- 
ing to the crystal growth (e.g., Kostoglou and Karabelas 1998). The growth rate used 
for the case of crystallization is of empirical nature and several expressions can be 
found in the literature (Abegg et al. 1968). In many cases a surface reaction domi- 
nated growth rate is assumed in combination with a diffusive (in crystal size coordi- 
nate) term to account for the stochastic nature of the crystal growth phenomenon 
(Tavare 1985). Regarding the fragmentation kernel and rate several empirical func- 
tions have been used for crystallization modeling, whereas the phenomenon does 
not exist in precipitation processes. 

Several attempts to increase the number of internal coordinates of-the model h r  a 
better description of the crystals have been made. To mention but a few are the use 
of the intrinsic crystal growth rate as the second internal coordinate (Janse and de 
Jong 1976) and the case of different growth rates for different faces of the crystal (Ma 
et al. 2003). The heterogeneity in the crystallizer may be very important and must be 
modeled in some way. In case of crystallization (usually a continuous process) the 
compartmental modeling is the appropriate compromise between accuracy and com- 
putational efficiency. The crystallizer is approximated with a few well-mixed regions 
interconnected with material streams. The flow rate of the streams can be found by 
CFD calculations. For the case of crystallization there may be two-way coupling of 
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the CFD since the extent of crystallization influences the flow properties of the fluid. 
In case of precipitation (usually a batch process) a one-way coupling is always 
enough (due to small solid mass fraction). The nature of the process is such that the 
compartmental model is not appropriate and a fine grid, similar to that used by the 
CFD module is needed. So the direct implementation of the Eq. (18) in a CFD frame- 
work is necessary (Seckler et al. 1995). Furthermore, in the presence of strong nucle- 
ation the extremely strong nonlinearity of the nucleation term makes the usual aver- 
aging procedures for turbulent flows inapplicable, calling for the use of the complete 
probability density function (PDF) approach (Marchisio et al. 2002). 

It is worth noting the existence of a user-friendly software package (PARSIVAL 
particle size evaluation) designed for solving general integral-differential equations 
with one internal and zero external variables (Wulkov et al. 2001). The main applica- 
tion of the package is the simulation of crystallization processes. The algorithm 
behind the package is fully adaptive in both particle size and time coordinates. The 
size discretization is based on the Galerkin h-p method and the time discretization is 
of Rothe type. The package is not capable to handle control aspects. 

I 

4.4.3 
Efficient Solution Approaches 

In the general case Eq. (17) does not have an analytical solution and therefore it must 
be solved numerically. Its numerical solution is by no means a trivial task since the 
problem combines the following features: 

0 an extraordinarily wide range for the independent variable x (particle volume) 
since the particle radius can be from the order of nanometers (nucleus) to order of 
millimeters; 

0 highly localized in the x variable domain nucleus size distribution imposing diffi- 
culties to the use of polynomials for approximation of PSD; 

0 convolution type integral and the associated nonlinearity imposed by the coagula- 
tion term; 

0 The hyperbolic form of the growth term and its ability to move discontinuities in 
the x domain makes its discretization difficult. 

In the literature there are well known techniques to face each of the above problems 
but their simultaneous consideration is still a very challenging task. 

The conventional finite difference discretization it is not even capable to conserve 
integral properties of the system (e.g.. total particulate mass), which are of para- 
mount importance for crystallization application so special techniques must be 
developed. 

In general the available methods for solving Eq. (17) can be divided into the follow- 
ing six categories: (1) analytical solutions, (2) finite element methods, (3) higher 
order methods, (4) Monte Carlo methods, (5) sectional (zero order) methods, and 
(6) methods of moments. A brief overview of each of these methods is presented 
below. 
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AnalFcal solutions of Eq. (17) have been derived for certain simple forms of the 
growth rate (constant and linear) and coagulation kernel (constant and sum) certain 
combinations of the phenomena described by Eq. (17) and batch or steady state con- 
dltions. A special reference will be made in the work of Ramabhadran et al. (1976) 
deriving an analytical solution for combined nucleation growth and coagulation in 
batch conditions, and the work of Saleeby and Lee (1995) for the case of nucleation, 
growth and stochastic crystal growth dispersion in case of Continuous stired Reac- 
tors (CSTR). Although the value of analytical solutions for the simulation of realistic 
crystallization processes is limited, they have been extensively used as tools for the 
assessment of numerical techniques for the solution of Eq. (17). 

The finite element approach (for x discretization) to the solution of Eq. (17) is not 
a usual choice but some particular versions of the technique have been used over the 
last years. In particular Gelbard and Seinfeld (1978) used collocation on finite ele- 
ments using third order polynomials with continuous first derivatives along the ele- 
ment boundaries, as basis functions. Tsang and Huang (1990) used Petrov-Galerkin 
finite elements to account for the hyperbolic character of the growth term. More 
recently, Nicmanis and Hounslow (1998) used a finite element Galerkin approach 
with Lagrangian third order polynomials for the steady state case. Rigopoulos and 
Jones (2003) developed a collocation finite element technique using linear basis 
functions. Finally, Mahoney and Ramkrishna (2002) used the Galerkin finite ele- 
ment techniques with linear basis functions to solve the linear size-based edition of 
the Eq. (17). Special care is taken to capture and follow discontinuities appearing in 
the PSD. In all the above approaches a geometric grid based on particle volume is 
used, except in the final one where the grid is linear and based on particle diameter. 

The higher order methods imply the global approximation of the PSD with a poly- 
nomial multiplied by a proper function. Lacatos et al. (1984) used a collocation proce- 
dure employing Laguerre polynomials. Recently, Hamilton et al. (2003) developed a 
collocation method based on Hermite polynomials defined on a grid moving in order 
to fulfill some integral conditions. Also collocation with wavelets as basis functions 
has been used. The higher order methods offer very high accuracy (on the cost of 
large computational effort and complex code implementation) but they have the 
drawback of requiring special treatment of singularities (e.g., a monodisperse initial 
distribution). 

The Monte Carlo method has a long history as a tool for the simulation of the par- 
ticulate processes. Van Peborgh Gooch and Hounslow (1996), developed a stochastic 
approach for the particular process of crystallization with an arbitrary number of 
internal variables. Falope et al. (2001) also used another variant of the Monte Carlo 
method for crystallization with two internal variables. The significance of the Monte 
Carlo method increases sharply as the number of internal variables increases mak- 
ing the solution of the deterministic problem from difficult to impossible. On the 
other hand there is not a simple and efficient way to use the Monte Carlo method for 
the spatially distributed case. 

The sectional methods and the methods of moments are capable to transform Eq. 
(17) in a conventional ODE-DAE system that can be readily solved by existing inte- 
grators, and can be easily incorporated into existing modeling tools for flow sheet 
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simulation including crystallization processes. Due to their practical importance 
both methods will be discussed in further details. 

I 

4.4.3.1 
Sectional Methods 
According to the sectional methods (equivalent to finite volumes) the particle volume 
coordinate is partitioned using a number of points vi (i = 0,1,2 ... L). Particles with 
volume between vi-l and vL belongs to the ith class and their number concentration 

is denoted as Ni i.e., If(., t)&) . Until the 1990s the most widely used schemes for 

the discretization of Eq. (17) were those of Gelbard et al. (1980) and Gelbard and 
Seinfeld (1980). The corresponding codes, although developed for aerosol processes, 
were extensively applied to crystallization processes. As regards to the coagulation 
terms, the particle number-based approach of the discretization scheme does not 
conserve the total particle mass and the grid must be geometric with ratio larger than 
2 for an efficient implementation. To overcome this deficiency Hounslow et al. 
(1988) developed a discretization method for crystallization applications conserving 
both particle number and mass having the disadvantage that the only choice for the 
grid is geometric with ratio 2. The method of Hounslow et al. (1988) was extended 
for a geometric grid with ratio the qth root of 2 ( q  is an integer) permitting grid densi- 
fication (Litster et al. 1995). The most general discretization scheme is that of Kumar 
and Ramkrishna (1996), which conserves also particle number and mass but admits 
a completely arbitrary grid. 

The crystal growth term in Eq. (17) makes it of hyperbolic form. The inability of 
fxed grid (Eulerian) discretization to handle properly this type of problem is well 
known. The direct finite volume discretization does not conserve particle mass. Kos- 
toglou and Karabelas (1995) developed first and second order schemes that conserves 
particle number and mass simultaneously. Their first order scheme (of upwind type) 
is unconditionally stable but suffers from numerical diffusion. The second order 
scheme shows much less diffusion but numerical dispersion appears (source for 
instability). An efficient treatment of the crystal growth terms requires a grid moving 
along the characteristics of the hyperbolic Eq. (17) (Lagrangian approach). The imple- 
mentation of the moving grid approach is easy in the absence of coagulation and 
fragmentation (Gelbard 1990) but for the numerical solution of the complete Eq. (17) 
the moving grid must be compatible with the discretization of the coagulation or 
fragmentation terms. This compatibility can be achieved only using the Kumar and 
Ramkrishna (1996) discretization scheme. Their method made for the first time pos- 
sible the use of a sectional approach with moving grid for the solution of Eq. (17) 
(Kumar and Ramkrishna 1997). The generation of new particles by nucleation makes 
necessary the addition of more and more sections during a particular simulation. 
This is not a desirable feature for any kind of numerical algorithm. The advantage of 
having a futed number of ODES instead of a variable (possibly uncontrolled one) is 
very important and it is strongly believed that a fxed grid (Eulerian) approach is pref- 
erable than the Lagrangian one. The increase of computing efficiency made possible 
the use of a large number of sections (few hundredths versus few decades as seen ten 

( ,, 
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years ago) leading to a great reduction of the numerical difision error of the Eule- 
rian methods. The proposed discretized form of Eq. (17) is (the fragmentation terms 
are not shown since they can be found in the corresponding Section 4.4): 

where the x,  are such that Y , - ~  = 

L-dimensional space, the integer m is such that Y , - ~  a (c)  i Y, and 
+ x, ) /2 ,  6,  is the Kronecker delta in 

2 vi 
Ai = G ( x ,  c )  dx 

( h + 1  - w) (h - Ut-1)  1, 

4.4.3.2 
Methods of Moments 
A proper discretization of Eq. (17) with the sectional method leads to a model with at 
least 50 degrees of freedom (number of ODES). This renders the sectional method 
computationally intractable for the case of spatially distributed problems. The han- 
dling of complex spatially distributed problems imposes the need for low degrees of 
freedom approaches to the solution of Eq. (17). This made the method of moments 
a necessity to efficiently solve the population balance equation. These methods have 
a longer history than the sectional ones and they are based on the transformation of 
the Eq. (17) in a system of equations for some moments of the unknown distribu- 
tion. The system is getting closed by defining a closure relation, relating the 
moments appearing in the right hand side of the system to those of the left hand 
side. The method of moments achieves an enormous reduction of the computational 
effort (typically 3-8 degrees of freedom) sacrificing the information content and the 
accuracy of the solution. Only some moments of the PSD can be computed with 
accuracy less than that of the sectional method but they are considered adequate for 
practical applications. 

There is a great variety of method of moments. The older variants were used only 
for the case of very simple rate and kernel functions. Other methods assume a partic- 
ular shape for the PSD (e.g., log-normal, gamma, Weibull, see Williams and Loyalka 
1991) and the results are reliable only if the actual solution resembles the assumed 
form (e.g., problems with bimodal PSD cannot be attacked by these methods). 
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Recently, a quite general method of moments (generalized method of moments) was 
developed by Marchisio et al. (2003) and applied in crystallization systems. This 
method can be used without a restriction to the sophistication of the models for the 
occurring phenomena (i.e., rates and kernels) and to the actual shape of the PSD. 
The evolution equations for the moments of index ai of the PSD 

I 

P I  2 

+ (1 - s(ai)) c x,?i-' ~ ( 3 ,  c)wj + ~ ( c ) a a i  (c )  
j=1 

The evolution of xj, wj (j = 1, 2, .. . P/2) is given implicitly from the following nonlin- 
ear algebraic system: 

j=1 

The system of Eqs. (20) and (21) can be easily solved with a traditional ODE-DAE 
integrator. To derive the full crystallization model Eqs. (20) and (21) must be coupled 
with other equations describing the behavior of the crystallization process (compo- 
nent mass balances, energy balances, physical property models, etc.). For example, 
assuming a three-phase continuous mixed suspension mixed product removal crys- 
tallizer, by appropriate heating or cooling, a product is generated in the form of crys- 
tals. A vapor phase is also formed because of the evaporation of part of the liquid 
which comes into the crystallizer. The contents of the crystallizer are removed by 
means of the top outlet stream (vapor) and the bottom outlet stream (slurry with 
product crystals and solution). The material balance of each component is mathe- 
matically expressed as follows: 

The energy balance has the following general form: 

Supplementary relations for the mass balance equation involve calculation of the 
total amount of the solute in the crystallizer, the combined concentrations of the 
other components, the volume of the crystallizer, the mass fractions in the liquid and 
vapor phase, the total amount in the solid phase, vapor-liquid equilibrium relations, 
etc. In regards to the energy balance supplementary relations serve to calculate the 
specific internal energies for each phase, the fraction of the suspension volume and 
the rate of heat removal of the crystallizer. Due to space limitations details of these 
relations are not presented here. 
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4.4.4 
Modeling and Optimization of Crystallizers 

The selection of the optimal method for solving the population balance equation 
strongly depends on the particular features of the mathematical problem under ques- 
tion. Some general guidelines for the selection of the appropriate method are given 
in Table 4.1. It is important to emphasize that the efficient solution of the population 
balance equation can provide the basis for model-based design, control and optimiza- 
tion studies of large-scale crystallizers. The presence of very little work in this area 
can be attributed not only to the lack of rigorous models but also, and perhaps more 
importantly, to the lack of techniques for efficient solving the population balance 
equation without loss of accuracy. It is clear that the population balance equation 
constitute the basic component of the overall crystallization modeling framework. 
Component mass balances, energy balance and auxiliary algebraic equations describ- 
ing the physical properties complement the model. 

The design and optimization of crystallizes is a very challenging problem. There is 
a lack of systematic procedures for developing optimal operating policies and design 
options for complex crystallization systems. Kramer et al. (1999) presented a formal 
approach of design guidelines considering the influence of crystallizer geometry, 
scale, operating conditions and process actuators on the process behaviour and prod- 
uct quality. fiamer et al. (2000) developed a compartmental modeling framework to 
describe the crystallization process of evaporative and cooling suspension crystalliz- 
ers. The framework has been implemented in the SPEEDUP environment and is 
capable of predicting a large supersaturation profile in a large-scale crystallizer. Ma 
et al. (2002) presented a rigorous compartmental crystallization model to achieve 
optimal control. Ge et al. (2000) have illustrated the application of mathematical opti- 
mization to the problem of batch crystallization. A targeting approach to the optimi- 
zation of multistage crystallization networks has been investigated by Sheikh and 
Jones (1998). Bermingham et al. (2003) presented a formal optimization approach 
for the design of solution crystallization processes using rigorous models. A large- 
scale industrial case study was used to illustrate the applicability and usefulness of 
the overall optimization methodology. Recently, Choong and Smith (2004a,b) pro- 
posed an optimization framework based on a stochastic optimization algorithm for 

Table 4.1 
versus number of external and internal coordinates o f  the model 

Optimal method of solution for the crystallization model 

~~~ ~ 

External coordinates number 

0 1 More 
Internal coordinates number 

1 Sectional Sectional, Moments Moments 

2 Monte Carlo, Moments Moments Moments 

More Monte Carlo Not available Not available 
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optimizing batch cooling and batch, semi-batch and nonisothennal evaporative crys- 
tallization operations. The results demonstrate significant improvements over con- 
ventional approaches and heuristic rules. 

The deviation of the well-mixed behavior in a crystallizer is primarily caused by the 
hydrodynamic conditions, which lead to temperature, supersaturation and participle 
concentration profiles in the crystallizer. An approach which can overcome the short- 
age of the well-mixed models is the employment of a multizonal representation 
which divides the equipment volume into a network of interconnected zones where 
the idealized mixing patter is assumed for each zone. Urban and Liberis (1999) used 
a hybrid multizonal/CFD modeling approach for the modeling of an industrial crys- 
tallizer. Each zone incorporates a detailed description of the crystallization phenom- 
ena in terms of population balance equations. Both homogenous and heterogeneous 
crystal nucleation are taken into account, the latter being a strong function of the tur- 
bulence energy dissipation. A CFD model of the process is used to determine the 
directionality and rate of flow between adjacent zones, and the mean energy dissipa- 
tion rate within each zone. Zauner and Jones (2002) adopted a compartment mixing 
model to predict the mixing on crystal precipitation. The population balance is solved 
simultaneously with the mass balance using data obtained by CFD calculations. 
Recently, Bezzo et al. (2004) presented a formal multi-scale framework based on a 
hybrid multizonal/CFD model. The framework is applicable to systems where the 
fluid dynamics operate on a much faster time-scale than other phenomena, and can 
be described in terms of steady state CFD computations involving a (pseudo) homog- 
enous fluid, the physical properties of which are relatively weak functions of inten- 
sive properties. A crystallization process was used to illustrate the overall modeling 
approach. 

I 

4.5 
Modeling of Grinding Processes 

4.5.1 
A General Modeling Framework of Grinding Processes 

Fine grinding of solid materials is of prime importance in many industrial applica- 
tions. In addition to mineral processing, it is also widely used in the manufacture of 
paints, ceramics, pharmaceuticals etc. The grinding process can be performed under 
wet or dry conditions using a large variety of equipment. In general, the grinding of 
the feed material is made by mobile pieces (e.g., spheres, cylinders) or by large fued 
in space elements (e.g., rollers) made from hard material. Irrespective of the details 
of the particular grinding process, the scope is always the reduction of the particle 
size (the range can be from millimeters to micrometers) and the simulation 
approach is the same. Traditionally, the simulation of processes associated with the 
grinding of solids is based on the solution of a particular and rather simplified form 
of the population balance equation known as fragmentation equation. The main fea- 
ture of grinding modeling is the application of a population balance, and the selec- 
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tion of appropriate independent variables. Hence, the usual approach taken in the lit- 
erature is based on solution through the use of population balance equations to pro- 
duce models which can simulate grinding. Today, a significant challenge which faces 
those who model grinding is the lack of a modeling tool which allows the easy imple- 
mentation of the many different forms and evolutionary changes in the grinding 
models. This is coupled with the need for robust solution techniques for the various 
integral-partial-differential equations found in utilizing the population balance 
approach. 

Recent simulation examples in the literature include grinding of coal in ring-roller 
mills (Sato et al. 1996), the wet stirred ball attrition of alumina and synthetic dia- 
mond (Shinohara et al. 1999), the attrition of alumina hydrate in a tumbling mill 
(Frances and Laguerie, 1998), the dry stirred ball attrition of quartz (Ma et al. 1998) 
and the wet stirred bead attrition of carbon (Varinot et al. 1999). According to the par- 
ticular formalism, the evolution of the particle size distribution (PSD) as it is 
described by the differential particle volume distribution functionflx, t )  can be calcu- 
lated from the solution of the following linear integral-differentia1 equation: 

The first part of the right hand side of the above equation stands for the generation of 
particles of size x by fragmentation of larger than x particles and the second term for 
the loss of size x partides due to their fragmentation. The function b(x )  is the fragmen- 
tation frequency for a particle of volume x (the term rate is also used instead of fre- 
quency). The function p ( x ,  y )  is called fragmentation kernel and is such that p ( x ,  y)dx 
is the probability for having a fragment of volume in [x ,  x + dx] as a result of fragmen- 
tation of a particle with volume y. The grinding equipment usually operates under 
batch conditions so the corresponding form of the fragmentation equation (which can 
also be directly used for plug flow continuous operation) is examined here. 

The above formalism is purely phenomenological so there is not space for consid- 
erable improvements. The extension of the formalism using external coordinates is 
meaningless since the equation cannot be considered to describe a local phenome- 
non in the physical space. An axial external coordinate has been used in a purely phe- 
nomenological manner by Mihalyko et al. (1998) to account for the partial mixing 
(axial dispersion) during plug flow grinding process. Also attempts to add more 
internal variables for the characterization of the particles have not been made. In 
generally Eq. (22) is considered adequate to describe the grinding process. The chal- 
lenge for the development of efficient techniques for its solution is coming not from 
the need to incorporate it (describing the “local” phenomenon) in CFD codes but for 
the need to incorporate efficient grinding equipment submodels to the large flow 
sheet simulators. 

The fragmentation functions b(x ) ,  p ( x ,  y) should satisfy the following require- 
ments in order to give physically meaningful results: 

1. lim b(x )  = 0 to avoid the generation of smaller and smaller particles without limit. 
X 4  
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2. j xp(x ,  y)dx = y this is the mass conservation condition and stipulates that the 

total volume of particles resulting from the breakup of a particle of volume y must 

I 
0 

3. 

4. 

be equal to y. 

~ ( y )  = j p ( x ,  y)dy, where ~ ( y )  is the number of fragments generated during the 

breakup of a particle with volume y. In all cases, it should be ~ ( y )  2 2. 
0 

k 
xp(x ,  y)dx 2 (y - x )  p (x ,  y)dy for k < y/2. This condition is usually overlooked 

having as consequence the use of fragmentation kernels without physical mean- 
ing for fitting experimental data. 

0 Pk 

The fragmentation frequency used in the grinding literature (Varinot et al. 1997, 
1999) has the following form 

This is a composite law resulting from the matching of the two asymptotes (power 
laws) b(x )  = ( x  >> xR) and b(x )  = xb ( x  << xR) at the region of x = x,. Usually b-a 
is a small number implying an almost size independent fragmentation rate for large 
particles. As the particle size decreases the relatively large exponent b dominates pre- 
vailing further fragmentation of the smaller particles. 

The most general fragmentation kernel employed for grinding simulation (Eyre et 
a]. 1998) is 

The values of the parameters C1, C,, al, a, should be carefully chosen in order to 
satisfy the above-mentioned requirements 2 through 4. This kernel exhibits the very 
important property of homogeneity. A breakage kernel is called homogeneous if the 
shape of the fragment size distribution does not depend explicitly on the parent parti- 
cle size y but only on the ratio x/y. An homogeneous kernel can be written as p ( x ,  y)  

=- 1 p ($). 
Y 

4.5.2 
Solution Approaches 

4.5.2.1 
Sectional Methods 
The solution methods for the Eq. (22) with frequency in Eq. (23) and kernel in Eq. 
(25) can be organized in five categories as follows: 

a) Analytical (Ziff and McGrady, 1986) and large time asymptotic solutions (Ziff, 
1991) exist only for the particular case a = C1 = 0 in Eqs. (24) and (25). 



4.5 Modeling of Grinding Processes I 163 

b) Stochastic (Monte Carlo) methods (Mishra 2000). In the case of grinding simula- 
tion the addition of extra internal variables is not an option so stochastic methods 
are of little importance. 

c) Higher order (polynomial approximation) methods. In particular the Galerkin 
weighted residual formulation using as basis functions B-splines (Everson et al. 
1997) and wavelets (Liu and Tade 2004) have been used. 

d) Sectional (zero order) methods. 
e) Moment methods. 

The last two categories include methods which allow direct and unconditionally sta- 
ble transformation of Eq. (22) to a system of ODES that can be solved and further pro- 
cessed by existing integration codes. For this reason these methods will be discussed 
in detail. 

According to the sectional method the particle volume coordinate is partitio- 
ned using the points vi ( i  = 0, 1, 2 ... L). The particles with volume between Y ; - ~  

and Y, belongs to the ith class and their number concentration denoted as N, 

i.e., J f(x, t)dx . The characteristic particle size for the class i is taken to be 

. The direct sectional (finite volume) equivalent of (22) is ( i  = 1, 2, ... L): 
’ 2  

) ( ::, 
Yi-1 + Y, x. = ~ 

bi = b(x;) 

ny = lvi p(x, x j )  dx (27) 
Vi-1  

This system of ODES can be solved analytically (Reid, 1965) and has been extensively 
used in the grinding literature as the fundamental equation and not a simplification 
of the continuous form of Eq. (22). Experimental values of Ni can be directly supplied 
from sieve analysis and rag can be found by fitting the model in Eq. (25) to the experi- 
mental N; sequentially. The problem arises from the fact that the discretized form of 
Eq. (26) does not conserve integral properties of the PSD and in particular total parti- 
cle mass. This problem was considered by Hill and Ng (1995) who used two sets of 
unknown constants multiplied by both terms of the right hand side of Eq. (25). These 
constants were computed by the requirement of internal consistency with respect to 
the total particle mass and total particle number. The term “internal consistency” of 
a characteristic scheme with respect to a particular moment of the PSD refers to the 
ability of the discretized system to reproduce the discretized form of the evolution 
equation for the particular moment. Although this is a highly desired property (i.e., 
for the total particle mass, this is equivalent to the total mass conservation), it cannot 
guarantee the exact computation of the moment. 

The procedure developed by Hill and Ng (1995) may require complex analytical 
derivations that depend on the particular form of the fragmentation kernel and on 
the particular grid used for the characteristic. The above authors made these deriva- 
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tions for three forms of the fragmentation kernel, two forms of the grid (equidistant 
and geometric) and exclusively for power law fragmentation rate. The major draw- 
back of their procedure is that it cannot be directly generalized for arbitrary parame- 
ters and implemented in a computer code. Vanni (1999) improved the situation by 
replacing the requirement of internal consistency with respect to the total particle 
number, with a better handling of the second term of right hand side of Eq. (25) 
(death term). This new version (slightly less accurate than its predecessor) can be 
fully automated, i.e., computed numerically regardless of the fragmentation rate and 
kernel. 

A different approach for the development of a quite general sectional method with 
arbitrary fragmentation functions, arbitrary grid, exhibiting internally consistency 
with respect to two arbitrary moments has been investigated by Kumar and Ram- 
krishna (1996). In this case the internally consistency is achieved by the proper shar- 
ing of the fragments resulting from a fragmentation event to the respective sections. 
The coefficients ng for the particular case of internal consistency with respect to total 
particle mass are: 

I 

Z(a, b, c )  = j b  b p ( y ,  c) dy 
a b - ~  

where 6 is the Dirac delta function. 
Several improvements have been proposed for the above sectional approach. As an 

example, Attarakih et al. (2003) developed a method where the pivot (characteristic) 
size for each class is free to move between the boundaries of the class and in addition 
the grid is moving as a whole to capture better the features of the PSD. The improved 
methods of this type can be implemented only through custom codes and cannot 
cast the problem to the form of system of ODES directly solvable by commercial inte- 
grators. 

4.5.2.2 
Methods of  Moments 
The idea led to the development of the method of moments is that in some cases the 
amount of information on the PSD given by a sectional method can be sacrificed in 
favor of the reduction in the computational requirements. For example, in a large 
plant simulator the grinding submodel has to be solved as efficiently as possible even 
in the expense of having as the only output the total particle number concentration 
and the mean particle size. From the technical point of view the method of moments 
is a generalization of the methods of weighted residual having a trial function more 
general than a linear superposition of basis function, i.e.,f(x, t) = F (x ,  t ;  c) where the 
function F has a known form and the vector c = (cl, c2, ... cp)  contains P unknown 
time dependent parameters which can be found in the following way. The Eq. (22) is 
multiplied by the P power law test functions xu' (i = 1, 2, . .. P) and then is integrated 
for x between 0 and ~0 to give the system of equations (assuming an homogeneous 
fragmentation kernel): 
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(29) 
dMa. 00 

2 = (jai - 1) / b ( x ) F ( x ,  t ;  c)dx 
dt 0 

xaiF(x, t ;  C) dx = Mai 

m 

where Ja, = I x"' p (x)dx . The most widely used forms of the distribution F are the 

lognormal distribution f (x ,  t) = e x p  [- (E)] the gamma distribu- 

tionf(x, t) = C1 (?)@ e-'''' with (al, a2, a3) = (0, 1, 2) and r is the 

0 

r (c2 + 1) c3 

gamma hnction (Kostoglou and Karabelas 2002; Madras and McCoy 1998). For the 
case of a power law fragmentation rate b(x) ,  the integrations in equations can be per- 
formed in closed form leading to a simple system of ODES with respect to the a;. If 
b(x)  is not of power law form, the integral in equation (29) must be computed 
numerically. The Hermite and Laguerre quadratures are ideally suited for the case of 
lognormal and gamma distribution respectively. 

A systematic way to improve the log-normal method is the so called interpolation 
between the moments method (Kostoglou and Karabelas 2002). This method can be 
applied only for power law breakage rate using the following set of ai (al, a2, ... ap) = 

(0, 1 , 2  ... P-1). An explicit form of F is not assumed and each moment z appearing 
in the right hand side can be calculated from the integer moments of the PSD by the 
following interpolation rule: 

For P = 3 the log-normal method is recovered while improved results can be found 
using P = 4 and P = 5. Larger values of P cannot improve the solution because the 
amount of information contained in the higher moments of the distribution is 
limited. 

According to the generalized method of moments the PSD is approximated by a 
set of Dirac delta functions with unknown strength and location; i.e., (P is an even 
number) 

P I 2  

F(x,  t )  = c W j q x  - xj) 
j=1 

Substituting Eqs. (29) and (30) leads to the following system of ODES-DAEs: 
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PI2 

!%5 = (Jai - 1) wjx,? b(xj) 
j=1 

dt 
(34) 

This method is quite general and can be used for any fragmentation rate and kernel. 
It is developed for the solution of the aerosol growth equation (quadrature method of 
moments; McGraw 1997) and aerosol coagulation equation (generalized approxima- 
tion method Piskunov and Golubev 1999) independently. Kostoglou and Karabelas 
(2002) used it for the solution of the fragmentation equation (generalized method of 
moments). Typical values of P are 4 (Kostoglou and Karabelas 2004) and G (Marchisio 
et al. 2003), and the best choice for ai seems to be (al, az, ... ap)  = (0, 1/3, 2/3, ... 
(P-1)/3). The system of Eqs. (33) and (34) can be solved directly using an ODE-DAE 
solver (Kostoglou and Karabelas 2002,2004) or using an ODE solver for (33) simulta- 
neously with special procedures from the theory of Gaussian integration to find the 
weights wj and abscissas xj (Marchisio et al. 2003). 

4.5 
Concluding Remarks 

Compared to the traditional tools and approaches for modeling and simulation of 
complex separation systems significant progress has been achieved the last decade. 
Today’s modeling tools provide advanced modeling languages and frameworks, 
either based on process engineering concepts or on mathematical perspectives that 
are suited to represent complex structural and phenomenological aspects of process 
systems engineering. However, a number of issues must be considered open still 
today. 

Significant challenges remain in all of the specific processing systems reviewed 
and these have been identified in the corresponding sections. A more general chal- 
lenge is how to allow the incorporation of ideas originated from academic research 
into tools for industrial use. The emergence of open software architectures now pro- 
vides reasonable straightfonvard routes for academic developments in some areas, 
such as physical properties and numerical solvers, to be directly used in process 
modeling tools. However, the situation is more problematic in areas of research that 
are related to the fundamentals of process modeling as reviewed in this chapter for 
specific processes. Arguably, the task of testing academic ideas and, ultimately, 
transferring them to commercial use has become more difficult in recent years due 
to the complexity of modem process modeling software and the degree of advanced 
software engineering that it entails (Pantelides and Urban 2004). 

Von Wedel et al. (2003) emphasized that the development of complex chemical 
process models can be improved towards a formal theory to automatically generate, 
manipulate, and reason about these models. Such a theory will have a strong impact 
on the capabilities of hture modeling tools for complex chemical processing sys- 
tems, but it constitutes an on-going open research issues. It will enable inexperi- 
enced researchers to effectively use model-based techniques for a wide range of 
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applications such as parameter estimation, process control and optimization. The 
excellent book by Hangos and Cameron (2001) provides the basic principles towards 
this direction. 

As mentioned in the excellent review by Pantelides and Urban (2004) the increas- 
ing power of process modeling technology brings new perspectives to the develop- 
ment and deployment of model-based solutions throughout the process lifecycle, 
from the initial process development to the detailed design of individual items of 
processing equipment and entire plants, and their control systems. To a large extent, 
this has been a natural evolution of earlier trends in this area and it is particularly 
true for the processes reviewed in this chapter. For example, a very interesting devel- 
opment in recent years has been the increasing permeability of the boundary 
between “off-line” and “on-line” applications for crystallization processes. This per- 
meability has two distinct but related positive aspects. First, the process models 
themselves are re-used for both design and operational tasks, although in many 
cases some simpler models may be required in view of the special efficiency and 
robustness requirements posed by real-time and other applications, as illustrated in 
the review of crystallization and grinding processes. Secondly, standard process 
modeling software tools such as gPROMS are employed for tasks on both sides of 
the boundary, 
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