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Model Tuning, Discrimination, and Verification 

Katalin M. Hangos and Rozblia Lakner 

5.1 
Introduction 

Process mode-, are increasing in size an.. complexity in current computer-aided pro- 
cess engineering. Therefore the methods and tools for their tuning, discrimination 
and verification are of great importance. The widespread use of process models for 
design, simulation and optimization requires the proper documentation, reuse, and 
retrofit of already existing models that need the above techniques. This chapter deals 
with computer-aided approaches and methods of model tuning, discrimination and 
verification that are based on a formal structured description of process models. 

Basic assumptions. For the majority of process control and diagnostic applications, 
lumped dynamic process models are used. This model class, which is considered 
throughout this chapter, is obtained under the following basic modeling assumptions: 

0 Only lumped models are considered (ordinary differential and algebraic equation 

0 only initial value problems are considered. 
0 All physical properties in each phase are assumed to be functions of the thermody- 

models). 

namic state variables (temperature T, pressure P, compositions Ck) only. 

5.2 
The Components and Structure of Process Models 

The formal description of process models and their structure is the basis of any 
methods in computer-aided process systems engineering. If one considers process 
models as structured knowledge collection with underlying syntax and semantics 
then the formal methods of computer science can be applied for model discrimina- 
tion and verification. The fundamentals of such an approach are briefly described in 
this section. 
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5.2.1 
The Modeling Problem and the Modeling Goal 

I 

A process model is jointly determined by the process system it describes and by its 
modeling goal (Hangos and Cameron 2001). The specification of a process system 
includes the definition of the system boundaries and the way of interactions between 
the system and its environment together with the description of the internal stmc- 
ture (subsystems, mechanisms, etc.) of the system itself. The effect of the modeling 
goal is much less investigated despite its importance for constructing a process 
model. 

The modeling goal. Any process model is developed for a specific use or possibly 
multiple uses. These uses influence the goals that the model must fulfill. For exam- 
ple, the application areas of process design, control, optimization or diagnosis usu- 
ally lead to different model representations for the same physical system. Meeting 
the stated modeling goal provides a means of determining when the modeling cycle 
(see below) should terminate. 

A set of process models ishnctionally equivalent with respect to a modeling goal if 
every model of the set fulfils the inequalities in the modeling goal. 

The seven-step modeling procedure. Good modeling practice requires a systematic 
way of developing the model equations 0 f a  process system for a given purpose. Although 
this procedure is usually cyclic, in which one often returns back to an already com- 
pleted step, the systematic procedure can be regarded as a sequence of modeling 
steps (Hangos and Cameron 2001) that include: 

1. problem setup for process modeling; 
2. selection of important mechanisms; 
3. analysis of data; 
4. construction of model equations; 
5. model verification; 
6.  model solution; 
7. model calibration and validation. 

Model tuning, discrimination and verification techniques are applied in the last four 
steps of this procedure. 

5.2.2 
The Model Equation Constructing Subprocedure and its Steps 

The construction of model equations is the fourth step in the above procedure, which 
is a cyclic procedure in itself with the following steps: 

1. system and subsystem boundary and balance volume definitions; 
2. establish the balance equations; 
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3. transfer and reaction rate specifications; 
4. property relation specifications; 
5 .  balance volume relation specifications; 
6. equipment and control constraint specifications; 
7. selection of design variables. 

Incremental building of balance equations. The steps of the model building proce- 
dure should be carried out in a sequential-iterative manner. This means that the 
model equations are built up incrementally, repeating steps of the model equation 
constructing subprocedure in the following order of conserved extensive quantities: 

Overall mass submodel. The terms and variables in the conservation balances for 
the overall mass in each balance volume appear in all other conservation balances. 
Therefore this subset of model equations is built up first. 

0 Component mass submodel. With the given conservation balances for the overall 
mass in each balance volume, it is easy to set up the conservation balances for 
component masses. This subset of model equations is added to the equations orig- 
inated from the overall mass balances. 

0 Energy submodel. Finally the subset of model equations induced by the energy bal- 
ances is added to the equations. 

This way the kernel of the model equation constructing the subprocedure is repeated 
several times for every balance volume. 

5.2.3 
Model Equations, Initial and Boundary Conditions, and Model Parameters 

The conservation balances of mass, component masses and energy are described by 
ordinary differential equations in a lumped process system model (Hangos and 
Cameron 2001). These are called conservation balance equations, and they are accom- 
panied by suitable algebraic constitutive equations. Constitutive equations describe the 
underlying static relationships between model variables dictated by physics and 
chemistry. The process model is then a set of ordinary differential and algebraic 
equations (DAEs) where there are underlying semantic relationships between vari- 
ous variables, equations, and equation terms. 

In addition to the equations themselves, it is required to specify the initial condi- 
tions of the ordinary DAE system in order to solve the problem. Initial conditions set 
the values of the differential variables at the initial time ( t=O).  

Note that in the case of distributed parameter systems, partial differential equa- 
tions (PDEs) are used for describing the conservation balance equations of the 
model. In these models boundary conditions specifying the values of the differential 
variables for all time on each of the system boundaries and the specification of initial 
conditions for the whole spatial region of interest are also part of the process model. 
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5.2.4 
Hidden Components 

I 

Besides the model elements above, a systematically constructed process model con- 
tains elements that are usually not stated in an explicit way, but are important for 
model discrimination and verification. These are as follows: 

0 Application domain determines the validity region of the model. 
0 Inequality constrains constrain the value of a parameter or variable often dictated by 

0 Modeling assumptions describe the decisions of the modeler in an explicit formal 
the underlying physics and chemistry (e.g., temperature should be positive). 

way. 

The importance of the modeling assumptions is explained by the fact, that model 
building itself can be seen as a sequence of specifying, simplifying, or enlarging 
assumptions on the process system to be modeled (Hangos and Cameron 2001a). 
This way, a uniform assumption-driven approach can be developed where modeling 
assumptions are regarded as artifacts of the modeling steps and allow the rigorous 
formal description of the modeling process and its result. 

5.3 
Model Discrimination: Model Comparison and Model Transformations 

Model discrimination is based upon systematically comparing different process 
models to find relationships between them. For this purpose we briefly review vari- 
ous model description forms and their transformations that form the basis of model 
discrimination. 

5.3.1 
Formal Representation of Process Models and their Transformations 

Model elements. The differential-algebraic equation set that forms a lumped pro- 
cess model can be seen as a hierarchically structured knowledge collection con- 
structed from the following main model elements: 

0 The balance volumes are the basic elements in process modeling as they determine 
the regions in which the conserved quantities are contained. 

0 The conserved extensive quantities (differential variables) are the additive properties 
of a system and they are used for describing the conservation principles (such as 
mass, component masses and energy conservation) in the balance volumes. 

0 The balance equations reflect the conservation principles for each extensive con- 
served quantity. 
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0 The transport mechanisms such as convection, transfer, reaction, etc., correspond to 
an effect on the conserved extensive quantities so they appear as additive terms in 
the balance equations. 

0 Tne constitutive equations are algebraic relations that complete the model equa- 
tions. They describe property relations, extensive-intensive relationships, transfer 
and reaction rate relations, equipment and control relations, and balance volume 
relations. 
The algebraic variables are the nondifferential variables appearing in balance equa- 
tions and constitutive equations in the form of thermodynamic state variables, 
transfer and reaction rate variables, equipment and control variables, constants, 
specification variables, etc. 

Any process model can also be seen as a collection of mathematical elements, like vari- 
ables and equations of the following type: 

0 differential equations that originate from the conservation balance equations; 
0 algebraic equations describing the constitutive equations, the transport mecha- 

0 diferential variables with their first time derivative present in the differential equa- 

0 algebraic variables including constants and specified (design) variables. 

Finally, there can be other auxiliary elements, such as surfaces, for constructing a pro- 
cess model. 

nisms, etc., that are evoked by the conservation balance equations; 

tions; 

Hierarchy of model elements. Driven by the role in the process model these model 
elements can be organized into the following natural hierarchy levels: 

0 L1: balance volume level 
0 L2: balance equation level 
0 L3: transport mechanism level 
0 L4: constitutive level 

A simple process model of a jacketed tank reactor with all of the above-mentioned 
model elements is shown in Fig. 5.1. 

Modeling assumptions. A modeling assumption can be expressed in a natural lan- 
guage sentence and formally described by a triplet (Hangos and Cameron 2001a) 
given by: 

variable-name relation keyword, 

where ‘variable-name’ refers to a process model element described previously in this 
subsection, ,relation’ is an “=” (“equals”) or “is“ symbol in most cases, and ,keyword’ 
is a symbolical or numerical constant or another ‘variable-name’. Thus, a modeling 
assumption is understood as an assignment to the ‘variable-name’ and usually trans- 
lated into either additional mathematical relationships between model variables and 
parameters, or into constraints between already introduced variables and parame- 
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CONSERVATION BALANCES 
Balance volume: tank 
- mass balance: M = const 

I 

energy du = vpcpTa - VpcpT + Vr( )- Q 
dt 

- component mass balances: dm, - 
__ - vcAo - vcA -Vr 

dt 

dt 
---vc,+Vr dm, - 

Balance volume: cooler 
- mass balance: Mc = const 
- energy balance: dU, = 

CONSTITUTIVE EQUATIONS 

dt v ~ P ~ c ~ ~ T ~ ~ - v ~ P ~ c ~ ~ T  + Q  
v, T, c , cB 

r = kc, u, = M'CJ 
E M =Vp ~~ 

k = k,e RT 

mA =Vc, M, = V,P, 

ma = Vc, 

ASSUMPTIONS 
- 2 lumped balance volumes (tank, cooler) 
- 3 components in tank (A, B, solver) 
- 1 component in cooler 
- constant mass holdups 
- constant physico-chemical properties 
- A -> B first order exothermic reaction in tank 

Figure 5.1 A simple process model example. 

ters. The modeling assumptions can either be elementary assumptions consisting of 
just a single triplet or composite assumptions being the conjunction (logical and) of 
elementary assumptions. 

The model equations can be formally seen as a structured string obeying syntacti- 
cal and semantic rules and the modeling assumptions can then be regarded asformal 
modeling transformations on these equations resulting in another set of model equa- 
tions. The effect of an assumption on a given set of equations is computed following 
all of the implications ofthe assumption through the syntactical and semantic rules. 
Formally this is performed by substituting the assignment equations describing the 
assumption into all of the original model equations and then performing rearrange- 
ments using algebraic transformations. 

5.3.2 
Algebraic Transformations, Algebraically Equivalent Models 

A set of functionally equivalent process models can be algebraically equivalent, when 
one can transform any member of the set to any other one using algebraic transfor- 
mations. Algebraic transformations can be applied to model equations and to model 
variables (including both differential and algebraic ones). 

Examples of algebraic transformations on a set of process model equations are 
multiplying an equation by a constant number, adding two equations together, sub- 
stituting one equation for another by expressing it as a variable and substituting that 
variable in every other equation. It is important to note that the variables do not 
change when applying algebraic transformations to the equations of a model, but the 
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CONSERVATION BALANCES 
Balance volume: tank 
- mass balance: M = const 

Balance volume: cooler 
- mass balance: M- = const 

- energy balance: ._ - energy balance: 

koe R T C A ( - A H )  KA(T-T , )  dT, - v, KA(T-T, I (TdJ -T )+ 
dT v -=-(To - T ) +  

p', V@, dt V, V c  P$,' dt V 

- component mass balances: 
E __ 

dc, - v ( c A o - c A ) - k 0 e  R T ~ A  
dt V 

~- 
dcE - 'c ,+k, ,e  ' TcA 
dt V 

Figure 5.2 The substituted process model 

model equations do. The formal description of algebraic transformations to a set of 
algebraic equations, together with a canonical set of primitive algebraic transforma- 
tions and their effect on computational properties, can be found in Leitold and Han- 
gos (1998). There it is shown that certain computational properties of DAE models, 
such as the differential index, does not change with algebraic transformations, but 
others, like the decomposition of the model may change quite drastically. 

Another type of transformation applicable to a model is when one applies a linear 
or nonlinear algebraic transformation to some of its variables and writes the model 
using these new transformed variables. This is analogous to coordinate transforma- 
tion in geometry and is therefore called a coordinate transfornation. It is important to 
note, however, that the general locally invertible nonlinear transformations, which 
are useful and widely used in nonlinear system theory, are not well accepted in pro- 
cess systems engineering because they change the engineering meaning of the vari- 
ables. The extensive-intensive constitutive algebraic equations, however, are widely 
used to transform a process model into its intensive variable form suitable for pro- 
cess control and diagnostic applications. Here we transform the set of differential 
variables in a balance volume originally equal to the set of conserved extensive quan- 
tities to be the set of overall masses (left unchanged) and the measurable intensive 
quantities (such as temperatures, compositions and pressures). 

Model classes. Algebraic transformations may change the mathematical form of a 
model, but an algebraically transformed model is the same from a process engineer- 
ing point of view. Such algebraically equivalent models form a model class. Figure 5.2 
shows an algebraically equivalent form of the simple process model of the jacketed 
tank reactor depicted in Fig. 5.1, where the constitutive equations have all been sub- 
stituted into the differential ones. 

5.3.3 
Model Simplification and Model Building Transformations 

Modeling assumptions can be regarded as representations of the engineering activity 
and decisions during the whole modeling process in constructing, simplifying and 
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analyzing process models and they act as modeling transformations on the process 
models. Assumption-driven modeling works directly with modeling assumptions, 
thus enabling the definition and handling of process models as structured knowl- 
edge with defined syntax and semantics. 

I 

Model building assumptions. The modeling assumptions applied in the model build- 
ing phase determine the structure of the process model and the assumptions applied 
to an existing model modify the equations and may even change the structure of the 
model. The model building procedure is seen as a sequence of model building, speci- 
fication assumptions, and their associated transformations, as well as algebraic 
transformations applied to a process model. This way of assumption-driven model 
building offers a systematic incremental way of constructing a process model in its 
canonical form. 

Model simplification assumptions. The model simplification assumptions, which 
can either be elementary (atomic) or composite, and are composed of a conjunction 
of elementary assumptions, can be formally described as model transformations. 
These transformations are projections in a mathematical sense and are often per- 
formed in two substeps : 

1. adding the equality describing the assumption to the already existing set of model 
equations and performing algebraic transformations (for example substitutions) 
to get a more simple form; 

2. adjusting the set of differential, algebraic and design variables to satisfy the 
degree of freedom requirement. 

The effect of a simplification assumption on a given set of equations is computed fol- 
lowing all of the implications of the assumption through syntactical and semantic 
rules. Formally this is performed by substituting the assignment equations describ- 
ing the assumptions into all of the original model equations and then performing 
rearrangements using algebraic transformations. 

It is important to note that not every simplification transformation is applicable to 
a particular process model. Moreover, a transformation may influence only part of a 
process model and then this effect propagates through the relationships between the 
model elements. Forward reasoning can be applied to find all of the implications of 
a simplification transformation, and the effect of a composite transformation is com- 
puted by generating a sequence of simplified process models. It is important to note, 
however, that the resultant model may be different if the order of the assumptions is 
changed, because model simplification transformations may be related and noncom- 
mutative (Hangos and Cameron 2001a). 

In conclusion we can say that algebraic manipulations can be regarded as equiva- 
lence transformations, model simplification, and enrichment assumptions as gen- 
eral nonequivalence modeling transformations acting on process models that bring 
the process model out from its original model class. 
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Model discrimination aims to find an exact relationship between two given process 
models of the same process system. First, we have to determine if these models are 
developed for the same modeling goal, and if so, if they are algebraically equivalent. 

Unfortunately, there are no standard formal ways of performing the above two 
basic tasks, mainly because the lack of our knowledge in formal description and utili- 
zation of the modeling goal itself (see Lakner, Cameron and Hangos 2003). 

In the case of functionally equivalent models one should only perform model com- 
parison to investigate if they are algebraically equivalent, and if not, give their rela- 
tionship in terms of model simplification transformations that lead the more 
detailed model to a more simple one (see later Section 5.4.3). 

Canonical form. We have already seen in Section 5.3.1 that both functionally and 
algebraically equivalent process models form a model class. It is then useful to define 
and use a canonicalform of a process model class, which is a member of the class 
having each model element in the form that has a clear engineering meaning (Han- 
gos and Cameron 2001). The differential equations of a process model in canonical 
form are the conservation balance equations for the overall mass, total energy (or 
enthalpy) and all but one component masses in their extensive form containing 
terms for the convective, transfer and source transport. These are supplemented by 
constitutive algebraic equations of standard categories such as intensive-extensive 
relationships, reaction rate equations, thermodynamic state equations (such as the 
ideal gas law), etc. 

The simple process model shown in the left-hand side of Fig. 5.1 is in its canonical 
form. 

Comparison of  process models. In the case of algebraically different but function- 
ally equivalent process models we aim at finding out if these models are from the 
same model class, or not. The general procedure of comparing these models is to 
first bring them into their canonical form and then compare them element-wise fol- 
lowing the hierarchy of the model elements from top (balance volumes) to down 
(model variables and parameters). This approach requires that the models being 
compared are given with their entire model elements hierarchically arranged. 

5.4 
Model Tuning 

Process models generated for a given modeling goal may often be over-simplified or 
over-complicated for another use, which is why there is usually a need to extend, to 
simplify, or to generate a new model in the worst case. In addition, process models 
usually contain unknown parameters to be estimated using measured data, when we 
need to calibrate the model to tune it to meet the modeling goal. 
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5.4.1 
Model Simplification 

I 

In the model constructing step of the seven-step modeling procedure we may need 
to perform a model simplification phase for refinement of an already defined process 
model by additional simplifying modeling assumptions. These simplifylng assump- 
tions can be described by triplets and are usually translated into additional mathe- 
matical relationships. The simplifying procedure itself consists of two main steps. 
These steps are the implication of the modeling assumptions on the model equa- 
tions with the aid of syntactical and semantic rules, and the rearrangement of the 
resulting equations make use of formal algebraic transformations. Because the pro- 
cess model elements are related to each other by a well-defined syntax and semantic, 
a model element cannot be simplified independently of the others. 

In addition, the implications of a simplification assumption depend both on the 
assumption and the structure of the model. For example, when a modeling assump- 
tion is related to a balance volume, its implications can refer not only to the equa- 
tions of the balance volume, but could modify other related balance equations in 
other balance volumes. The same way, a modeling assumption related to a term in a 
balance equation can imply modifications of other terms in other balance equations. 
Figure 5.3 shows how a modeling assumption on the mass convective term of a bal- 
ance volume changes the energy and component mass convective terms when a sim- 
plification assumption is applied to the model of the jacketed tank reactor depicted in 
Fig. 5.1. 

The implications of an assumption on the model equations can be determined by 
forward reasoning where all of the implications of the assumption are computed by 
respecting syntactical and semantic rules. The set of resulting modeling equations at 
the end of the implication stage is rearranged to an easily-solvable form by using 
algebraic transformations (Lakner et al. 1999). 

CONSERVATION BALANCES 
Balance volume: tank 
- mass balance: M = vp 

SIMPLIFICATION ASSUMPTION - mass convective outlet in tank is negligible 

- energy balance: du = vpc,To + Vr( 
)- Q 

dt 
- component mass balances: dm CONSTITUTIVE EQUATIONS 

2 = vcdo -Vr 

d m , = V r  r = kc, 
dt Q = W T - T , J  U = M c , T  

dt 
u, =McccpTc 

E -_ M =Vp Balance volume: cooler 
- mass balance: 
- energy balance: du, - 

k = k,e RT 

mA =Vc,  M, = V,P, M, = const 

7 - vC ~ , c , J ~ o  -v ,  PF,T~ + Q mn = VCB 

Figure 5.3 A simplified process model 
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Model extension procedures are widely applied in process modeling in quite differ- 
ent contexts: 

At the end of a modeling cycle, in the model validation step, it may turn out that 
the developed model fails to fulfill the modeling goal. Then one has to extend the 
model by including additional model elements that were originally neglected, such 
as balance volumes, balances, mechanisms, etc. 

0 The incremental assumption-driven model building (Williams et al. 2002) uses 
model extension procedures, too. 

0 The incremental building of balance equations in the model equation constructing 
procedure can also be seen as model extension (see Section 5.2.2). 

There are two questions of critical importance in model extension procedures: the 
selection of default values and the methods of ensuring incremental consistence. 
Default values set the value of model elements belonging to a model element (the 
“children elements” in the model element hierarchy) that is just being created. Incre- 
mental consistency is ensured by allowing one to add only such new model elements 
to an already existing consistent model that are not in conflict or contradiction to any 
already existing model element. Details about these questions can be found in the lit- 
erature on computer-aided process modeling (CAPM) tools (see, e.g., Jensen-Krogh 
1998; Modkit 2000). 

Empirical model building. This is a special method of model extension using empir- 
ical data and grey box models (Hangos and Cameron 2001). It is a top-down 
approach of model extension where the model element(s) to be changed or extended 
is (are) determined in a heuristic black box way by using sensitivity analysis. The sub- 
model of the new element is also constructed in a heuristic black box way from some 
general approximating model class with its parameters estimated using measured 
data (see also model calibration in Section 5.4.4). 

5.4.3 
Model Comparison by Assumption Retrieval 

In order to avoid any inconsistency during model simplification and extension, it is 
extremely useful to register explicitly all modeling assumptions applied in the con- 
struction and modification of the process model. The documentation of the model 
contains these modeling assumptions (Hangos and Cameron 20014 in the ideal 
case, but this documentation can often be incomplete or even missing. In order to 
complete the model documentation with all modeling assumptions, an assumption 
retrieval procedure could be used. 

The retrieval of modeling assumptions from a pair of process models for model 
analysis and comparison is an important but unusual problem where not only efi-  
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cient algorithms but the engineering understanding is lacking. The reason for this is 
that assumption retrieval can be regarded as the inverse task of model transforma- 
tions where modeling assumptions are determined from two related (one detailed 
and one simplified) process models of the same process system. As model transfor- 
mations are projections in mathematical sense, it is not possible in general to 
retrieve fully the original model from the transformed one and from the transforma- 
tions. Because of this, the result of assumption retrieval from the original and the 
transformed models may not be, and in general will not be, unique. Because of the 
nonuniqueness of the assumption retrieval task, an intelligent exhaustive search 
algorithm (Lakner et al. 2002) is needed for its solution. 

I 

5.4.4 
Model Calibration (Model Parameter Estimation) 

Process models developed from first engineering principles almost always contain 
model elements, model parameters and/or other elements like reaction rate expres- 
sions, the value of which is unknown. While the modeling approach futes the struc- 
ture of the model, these unknown elements make the model “grey,” that is, partially 
unknown. Measured data from the real process system to be modeled is used along 
with model parameter and/or structure estimation methods to fine-tune the model 
for meeting the modeling goal. This fine-tuning of process models is called model cal- 
ibration and is a standard step in the seven-step modeling procedure (Hangos and 
Cameron 2001). 

There are several key points to take special care of when performing model calibra- 
tion: 

0 Selection of model parameters to be estimated. Besides the real unknown model 
parameters, one often has parameters or model elements with large uncertainty 
associated to their values. If the model is sensitive with respect to the value of 
these uncertain parameters, then it is advisable to consider them as unknown and 
estimate their values using measured data (NCmeth et al. 2003). 
Nonlinear parameter estimation. In most of the cases the parameters to be esti- 
mated enter the model in a nonlinear way and the model itself is dynamic. This 
makes the parameter estimation problem especially difficult and can only be 
solved by numerical optimization techniques (Hangos and Cameron 2001 ; Ailer 
et. a1 2002). 

0 Quality of the data and the estimated parameters. The statistical nature of model 
parameter estimation requires one to check carefully the following key ingredients 
and properties of the parameter estimation method: 
- quality of the measured data (steady-state, no outliers and gross errors, etc.) and 

- quality of the prediction error sequence (if this is a realization of a white noise 

- quality of the estimated parameters considering their nonbiasness, variance, 

the presence of sufficient excitation; 

stochastic process); 

and covariance matrix. 
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5.5 
Model Verification 

Having completed the model equation constructing step of the seven-step modeling 
procedure (see Section 5.2.2), one needs to perform model verification, that is, to 
check the model against engineering insight and expectations, before attempting its 
solution. Model verification includes checks of syntax and semantics, as well as the 
well-posedness of the model from mathematical sense, and analysis of computa- 
tional and dynamic properties. 

5.5.1 
Formal Methods for Checking Syntax and Semantics 

Before a mathematical model is used for solvability analysis or is solved, it is useful 
to check and ensure its consistency. There are several methods for consistency 
checking that are applicable both in computer-aided modeling tools and in process 
systems engineering practices: 

0 Dimension analysis is a useful simple check for consistency of the model equations 
in terms of units of measure. This very useful but not widespread method is used 
in ASCEND (Evans et. a1 1979) and VeDa (Bogusch and Marquardt 1997) model- 
ing languages, for example. 

0 Syntactical veriication methods (checking bracketing, vector operations, etc.) are 
especially important for computer-aided modeling tools in which the model equa- 
tions can be directly defined by the users. An example for this is the ICAS/Mod- 
Dev modeling system (Jensen-Krogh 1998). 

0 Logical checking (hierarchical consistency, material characterization consistency, 
chemical reaction rate equation derivation, etc.) is used for examining the model- 
ing assumptions’ consistency. This very important verification method, accom- 
plished before generating the model equations, is used in the majority of 
computer-aided modeling tools. 

It is important to note that the above-introduced model verification methods are 
applicable only for partial consistency checking and they cannot insure full model con- 
sistency. 

5.5.2 
Structural Analysis of Computational Properties of Process Models 

The structural analysis of dynamic lumped process models form an important step 
in the seven-step modeling procedure and is used for the determination of the solv- 
ability and computational properties of the model. This analysis includes the deter- 
mination of the degrees of freedom (DOF), the differential index and the structural 
components of the model. 
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Analysis of DOF and differential index. In order to solve a mathematical model, a 
sufficient number of variables have to be specified so that the number of unknown 
variables exactly equals the number of equations. The DOF, i.e., the difference 
between the number of unknown variables and the number of equations in the 
mathematical representation, is equal to the number of variables that must be speci- 
fied for obtaining a solvable equation system. There are three possible values for 
DOF to obtain (Hangos and Cameron 2001): 

0 DOF=O. This implies that the number of independent unknowns and indepen- 
dent equations is the same and a unique solution may exist. 

0 DOF>O. This implies that the number of independent variables is greater than 
the number of independent equations and the problem is underspecified. In this 
case some of the independent variables have to be specified by some external con- 
siderations in order for the DOF to be reduced to zero. 
DOF<O. This implies that the number of variables is less than the number of 
equations and the problem is over-specified. If this occurs it is necessary to check 
and make sure that you have included all relevant equations. 

I 

It is important that the DOF analysis can be applied both on the entire equation sys- 
tem and on the subsets (mass-related equations, energy-related equations, etc.) of 
model equations separately. 

The diferential index of a DAE is defined as the minimum number of differentia- 
tions with respect to time that the algebraic system of equations has to undergo to 
convert the system into a set of ordinary differential equations (ODE) (Hangos and 
Cameron 2001). The index of a pure ODE system is zero by definition. When the 
Jacobian of the algebraic equation set of DAE is of full rank, then the index of DAE 
is one. In this case the initial values of the differential variables can be selected arbi- 
trarily, and the DAE can easily be solved by conventional methods such as Runge- 
Kutta or Backward Differentiation methods. If, however, the index is higher than 1, 
special care should be taken in assigning the initial values of the variables, since 
some “hidden” constraints lie behind the problem specifications. 

Structural decompositions. Effective graph-theoretical methods have been proposed 
in the literature based on the analysis tools developed by Murota et al. (1987) for the 
determination of the most important solvability property of lumped dynamic process 
models (Leitold and Hangos 2001): the differential index and the structural compo- 
nents. The analysis is based on constructing the structural representation graph of 
the DAE model equations where the variables are represented as vertices and the 
equations as edges (dependencies) between vertices. Labels are associated with the 
vertices of the graph indicating the computational property of the associated variable. 
The reduced representation graph, together with the L- and M-components and their 
hierarchy, are determined by the analysis, which can effectively be used to select a 
suitable numerical solution method and to determine the computational path. In 
addition, one can artificially structure a DAE model by using algebraic transforma- 
tions to be able to solve it more efficiently (Robertson and Cameron 1997). 
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5.5.3 
Analysis of Structural Dynamical Properties (Controllability, Observability, Stability) 

One simple yet powerful method of model verification is to analyze the structural 
dynamical properties of the developed model and compare the result with engineer- 
ing expectations. The first step of the analysis is to transform the lumped process 
model in its DAE form into a nonlinear state-space model form, which is only possi- 
ble for index 1 models. 

Structure graph. Then the so-called structure graph, a weighted (signed) directed 
graph (SDG) of the model is constructed, which contains the state, input and output 
variables as vertices, and the model equations determine its directed edges in such a 
way that a directed edge points towards variable vi from vj when vj appears on the 
right-hand side of the equation that determines v,. The weight of the edges contains 
the sign of the effect (the sign of the partial derivative) the edge is associated with. 

Note that an SDG model corresponds to a class of process model with the same 
structure. We say that a structural dynamical property, such as structural controlla- 
bility, observability, or stability, holds for a class of process models if almost every 
member of the class (with the exception of null-measure sets) possesses the property. 

Check of  structural properties. Given an SDG model, there are simple-to-check 
combinatorial conditions for the underlying process model class to be structurally 
controllable or observable (Hangos and Cameron 2001; Hangos et al. 2001). For 
example, a process model is structurally controllable (observable) if its state structure 
matrix is of full structural rank and its SDG graph is input (output) connectable, that 

Figure 5.4 The SDC of the simple pro- 
cess example in Fig. 5.2 (input: cAo, To, T& 

output: cg, T). 
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is, there exists at least one directed path to every state (output) variable vertex from an 
input (state) variable vertex. 

The check of structural stability is more computationally demanding and requires 
finer qualitative information on the value of the model parameters. A simple, but not 
thorough enough, general method of checking structural stability of a process model 
class is the method of conservation matrices (Hangos and Cameron 2001). Here we 
use the state matrix of a locally linearized process model and check if it is a conserva- 
tion matrix or not. A real square matrix is a conservation matrix if its diagonal ele- 
ments are negative, all other elements are nonnegative and the diagonal elements 
are row (or column) dominants, i.e., the absolute value of the diagonal element is 
greater that the sum off the off-diagonal elements in every row (or column). 

I 
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