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Process Monitoring and Data Reconciliation 

Georges Heyen and Boris Kalitventzef 

3.1 
Introduction 

Measurements are needed to monitor process efficiency and equipment condition, 
but also to take care that operating conditions remain within an acceptable range to 
ensure good product quality and to avoid equipment failure and any hazardous con- 
ditions. Recent progress in automatic data collection and archiving has solved part of 
the problem, at least for modern, well-instrumented plants. Operators are now faced 
with a lot of data, but they have little means to extract and fully exploit the relevant 
information it contains. 

Furthermore, plant operators recognize that measurements and laboratory analy- 
sis are never error-free. Using these measurements without any correction yields 
inconsistencies when generating plant balances or estimating performance indica- 
tors. Even careful installation and maintenance of the hardware can not completely 
eliminate this problem. 

Model-based statistical methods, such as data reconciliation, have been developed 
to analyze and validate plant measurements. The objective of these techniques is to 
remove errors from available measurements and to yield complete estimates of all 
the process state variables as well as of unmeasured process parameters. 

This chapter constitutes a tutorial on process monitoring and data reconciliation. 
First, the key concepts and issues underlying a plant data validation, sources of error 
and redundancy considerations are introduced. Then, the data reconciliation prob- 
lem is formulated for simple stready-state linear systems and extended further to 
consider nonlinear cases. The role of sensibility analysis is also introduced. Dynamic 
data reconciliation, which is still a subject of major research interest, is treated next. 
The chapter concludes with a section devoted to the optimal design of the measure- 
ment system. Detailed algorithms and supporting software are presented along with 
the solution of some motivating examples. 
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518 3 Process Monitoring and Data Reconciliation I 
3.2 
Introductory Concepts for Validation o f  Plant Data 

Data validation makes use of a plant model in order to identify measurement errors 
and to reduce their average magnitude. It provides estimates of all process state vari- 
ables, whether directly measured or not, with the lowest possible uncertainty. It 
allows one to assess the value of key performance indicators, which are target values 
for process operation, or is used as a soft sensor to provide estimates of some unmea- 
sured variables, as in inferential control applications. 

Especially in a framework of real-time optimal control, where model fidelity is of 
paramount importance, data validation is a recommended step before fine-tuning 
model parameters: there is no incentive in seeking to optimize a model when it does 
not match the actual behavior of the real plant. 

Data validation can also help in gross error detection, meaning either process 
faults (such as leaks) or instrument faults (such as identification of instrument bias 
and automatic instrument recalibration). 

Long an academic research topic, data validation is currently attracting more and 
more interest, since the amount of measured data collected by Digital Control Sys- 
tems (DCS) and archived in process information management systems,exceeds what 
can be handled by operators and plant managers. Real-time applications, such as 
optimal control, also require frequent parameter updates, in order to ensure fidelity 
of the plant model. The economic value of extracting consistent information from 
raw data is recognized. Data validation thus plays a key role in providing coherent 
and error-free information to decision makers. 

3.2.1 
Sources of  Error 

Some sources of errors in the balances depend on the sensors themselves: 

0 Intrinsic sensor precision is limited, especially for online equipment, where 

0 Sensor calibration is seldom performed as often as desired, since this is a costly 

0 Signal converters and transmission add noise to the original measurement. 
0 Synchronization of measurements may also pose a problem, especially for chemical 

analysis, where a significant delay exists between sampling and result availability. 

Other errors arise from the sensor location or the influence of external effects. For 
instance, the measurement of gas temperature at the exit of a furnace can be influ- 
enced by radiation from the hot wall in the furnace. Inhomogeneous flow can also 
cause sampling problems. A local measurement is not representative of an average 
bulk property. 

A second source of error when calculating plant balances is the small instabilities 
of the plant operation and the fact that samples and measurements are not taken at 

robustness is usually considered more important than accuracy. 

and time-consuming procedure requiring competent manpower. 
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exactly the same time. Using time averages for plant data partly reduces this prob- 
lem. 

3.2.2 
Redundancy 

Besides safety considerations, the ultimate goal in performing measurements is to 
assess the plant performance and to take actions in order to optimize the operating 
conditions. However, most performance indicators can not be directly measured and 
must be inferred from some measurements using a model. For instance, the extent 
of a reaction in a continuous reactor can be calculated from a flow rate and two com- 
position measurements. In general terms, model equations that relate unmeasured 
variables to a sufficient number of available measurements are used. 

However, in some cases, more measurements are available than are strictly 
needed, and the same performance indicator can be calculated in several ways using 
different subsets of measurements. For instance, the conversion in an adiabatic reac- 
tor where a single reaction takes place is directly related to the temperature variation. 
Thus the extent of the reaction can be inferred from a flow rate and two temperature 
measurements using the energy balance equation. In practice, all estimates of per- 
formance indicators will be different, which makes life difficult and can lead to end- 
less discussions about “best practice.” 

Measurement redundancy should not be viewed as a source of trouble, but as an 
opportunity to perform extensive checking. When redundant measurements are 
available, they allow one not only to detect and quantify errors, but also to reduce the 
uncertainty using procedures known as data validation. 

3.2.3 
Data Validation 

The data validation procedure comprises several steps. The first is the measurement 
collection. Nowadays, in well-instrumented plants, this is performed routinely by 
automated equipment. 

The second step is conditioning and filtering: not all measurements are available 
simultaneously, and synchronization might be required. Some data are acquired at 
higher frequency and filtering or averaging can be justified. 

The third step is to verify the process condition and the adequacy of the model. For 
instance, if a steady-state model is to be used for data reconciliation, the time series 
of raw measurements should be analyzed to detect any significant transient behav- 
ior. 

The fourth step is gross error detection: the data reconciliation procedure to be 
applied later is meant to correct small random errors. Thus, large systematic errors 
that could result from complete sensor failure should be detected first. This is usu- 
ally done by verifying that all raw data remain within the upper and lower bounds. 
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More advanced statistical techniques, such as principal component analysis (PCA), 
can also be applied at this stage. Ad hoc procedures are applied in case some mea- 
sured value is found inadequate or missing: it can be replaced by a default value or 
by the previous one available. 

The fifth step checks the feasibility of data reconciliation. The model equations are 
analyzed and the variables are sorted. Measured variables are redundant (and can 
thus be validated) or just determined; unmeasured variables are determinable or not. 
When all variables are either measured or observable, the data reconciliation prob- 
lem can be solved to provide an estimate for all state variables. 

The sixth step is the solution of the data reconciliation problem. The mathematical 
formulation of this problem will be presented in more detail later. 

Each measurement is corrected as slightly as possible in such a way that the cor- 
rected measurements match all the constraints (or balances) of the process model. 
Unmeasured variables can be calculated from reconciled values using some model 
equations. 

In the seventh step the systems perform a result analysis. The magnitude of the 
correction for each measurement is compared to its standard deviation. Large correc- 
tions are flagged as suspected gross errors. 

In the final step, results are edited and may be archived in the plant information 
management system. Customized reports can be edited and forwarded to various 
users (e.g., list of suspect sensors sent to maintenance, performance indicators sent 
to the operators, daily balance and validated environmental figures to site manage- 
ment). 

I 

3.3 
Formulation 

Data reconciliation is based on measurement redundancy. This concept is not lim- 
ited to the case where the same variable is measured simultaneously by several sen- 
sors. It is generalized with the concept of spatial redundancy, where a single variable 
can be estimated in several independent ways from separate sets of measurements. 
For instance, the outlet of a mixer can be directly measured or estimated by sum- 
ming the measurements of all inlet flow rates. For dynamic systems, temporal 
redundancy is also available, by which repeated observations of the same variables 
are obtained. More generally, plant structure is additional information that can be 
exploited to correct measurements. 

Variables describing the state of a process are related by some constraints. The 
basic laws of nature must be verified: mass balance, energy balance, some equilib- 
rium constraints. Data reconciliation uses information redundancy and conservation 
laws to correct measurements and convert them into accurate and reliable knowl- 
edge. 

Kuehn and Davidson (1961) were the first to explore the problem of data reconcili- 
ation in the process industry. Vaclavek (1968, 1969) also addressed the problem of 
variable classification, and the formulation of the reconciliation model. Mah et al. 
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(1976) proposed a variable classification procedure based on graph theory, while 
Crowe (1989) based an analysis on a projection matrix approach to obtain a reduced 
system. Joris and Kalitventzeff (1987) proposed a classification algorithm for general 
nonlinear equation systems, comprising mass and energy balances, phase equilib- 
rium and nonlinear link equations. A thorough review of classification methods is 
available in Veverka and Madron (1996) and in Romagnoli and Sanchez (2000). A 
historical perspective of the main contributions on data reconciliation can also be 
found in Narasimhan and Jordache (2000). 

3.3.1 
Steady-State Linear System 

The simplest data reconciliation problem deals with steady state mass balances, 
assuming all variables are measured, and results in a linear problem. In this case x 
is the vector of n state variables, while y is the vector of measurements. We assume 
that random errors e=y-x follow a multivariate normal distribution with zero mean. 

The state variables are linked by a set of rn linear constraints: 

Ax-d=O (1) 

The data reconciliation problem consists of identifying the state variables x that verify 
the set of constraints and are close to the measured values in the least square sense, 
which results in the following objective function: 

(2) min(y - xlTw(y - x) 

where W is a weight matrix. 
The method of Lagrange multipliers allows one to obtain an analytical solution: 

i = y - W-'AT(AW-'AT)-'(Ay - d) 

It is assumed that there are no linearly dependent constraints. 
In order to solve practical problems and obtain physically meaningful solutions, it 

may be necessary to take into account inequality constraints on some variables (e.g., 
flow rate should be positive). However, this makes the solution more complex, and 
the constrained problem can not be solved analytically. 

It  can be shown that x is the maximum likelihood estimate of the state variables if 
the measurement errors are normally distributed with zero mean, and if the weight 
matrix W corresponds to the inverse of the error covariance matrix C. Equation (3) 
then becomes: 

i = y - CAT(ACAT)-'(Ay - d) = [I - CAT(ACAT)-'A]y + CAT(ACAT)-'d 
i = M y + e  

(3b) 

The estimates are thus related to the measured values by a linear transformation. 
They are therefore normally distributed with the average value and covariance matrix 
obtained by calculating the expected values: 
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(4) E ( i )  = ME().) = x 

Cov(2) = E [ (MY)(M~)~]  = MCMT 

I 

This shows that the estimated state variables are unbiased. Furthermore, the accu- 
racy of the estimates can easily be obtained from the measurement accuracy (covari- 
ance matrix C )  and from the model equations (matrix A). 

3.3.2 
Steady-State Nonlinear System 

The data reconciliation problem can be extended to nonlinear steady- state models 
and to cases where some variables z are not measured. This is expressed by: 

min(y - xlTw(y - x) 

s.t. f (x, z) = 0 
x,z 

where the model equations are mass and component balance equations, energy bal- 
ance, equilibrium conditions, and link equations relating measured values to state 
variables (e.g., conversion from mass fractions to partial molar flow rates). 

Usually the use of performance equations is not recommended, unless the perfor- 
mance parameters (such as compressor efficiency and overall heat transfer coeffi- 
cients or fouling factors for heat exchangers) remain unmeasured and will thus be 
estimated by solving the data reconciliation problem. It would be difficult to justify 
correcting measurements using an empirical correlation, e.g., by correcting the out- 
let temperatures of a compressor by enforcing the value of the isentropic efficiency. 
The main purpose of data reconciliation is to allow monitoring of those efficiency 
parameters and to detect their degradation. 

Equation (5) takes the form of a nonlinear constrained minimization problem. It 
can be transformed into an unconstrained problem using Lagrange multipliers A 
and the augmented objective function L has to be minimized: 

T -1 L(x, z ,  A) = { 1 (X - y) C (X - y) + AT . f (x, Z) 

min L(x, y, A) 
x,y.A 

The solution must verify the necessary optimality conditions i.e., the first derivatives 
of the objective function with respect to all independent variables must vanish. Thus 
one has to solve the system of normal equations: 

a L  
aA 
_ -  - f (x ,  z) = 0 



This last equation can be linearized as: 

z + d = O  
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(7) 

where A and B are partial Jacobian matrices of the model equation system: 

af 
ax 

A = -  

The system of normal equations in Eq. (6) is nonlinear and has to be solved itera- 
tively. Initial guesses for measured values are straightforward to obtain. Process 
knowledge usually estimates good initial values for unmeasured variables. No obvi- 
ous initial values exist for Lagrange multipliers, but solution algorithms are not too 
demanding in that respect (Kalitventzeff et al., 1978). The Newton-Raphson method 
is suitable for small problems and requires a solution of successive linearizations of 
the original problem Eq. (6): 

where the Jacobian matrix J of the equation system has the following structure: 

C-' 0 AT 

Numerical algorithms embedding a step size control, such as Powell's dogleg algo- 
rithm (Chen and Stadtherr 1981) are quite successful for larger problems. 

When solving very large problems, it is necessary to exploit the sparsity of the Jaco- 
bian matrix and use appropriate solution algorithms, such as those described by 
Chen and Stadtherr (1984a). It is common to assume that measurements are inde- 
pendent, which reduces the weight matrix C-' to a diagonal. Ideally, the elements of 
matrices A and B should be evaluated analytically. This is straightforward for the ele- 
ments corresponding to mass balance equations, which are linear, but can be diffi- 
cult when the equations involve physical properties obtained from an independent 
physical property package. 

The solution strategy exposed above does not allow one to handle inequality con- 
straints. This justifies the use of alternative algorithms to solve directly the nonlinear 
programming (NLP) problem defined by Eq. (6). Sequential quadratic programming 
(SQP) is the method of choice (Chen and Stadtherr 1984a; Kyriakopoulou and Kalit- 
ventzeff 1996, 1997). At each iteration, an approximation of the original problem is 
solved: the original objective function being quadratic is retained and the model con- 
straints are linearized around the current estimate of the solution. 
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Before solving the NLP problem, some variable classification and preanalysis is 
needed to identify unobservable variables, parameters, and nonredundant measure- 
ments. Measured variables can be classified as redundant (if the measurement is 
absent or detected as a gross error, the variable can still be estimated from the model) 
or nonredundant. Likewise, unmeasured variables are classified as observable (esti- 
mated uniquely from the model) or unobservable. The reconciliation algorithm will 
correct only redundant variables. If some variables are not observable, the program 
will either request additional measurements (and possibly suggest a feasible set) or 
solve a smaller subproblem involving only observable variables. The preliminary 
analysis should also detect ouerspecijied variables (particularly those set to constants) 
and trivial redundancy, where the measured variable does not depend at all upon its 
measured value but is inferred directly from the model. Finally, it should also iden- 
tify model equations that do not influence the reconciliation, but are merely used to 
calculate some unmeasured variables. Such preliminary tests are extremely impor- 
tant, especially when the data reconciliation runs as an automated process. In partic- 
ular, if some measurements are eliminated as gross errors due to sensor failure, 
nonredundant measurements can lead to unobservable values and nonunique solu- 
tions, rendering the estimates and fitted values useless. As a result, these cases need 
to be detected in advance through variable classification. Moreover, under these con- 
ditions, the NLP may be harder to converge. 

I 

3.3.3 
Sensitivity Analysis 

Solving the data reconciliation problem provides more than validated measure- 
ments. A sensitivity analysis can also be carried out. It is based on the linearization 
of equation system in Eq. (9), possibly augmented to take into account active inequal- 
ity constraints. 

Equation (9) shows that reconciled values of process variables x and z, and of Lag- 
range multipliers A are linear combinations of the measurements. Thus their covari- 
ance matrix is directly derived from the measurements covariance matrix (Heyen et 
al. 1996). 

Knowing the variance of validated variables allows one to detect the respective 
importance of all measurements in the state identification problem. In particular, 
some measurements might appear to have little effect on the result and might thus 
be discarded from analysis. Some measurements may appear to have a very high 
impact on key validated variables and on their variance: these measurements should 
be carried out with special caution, and it may prove wise to duplicate the corre- 
sponding sensors. 

The standard deviation of validated values can be compared to the standard devia- 
tion of the raw measurement. Their ratio measures the improvement in confidence 
brought by the validation procedure. A nonredundant measurement will not be 
improved by validation. The reliability of the estimates for unmeasured observable 
variables is also quantified. 



The sensitivity analysis also allows one to identify all state variables dependent on 
a given measurement, as well as the contribution of the measurement variance to the 
variance of the reconciled value. This information helps locate critical sensors, whose 
failure may lead to troubles in monitoring the process. 

A similar analysis can be carried out for all state variables, whether measured or 
not. For each variable, a list of all measurements used to estimate its reconciled value 
is obtained. The standard deviation of the reconciled variable is calculated, but also 
its sensitivity with respect to the measurement's standard deviation. This allows one 
to locate sensors whose accuracy should be improved in order to reduce the uncer- 
tainty affecting the major process performance indicators. 

3.3.4 
Dynamic Data Reconciliation 

The algorithm described above is suitable for analyzing steady-state processes. In 
practice it is also used to handle measurements obtained from processes operated 
close to steady state, with small disturbances. Measurements are collected over a 
period of time and average values are treated with the steady state algorithm. This 
approach is acceptable when the goal is to monitor some performance parameters 
that vary slowly with time, such as the fouling coefficient in heat exchangers. It is 
also useful when validated data are needed, to fine tune a steady-state simulation 
model, e.g., before optimizing set point values that are updated once every few hours. 

However, a different approach is required when the transient behavior needs to be 
monitored accurately. This is the case for regulatory control applications, where data 
validation has to treat data obtained with a much shorter sampling interval. Dynamic 
material and energy balance relationships must then be considered as a constraint. 

The earliest algorithm was proposed by Kalman (1960) for the linear time-invariant 
system model. 

The general nonlinear process model describes the evolution of the state variables 
x by a set of ordinary differential equations (ODE): 

(11) 

where x are state variables, u are process inputs, and w(t) is white noise with zero 
mean and covariance matrix R(t). 

To model the measurement process, one usually considers sampling at discrete 
times t = kT, and measurements related to state variables by: 

x = f ( t ,  x, u) + w(t )  

Yk = h(xk)  + "k (12) 

where measurement errors are normally distributed random variables with zero 
mean and covariance matrix Qk. One usually considers that process noise wand mea- 
surement noise v are not correlated. 

By linearizing Eqs. 11 and 1 2  at each time step around the current state estimates, 
an extended Kalrnanfilter can be built (see, for instance, Narasimhan and Jordache 
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2000). It allows one to propagate an initial estimate of the states and the associated 
error covariance, and to update them at discrete time intervals using the measure- 
ment innovation (the difference between the measured values and the predictions 
obtained by integrating the process model from the previous time step). 

An alternative approach relies on NLP techniques. As proposed by Liebman et al. 
(1992), the problem can be formulated as 

I 

subject to 

f(F , x(t) ) = 0; x(t0) = i o  (14) 

h(x(t)) = 0 (15) 

In this formulation, we expect that all state variables can be measured. When some 
measurements are not available, this can be handled by introducing null elements in 
the weight matrix Q. Besides enforcing process specific constraints, the equalities in 
Eq. (15) can also be used to define nonlinear relationships between state variables 
and some measurements. 

All measurements pertaining to a given time horizon [to.. .tN] are reconciled simul- 
taneously. Obviously, the calculation effort increases with the length of the time hori- 
zon, and thus with the number of measurements. A tradeoff exists between calcula- 
tion effort and data consistency. If measurements are repeated N times in the hori- 
zon interval, each measured value will be reconciled N times with different neighbor- 
ing measurements, as long as it is part of the moving horizon. Which set of recon- 
ciled values is the “best” and should be considered for archiving is an open question. 
The value corresponding to the latest time t N  will probably be selected for online con- 
trol application, while a value taken in the middle of the time window might be pre- 
ferred for archiving or offline calculations. 

Two solution strategies can be considered. The sequential solution and optimiza- 
tion combines an optimization algorithm such as SQP with an ODE solver. Optimi- 
zation variables are the initial conditions for the ODE system. Each time the opti- 
mizer sets a new value for the optimization variables, the differential equations are 
solved numerically and the objective function Eq. (13) is evaluated. This method is 
straightforward, but not very efficient: accurate solutions of the ODE system are 
required repeatedly and handling the constraints Eqs. (15) and (16) might require a 
lot of trial and error. An implementation of this approach in a MATLAB environ- 
ment is described by Romagnoli and Sanchez (2000). 

Simultaneous solution and optimization is considered more efficient. The differ- 
ential constraints are approximated by a set of algebraic equations using a weighted 
residuals method, such as orthogonal collocation. Predicted values of the state vari- 
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ables are thus obtained by solving the resulting set of algebraic equations, supple- 
mented by the algebraic constraints of Eqs. (15) and (16). With this transformation, 
the distinction between dynamic data reconciliation and steady state data reconcilia- 
tion vanishes. However this formulation requires solving a large NLP problem. This 
approach was first proposed by Liebman et al. (1992). 

3.4 
Software Solution 

Data reconciliation is a functionality that is now embedded in many process analysis 
and simulation packages or is proposed as a standalone software solution. Bagaje- 
wicz and Rollins (2002) present a review of eight commercial and one academic data 
reconciliation packages. Most of them are limited to material and component bal- 
ances. 

More advanced features are only available in a few packages: direct connectivity to 
DCS systems for online applications, access to an extensive physical property library, 
handling pseudocomponents (petroleum fractions), simultaneous data validation, 
and identification of process performance indicators, sensitivity analysis, automatic 
gross error detection and correction, a model library for major process unit modules, 
handling of rigorous energy balances and phase equilibrium constraints, evaluation 
of confidence limits for all estimates. The packages offering the larger sets of fea- 
tures are Datacon (Invensys) (2004) and Vali (Belsim) (2004). 

Dynamic data reconciliation is still an active research topic (Binder et al., 1998). It 
is used in combination with some real-time optimization applications, usually in the 
form of custom-developed extended Kalman Filters (see, for instance, Musch et al. 
(2004)), but dedicated commercial packages have yet to reach the market. 

3.5 
Integration in the Process Decision Chain 

Data reconciliation is just one step - although an important step - in the data pro- 
cessing chain. Several operations, collectively known as data validation, are executed 
sequentially : 
0 Raw measurements are filtered to eliminate some random noise. When data is 

collected at high frequency, a moving average might be calculated to reduce the 
signal variance. 

0 If steady state data reconciliation is foreseen, the steady state has to be detected. 
0 Measurements are screened in order to detect outliers, or truly abnormal values 

(out of feasible range, e.g., negative flow rate). 
0 The state of the process might be identified when the plant can operate in differ- 

ent regimes or with a different set of operating units. Principal Component Analy- 
sis (PCA) analysis is typically used for that purpose, and allows one to select a ref- 
erence case and to assign the right model structure to the available data set. This 
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step also allows some gross error detection (measurement set deviates signifi- 
cantly from all characterized normal sets). 

0 Variable classification takes place in order to verify that redundancy is present in 
the data set and that all state variables can be observed. 

0 The data reconciliation problem is solved. 
0 A global Chi-square test can detect the presence of gross errors. 
0 A posteriori uncertainty is calculated for all variables, and corrections are compared 

to the measurement standard deviation. In an attempt to identify gross errors, 
sequential elimination of suspect measurements (those with large corrections) can 
possibly identify suspect sensors. Alternatively, looking at subsystems of equa- 
tions linking variables with large corrections allows one to pinpoint suspect units 
or operations in the plant. 

0 Key performance indicators and their confidence limits are evaluated and made 
available for reporting. 

0 Model parameters are tuned based on reconciled measurements and made avail- 
able to process optimizers. 

I 

3.6 
Optimal Design of  Measurement System 

The quality of validated data obviously depends on the quality of the measurement. 
Recent studies have paid more attention to this topic. The goal is to design measure- 
ment systems allowing one to achieve a prescribed accuracy in the estimates of some 
key process parameters, and to secure enough redundancy to make the monitoring 
process resilient with respect to sensor failures. Some preliminary results have been 
published, but no general solution can be found addressing large-scale nonlinear 
systems or dynamics. 

Madron (1972) solved the linear mass balance case using a graph-oriented method. 
Meyer et al. (1994) proposed an alternative minimum-cost design method based on 
a similar approach. Bagajewicz (1997) analyzed the problem for mass balance net- 
works, where all constraint equations are linear. Bagajewicz and Sanchez (1999) also 
analyze reallocation of existing sensors. The design and retrofit of a sensor network 
was also analyzed by Benqlilou et al. (2004) who discussed both the strategy and tools 
structure. 

3.6.1 
Sensor Placement based on Genetic Algorithm 

A model-based sensor location tool, making use of a genetic algorithm to minimize 
the investment cost of the measurement system has been proposed by Heyen et al. 
(2002) and further developed by Gerkens and Heyen (2004). 

They propose a general mathematical formulation of the sensor selection and loca- 
tion problem in order to reduce the cost of the measurement system while providing 
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estimates of all specified key process parameters within a prescribed accuracy. The 
goal is to extend the capability of previously published algorithms and to address a 
broader problem, not being restricted to flow measurements and linear constraints. 

The set of constraint equations is obtained by linearizing the process model at the 
nominal operating conditions, assuming steady state. The process model is comple- 
mented with link equations that relate the state variables to any accepted measure- 
ments, or to key process parameters whose values should be estimated from the set 
of measurements. In our case, the set of state variables for process streams com- 
prises all stream temperatures, pressures and partial molar flow rates. In order to 
handle total flow rate measurements, the link equation describing the mass flow rate 
as the sum of all partial molar flow rates weighted by the component's molar mass 
has to be defined. Similarly, link equations relating the molar or mass fractions to 
the partial molar flow rates have also to be added for any stream where an analytical 
sensor can be located. 

Link equations also have also to be added to express key process parameters, such 
as heat transfer coefficients, reaction extents or compressor efficiencies. 

In the optimization problem formulation, the major contribution to the objective 
function is the annualized operating cost of the measurement system. In the pro- 
posed approach, we will assume that all variables are measured; those that are actu- 
ally unmeasured will be handled as measured variables with a large standard devia- 
tion. Data reconciliation requires a solution of the optimization problem described 
by Eq. (5). The weight matrix W = C-' is limited to diagonal terms, which are the 
inverse of the measurement variance. The constrained problem is transformed into 
an unconstrained one using the Lagrange formulation as previously shown. 

Assuming all state variables are measured, the solution takes the following form: 

The linear approximation of the constraints is easily obtained from the solution of 
the nonlinear model, since A is the Jacobian matrix of the nonlinear model evaluated 
at the solution. 

Thus matrix M can be easily built, knowing the variance of measured variables 
appearing in submatrix W and the model Jacobian matrix A (which is constant). This 
matrix will be modified when assigning sensors to variables. Any diagonal element 
of matrix W will remain zero (corresponding to infinite variance) as long as a sensor 
is not assigned to the corresponding process variable; it will be computed from the 
sensor precision and the variable value when a sensor is assigned in Section 3.6.2.3. 
Equation (17) need not be solved, since measured values Y are not known. However 
the variances of the reconciled values X depend only on the variance of measure- 
ments as shown in Heyen et al. (1996): 

([M-11y)2 
var(xi) = C 

var (5) 
j=1 
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The elements of M-' are obtained by calculating a lower and upper triangular (LU) 
factors of matrix M. In the case when matrix M is singular, we can conclude that the 
measurement set has to be rejected, since it does not allow observation of all vari- 
ables. Row i of M-' is obtained by back substitution using the LU factors, using a 
right-hand-side vector whose components are 6 ,  (Kronecker factor: 6, = 1 when i = j, 
6 ,  = 0 otherwise). 

In the summation of Eq. (18), only the variables Yj that have been assigned a sensor 
are considered, since the variance of unmeasured variables has been set to infinity. 

I 

3.6.2 
Detailed Implementation of the Algorithm 

Solution of the sensor network problem is carried out in seven steps: 

1. process model formulation and definition of link equations; 
2. model solution for the nominal operating conditions and model linearization; 
3 .  specification of the sensor database and related costs; 
4. specification of the precision requirements for observed variables; 
5. verification of problem feasibility; 
6. optimization of the sensor network 
7. report generation. 

Each of the steps is described in detail before presenting a test case. 

3.6.2.1 
Process Model Formulation and Definition of Link Equations 
In the current implementation, the process model is generated using the model edi- 
tor of the Vali 3 data validation software, which is used as the basis for this work (Bel- 
sim 2004). The model is formulated by drawing a flow sheet using icons represent- 
ing the common unit operations, and linking them with material and energy 
streams. Physical and thermodynamic properties are selected from a range of physi- 
cal property models. Any acceptable measurement of a quantity that is not a state var- 
iable (T, P, partial molar flow rate) requires the definition of an extra variable and the 
associated link equation, which is done automatically for standard measurement 
types (e.g., mass or volume flow rate, density, dew point, molar or mass fractions, 
etc.). Similarly, extra variables and link equations must be defined for any process 
parameter to be assessed from the plant measurements. A proper choice of extra var- 
iables is important, since we may note that many state variables can not be measured 
in practice (e.g., no device exists to directly measure a partial molar flow rate or an 
enthalpy flow). 

In order to allow the model solution, enough variables need to be set by assigning 
them values corresponding to the nominal operating conditions. The set of specified 
variables must at least match the degrees of freedom of the model, but overspecifica- 
tions are allowed, since a least square solution will be obtained by the data reconcilia- 
tion algorithm. 
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3.6.2.2 
Model Solution for the Nominal Operating Conditions and Model Linearization 
The data reconciliation problem is solved either using a large-scale SQP solver, or the 
Lagrange multiplier approach. When the solution is found, the value of all state vari- 
ables and extra variables is available, and the sensitivity analysis is carried out (Heyen 
et al. 1996). A dump file is generated, containing all variable values, and the nonzero 
coefficients of the Jacobian matrix of the model and link equations. All variables are 
identified by a unique tag name indicating its type (e.g., S32.T is the temperature of 
stream S32, E102.K is the overall heat transfer coefficient of heat exchanger E102, 
and S32.MFH20 is the molar fraction of component H20  in stream S32). 

3.6.2.3 
Specification o f  the Sensor Database and Related Costs 
A data file must be prepared that defines for each acceptable sensor type the follow- 
ing parameters: 

0 the sensor name; 
0 the annualized cost of operating such a sensor; 
0 parameters a, and bi of the equation allowing to estimate the sensor accuracy from 

the measured value y,, according to the relation: oi = a, + biy,; 
0 a character string pattern to match the name of any process variable that can be 

measured by the given sensor (e.g., a chromatograph will match any mole fraction, 
and will thus have the pattern MF", while an oxygen analyzer will be characterized 
by the pattern MF02) .  

3.6.2.4 
Specification of the Precision Requirements for Observed Variables 
A data file must be prepared that defines the precision requirements for the sensor 
network after processing the information using the validation procedure. The follow- 
ing information is to be provided for all specified key performance indicators or for 
any process variable to be assessed: 

0 the composite variable name (stream or unit name + parameter name); 
0 the required standard deviation a;, either as an absolute value, or as a percentage 

of the measured value. 

3.6.2.5 
Verification of Problem Feasibility 
Before attempting to optimize the sensor network, the program first checks for the 
existence of a solution. It solves the linearized data reconciliation problem assuming 
all possible sensors have been implemented. In the case where several sensors are 
available for a given variable, the most precise one is adopted. This also provides an 
upper limit C,,, for the cost of the sensor network. 

A feasible solution is found when two conditions are met: 

0 the problem matrix M is not singular. 
0 the standard deviation oi of all selected reconciled variables is lower than the speci- 

fied value oti. 
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When the second condition is not met, several options can be examined. One can 
extend the choice of sensors available in the sensor definition file by adding more 
precise instruments. One can also extend the choice of sensors by allowing measure- 
ment of other variable types. Finally, one can modify the process definition by adding 
extra variables and link equations, allowing more variables besides state variables to 
be measured. 

I 

3.6.2.6 
Optimization of  the Sensor Network 
Knowing that a feasible solution exists, one can start a search for a lower cost config- 
uration. The optimization problem as posed involves a large number of binary vari- 
ables (in the order of number of streams X number of sensor types). The objective 
function is multimodal for most problems. However, identifylng sets of suboptimal 
solutions is of interest, since criteria besides cost might influence the selection pro- 
cess. Since the problem is highly combinatorial and not differentiable, we attempted 
to solve it using a genetic algorithm (Goldberg 1989). The implementation we 
adopted is based on the freeware code developed by Carroll (1998). The selection 
scheme used involves tournament selection with a shuffling technique for choosing 
random pairs for mating. The evolution algorithm includes jump mutation, creep 
mutation, and the option for single-point or uniform crossover. 

The sensor selection is represented by a long string (gene) of binary decision vari- 
ables (chromosomes). In the problem analysis phase, all possible sensor allocations 
are identified by finding matches between variable names (see Section 3.6.2.2) and 
sensor definition strings (see Section 3.6.2.3). A decision variable is added each time 
a match is found. Multiple sensors with different performance and cost can be 
assigned to the same process variable. 

The initial gene population is generated randomly. Since we know from the num- 
ber of variables and the number of constraint equations the number of degrees of 
freedom of the problem, we can bias the initial sensor population by fxing a rather 
high probability of selection (typically 80 %) for each sensor. We found however that 
this parameter is not critical. The initial population count does not appear to be criti- 
cal either. Problems with a few hundred binary variables were solved by following the 
evolution of populations of 10-40 genes, 20 being our most frequent choice. 

Each time a population is generated, the fitness of its members must be evaluated. 
For each gene representing a sensor assignment, we can estimate the cost C of the 
network, by summing the individual costs of all selected sensors. We also have to 
build the corresponding matrix M (Eq. (3b)) and factorize it, which is done using a 
code exploiting the sparsity of the matrix. 

The standard deviation ui of all process variables is then estimated using Eq. (18). 
This allows calculating a penalty function P that takes into account the uncertainty 

affecting all observed variables. This penalty function sums penalty terms for all rn 
target variables. 

m 

P = p i  
i= l  
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ai 
( J i  

where Pi = when oi 5 o: 

The fitness function F of the population is then evaluated as follows: 

0 if matrix M is singular, return F = - C,,, 
0 otherwise return F = - (C + P) .  

Penalty function Eq. (5) (slightly) increases the merit of a sensor network that per- 
forms better than specified. Penalty function Eq. (6) penalizes genes that do not meet 
the specified accuracy, but it does not reject them totally, since some of their chromo- 
somes might code interesting sensor subnetworks. 

The population is submitted to evolution according to the mating, crossover, and 
mutation strategy. Care is taken that the current best gene is always kept in the popu- 
lation, and is duplicated in case it should be submitted to mutation. After a specified 
number of generations, the value of the best member of the population is monitored. 
When no improvement is detected for a number of generations, the current best 
gene is accepted as a solution. There is no guarantee that this solution is an optimal 
one, but it is feasible and (much) better than the initial one. 

3.6.2.7 
Report Generation 
The program reports the best obtained configurations as a list of sensors assigned to 
process variables to be measured. The predicted standard deviation for all process 
variables is also reported, as well as a comparison between the achieved and target 
accuracies for all key process parameters. 

3.6.3 
Perspectives 

The software prototype described here has been further improved by allowing more 
flexibility in the sensor definition (e.g., defining acceptable application ranges for 
each sensor type) and by addressing retrofit problems by specifylng an initial instru- 
ment layout. The capability of optimizing a network for several operating conditions 
has also been implemented. The solution time grows significantly with the number 
of potential sensors. In order to address this issue, the algorithm has been parallel- 
ized (Gerkens and Heyen 2004) and the efficiency of parallel processing remains 
good as long as the number of processors is a divisor of the chromosome population 
size. Full optimization of very complex processes remains a challenge, but subopti- 
mal feasible solutions can be obtained by requiring observability for smaller subflow- 
sheets. 

The proposed method can be easily adapted to different objective functions besides 
cost to account for different design objectives. Possible objectives could address the 
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resiliency of the sensor network to equipment failures, or the capability to detect 
gross errors, in the line proposed by Bagajewicz (2001). 

There is no guarantee that this solution found with the proposed method is an 
optimal one, but it is feasible and (much) better than the initial one. 

I 

3.7 
An Example 

A simplified ammonia synthesis loop illustrates the use of data validation, including 
sensitivity analysis and the design of sensor networks. 

The process model for this plant is shown in Figure 3.1. The process involves a 
five-component mixture (N2, H2, NH3, CH4, Ar), 10 units, 14 process streams, and 4 
utility streams (ammonia refrigerant, boiler feed water, and steam). 

Feed stream f0 is compressed before entering the synthesis loop, where it is mixed 
with the reactor product f14. The mixture enters the recycle compressor C-2 and is 
chilled in exchanger E-1 by vaporizing ammonia. Separator F-1 allows one to recover 
liquid ammonia in 0, separated from the uncondensed stream fb. A purge f7 leaves 

F7-MFAR 0 045 0046. 

Figure 3.1 
are shown in result boxes as well as key performance indicators 

Data validation, base case. Measured and reconciled values 
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the synthesis loop, while f8 enters the effluent to feed preheater E-3. The reaction 
takes place in two adiabatic reactors R-1 and R-2, with intermediate cooling in E-2, 
where steam is generated. 

Energy balances and countercurrent heat transfer are considered in heat exchang- 
ers E-1, E-2, and E-3. Reactors R-1 and R-2 consider atomic balances and energy con- 
servation. Compressors C-1 and C-2 take into account an isentropic efficiency factor 
(to be identified). Vapor-liquid equilibrium is verified in heat exchanger E-1 and in 
separator F-1. 

The model comprises 160 variables, 89 being unmeasured. Overall, 118 equations 
have been written: 70 are balance equations and 48 are link equations relating the 
state variables (pressure, enthalpy and partial molar flow rates) either to variables 
that can be measured (temperature, molar fraction, and mass flow rate) or to perfor- 
mance indicators to be identified. 

A set of measurements has been selected using engineering judgment. Values 
taken as measurements were obtained from a simulation model and disturbed by 
random errors. 

The standard deviation assigned to the measurements was: 

0 1°C for temperatures below 1OO"C, 2°C for higher temperatures 
0 1 % of measured value for pressures 
0 2 % of measured values for flow rates 
0 0.001 for molar fractions below 0.1, 1 % of measured value for higher composi- 

0 3 % of the measured value for mechanical power. 

Measured values are displayed in Figure 3.1, as are the validated results. The identi- 
fied values of performance indicators are also displayed. These are the extent of the 
synthesis reaction in catalytic bed R-1 and R-2, the heat load and transfer coefficients 
in exchangers E-1, E-2 and E-3, and the isentropic efficiency of compressors C-1 and 
c-2. 

Result analysis shows that all process variables can be observed. All measurement 
corrections are below 20, except for methane in stream f7. 

The value of objective function Eq. (5) is 19.83, compared to a x2 threshold equal 
to 42.56. Thus, no gross error is suspected from the global test. 

Sensitivity analysis reveals how the accuracy of some estimates could be improved. 
For instance, Table 3.1 shows the sensitivity analysis results for the heat transfer 
coefficient in unit E-1. The first line in the table reports the value, absolute accuracy 
and relative accuracy of this variable. The next rows in the table identify the measure- 
ments that have a significant influence on the validated value of the E-1 heat transfer 
coefficient. For instance, 77.57% of the uncertainty on U comes from the uncer- 
tainty of variable AMO1-T (temperature of stream amOl). The derivative of U with 
respect to AMO1-T is equal to 0.12784. Thus one can conclude that the uncertainty on 
the heat transfer coefficient could be reduced significantly if a more accurate mea- 
surement of a single temperature is available. 

Table 3.2 shows that the reaction extent in reactor R-2 can be evaluated without 
resorting to precise chemical analysis. The uncertainty for this variable is 4.35 % of 

tions 
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Table 3.1 

Variable Tag Name Value Abs.Acc. ReLAcc. Penal. P.U. 

Sensitivity analysis for heat transfer coefficient in exchanger E-1 

I 

K U E-1 Computed 3.5950 0.14515 4.04 % - 

Measurement Tag Name Contrib. Der.Val. Rel.Cain Penal. P.U. 

T SAM01 AMO1-T 77.57% 0.12784 1.21% 0.01 c 

T SAM02 AMO2-T 5.75% -0.34800E-01 0.21% 0.00 C 

MFNH3 R F6 F7-MFNH3 4.33 % -30.216 34.29% 3.67 - 

MASSF R AMOl AMOI-MASSF 4.05% 0.16227E-01 46.50% 0.23 t/h 

MASSF R F12 F14-MASSF 1.75% -0.27455E-02 33.79% 0.99 t/h 

T S F7 F7-T 1.50% -0.177948-01 62.36% 1.16 C 

T S F6 F6-T 1.50% -0.177948-01 62.36% 0.01 C 

T S F4 F4-T 1.50% -0.177948-01 62.36% 1.16 C 

Table 3.2 

Variable Tag Name Value Abs.Acc. Rel.Acc. Penal. P.U. 

EXTENT1 U R-2 Computed 7.6642 0.33372 4.35 % k m o l  min-' 

Sensitivity analysis for reaction extent in reactor R-2 

Measurement Tag Name Contrib. Der.Val. ReLCain Penal. P.U. 
~~ 

T S F11 F11-T 26.82% -0.86410E-01 21.85% 0.00 C 

T S F12 F12-T 25.13% 0.836406-01 26.78% 0.22 C 

T S F9 F9-T 21.52% 0.77397E-01 27.69% 0.22 C 

T S F10 F1O-T 19.95% -0.745328-01 22.02% 0.00 C 

MASSF R F5 FS-MASSF 1.56% 0.49680E-01 49.64% 0.23 t/h 
~ ~~ 

MASSF R BFWOl STMO1-MASSF 1.51 % 0.465918-01 35.39% 0.01 t/h 

MASSF R AMOl AMOI-MASSF 0.81 % 0.166478-01 46.50% 0.23 t/h 

MASSF RFO FO-MASSF 0.77% 0.25907E-01 58.25% 0.14 t/h 

MFNH3 RF12 F14-MFNH3 0.58% 18.215 29.41% 0.15 - 

the estimated value and results mainly from the uncertainty in four temperature 
measurements. Better temperature sensors for streams f9, f10, f l l  and f12 would 
allow one to better estimate the reaction extent. 

This sensor network provides acceptable estimates for all process variables. 
However the application of the sensor placement optimization using a genetic 

algorithm can identify a cheaper alternative. 



3.7 ~n Example I 537 

Table 3.3 Cost, accuracy, and range for available sensors 

Measured Variable Relative cost Standard deviation D Acceptable range 

T 1 1 “C T< 150°C 

T 1 2 “C T> 15O’C 

P 1 1% 1-300 bar 

Flow rate 5 2 %  1-100 kg SK’ 

Power 1 3 %  1-10,000 kW 

Molar composition 20 0.001 x,<O.l 
(all components in stream) 1% x, > 0.1 

A simplified sensor data base has been used for the example. Only six sensor types 

Accuracy targets are specified for seven variables: 
were defined, with accuracies and cost as defined in Table 3.3. 

0 two compressor efficiencies, target u = 4 % of estimated value 
0 three heat transfer coefficients, target u = 5 % of estimated value 
0 two reaction extents, target o = 5 % of estimated value. 

The program detects that up to 59 sensors could be installed. When all of them are 
selected, the cost is 196 units, compared to 42 sensors and 123 cost units for our ini- 
tial guess shown in Figure 3.1. Thus the solution space involves 2”=  5.76 X 1017 
solutions (most of them being unfeasible). 

We let the search algorithm operate with a population of 20 chromosomes, and 
iterate until no improvement is noticed for 200 consecutive generations. This 
requires a total of 507 generations and 10,161 evaluations of the fitness function, 
which runs in 90 s on a laptop PC (1 GHz Intel Pentium 111 processor, program com- 
piled with Compaq FORTRAN compiler, local optimization only). Figure 3.2 shows 

Fitness 
Generations 

0 
100 200 300 400 5 0  

-200 
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that the fitness function value varies sharply in the first generations and later 
improves only marginally. A solution with a cost similar to the final one is obtained 
after 40 % of the calculation time. 

The proposed solution involves only 26 sensors, for a total cost reduced to 53 cost 
units. The number of sensors is reduced from 16 to 11 for T, from 15 to 12 for P,  
from 6 to 2 for flow, and from 3 to 1 for composition. Thus the algorithm has been 
able to identify a solution satisfying all requirements with a considerable cost reduc- 
tion. 

I 

3.8 
Conclusions 

Efficient and safe plant operation can only be achieved if the operators are able to 
monitor key process variables. These are the variables that either contribute to the 
process economy (e.g., yield of an operation) or are linked to the equipment quality 
(fouling in a heat exchanger, activity of a catalyst), to safety limits (departure from 
detonation limit), or to environmental considerations (amount of pollutant rejected). 

Most performance parameters are not directly measured and are evaluated by a cal- 
culation based on several experimental data. Random errors that always affect any 
measurement also propagate in the estimation of performance parameters. When 
redundant measurements are available, they allow one to estimate the performance 
parameters based on several data sets, leading to different estimates, which may lead 
to confusion. 

Data reconciliation allows one to address the state estimation and measurement 
correction problems in a global way by exploiting the measurement redundancy. 
Redundancy is no longer a problem, but an asset. The reconciled values exhibit a 
lower variance compared to original raw measurements; this allows process opera- 
tion closer to limits (when this results in improved economy). 

Benefits from data reconciliation are numerous and include: 
0 improvement of measurement layout; 
0 decrease of number of routine analyses; 
0 reduced frequency of sensor calibration: only faulty sensors need to be calibrated; 
0 removal of systematic measurement errors; 
0 systematic improvement of process data; 
0 clear picture of plant operating condition and reduced measurement noise in 

0 early detection of sensor deviation and of equipment performance degradation; 
actual plant balances for accounting and performance follow-up; 

0 safe operation closer to the limits; 
0 quality at process level. 

Current developments aim at combining online data acquisition with data reconcilia- 
tion. Reconciled data are displayed in control rooms in parallel with raw measure- 
ments. Departures between reconciled and measured data can trigger alarms. Analy- 

trends of key variables; 



sis of time variation of those corrections can draw attention to drifting sensors that 
need recalibration. 

Data reconciliation can also be viewed as a virtual instrument; this approach is par- 
ticularly developed in biochemical processes, where direct measurement of the key 
process variables (population of microorganisms and yield in valuable by-products) 
is estimated from variables that are directly measured online, such as effluent gas 
composition. 

Current research aims at easing the development of data reconciliation models by 
employing libraries of predefined unit operations, automatic equation generation for 
typical measurement types, analyses of redundancy and observability, analyses of 
error distribution of reconciled values, interfaces to online data collection systems 
and archival data bases, and developing specific graphical user interfaces. 
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