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4.1 
Introduction 

As explained in several chapters of this volume, rigorous process models can be used 
to optimize the design and the operating parameters of chemical processing plants. 
However, optimal settings of the parameters do not guarantee optimal operation of 
the real plant. The reasons for this are the inevitable plant-model mismatches, the 
effects of disturbances, changes in the plant behavior over time, etc. Usually not even 
the constraints on process or product parameters are met at the real plant if operat- 
ing parameters that were obtained from offline optimization are applied. 

The only effective way to cope with the effect of plant-model mismatch, distur- 
bances etc. is to use some sort of feedback control. Feedback control means that 
(some of) the degrees of freedom of the plant are modified based on the observation 
of measurable variables. These measurements may be performed quasicontinuously 
or with a certain sampling period, and accordingly the operation parameters (termed 
inputs in feedback control terminology) may be modified in a quasicontinuous fash- 
ion or intermittently. Often, key process parameters cannot be measured online at a 
reasonable cost. One important use of process models in process control is the 
model-based estimation of such parameters from the available measurements. This 
topic has been dealt with in the previous chapter. In this chapter, we focus on the use 
of rigorous process models for feedback control by model-based online optimization. 

Feedback control can be combined with model-based optimization in several dif- 
ferent ways. The simplest, and most often used, approach is to perform an offline 
optimization and to divide the degrees of freedom into two groups. The variables in 
the first group are applied to the real process as they were computed by the offline 
optimization. The variables in the second group are used to control some other vari- 
ables to the values which resulted from the offline optimization, e.g., requirements 
on purities are met by controlling the product concentration by manipulating the 
feed rate to a reactor or the reflux in a distillation column. In the design of these feed- 
back controllers, dynamic plant models are used, in most cases obtained from a line- 
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arization of the rigorous model around the optimal operating regime or process tra- 
jectory. If nonlinear process models are available from the design stage, these mod- 
els can be used directly in model-based control schemes. This leads to nonlinear 
model-predictive control (NMPC) where the future values of the controlled variables 
are predicted over a finite horizon (the prediction horizon) using the model, and the 
future inputs are optimized over a certain horizon (the control horizon). The first 
inputs’ values are applied to the plant. Thereafter, the procedure is repeated, taking 
new measurements into account. A major advantage of this approach is the ability to 
include process constraints in the optimization, thus exploiting the full potential of 
the plant and the available actuators (pumps, valves) and respecting operating limits 
of the equipment. In Section 4.2, NMPC around a precomputed trajectory of the pro- 
cess is presented in more detail and its application to a reactive semibatch distillation 
process is discussed. 

When closed-loop control is used to track a precomputed trajectory and the con- 
trollers perform satisfactorily, the process is kept near the operating point that was 
computed as the optimal one offline. Those variables which are under feedback con- 
trol track their precomputed set-point even in the presence of disturbances and 
plant-model mismatch. However, the overall operation will in general no longer be 
optimal, because the precomputed operating regime is optimal for the nominal plant 
model, but not for the real plant. 

As an extension of this concept, feedback control can be combined with model 
adaptation and reoptimization. At a lower sampling rate than the one used for con- 
trol, some model parameters are adapted based upon the available measurements. 
After the model has been updated, it is used for a reoptimization of the operating 
regime. The new settings can be implemented directly or be realized by feedback. In 
Section 4.3, such a control scheme is presented for the example of batch chromato- 
graphic separations, including experimental results. 

A serious problem in practice is structural plant-model mismatch. This means that 
an adaptation of the model parameters, even for an infinite number of noise-free 
measurements, will not give a model that accurately represents the real process. 
Therefore if the structurally incorrect model is used in optimization, the resulting 
operating parameters will not be optimal; often, not even the constraints will be met 
by the real process unless the constrained variables are under feedback control with 
some safety margin that reflects the attainable control performance, which again 
causes a suboptimal operation. 

A solution to the problem of plant-model mismatch is the use of optimization 
strategies that incorporate feedback directly, i.e., use the information gained by 
online measurements not only to update the model but also to modify the optimiza- 
tion problem. In Section 4.4, this idea is presented in detail and the application to 
batch chromatography is used to demonstrate its potential. 

NMPC involves online optimization on a finite horizon based upon a nonlinear 
plant model. This approach can be employed not only to keep some process variables 
at their precomputed values or make them track certain trajectories, but also to per- 
form online predictive optimization of the plant performance. Bounds, e.g., on prod- 
uct specifications, can be included in the formulation as constraints rather than set- 

I 
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ting up a separate feedback control layer to meet the specifications at the real plant. 
In this spirit, the problem of controlling quasicontinuous (simulated moving bed) 
chromatographic separations is formulated in Section 4.5 as an online optimization 
problem, where the measured outputs have to meet the constraints on the product 
purities but the optimization goal is not tracking of a precomputed trajectory, but 
optimal process operation. 

4.2 
NMPC Applied to a Semibatch Reactive Distillation Process 

4.2.1 
Formulation of the Control Problem 

In NMPC, a process model is used to predict the future process outputs 7 over a fmed 
prediction time horizon Hp for given sequences of H, changes of the manipulated 
variables u. The aim of the controller is to minimize a quadratic function of the devi- 
ation between the process outputs 7 and their desired trajectories yf as well as of the 
changes of the manipulated variables. The control move at the sampling point k + l  is 
given by the optimization problem Eq. (1). The parameters ytr and k,, allow scaling 
the controlled and manipulated variables and shifting the weight either on good set- 
point tracking or on smooth controller actions. Bounds on the manipulated variables 
can be enforced by using sufficiently large penalties I,, or by adding inequality con- 
straints (Eq. (2)) to the optimization problem Eq. (1): 

Umln 5 uk+j < - umax V j  = 1,. . . , H, . 
J 

If the control scheme is applied to a real plant, plant-model mismatch or distur- 
bances will lead to differences between the predicted and the real process outputs. 
Therefore a time-varying disturbance model, as proposed by Draeger et al. (1995), is 
included in the process model. The formal representation of the complete model that 
is used by the model predictive controller is 

where dk, denotes the estimated disturbances, ykmodel denotes the model outputs 
given by the physical process model, and j$ the model prediction of the controller 
used in the optimization problem (1). The disturbances dk, are recalculated at every 
time k for each time step i. The process model is simulated from time k-i until time 
k taking into account the actual control actions giving the model outputs Yde'(klk-i). 
The errors ek, computed as the differences between the measurements ykmeas and the 
model outputs y d e ' ( k l  k - i ) :  



566 4 Model-based Control I 
ek,i - - F k - ymodel ( k  I k - i ) .  

The new estimates of the disturbances are calculated by a first order filter: 

dk,i = aek,i + (1 - a)dk-l,i. 

(4) 

4.2.2 
The Methyl Acetate Process 

Methyl acetate is produced from acetic acid and methanol in an esterification reac- 
tion. The conventional process consists of a reactor and a complex distillation col- 
umn configuration, while using reactive distillation, high purity methyl acetate can 
be produced in a single column (Agreda et al. 1990). The reaction can either by cata- 
lyzed homogeneously by sulfonic acid or heterogeneously using a solid catalyst. The 
latter avoids material problems caused by the sulfonic acid as well as the removal of 
the catalyst at the end of the batch. This process is investigated here. A scheme of the 
process is shown in Figure 4.1. 

The column consists of three parts. Two structured catalytic packings of 1 m 
height are located in the lower part of the column while the upper part contains a 
noncatal9c packing. Methanol is filled into the reboiler before the beginning of the 
batch and heated until the column is filled with methanol. Acetic acid is fed to the 
column above the reactive section. Since acetic acid is the highest boiling compo- 
nent, it is necessary to feed it above the catalpc packing in order to ensure that both 
raw materials are present in the catalytic area in sufficient concentrations. The upper 
section purifies the methyl acetate. The azeotropes of the mixture are overcome 
because water and acetic acid are present in the stream that enters the separation 
stages. The plant considered here is a pilot plant in the Department of Biochemical 
and Chemical Engineering at Universitat Dortmund. A batch run takes approxi- 
mately 17 h. 

Condensor 

Packing 

Catalytic 
Packing 

Catalytic 
Packing 

f3 Reboiler 

Product 

Figure 4.1 Scheme of the semibatch column 
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A more detailed description of the process and a rate-based model and its valida- 
tion are presented in Kreul et al. (1998) and Noeres (2003). The latter pointed out that 
for this process the accuracy of a rate-based model is not significantly higher than 
that of an equilibrium stage model, and thus the equilibrium stage model was used 
to determine the optimal operation of the process (Fernholz et al. 2000) and as a 
basis for controller design. Mass and energy balances for all parts of the plant result 
in a differential-algebraic equation system consisting of more than 2000 equations. 
The main assumptions in the model are: 

0 The structured packings can be treated as a number of theoretical plates using the 

0 The vapor and the liquid phase are in thermodynamic equilibrium. 
0 All chemical properties depend on the temperature and the composition. 
0 The phase equilibrium is calculated using the Wilson equations. The dimerization 

0 The reaction kinetics are formulated by a quasihomogeneous correlation. 
0 The pressure drop of the packing is calculated by the equation of Mickowiak 

0 The hold-up of the packing is determined by an experimentally verified correla- 

0 Negligible vapor hold-up. 
0 Ideal vapor behavior. 
0 Constant molar hold-up in the condenser. 
0 The dynamics of the tray hydraulics and the liquid enthalpy are taken into consid- 

HETP-value (height equivalent to theoretical plate). 

of acetic acid in the vapor phase is taken into consideration. 

(1991). 

tion. 

eration. 

The aim of the controller is to ensure the tracking of the optimal trajectory in the 
presence of model inaccuracies and disturbances acting on the process. 

4.2.3 
Simplified Solution of the Model Equations 

Generally, any process model can be used to predict the future process outputs f k + l ,  
as long as the model is sufficiently accurate. A straightforward approach would be to 
use the same model that was used to calculate the optimal operation. Unfortunately 
the integration of this differential algebraic model is too time-consuming to solve the 
optimization problem given by Eqs. (1) and (2) within one sampling interval. Thus, 
a different model had to be developed to make sure that the solution of Eqs. (1) and 
(2) is found between two sampling points. 

The physical process model is based on heat and mass balances resulting in a set 
of differential equations. A large number of algebraic equations is needed to calcu- 
late the physical properties, the phase equilibrium, the reaction kinetics and the tray 
hold-ups, as well as the connections between the different submodels. Various 
numerical packages are now available to solve large differential-algebraic equation 
(DAE) systems like gPROMS (1997) or the Aspen Custom Modeler (ACM). Even 
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though they are designed to solve large and sparse DAEs in an efficient way, general- 
purpose solvers do not take advantage of the mathematical structure of a special 
problem. Our aim was to find a way to reduce the numerical effort required to calcu- 
late the solution of the DAE system which describes the reactive distillation process. 

The main idea is to split up the equation system into a small section that is treated 
by the solver in the usual manner and a large subsystem containing mainly the alge- 
braic equations. An independent solver that communicates with the DAE solver cal- 
culates the solution of this subsystem. Generally, this sequential approach may not 
be advantageous since the solution of the algebraic part must be provided in each 
step of the iteration of the DAE solver. It will only be superior if the solution of the 
second part is calculated in a highly efficient way. Therefore an analysis of the system 
equations for one separation tray is given in the sequel. Similar considerations can 
be easily made for the reactive trays as well as the other submodels of the process. 

The core of the model for each separation tray consists of the mass balances of the 
components (Eq. (6)) the heat balance (Eq. (7)), and the constitutive equation for the 
liquid mole fractions (Eq. (8)): 

I 

In addition to the core Eqs. (6)-(8), empirical correlations are used to calculate the 
molar hold-ups of the trays (Eq. (9)), the liquid enthalpy (Eq. (lo)), the vapor enthalpy 
(Eq. (ll)), and the density (Eq. (12)): 

Finally the phase equilibrium is calculated by using a four-parameter Wilson activity 
coefficient model for the liquid phase and a vapor-phase model which takes into con- 
sideration the dimerization of the acetic acid in the vapor phase (Noeres 2003). This 
phase equilibrium model (Eq. (13)) is an implicit set of equations in contrast to 
Eqs. (9)-(12) which are explicit functions of the composition and the temperature. 
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Even though the formal description of Eqs. (9)-(13) feigns that its size is similar to 
the core model Eqs. (6)-(8), the opposite is true. Owing to the necessity of introduc- 
ing a lot of auxiliary variables, especially for the phase equilibrium, Eqs. (9)-(13) 
make up the largest part of the overall system. Thus the idea is to move as many alge- 
braic equations as possible, especially the parts containing the auxiliary variables, 
from the part which is handled by the DAE solver to an additional solver that exploits 
the mostly explicit structure of the equations. The DAE solver used in this work is 
DASOLVE, a standard solver in gPROMS for stiff DAEs (gPROMS, 1997). The pro- 
posed architecture of the algorithm is shown in Figure 4.2. 

The main task of the external software is to solve the implicit phase equilibrium 
Eq. (13a,b) in an efficient manner. Solving Eq. (13a,b) for given pressure and liquid 
composition means to find the temperature T such that condition Eq. (13b) is ful- 
filled for the values calculated by Eq. (13a). Thus, the phase equilibrium calculation 
can be treated as solving a nonlinear equation with one unknown variable. Once Eq. 
(13a) and Eq. (13b) are solved, the remaining variables can be calculated straightfor- 
wardly by the explicit Eqs. (9)-(12). All values are passed back from the DAE solver 
via the foreign object interface. 

In order to minimize the number of equations handled by the DAE-solver, the 
dynamics of the tray hold-up N and the liquid enthalpy hli, were neglected. This 
causes deviations between the original model and the model with neglected dynam- 
ics. Several case studies were performed to check the differences between the origi- 
nal model and the model with neglected dynamics. In many cases the predictions of 
both models can hardly be distinguished. In some cases, however, noticeable differ- 
ences in the dynamic behaviors result. These inaccuracies have to be handled by the 
disturbance estimation of Eqs. (3)-(5). By applying this scheme to the complete col- 
umn model, the time required to calculate the solution for typical model predictive 
control scenarios could be reduced by a factor of 6-10. 

The use of a simplified model and the special solution algorithm enable the online 
solution of the optimal control problem of Eqs. (1)- (3) .  The optimization algorithm 
L-BFGS-B of Byrd et al. (1994) is used to solve the optimization problem. This code 
solves nonlinear optimization problems with simple bounds on the decision vari- 
ables and ensures a decrease of the goal function in each iteration step. The user of 
this code has to supply the values of the goal function as well as its derivatives with 
respect to the decision variables. The value of the cost function is calculated by inte- 
grating the model, the derivatives are obtained by perturbation. Using perturbations 
offers the opportunity to parallelize the calculation. Within a sampling period of 

Figure 4.2 Scheme of the algorithm 
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6 min, about 100 function and gradient evaluations can be performed. The maximal 
number of function and gradient evaluations which were needed for the cases inves- 
tigated was 33. Thus, the algorithm is able to find the optimal solution within the 
sampling time. 

I 

4.2.4 
Controller Performance 

The analysis of Fernholz et al. (1999a) showed that a suitable control structure for 
this process is to control the concentrations of methyl acetate and water in the prod- 
uct stream by the reflux ratio and the heat duty of the reboiler. At our pilot plant, NIR 
(near infrared spectroscopy) measurements of the product concentrations are avail- 
able. The nonlinear model predictive controller was tested in several simulation 
cases. Here the original model is used as the simulated process, whereas the simpli- 
fied model is used in the controller. In order to explore the benefits of the nonlinear 
controller, a linear controller was designed as well (Engell and Fernholz 2003). The 
linear controller was chosen based on an averaged linear model calculated from sev- 
eral linear models which were obtained by linearization of the nonlinear model at 
several points on the optimal trajectory. The controller design was done using the 
frequency response approximation technique ( Engell and Muller 1993). The details 
of the linear controller design are beyond the scope of this book, they can be found 
in Fernholz et al. (19991-3). 

The parameters of the cost function in Eq. (1) were chosen such that deviations of 
both controlled variables give the same contribution to the objective functions. Addi- 
tional bounds on the manipulated variables were added. The reflux ratio is physically 
bounded by the values 0 and 1, while the heat duty is bounded to a lower value of 
1 kW and an upper one of 8 kW to ensure proper operation of the column. In order 
to avoid undesired abrupt changes of the manipulated variables, small penalties on 
these changes were added. The values of the penalty parameters )Lii were selected in 
a way that large changes are possible for large deviations of the controlled variables 
but are unfavorable if they are close to their set-points1. Preliminary work on the 
model predictive control of this process had shown that the choice of a control hori- 
zon of H, = 2 and of a prediction horizon of H, = 5 gave good results. The closed loop 
responses for a set-point change of the methyl acetate concentration from a mole 
fraction of 0.8 down to 0.6 and back to 0.8 are shown in Figure 4.3. The use of the 
nonlinear controller reduces the time required to decrease the methyl acetate con- 
centration drastically. The price that has to be paid for this reduction is a larger devia- 
tion of the water concentration. For the set-point change back to the original value, 
the differences between the two controllers are small. 

Next, the performance of both controllers was checked for set-points of methyl ace- 
tate and water which force the process into a region where a sign change of the static 
gain occurs. If the set-points of the mole fractions of methyl acetate and water are 

1 The value of all A,, is 0.01, while y is set to one. The physical units of the controlled variables are mole mole-', 
the reflux ratio is dimensionless and the heat duty is given in kilowatts. 
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ler; grey: linear controller 

Methyl acetate set-point tracking. Black: nonlinear control- 

changed simultaneously to 0.97 and 0.02 respectively, both controllers drive the pro- 
cess in the correct direction (Figure 4.4), but only the nonlinear controller is able to 
track both concentrations accurately. If the set-points are set back to their original 
values, the linear controller becomes unstable while the nonlinear controller works 
properly. 
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0 100 200 300 

time [min] 

'F-I 1 0 100 200 300 

time [min] 

Figure 4.4 
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4.2.4.1 
Disturbance Rejection 
The main goal of the controller is to track the optimal trajectory of the process in the 
case of disturbances and plant-model mismatch. In the case of an accurate model 
and the absence of disturbances, no feedback controller would be necessary. Thus, 
two disturbances are imposed on the process during the simulation to test the distur- 
bance rejection capabilities of the controllers. 

First the influence of disturbances of the heat supply is considered. After 200 min 
the heat supply is decreased by 0.7 kW (which is about 20 % of the nominal value), 
set back to its nominal value at t = 300 min and increased by 0.7 kW at t = 550 min 
until it is again reset to the nominal value at t = 700 min. The simulation results for 
both controllers are depicted in Figure 4.5. The nonlinear controller rejects the dis- 
turbance much faster than the linear controller, especially for the product methyl 
acetate. 

The second disturbance investigated is a failure of the heating system of the col- 
umn. In order to minimize heat losses across the column surface, the plant is 
equipped with a supplementary heating system. A malfunction of this system will 
change the heat loss across the surface. The heat loss is increased by SO W per stage, 
set back to 0 and decreased by SO W per stage at the same times at which the distur- 
bances of the heat duty were imposed before. The simulation results in Figure 4.6 
show that the nonlinear controller rejects this disturbance more efficiently than the 
linear controller. Thus, the disturbance rejection can be significantly improved by 
using the nonlinear predictive controller. 

I 
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Rejection of a disturbance in the heat supply. Black: nonlin- 
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Rejection of a disturbance in the heat loss. Black nonlinear 

4.2.5 
Summary 
In this section, we presented the principle of NMPC to track a precomputed trajec- 
tory of a complex process and discussed the application to a semibatch reactive distil- 
lation column. Neglecting the dynamics of the molar hold-ups and of the enthalpies 
enabled splitting up the original DAE system into a small DAE part, which is treated 
by the numerical simulator, and an algebraic part, which is solved by an external 
algorithm. This approach reduced the time needed to solve the model equations by 
a factor of 6-10, These reductions made the use of a process model that is based on 
heat and mass balances possible for a model predictive controller. 

The resulting nonlinear controller showed superior set-point tracking properties 
compared to a carefully designed linear controller. The nonlinear controller is able to 
track set-points that lie in regions where the process shows sign changes in the static 
gains and any linear controller becomes unstable. The nonlinear controller rejects 
disturbances faster than the linear controller. Moreover, since the nonlinear control- 
ler makes use of a model the range of validity of which is not restricted to a fNed 
operating region in contrast to the linear one, the nonlinear controller might be used 
for different trajectories giving more overall flexibility. The superior performance of 
the controller is due to the fact that a nonlinear process model is used. On the other 
hand, its stability and performance depend on the accuracy of the rigorous process 
model. If, e.g., the change of the gain of the process (which is caused by the fact that 
the product purity is maximized for certain values of reflux and heat duty) occurs for 
different values of the reflux and the heat duty than predicted by the model, the con- 
troller may fail to stabilize the process. 
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4.3 
Control of Batch Chromatography Using Online Model-based Optimization 

I 

4.3.1 
Principle and Optimal Operation of Batch Chromatography 

The chromatographic separation is based on the different adsorptivities of the com- 
ponents to a specific adsorbent which is futed in a chromatographic column. The 
most widespread process, batch chromatography, involves a single column which is 
charged periodically with pulses of the feed solution. These feed injections are car- 
ried through the column by pure desorbent. Owing to different adsorption affinities, 
the components in the mixture migrate at different velocities and therefore they are 
gradually separated. At the outlet of the column, the purified components are col- 
lected between cutting points, the locations of which are decided by the purity 
requirements on the products (Figure 4.7). 

For a chromatographic batch process with given design parameters (combination 
of packing and desorbent, column dimensions, maximum pump pressure), the 
determination of the optimal operating regime can be posed as follows: a given 
amount (or flow) of raw material has to be separated into the desired components at 
minimal cost while respecting constraints on the purities of the products. The opera- 
tion cost may involve the investment into the plant and the packing, labor and sol- 
vent cost, the value of lost material (valuable product in the nonproduct fractions) 
and the cost of the further processing, e.g., removal of the solvent. The free operating 
parameters are: 

0 the throughput of solvent and feed material, represented by the flow rate Q or the 
interstitial velocity u, constrained to the maximum allowed throughput which in 
turn is limited by the efficiency of the adsorbent or the pressure drop; 

0 the injection period ti,(, representing the duration of the feed injection as a mea- 
sure of the size of the feed charge; 
the cycle period tcyc. representing the duration from the beginning of one feed 
injection to the beginning of the next; 

0 the fractionating times. 

The mathematical modeling of single chromatographic columns has been exten- 
sively described in the literature by several authors, and is in most cases based on dif- 
ferential mass balances (Guiochon 2002). The modeling approaches can be classified 
by the physical phenomena they include and thus by their level of complexity. Details 

~~ injection elution ,. . collection 

7 
column tl t2  b t r t  

Figure 4.7 Principle of batch chromatography 
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on models and solution approaches can be found e.g., in (Diinnebier and Klatt 2000). 
The most general one-dimensional model (ignoring radial inhomogeneities) is the 
general rate model (GRM) 

a t  a t  

where also reaction terms in the liquid and in the solid phase were included. 
These two partial differential equations describe the concentrations in the mobile 

phase (cb,i) and in the stationary phase (qi and c ~ , ~ ) .  The adsorption isotherms relate 
the concentrations qi (substance i adsorbed by the solid) and cp,i (substance i in the 
stationary liquid phase). A commonly utilized isotherm functional form is bi- 
Langmuir isotherm: 

al%,i a2cp,i 

(16) 
qi = + 

1 + C b I j 5 . i  1 + C b2jcp.j. 

j j 

An efficient numerical solution for the GRM incorporating arbitrary nonlinear iso- 
therms was proposed by Gu (1995). The mobile phase and the stationary phase are 
discretized using the finite element and the orthogonal collocation method. The 
resulting ordinary differential equation (ODE) system is solved using an ODE solver 
which is based on the Gear's method for stiff ODES. The numerical solution yields the 
concentrations of the components in the column at different locations and times. The 
concentration information at the outlet of the column is used to generate the chro- 
matogram from which the production rate and the recovery yield can be computed. 

The requirements on the products can usually be formulated in terms of mini- 
mum purities, minimum recoveries or maximum losses. In the case of a binary sep- 
aration without intermediate cuts, these constraints can be transformed into each 
other, so either the recovery yield or the product purity may be constrained. The pro- 
duction cost is determined by many factors, in particular the throughput, the solvent 
consumption and the cost of downstream processing. A simple objective function is 
the productivity Pr, i.e., the amount of product produced per amount of adsorbent. 
This formulation results in the following nonlinear dynamic optimization problem: 

such that Reci 1 Rec,in,i, 
0 5 u i %ax> 
0 5 Gnj, tcyc 

i = 1, . . . , nsp 

where Reci denotes the revovery yield of product i. 

This type of problem can be solved by standard optimization algorithms. In order to 
reduce the computation times to enable online optimization, Diinnebier et al. (2001) 
simplified the optimization problem and decomposed it in order to enable a more 
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efficient solution. They exploited the fact that the recovery constraints are always 
active at the optimal solution and consider them as equalities. The resulting solution 
algorithm consists of two stages, the iterative solution of the recovery equality con- 
straints, and the solution of the remaining unconstrained static nonlinear problem. 

I 

4.3.2 
Model-based Control with Model Adaptation 

In industrial practice, chromatographic separations are usually controlled manually. 
However, automatic feedback control leads to a uniform process operation closer to 
the economic optimum, and it can include online reoptimization. Dunnebier et al. 
(2001) proposed the model-based online optimization strategy shown in Figure 4.8. 

Estimation of the 
Model Parameters 

t 

7 

Control of the 
Fractionatink Valve 

7 
Contraiatx 

Purity, Recovery 

mm. Pressure Drop 

Independently &tmated 

Parameters 

Figure 4.8 Control scheme for chromatographic batch separations 
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Essentially, this scheme performs the above optimization of the operating parame- 
ters online. To improve the model accuracy and to track changes in the plant, an 
online parameter estimation is performed. A similar run-to-run technique has been 
proposed by Nagrath et al. (2003). 

Note that this scheme contains feedback only in the parameter estimation path. 
Therefore it will lead to good results only if the model is structurally correct so that 
the parameter estimation leads to a highly accurate model. 
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mental run (set-point change for required purity at approximately 28 h 
from 80 to 85 %) (from Dunnebier et al., 2001) 

Product purities and operating parameters during an experi- 



556 4 Model-based Control 

The scheme was tested successfully at the pilot scale for a sugar separation with 
linear adsorption isotherm by Diinnebier et al. (2001). The product concentrations 
were measured using a two-detector concept as first proposed by Altenhohner et al. 
(1997). A densimeter was used for the measurement of the total concentration of 
fructose and glucose and a polarimetric detector for the determination of the total 
rotation angle. Both devices were installed in series at the plant outlet. 

Figure 4.9 shows an experimental result. First the operating parameters are modi- 
fied in order to meet the product purity and recovery of 80 % each. After about 28 h, 
the controlled operating parameters reach a stable steady state. At this point a set- 
point change takes place in the product specifications: purity and recovery are now 
required to be 86 %. The control scheme reacts immediately, reducing the interstitial 
velocity and increasing the injection and cycle intervals. This leads to a better separa- 
tion of the two peaks and to an increase in purity as desired. The controlled system 
quickly converges to a new steady state. 

I 

4.3.3 
Summary 

The key idea of the approach described in this section is to use model-based set-point 
optimization for model-based closed-loop control. Plant-model mismatch is tackled 
by adapting key model parameters to the available measurements so that the concen- 
tration profiles at the output which are predicted by the model match the observed 
ones. Experimental results showed that this approach works very well in the case of 
sugar separations where the model is structurally correct. The optimization algo- 
rithm was tailored to the structure of the problem so that convergence problems 
were avoided. Owing to the use of a tailored algorithm and the fact that the process 
is quite slow, computation times were not a problem. 

4.4 
Control by Measurement-based Online Optimization 

In the two-step approach described in the previous section, the model parameters are 
updated by a parameter estimation procedure so that the model represents the plant 
at current operating conditions as accurately as possible. The updated model is used 
in the optimization procedure to generate a new set-point. This method works well 
for parametric mismatch between the model and the real plant. However, it does not 
guarantee an improvement of the set-point when structural errors in the model are 
present. In chromatographic separations, structural errors result e.g., from the 
approximation of the real isotherm by the Bi-Langmuir function. One important 
cause of plant-model mismatch can be the presence of small additional impurities in 
the mixture which may lead to considerable deviations of the observed concentration 
profiles at the output. The model-based optimization then generates a suboptimal 
operating point which in general does not satisfy the constraints on purity or recov- 
ery. The conventional solution is to introduce an additional control loop that regu- 
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lates the product purities, as proposed and tested by Hanisch (2002). However, the 
changes of the operating parameters caused by this control loop may conflict with 
the goal of optimizing performance. 

4.4.1 
The Principle of Iterative Optimization 

To cope with structural plant-model mismatch, the available measurements can be 
used not only to update the model but also to modify the optimization problem in such 
a manner that the gradient of the (unknown) real process mapping is driven to zero, in 
contrast to satisfying the optimality conditions for the theoretical model. Such an itera- 
tive two-step method was proposed by Roberts (1979), termed integrated system opti- 
mization and parameter estimation (ISOPE). A gradient-modification term is added to 
the objective function of the optimization problem. ISOPE generates set-points which 
converge towards the true optimum despite parametric and structural model mis- 
match. Theoretical optimality and convergence of the method were proven by Brdys et 
al. (1987). From a practical point of view, the key element of ISOPE is the estimation 
of the gradient of the plant outputs with respect to the optimization variables. 

The general model-based set-point optimization problem can be stated as 

U J(u7 i) min 

such that g(u) 5 0 
Urnin 5 5 Urnax 

where J(u,y) is a scalar objective function, u is a vector of optimization variables (set- 
points), y is a vector of output variables, and g(u) is a vector of constraint functions. 
The relationship between u and y is represented by a model 

y = f (u, a )  (19) 

where a is a vector of model parameters. ISOPE is an iterative algorithm, where at 
each step of the iteration measurement information (i.e., the plant output y$<, which 
was measured after the last set-point was applied) is used to update the model and to 
modify the optimization problem. The updating of the model can be realized as a 
parameter estimation procedure. A vector of gradient modifiers is computed using 
the gradient of the updated model and of the plant at set-point dk): 

The optimization problem of Eq. (18) is modified by adding a gradient-modification 
term to the objective function: 

min J(u, y) + h(k)Tu 
U 

such that g(u) 5 0 

Umin 5 5 Umax 
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Assuming that the constraint function g(u) is known, the optimization problem can 
be solved by any nonlinear optimization algorithm. Let denote the solution to Eq. 
(21), then the next set-point is chosen as: 

I 

where K is a diagonal gain matrix, the diagonal elements are in the interval [0,1], i.e., 
K is a damping term. Starting from an initial set-point, ISOPE will generate a 
sequence of set-points which, for an appropriate gain matrix, will converge to a set- 
point which satisfies the necessary optimality conditions of the actual plant. It can be 
proven that the modification term leads to the satisfaction of the optimality condi- 
tions at the true plant optimum. 

Tatjewski (2002) redesigned the ISOPE method resulting in a new algorithm that 
does not require the parameter estimation procedure. The key idea is to introduce a 
model shift term in the modified objective function: 

with the following definition of the modifier 

Although the parameter CY is not updated, it is can be proven that the optimality con- 
ditions are satisfied. Parameter adaptation thus is no longer necessary, although it 
may be beneficial to the convergence of the procedure. As the optimality of the result 
is solely due to the gradient-modification in the optimization problem, the rede- 
signed algorithm could be termed iterative gradient-modijication optimization. 

4.4.2 
Handling of  Constraints 

If constraint functions depend on the behavior of the real plant, they cannot be 
assumed to be precisely known, and using a model for the computation of the con- 
straint functions will not assure that the constraints are actually satisfied. In the origi- 
nal derivation of the ISOPE method, constraints were assumed to be process- 
independent. An extension of the ISOPE strategy which considers process-dependent 
constraints can be found in BrdyS et al. (1986). In this formulation, a recursive Lag- 
range multiplier is used. Tatjewski et al. (2001) also proposed using a follow-up con- 
straint controller that is responsible for satisfying the output constraints. 

A different method to handle the process-dependent constraints was proposed in 
Gao and Engell 2005. It is based on the idea of using plant information acquired at 
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the last set-point g(u(')) to modify the model-based constraint functions g(u) at the 
current iteration. The modified constraint functions approximate the true constraint 
functions of the plant in the vicinity of the last set-point. The modified constraint 
function is formulated as: 

The modified constraint function has the following properties at u('): 

0 The modified constraint has the same value as the real constraint function, g(') 

0 The modified constraint has the same first order derivative as the real constraint 

(U''') = gY: (u(y. 

function, & $ k ) ) ~  ( ~ ( ' 1 )  = (g"): ( ~ ( ' 1 ) .  

As the modified constraint is only valid in the vicinity of dk), a bound u(') - Au i u 
5 u(') + Au is added to the optimization problem to limit the search range in the next 
iteration. This guarantees that the constraints are not violated greatly. 

4.4.3 
Estimation of the Gradient of the Plant Mapping 

A key element of the iterative gradient-modification optimization method is to esti- 
mate the gradient of the plant mapping. Several methods for this have been pro- 
posed during the last 20 years. These methods can be grouped into two categories 
according to whether set-point perturbations are used or not. Early versions of the 
ISOPE technique used finite difference techniques to obtain the plant gradient by 
applying perturbations to the current set-point. Later versions used dynamic pertur- 
bations and linear system identification methods to estimate the gradient (Lin et al. 
1989, Zhang and Roberts 1990). Both methods have the disadvantage of requiring 
additional perturbations. In Roberts (ZOOO), Broyden's formula was used to estimate 
the required gradient from current and past measurement information. The Broyden 
estimate is updated at each iteration using a formula of the form: 

where D is the estimate of aY(X)/aX, and the superscript k refers to the iteration 
index. Although no additional perturbation is needed, care must be taken to avoid 
ill-conditioning as AX(') -+ 0. It should also be noted that the updating formula 
requires to be initialized with D(O). BrdyS and Tajewski (1994) proposed a different 
way of implementing a finite difference approximation of the gradient without addi- 
tional set-point perturbations. This method uses set-points in past iterations instead 
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of additional set-point perturbations. The gradient at set-point 
as: 

is approximated 
I 

where rn is the dimension of the vector u. Theoretically, the smaller the difference 
between the set-points, the more accurate will the approximation of the gradient be. 
On the other hand, because the measurements of the plant outputs y9c(k-i), i = 0,1, ..., 
rn are usually corrupted by errors, the matrix S ( k )  should be sufficiently well- 
conditioned to obtain a good approximation of the gradient. Let 

denote the conditioning of S(k)  in terms of its singular values. If is too small, the 
errors in the measurements will be amplified considerably and the gradient estima- 
tion will be corrupted by noise. In BrdyS and Tajewski (1994) the optimization prob- 
lem is reformulated to take into account future requirements of the gradient estima- 
tion. An inequality constraint 

(where 0 < 6 < 1) is added to the optimization problem at the (k - 1)" iteration so 
that the set-point u(*) will give a good approximation of the gradient. The advantage 
of this method is that no additional set-point perturbations are needed, but a loss of 
optimality will be observed at the current iteration because the inequality constraint 
reduces the feasible set of set-points. Therefore more iterations are required to attain 
the optimum, especially for a bigger values of 6. 

A novel method was proposed for the gradient estimation in Gao and Engell 
(2005). I t  follows the same idea as Brdys's method, i.e., using the past set-points in 
the finite difference approximation of the gradient. But the conditioning of S(k)  is 
included not as a constraint in the optimization problem, but as an indicator to 
decide whether an additional set-point perturbation should be added. At the (k - 1)" 
iteration, after a new set-point dk) is acquired, is computed using {u(*), d-'), ..., 
u ( ~ - ~ ) } .  If it is less than the given constant 6, an additional set-point uLk) will be added 
to formulate a new set-point set {uQ, uLk), u+'), . . ., u ( ~ - ~ - ' )  } for the gradient approxi- 
mation. The gradient at dk) is approximated by: 
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with 

The additional set-point provides an additional perturbation around the current set- 
point. Its location is optimized by solving 

(32) such that g(k-l)(uhk)) 5 0 

U ( k - l )  - 5 uik)  - < U(k- l )  + au 
Umin 5 ULk) 5 U m a .  

Therefore, by introducing the additional set-point, SLk’ is kept well-conditioned and 
the optimal set-point dk) can be used in the gradient approximation. This method 
does not compromise optimality, and it is not as expensive as finite difference tech- 
niques with set-point perturbations in each iteration, because an additional set-point 
perturbation is added only when dk) < d. 

The procedure can be summarized as follows: 
1. Select starting set-points which include the initial set-point and m other set-points 

for the gradient estimation at the initial set-point. Initialize the parameters of the 
algorithm, i.e., K, S and Au. 

2. At the kth iteration, apply set-point dk) (and uAk) if needed) to the plant. Measure 
the steady-state outputs. 

3. Approximate the gradient using the proposed method. Modify the objective func- 
tion and the constraint functions in the optimization problem and add the addi- 
tional bound. 

4. Solve the modified optimization problem Eqs. (23)-(26) using any nonlinear opti- 
mization algorithm and generate the next set-point. 

5. Check the termination criterion IIdk+’) - uIk) 1 1  < E and decide whether to continue 
or to stop the optimization procedure. 

6. If the termination criterion is not satisfied, check the conditioning of S(k) in terms 
of its singular values 

and if dk) 2 6 return to step 2, otherwise go to step 7. 

return to step 2. 
7. Add an additional set-point by solving the optimization problem Eq. (32), then 
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4.4.4 
Application to a Batch Chromatographic Separation with Nonlinear Isotherm 

I 

The iterative gradient-modification optimization method was tested in a simulation 
study of a batch chromatographic separation of enantiomers with highly nonlinear 
adsorption isotherms that had been used as a test case in laboratory experiments 
before (Hanisch 2002). A model with a bi-Langmuir isotherm that was fitted to mea- 
surement data is considered as the “real plant” in the simulation study. A model with 
isotherms of a different form is used in the set-point optimization. 

The flow rate Qand the injection period tini are considered as the manipulated vari- 
ables here. The cycle period t,, is fwed to the duration of the chromatogram. The 
performance criterion is the production rate Pr: 

Pr = -roduct/tcyc (33) 

The recovery yield Rec is constrained to a minimal value. This results in the optimi- 
zation problem 

such that Rec(Q, Gnj) ? Rec,i, (34) 
O S Q S Q m a x  
tinj 2 0 

Figure 4.10 shows the chromatograms of the “real” and the perturbed model for the 
same set-point. Note that such differences can be generated by rather small errors in 
the adsorption isotherms. 

The second component is considered to be the valuable product. The purity 
requirement is 98%. The recovery yield should be greater than 80%. There is an 
upper limit of the flow rate of 2.06 cm3 SK’. The flow rate and the injection period are 
normalized to the interval [0,1] in the optimization. The gain coefficients in K are set 
to 1. The bound A u  is [.06 .06]’. The recovery constraint was handled by the method 

Chromatograms 
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Time Is1 

Figure 4.10 illustration of the 

influence of model mismatch on 
the chromatogram. Solid line: 

,ooo “real” model; dashed line: nominal 
optimization model 
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proposed above. The iterations were stopped when the calculated set-point change 
was less than a predefined tolerance value ( E  = 0.006) or the optimization algorithm 
did not terminate successfully. 

Different gradient estimation methods were used in the iterative optimization pro- 
cedure: 

the finite difference method, i.e., applying perturbations to each set-point (FDP); 
Brdys's method, where an additional constraint is added to the optimization prob- 
lem so that the next set-point can be used in the estimation of the gradient, no per- 
turbations; 

0 finite difference method with additional set-point perturbations when necessary 
(F DPN) . 

Several runs of the set-point optimization were simulated, first without measure- 
ment errors and then with errors. In the case without errors, the optimization proce- 
dures with FDP and FDPN terminated successfully, while the optimization proce- 
dure with BrdyS's method stopped early because the optimization algorithm could 
not find a feasible point in the given number of iterations. The optimization proce- 
dure with FDPN used one iteration more than the optimization procedure with FDP, 
but it used only six additional set-points (6 = 0.2). The optimization procedure with 
FDP perturbed the set-point eight times at each iteration to estimate the gradient so 
that it generated 80 additional set-points overall. The trajectories of the production 
rate Pr and of the recovery yield Rec are depicted in Figure 4.11. The recovery con- 
straint was met by all three optimization procedures. Figure 4.12 shows the set-point 
trajectories and the production rate and recovery contours of the real model and the 
optimization model. Although a considerable mismatch exists between the real 
model and the optimization model, the iterative gradient-modification optimization 
method generates set-points which converge to the real optimum. 

1 '  " " " " ' ' I  
0 1 2  3 4 5 6 7 8 9 1 0 1 1  

Iteration index I-] 

0 1 2  3 4 5 6 7 8 9 1 0 1 1  
Iteration index [-] 

Figure 4.11 Trajectories of produc- 
tion rate and recovery yield, simula- 
tions without errors. * Set-points 
using the finite difference method 
(FDP), A set-points using BrdyS's 
method, o set-points using the 
finite difference method with addi- 
tional set-point perturbations when 
necessary (FDPN). Recovery limit: 
80%, 6 = 0.2 
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Figure 4.12 
the “real” model; dotted lines: contours of the nominal optimization 
model, ’5 set-points using FDP method, A set-points using BrdyB’s 

method, o set-points using FDPN method, do) initial set-point, u(’) and 
d2) additional initial set-points for the gradient estimation at do) 

Illustration of set-point trajectories. Solid lines: contours of  

Table 4.1 shows the results of simulations with measurement errors. Different values 
of 6 were tried and all simulations were stopped at the optimum of the “real” model. 
With increasing 6, more additional set-points were used, which improved the accuracy 
of the gradient estimations. Therefore, fewer iterations were needed to arrive at the 
optimum. Considering the total number of set-points used, 6 = 0.1 gives a good result. 

Table 4.1 

6 Number of  Additional set-points Final set-point Optimum of  the 

Optimization results of the simulations with errors 

iterations “real” model 

0.2 13 7 (2.06, 99.73). 
0.1 13 
0.05 15 
0.01 22 

6 
5 
4 

(2.06, 99.79). 
(2.06, 99.53). 
(2.06, 99.10). 

(2.06, 99.35). 

4.4.5 
Summary 
The identification of an accurate model requires considerable efforts, especially for 
chemical and biochemical processes. In practice, inaccurate models must be used for 
online control and optimization. A purely model-based optimization will generate a 
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suboptimal or even infeasible set-point. We described a modified iterative gradient- 
modification optimization strategy that converges to the real optimum in a few steps 
while respecting the constraints. A few additional set-points are introduced to reduce 
the effect of measurement errors on the gradient approximation. The example of a 
batch chromatographic separation with highly nonlinear isotherms demonstrated 
the impressive improvements that can be obtained by this approach. 

4.5 
Nonlinear Model-based Control of a Reactive 
Simulated Moving Bed (SMB) Process 

4.5.1 
Principle and Optimization of  Chromatographic SMB Separations 

Batch chromatography has the usual drawbacks of a batch operation, and leads to 
highly diluted products. On the other hand, it is extremely flexible, several compo- 
nents may be recovered from a mixture during one operation and varying composi- 
tions of the desorbent can be used to enhance separation efficiency. The idea of a 
continuous operation with countercurrent movement of the solid led to the develop- 
ment of the simulated moving bed (SMB) process (Broughton 1966). It is gaining 
increasing attention due to its advantages in terms of productivity and eluent con- 
sumption (Guest 1997, Juza et al. 2000). A simplified description of the process is 
given in Figure 4.13. It consists of several chromatographic columns connected in 
series which constitute a closed loop. A countercurrent motion of the solid phase rel- 
ative to the liquid phase is simulated by periodically and simultaneously moving the 
inlet and outlet lines by one column in the direction of the liquid flow. 

After a start-up phase, SMB processes reach a cyclic steady state (CSS). Figure 4.13 
shows the CSS of a binary separation along the columns plotted for a fixed time 
instant within a switching period. At every axial position, the concentrations vary as 

e m  hi i4 m !! J 
IV zone I feed 1 raffinate 

II I del. 1,xtract 

Figure 4.13 Simulated Moving-Bed Process. At the top, the concentra- 

tion profiles at the cyclic steady state are shown. Pure a IS withdrawn at 
the extract port and pure B is withdrawn at the raftinate port 
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a function of time, and the values reached at the end of each switching period are 
equal to those before the switching, relative to the port positions. 

In order to exploit the full potential of SMB processes, recent research has focused 
on the design of the process, in particular the choice of the operation parameters for 
a given selection of adsorbent, solvent and column dimensions, using mathematical 
optimization. As the optimum should be determined precisely while meeting all con- 
straints, rigorous models which include the discrete dynamics are used (Klatt et al. 
2000, Zhang et al. 2003). In addition to a higher reliability compared to shortcut 
methods, this approach is applicable to a broad variety of SMB-like operating regi- 
mes. The optimization problem can be stated as (Toumi et al. 2004~): 

I 

where PurEx and PurRaf denote the purities at the extract and the raffinate ports and 
summarizes of dynamics of the process from one switching period to the next, 

including the shifting of the ports and c, denotes the axial concentration profile 
along the columns. 

The goal is to operate the process at the optimal CSS with minimal separation 
costs Costspec while the purity requirements at both product outlets are fulfilled. 
Equation (34) constitutes a complex dynamic optimization problem the solution of 
which critically depends on an efficient and reliable computation of the CSS defined 

by 

The free optimization variables are the flow rates in the sections Q and the switching 
period t. They are transformed to the so-called p-factors, which represent the ratio 
between the flow rates Q and the hypothetical solid flow rate. This nonlinear trans- 
formation leads to a better conditioned optimization problem (Diinnebier et al. 
2001). An additional constraint takes the maximum pressure drop into account. The 
main difficulty of the optimization problem results from the large dimension of the 
CSS equations when a first-principle plant model is used. A simple and robust opti- 
mization approach consists of integration of the model equations starting from ini- 
tial values until the CSS is reached (sequential approach). At the CSS, the objective 
function as well as the constraints are evaluated and returned to an optimizer. This 
yields a small number of free parameters and hence a relatively simple optimization 
problem. The number of cycles required to reach a CSS usually is not too large 
(about 100) in contrast to other periodic processes like pressure swing adsorption 
where 1000 or more periods have to be simulated. The computational effort is there- 
fore reasonable. 
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4.5.2 
Model-based Control 

Klatt et al. (2002) proposed a two-layer control architecture similar to the one used for 
batch chromatography, where the optimal operating trajectory is calculated at a low 
sampling rate by dynamic optimization based on a rigorous process model. The 
model parameters are adapted based on online measurements. The low-level control 
task is to keep the process on the optimal trajectory despite disturbances and plant/ 
model mismatch. The controller is based on identified models gained from simula- 
tion data of the rigorous process model along the optimal trajectory. For the linear 
adsorption isotherm case, linear models are sufficient (Klatt et al. 2002), whereas in 
the nonlinear case neural networks (NN) were applied successfully (Wang et al. 
2003). A disadvantage of this two-layer concept is that the stabilized front positions 
do not guarantee the product purities if plant-model mismatch occurs. Thus an addi- 
tional purity controller is required. 

Toumi and Engell (2004a) recently presented a nonlinear model-predictive control 
scheme and applied it to a three-zones reactive SMB (RSMB) process for glucose isom- 
erization (Toumi and Engel12004b, 2005). The key feature of this approach is that the 
production cost is minimized online, while the product purities are considered as con- 
straints, thus real online optimization is performed, not trajectory tracking. 

The following optimal control problem is formulated over the finite control hori- 
zon H,: 

such that 

The prediction horizon is discretized in cycles, where a cycle is a switching time t(k) 
multiplied by the total number ofcolumns. Equation (37) constitutes a dynamic opti- 
mization problem with the transient behavior of the process as a constraint. The 
objective function Q is the sum of costs incurred for each cycle (e.g., desorbent con- 
sumption) and a regularizing term added in order to smooth the input sequence in 
order to avoid high fluctuations in the input sequence from cycle to cycle. The first 
equality constraint represents the plant model evaluated over the finite prediction 
horizon H,. The switching dynamics are introduced via the permutation matrix P. 
Since the maximal attainable pressure drop by the pumps must not be exceeded, 
constraints are imposed on the flow rates in zone I. Further inequality constraints 
g(fii) are added in order to avoid negative flow rates during the optimization. 
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The control objective is reflected by the purity constraint over the control horizon 
H, which is corrected by a bias term APurEx resulting from the difference between 
the last simulated and the last measured process output to compensate unmodeled 
effects: 

I 

APurEx,k = PurEx,(k-l) - PUrEx,k,rneas- (38) 

A second purity constraint over the whole prediction horizon acts similar to a termi- 
nal constraint forcing the process to converge towards the optimal CSS. It should be 
pointed out that the control goal (i.e., to fulfil the extract purity) is introduced as a 
constraint. A feasible path SQP algorithm is used for the optimization (Zhou et al. 
1997) which generates a feasible point before it starts to minimize the objective func- 
tion. 

4.5.3 
Online Parameter Adaptation 

The concentration profiles in the recycling line are measured and collected during a 
cycle. Since this measurement point is fixed in the closed-loop arrangement, the 
sampled signal includes information of all zones. During the start-up phase, an 
online estimation of the actual model parameters is started in every cycle. The qua- 
dratic cost functional Jest(p): 

is minimized with respect to the parameters p. For this purpose, the least squares 
solver E04UNF from the NAG-library is used. A by-product of the parameter estima- 
tion is the actual value Q ( k )  of the state vector which is given back to the NMPC con- 
troller. 

4.5.4 
Simulation Study 

Figure 4.14 shows a simulation scenario where the desired extract purity was set to 
70% at the beginning of the experiment. The desired extract purity was then 
changed to 60% at cycle 60. At cycle 120, the desired extract purity was increased to 
65 %. The enzyme activity and nonce the reaction rate is assumed to decay exponen- 
tially during the experiment. A fast response of the controller in both directions can 
be observed. Compared to the uncontrolled case, the controller can control the prod- 
uct purity and compensate the drift in the enzyme activity. The evolution of the opti- 
mizer iterations is plotted as a dashed line and shows that a feasible solution is found 
rapidly and that the concept can be realized in real time. In this example, the control 
horizon was set to two cycles and the prediction horizon to ten cycles. A diagonal 
matrix I$ = 0.02 1(3,3) was chosen for regularization. 
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Figure 4.14 Control scenario H, = 2, H, = 10 

Figure 4.15 shows the result of the parameter estimation. A good fit was achieved 
and the estimated parameter follows the drift of the reaction rate adequately. 

4.5.5 
Experimental Study 

A sensitivity analysis showed that the process is highly sensitive to the values of the 
Henry coefficients, the mass transfer resistances and the reaction rate. These are 
therefore key parameters of the reactive SMB process. These parameters are reestim- 
ated online at every cycle (a cycle is equal to switching time multiplied by the number 
of columns). In Figure 4.16, the concentration profiles collected in the recycling line 
are compared to the simulated ones. At the end of the experiment all system parame- 
ters have converged towards stationary values as shown by Figure 4.17. The devel- 
oped mathematical model describes the behavior of the RSMB process well. 

The formulation of the optimization problem (37) was slightly modified for the 
experimental investigation. The sampling time of the controller was reduced to one 
switching period instead of one cycle, so that the controller reacts faster. The switch- 
ing time was still used as a controlled variable, but modified only from cycle to 
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cycle. This is due to the asymmetry of the RSMB process that results from the dead 
volume of the recycling pump in the closed loop. It disturbs the overall performance 
of the process and is corrected by adding a delay for the switching of the inlet/outlet 
line passing the recycling pump. A detailed description of this method is provided in 
the patent (Hotier 199G). Therefore the shift of the valves is not synchronous to com- 
pensate for the technical imperfection of the real system and to get closer to the ideal 
symmetrical SMB system. In order to avoid port overlapping, the switching time 
must be held constant during a cycle. 

In the real process, the enzyme concentration changes from column to column. 
The geometrical lengths of the columns also differ slightly. Moreover, the tempera- 
ture is not constant over the columns due to the inevitable gradient of the closed 
heating-circuit. These problems cause a fluctuation of the concentration profiles at 
the product outlet. Even at the CSS, the product purity changes from period to 
period. Using the bias term given by Eq. (38) causes large variations of the controlled 
inputs from period to period. This effect was damped by using the minimal value 
over the last cycle: 
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Comparison of experimental and simulated concentration 

APur,,,k = , min (PurEx,(k--l) - 
j=(k-1  ,.... k-l-Ncoi) 

The desired). purity for the experiment reported below was 55.0% and the controller 
was started at the GOth period. As in the simulation study, a diagonal matrix Rj = 0.02 
1,3,3) was chosen for regularization. The control horizon was set to H, = 1 and the pre- 
diction horizon is H,=GO periods. Figure 4.18 shows the evolution of the product 
purity as well as of the controlled variables. In the open-loop mode where the operat- 
ing point was calculated based on the initial model, the product purity was violated 
at the periods numbered 48 and 54. After a cycle the controller was able to drive the 
purity above 55.0% and to keep it there. The controller first reduces the desorbent 
consumption. This action seems to be in contradiction to the intuitive idea that more 
desorbent injection should enhance the separation. In the presence of a reaction this 
is not true, as shown by this experiment. The controlled variables converge towards 
a steady state, but they still change from period to period, due to the nonideality of 
the plant. 
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4.5.6 
Summary 

Closed-loop control of SMB processes is a challenging task because of the complex 
dynamics of the process and the large order of the discretized model. By formulating 
the control task as an online optimization problem on a receding horizon, the pro- 
cess can be at an optimal operating point while meeting constraints on the product 
purities. The feasibility of the approach has been demonstrated on a real pilot-scale 
plant using an industrial PLC-based in a well-known term. 

4.6 
Conclusions 

In this chapter, it was demonstrated by means of several examples how rigorous, 
first-principles-based models can be used in process control. In the reactive distilla- 
tion case study, a NMPC was presented that is based upon a slightly simplified rigor- 
ous process model. For reasons of computational efficiency, the solution of the alge- 
braic equations was separated from the solution of the balance equations, resulting 



4.6 Conclusions I 573 

17 

16-~  

15 

-. .............................. - ,  . . . . . . . .  ............................. 
L 

. .  . .  - - . 

I I I I I I I 

21 2 

1 
I I I 

42 48 54 60 66 72 78 84 90 
11.5 1 I I I I I I - 

r: .- 
E 11 
E 

- 
1 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  - 
LL 

U" I 
I 

48 54 60 66 72 78 84 90 

Cycle number 

Figure4.18 Control experiment for a target purity of 5 5  0 %  

in a performance gain by about 10. The NMPC controller not only gave a much better 
performance than the linear controller but it could also control the process in a 
region where the gains change their signs so that a linear controller inevitably fails. 
In related work, we used a neural net approximation of the rigorous process model 
in an NMPC controller, giving a slightly inferior performance with a much reduced 
computational effort (Engell and Fernholz 2003). 

Online optimization using measurement information in many cases is an attractive 
alternative to the tracking of precomputed references because the process can be oper- 
ated much closer to its real optimum, while still meeting hard bounds on the specifica- 
tions. The measurement information can be used in the control scheme in various 
ways. The weakest form of feedback is to use the measurements for parameter adapta- 
tion only which requires a structurally correct model. In the control of the SMB pro- 
cess, this was combined with updating a disturbance model so that the desired product 
purities were maintained even for plant-model mismatch. Measurement information 
can also be used to modify the gradients in the optimization problem, ensuring con- 
vergence to the true optimum even in the case of structural model mismatch. 

The biggest obstacle to the widespread use of model-based control is the effort 
needed to obtain faithful dynamic models of complex processes. While it has become 
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routine to base process design on rigorous stationary process models, the effort to 
develop dynamic models is usually avoided. Process designers tend to neglect 
dynamic effects and to believe that control will somehow deal with them. As shown 
for the reactive distillation example, however, standard methods may fail, especially 
if a process is run at an optimal point, because near such an operating point, some 
variables will exhibit a change of the sign of the gain unless the optimum is only 
defined by constraints. A combination of first principles-based and black box models, 
the parameters of which are estimated from operational data, may be a way to obtain 
sufficiently accurate models without excessive effort. In combination with this 
approach the application of optimization techniques which take model mismatch 
explicitly into account, as presented in Section 4.4, is very promising. 

I 
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