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Real Time Optimization 

Vivek Dua, John D. Perkins, and Efstratios N. Pistikopoulos 

Abstract 

This chapter considers two real time optimization (RTO) problems. The first prob- 
lem is concerned with the model based control of linear discrete time systems and 
the second problem considers the case when logical conditions are also involved in 
the first problem. These RTO problems are reformulated as multiparametric pro- 
grams to obtain control variables as an explicit function of the state of the system. 
This reduces the real time Optimization problems to simple function evaluations. 

5.1 
Introduction 

Real Time Optimization (RTO) of a system is typically concerned with the solution of 
the following problem (Marlin and Hrymak, 1997; Perkins, 1998): 

J ( x )  = minf(x, u) 

s.t. h(u, x )  = 0 
g(u, x )  5 0 

U 

X € X  

where x is the vector of the state of the system, u is the vector of control variables,f 
is a scalar objective function, such as cost, to be minimized, his a vector representing 
the model of the system, g is a vector representing constraints, such as lower and 
upper bounds on x and u and Xis a compact and convex set. Note that this problem 
is solved repetitively at regular time intervals. 

Model Based Predictive Control (MPC) (Morari and Lee, 1999) is widely used by 
industry to address real time optimization problems with constraints on u and x.  It 
is based on a receding horizon approach where a sequence of future control actions 
is computed based on a prediction of the future evolution of the system and applied 
to the system until new measurements become available. Then, a new sequence is 
determined which replaces the previous one - see Figure 5.1 where xJ: is the desired 
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state of the plant, k is the current time interval and k + 1, . . . , k + p are the future time 
intervals. Each sequence is evaluated by solving the optimization problem (1). 

Real time optimization offers tremendous benefits but has large real time compu- 
tational requirements which involve a repetitive solution of problem (1) at regular 
time intervals (see Figure 5.2). The rest of the chapter is organised as follows. In the 
next section a parametric programming approach is introduced which can be used to 
compute u as an explicit function of x.  Section 5.3 considers the case when h is given 
by linear discrete state space equations and the case when u also involves 0-1 binary 
variables is addressed in section 5.4. The solution approaches presented in sections 
5.3 and 5.4 reduce RTO to simple function evaluations. 

[PLANT] 
Figure 5.2 Real Time optimization 

5.2 
Parametric Programming 

In an optimization framework, where the objective is to minimize or maximize a 
performance criterion subject to a given set of constraints and where some of the 
parameters in the optimization problem vary between specified lower and upper 
bounds, parametric programming is a technique for obtaining (i) the objective func- 
tion and the optimization variables as a function of these parameters and (ii) the 
regions in the space of the parameters where these functions are valid (Fiacco, 1983; 
Gal, 1995; Acevedo and Pistikopoulos, 1996, 1997; Pertsinidis et al., 1998; Papalex- 
andri and Dimkou, 1998; Acevedo and. Pistikopoulos, 1999; Dua and Pistikopoulos, 
1999). Considering u as optimization variables and x as parameters in (I), parametric 
programming provides. 
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ul(x) i fx  E CR' I u 2 ( x )  if x E CR2 

such that CR' n CRi = 4, i # j ,  Vi, j = 1, ..., Nand CRi c X, Vi = 1, ..., N. A CR' is 
known as a Critical Region. For the case whenf; g and h are linear and separable in 
u and x ,  the CRs are polyhedra and each CR corresponds to a unique set of active 
constraints (Dua et al., 2002). See Figure 5.3, where u is plotted as a function of x.  

The procedure for obtaining u'(x)  and CR' depends upon whetherf; g and h are lin- 
ear, quadratic, nonlinear, convex, differentiable, or not, and also whether u is vector 
of continuous or mixed - continuous and integer - variables (Dua and Pistikopoulos, 
2000; Dua et al., 2002; Dua and Pistikopoulos, 1999; Dua et al., 2003; Sakizlis et al., 
2002b). Recently algorithms for the case when (1) involves (i) differential and alge- 
braic equations (Sakizlis et al., 2002a) and (ii) uncertain parameters (Sakizlis et al., 
2004) have also been proposed. The engineering significance of solving parametric 
programming problems is highlighted in the next motivating example. 

5.2.1 
Example 1 

Consider the refinery blending and production problem depicted in Figure 5.4 
(Edgar and Himmelblau, 1989). The objective is to maximize the profit for the oper- 
ating conditions given in Table 5.1, where x1 and x2 are the parameters representing 
the additional maximum allowable production of gasoline and kerosene production 
respectively. This results in a multi-parametric linear programming problem given 
in Table 5.2, where ui and u2 are the flowrates of the crude oils-1 and 2 respectively, 
in bbl/day and the units of profit are $/day. The solution of this problem by using the 
algorithm of Gal and Nedoma (1972) is given in Table 5.3. The engineering signifi- 
cance of obtaining this solution is as follows: 
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COSTS SALES PRIC 

Gasoline ($36/bbl) 
Kerosene ($24/bbl) 

REFINERY Fuel Oil ($21/bbl) 
Residual ($lO/bbl) 

Crude ($24/b 1 

Crude oil oil #I #2 I ($15/b 1 

Figure 5.4 Crude Oil Refinery 

Gasoline 

Kerosene 

Fuel Oil 

Residual 

Processing Cost ($/bbl) 

(i) A complete map of all the optimal solutions, profit and crude oil flowrates as a 
function of x1 and x2, is available. 

(ii) The space of x1 and x2 has been divided into two regions, CR’ and CR2, where 
the profiles of profit and flowrates of crude oils remain optimal and hence (a) 
one does not have to exhaustively enumerate the complete space of x1 and x2 and 
(b) the optimal solution can be obtained by simply substituting the value of x1 
and x2 into the parametric profiles without any further optimization calcula- 
tions. 

(iii) The sensitivity of the profit to the parameters can be identified. In CR’ the profit 
is more sensitive to x2, whereas in CR2 it is not sensitive to x2 at all. Thus, for any 
value of x that lies in CR2, any expansion in kerosene production will not affect 
the profit. 

This type of Information is quite useful for solving real time optimization problems. 
In the next section it is shown that real time model based control and optimization 
problems can be reformulated as multi-parametric quadratic programming prob- 
lems, the solution of which is given by optimal control variables as a function of the 
state variables. The real time optimization problem thus reduces to simple function 
evaluations. 

Crude # 1 

80 

5 

10 

5 

0.50 

Table 5.1 Refinery Data 

I Volume % Yield I 
Crude # 2 

1.00 

Maximum allowable 
production (bbllday) 

24 000 + x1 

2 000 + x2 

6 000 

- 

Table 5.2 Refinery Model 

Profit = max 8.1 u1 + 10.8 u2 
s.t. 0.80 U I  t 0.44 ~2 5 24 000 + XI 

0.05 u1 + 0.1 0 u2 I 2 000 + x2 

u1 5. 0, u2 2 0 
0 5 ~1 I 6000 
0 5 x 2 5  500 

0.10 ~1 + 0.36 ~2 5 6000 
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Table 5.3 Solution of the Refinery Example 

I I CR' I Optimal Solution 
I I 
I 

1 

2 

-0.14 X I  + 4.21 ~2 5 896.55 Profit (x) = 4.66 x1 + 87.52 x2 + 286758.6 
0 5 X I  5 6000 UI = 1.72 X I  - 7.59 ~2 + 26206.90 

-0.14 x1 + 4.21 x2 5 896.55 Profit (x) = 7.53 x1 + 305409.84 
0 5 x1 5 6000 
x2 5 500 

~1 = 1.48 X I  + 24590.16 
uz = -0.41 X I  + 9836.07 

5.3 
Parametric Control 

Consider the following state-space representation of a given process model (Pistiko- 
poulos et al., 2002): 

x( t  + 1) = Ax(t )  + Bu(t) 

subject to the following constraints: 

Ymin 5 Y ( t )  I Ymax 

Umin i u( t )  i urnax, 
(3) 

where x( t )  E R", u(t) E R", and y( t )  E RP are the state, input, and output vectors 
respectively, subscripts min and max denote lower and upper bounds respectively 
and (A, B) is stabilizable. Model based control problems for regulating to the origin 
can then be posed as the following optimization problems: 

where U P { ul, ... , u ~ + ~ , . ~ } ,  Q = Q' 2 0,  R = R' > 0, P 2 0, Ny 1 Nu and the super- 
script Tdenotes the transpose of the corresponding vector or matrix. The problem (4) 
is solved repetitively at each time t for the current measurement x( t )  and the vector 
of predicted state variables, ~ ~ + ~ l ~ ,  ... , Xt+I+ at time t + 1, ... , t + k respectively and cor- 
responding control actions ut, ... , 

In the following paragraphs, a parametric programming approach which avoids a 
repetitive solution of (4) is presented. First, we do some algebraic manipulations to 
recast (4) in a form suitable for using and developing some new parametric program- 
ming concepts. By making the following substitution in (4): 

is obtained. 
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j=O 

the objective J (  U, x(t))  can be formulated as the following Quadratic Programming 
(QP) problem: 

where U a [u:, ..., u ~ + ~ , - ~ ] ~  E R', s 4 mN,, is the vector of optimization variables, H 
= HT > 0, and H ,  F ,  Y, G, W, E are obtained from Q R and (4)-(5). The QP problem 
(6) can now be formulated as the following Multi-parametric Quadratic Program 

( ~ P - Q P ) :  

1 
2 2  

p ( x )  = min - z T ~ z  
s.t. G z  5 W + Sx(t) 

(7) 

where z U + H-' FT x(t), z E R', represents the vector of optimization variables, S 
E + GH-' and x represents the vector of parameters. The main advantage of writ- 

ing (4) in the form given in (7) is that z (and therefore v) can be obtained as an affhe 
function of x for the complete feasible space of x. To derive these results, we first 
state the following theorem. 

Theorem 1 For the problem in (7) let xo be a vector of parameter values and (zo, Lo) 
a KKT pair, where Lo = h(xo) is a vector of nonnegative Lagrange multipliers, h, and 
zo = z(xo) is feasible in (7). Also assume that (i) linear independence constraint quali- 
fication and (ii) strict complementary slackness conditions hold. Then, 

where, 

No = (Y,  hlS1, . . ., 
where Gi denotes the i* row of G, Si denotes the ith row of S, Vi = Giza - Wi - Sixo, 
Wi denotes the i* row of Wand Y is a null matrix of dimension (s x n). 

See Pistikopoulos et al. (2002) for the proof. The space of x where this solution, (8), 
remains optimal is defined as the Critical Region (CRO) and can be obtained as fol- 
lows. Let CRR represent the set of inequalities obtained (i) by substituting z(x)  into 
the inequalities in (7) and (ii) from the positivity of the Lagrange multipliers, as fol- 
lows: 
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(9) 
CRR = (Gz(x )  5 W + Sx( t ) ,  A(%) > 0 ) .  

then CRo is obtained by removing the redundant constraints from CRR as follows: 

CR' = A (  C R R }  

where A is an operator which removes the redundant constraints - for a procedure 
to identify the redundant constraints, see Gal (1995). Since for a given space of state- 
variables, X ,  so far we have characterized only a subset of X i.e. CRo s X ,  in the next 
step the rest of the region CR"'', is obtained as follows (Pistikopoulos et al., 2002): 

(11) 

The above steps, (8-11) are repeated and a set of z(x),  h(x) and corresponding CR's 
is obtained. The solution procedure terminates when no more regions can be 
obtained, i.e. when CR"' = @. For the regions which have the same solution and can 
be unified to give a convex region, such a unification is performed and a compact 
representation is obtained. The continuity and convexity properties of the optimal 
solution are summarized in the next theorem. 

CRreSt = X - CR". 

Theorem 2 For the mp-QP problem, (7), the set offeasible parameters Xf c Xis con- 
vex, the optimal solution, z(x) : XJ+ R' is continuous and piecewise affine, and the 
optimal objective function p(x) : XJ+ R is continuous, convex and piecewise qua- 
dratic. 

See Pistikopoulos et al. (2002) for the proof. Based upon the above theoretical devel- 
opments, an algorithm for the solution of an mp-QP of the form given in (7) to calcu- 
late U as an affine function of x and characterize X by a set of polyhedral regions, 
CRs, has been developed which is summarized in Table 5.4. 

This approach provides a significant advancement in the solution and real time 
implementation of model based control problems. Since its application results in a 
complete set of control variables as a function of state-variables (from (8)) and the 
corresponding regions of validity (from (lo)), which are computed off-line. Therefore 
during on-line optimization, no optimizer needs to be called and instead for the cur- 
rent state of the plant, the region, CRO, where the value of the state variables is valid, 
can be identified by substituting the value of these state variables into the inequali- 
ties which define the regions. Then, the corresponding control variables can be com- 
puted by using a function evaluation of the corresponding affine function (see Figure 
5.5). Figure 5.6 demonstrates how advanced controllers can be implemented on a 
simple hardware. 
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5.4 
Hybrid Systems 

I 

Hybrid systems can be defined as systems comprising a number of interconnected 
continuous subsystems where the interconnections are determined by logical or dis- 
crete switchings. Each subsystem is governed by a unique set of differential and/or 
algebraic equations. In this section we focus on piecewise afine (PWA) systems 
(Bemporad and Morari, 1999). PWA systems are defined by partitioning the state 
and input space into polyhedral regions and associating with each region a different 
linear state update equation 

x(t + 1) = Aix(t) + B'u(t) +fi (14 

where i = 1, ..., s, x E R"' x (0,  l}"', u E R"' x (0, l}"', (Pi}tl is a polyhedral parti- 
tion of the set of the state and input space P c R"+", n 4 n, + nl, rn & rn, rn,. P is 
assumed to be closed and bounded and x, E RnC and u, E R" denote the continuous 
components ofthe state and input vector, respectively; xi E (0,  l}"' and ui E (0,  l}"' 
similarly denote the binary components. 

Note that PWA models are not suitable for recasting analysislsynthesis problems 
into more compact optimization problems. For this purpose the Mixed Logical 
Dynamical (MLD) framework (Bemporad and Morari, 1999) is used. The general 
MLD form of a hybrid system is: 

x(t + 1) = Ax(t )  + Blu(t)  + B2S(t) + B3z(t) 

y ( t )  = Cx(t) + Diu(t) + D2S(t) + D3Z(t) 

E2S(t) + E 3 ~ ( t )  i Eiu(t)  + E d t )  + Es 

(13) 

(14) 

(15) 

SOLVER 

d 
2 Figure 5.5 

programming 
Real time optimization via parametric 
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Table 5.4 Solution Steps of  the rnp-QP Algorithm 

Step 1 

Step 2 

Step 3 

Step 4 

Step 5 

For a given space of x solve (7) by treating x as a free variable and obtain [x,,]. 

In (7) fix x = xo and solve (7) to obtain [zn, Lo]. 

Obtain [ z ( x ) .  A@)] from (8) .  

Define CRR as given in (9). 

From CRR remove redundant inequalities and define the region of optimality CR" as given 
in (10). 

Define the rest of the region, CR"", as given in (11). 

If no more regions to explore, go to the next step, othenvise go to Step 1 

Collect all the solutions and unify a convex combination of the regions having the same 
solution to obtain a compact representation. 

Step 6 

Step 7 

Step 8 

Model Predictive Control 
Real Time Optimization Problem 

1 
Offline Parametric Optimization Problem 

Sensors measurements are Parameters 
Manipulated inputs are Optimization Variables 

Optimal control action as 
(1) Explicit functions of sensor measurements, and 

(2) Critical regions where these functions apply 

State-of-the-art performance Figure 5.6 Achieving state-of-the-art control 
on the simplest of hardware performance on simple hardware 

where x = [xz x:]' E RnG x (0, l}"' are the continuous and binary states, u = [uz uf]' 
E Rmc x (0, l}"' are the inputs, y = [y: y:]' E Rp' x (0, l}p '  the outputs, and 6 E (0, 
l}", z E R" represent auxiliary binary and continuous variables respectively. All con- 
straints on the states, the inputs, the z and 6 variables are summarized in the 
inequalities (15). Note that, although the description (13)-(14)-(15) seems to be 
linear, nonlinearity is hidden in the integrality constraints over the binary variab- 
les. MLD systems are a versatile framework to model various classes of systems. 
For a detailed description of such capabilities we defer the reader to Morari et al. 
(2003). 
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5.4.1 
Predictive Control of MLD Systems 

I 

Let t be the current time, and x ( t )  the current state. Consider the following optimal 
control problem 

k=O 

where vi-' 2 0, Q1 = @ 2 0, Q4 = QT 
> 0 and Qs = ar 2 0. x(kl t )  x ( t  + k, x(t), vi-') is the state predicted at time t + k 
resulting from the input u(t  + k)  = v(k) to (13-15) starting from x(Olt) = x(t). 6 ( k l t ) ,  
z ( k l t )  and y ( k l t )  are similarly defined. Assume for the moment that the optimal solu- 
tion { v: (k) }~=O, . . . ,T- l  exists. According to the receding horizon philosophy mentioned 
above, set 

[vT (0), ..., vT (T- l)]', Q = QT > 0, Qz = 

disregard the subsequent optimal inputs v: (l), ... , v; (T- l), and repeat the whole 
optimization procedure at time t + 1. Note that (16-17) is a Mixed Integer Quadratic 
Program (MIQP). This problem can be formulated as a Mixed Integer Linear Pro- 
gram (MILP) if 1 norm instead of the 2 norm is considered in the objective function. 
The repetitive somtion of the MIQP or MILP can be avoided by formulating (16-17) 
as a multiparametric program and solving it to obtain the control variables as a set of 
explicit functions of the current state of the system and the regions in the space of 
the state variables where the explicit functions remain valid (Bemporad et al., 2000; 
Sakizlis et al., 2002a). This is achieved by recasting (16-17) in a compact form as 
follows: 

where zc and z d  are continuous and discrete variables of (16-17), a, GT, G,, Gd, S, 
F are constant matrices and vectors of appropriate dimensions and is symmetrie 
and positive definite. x(t) is the state at the current time t. The objective is to obtain 
nc and n d  as a function of x(t) without exhaustively enumerating the entire space of 
x ( t ) .  This can be achieved by using parametric programming. In the next section an 
algorithm for Multiparametric Mixed Integer Linear Programs (mp-MILP) is 
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described. This reduces the real time hybrid system control problem to a function 
evaluation problem (Figure 5.7). 

M ULTl - PAR AM ETR I C 
MIXED-I NTEG ER 

PROGRAM SOLVER 

5.4.2 
Multiparametric Mixed-Integer Linear Programming 

PARAMETRIC 
PROGRAMMING 

Consider a multiparametric Mixed Integer Linear Programming (mp-MILP) prob- 
lem of the following form: 

U 

4 Y 

X i? 
4 

where and @* are constant vectors. 

r 

5.4.2.1 
Initialization 
An initial feasible nd is obtained by solving the following MILP: 

3 

where x ( t )  is treated as a vector of free variable to find a starting feasible integer solu- 
tion. Let the solution of (21) be given by n d  = Zd.  
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5.4.2.2 
Multiparametric LP Subproblem 
Fix x d  = z d  (20) to obtain a multiparametric LP problem of the following form: 

I 

s.t. GCT, 4- Gdnd 5 s + Fx(t) 

The solution of (22) is given by a set of linear parametric profiles, j ( x ( t ) ) ’ ,  where 
j ( x ( t ) )  is convex, and corresponding critical regions, CR’ (Gal, 1995). 

The final solution of the multiparametric LP subproblem in (22) which represents 
a parametric upper bound on the final solution is given by (i) a set of parametric pro- 
files, j(x(t))i, and the corresponding critical regions, CR’, and (ii) a set of infeasible 
regions wherej(x(t))’ = m. 

5.4.2.3 
MILP Subproblem 
For each critical region, CR’, obtained from the solution of the multiparametric LP 
subproblem in (22), an MILP subproblem is formulated as follows: 

The integer solution, x d  = zi, and the corresponding CRs, obtained from the solution 
of (23), are then recycled back to the multiparametric LP subproblem - to obtain 
another set of parametric profiles. Note that the integer cut, n d  # z d ,  and the para- 
metric cut, 4; xc + & x d  I j (x ( t ) ) ’  are accumulated at every iteration. 

If there is no feasible solution to the MILP subproblem (23) in a CR’, that region 
is excluded from further consideration and the current upper bound in that region 
represents the final solution. Note also that the integer solution obtained from the 
solution of (23) is guaranteed to appear in the final solution, since it represents the 
minimum of the objective function at the point, in x(t),  obtained from the solution 
of (23). The final solution of the MILP subproblem is given by a set of integer solu- 
tions and their corresponding CR’s. 

5.4.2.4 
Comparison of Parametric Solutions 
The set of parametric solutions corresponding to an integer solution, x d  = z d ,  which 
represents the current upper bound are then compared to the parametric solutions 
corresponding to another integer solution, ldd = z;, in the corresponding C Rs in 
order to obtain the lower of the two parametric solutions and update the upper 
bound. This is achieved by employing the procedure proposed by Acevedo and Pisti- 
kopoulos (1997b). 
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5.4.2.5 
Multiparametric MILP Algorithm 
Based upon the above theoretical developments, the steps of the algorithm can be 
stated as follows: 

Step 0 (Initialization) Define an initial region of x(t) ,  CR, with best upper bound 
j * ( x ( t ) )  = w ,  and an initial integer solution %d. 

Step 1 (Multiparametric LP Problem) For each region with a new integer solution, 
nd : 

0 Solve multiparametric LP subproblem (22) to obtain a set of parametric upper 

0 !fj(x(t)) <j " (x ( t ) )  for some region of x(t),  update the best upper bound function, 

0 If an infeasibility is found in some region CR, go to Step 2. 

Step 2 (Master Subproblem) For each region CR, formulate and solve the MILP mas- 
ter problem in (23) by (i) treating x(t) as a variable bounded in the region CR, (ii) 
introducing an integer cut, nd # %d and (iii) introducing a parametric cut, @: nc + & 
nd <j(x( t ) ) ' .  Return to Step 1 with new integer solutions and corresponding CRs. 

Step 3 (Convergence) The algorithm terminates in a region where the solution of the 
MILP subproblem is infeasible. The final solution is given by the current upper 
boundsp(x(t)) in the corresponding CRs. The n,(x(t)) and nd(x(t)) corresponding to 
j " (x ( t ) )  are then used to obtain u(x(t)) .  

Note that the algorithms presented in this chapter have been implemented and 
tested on a number of real time optimization problems (PAROS, 2004). 

- 

bounds j ( x ( t ) )  and corresponding critical regions, CR. 

J""(x(t)), and the corresponding integer solutions, ni, 

5.5 
Concluding Remarks 

In this chapter it was shown how real time optimization problems can be recast as 
multiparametric programs. Linear discrete time optimization problems are recast as 
multiparametric quadratic programs and problem involving logical decisions as 
multiparametric mixed integer programs. Algorithms for solving the multipara- 
metric programs were then presented to compute the optimal control actions as an 
explicit function of the state of the system. This reduces real time optimization prob- 
lems to simple function evaluations. 
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