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Facing Uncertainty in Demand by Cost-effective Manufacturing 
Flexibility 

Petra Heijnen andjohan Grievink 

3.1 
Introduction 

This chapter deals with a case of flexible production planning for a multiproduct 
plant to optimize expected proceeds from product sales when facing uncertainty in 
the demands for existing and emerging new products over the planning period. The 
manufacturing capacities of the plant (that is, the nominal production rates) for the 
existing and new products are futed by its design and these are not subject to adapta- 
tions by making changes to the plant. Hence, the flexibility refers exclusively to the 
planning problem and it is not coupled with a plant redesign. 

As the inherent uncertainty in customers’ demand forecasts is hard to defeat by a 
company, the industry’s specific capabilities with respect to responding rapidly to 
new and changing orders must be improved. New technologies are required, includ- 
ing tools that can swiftly convert customer orders into actual production and delivery 
actions. On the production side, this may require new planning technologies or new 
types of equipment that are, for example, dedicated to product families, rather than 
to individual products. Many companies need to use medium term planning in their 
product development and manufacturing processes in order to sustain the reliability 
of supply and the responsiveness to changing customer requirements. 

Flexibility is often referred to in operations and manufacturing research as the 
solution for dealing with swift changes in customer demands and requests for in- 
time delivery (Bengtsson 2001). The concept has received even more attention with 
the upcoming of e-business in the chemical industry. The actual meaning, interpre- 
tation and consequences of “operating flexibility” are, however, not instantly clear for 
a particular case or company (Berry and Cooper 1999). A number of uncertainties 
may induce organisations to seek more flexible manufacturing systems. Common 
sources of uncertainties are depicted in Fig. 3.1. 
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Figure 3.1 Types of uncertainties 

On the input side, manufacturing systems have to deal with suppliers’ reliability 
with respect to feed stock supply, involving quantities (v) ,  quality (q), cost (C), and 
with uncertainties in time (t). Secondly, process inherent uncertainties exist, con- 
cerning equipment availability (Tj, and modeling uncertainties. On the product 
demand side, the same types of uncertainties can be found for each product, involv- 
ing demand (d), quality ( q ) ,  and cost (C), and time (t). For the products a distinction 
is made regarding two different sales conditions. At the beginning of the planning 
period some sales contracts can be secured, under which the amounts ( y )  that can be 
manufactured and sold. The excess manufacturing capacity of the plant can be used 
to make the amounts (z), which will capture market opportunities during the plan- 
ning period. It is noticed that the number of products (n) can change over time. This 
change reflects a trend towards diversification in many production markets. To 
achieve this diversification and to cope with shorter product life span, it seems pref- 
erable for manufacturing systems to have flexible resources. 

Extensive research has been done into the flexibility of (chemical) processes that 
are subject to uncertainties on the input side and with respect to the availability of 
the processing equipment, possibly influencing the feasible operating region of the 
plant (Bansal et al. 1998; Swaney and Grossmann 1985). Less research has been 
done, however, into flexibility that is characterized by the possibility to cope with 
changes in demand or product mix. The right way to respond to change is always sys- 
tem specific, and dependent on the system’s flexibility. Many approaches for dealing 
with uncertainties exist (CorrEa 1994). As this study concerns product mix variations 
and demand variations, the monitoring and forecasting technique was selected. The 
uncertainty aspect is modeled by means of a stochastic approach. 

In the development of a planning technique its applicability requires careful con- 
sideration. Firstly, the technique should be compatible with the work processes and 
the associated level of technical competence. Among others, this requires that the 
input and the output can be well understood and interpreted by those who will use 
it. Secondly, the cost of using the technique (time and money wise) should remain 
low. It would be very helpful to use input data that can be obtained without excessive 
efforts, while the results of the planning can be easily (re)produced with small com- 
putational effort. 
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3.2 
The Production Planning Problem 

A case study was developed based on experiences at a company that makes various 
types of food additives in a multiproduct batch plant. In this plant several groups of 
products are produced on a number of reactors. At the beginning of every new pro- 
duction period of one year, planning management agrees with the customers about 
the amount and price of products that will be produced to meet customer demands 
in the coming period. These agreements between company and customers are laid 
down in annual contracts. The demand for products that could be sold in these 
annual contracts is in general very large and the total capacity of the plant could have 
been sold out. However, planning management has strong indications that the 
demand for a new and very profitable product will increase during the coming pro- 
duction period and it could be very attractive to keep some of the capacity free for this 
newcomer on the market. 

Not only that, but also for the current products it could be quite profitable to not 
sell all capacity beforehand, since the price for which the products can be sold during 
the production period is in general significantly higher than before by contract price. 
Unfortunately, the demand for the products during the production period cannot be 
assured. Planning management would like to establish in the production planning 
how much of the current products they should sell in annual contracts and how 
much capacity they should leave open for every individual current product and for 
the new one in such a way that the final profit achieved at the end of the production 
period is as high as possible. The plant production capacity acts as a restriction on 
the total amount that can be produced. 

The next sections will introduce a simple probabilistic model for the product 
demands as well as a manufacturing capacity constraint (Section 3.3). The realised 
product sales are related to the corresponding profit over the planning period (Sec- 
tion 3.4). In order to optimize the manufacturing performance, two objective func- 
tions are chosen that take into account the distributive nature of the demands and 
product sales (Section 3.5). The first objective is the expected value of the final profit 
over the planning period. The second objective is a measure for the robustness of the 
planning; it involves maximization of the first quartile of the profit. The outcome of 
the modeling is a multiobjective, piecewise linear optimization problem (Section 
3.6). Due to the discontinuities the problem is solved by means of a direct search 
method, the Nelder and Mead algorithm. The multiobjective problem is turned into 
two single objective problems. The solutions to these problems define the full range 
between maximum expected profit (with a high risk) and the robust profit (for a low 
risk scenario). This approach allows a production manager to take a preferred posi- 
tion between these two extremes. The result is a production planning and the asso- 
ciated profit. 

Each step in the model development is illustrated by its application to the case 
study of the food additives plant, taking base case values for model parameters. To be 
able to make a good evaluation of the risks, the sensitivity of the profit and the opti- 
mal planning are studied for small changes from the nominal model parameters 
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(Section 3.7). Finally, the implementation aspects of the proposed planning method 
are discussed (Section 3.8). 

I 

3.3 
Mathematical Description of  the Planning Problem 

To solve this production planning problem we need to formulate it in a more formal 
way. Assume that the current product portfolio consists of n products that can be 
produced on several exchangeable units. The decision about on which specific unit a 
product will be made is established in the production schedule and is considered to 
be outside the scope of the production planning. In the production planning, the 
planners take the overall production capacity into consideration without allocating 
products to specific units. 

In the production planning the following decisions variables should be estab- 
lished: 

0 the amount of the current products sold in annual contracts in ton per year: 

yi, i E (1, 2 ,  ..., n} ; 

0 the capacity left open for the current products and for the new one in ton per 
year: 

xi, i E { 1, 2, . . . , n, n + I} . 

The information that is needed to make these decisions consists of the following 
parameters: 

the profit that can be made with the production of one ton of a certain product, 
depending on the retail price and on the production costs, divided into: 
- the profit made on the current products sold in annual contracts in dollars per 

ton: 

q, i E (1, 2, ..., n} ; 

- the profit made on sold amounts of the current products and of the new one 
during the production period in dollars per ton: 

,pi, i E { 1, 2, . . ., n, n + I} ; 

the total production time available in hours per year: T; 
the production time needed to make the products in hours per ton: 

z i , i E { 1 , 2  ,..., n , n + l } ;  

the demand for the current products that can be sold in the annual contracts: 

Si, i E (1, 2,  ..., n} ; 
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Since the total amount of product made during the production period cannot exceed 
the total available production time, the decision variables are restricted by: 

i=l i=I  

The assumption is made that the planners have enough and correct information to 
make a good estimation of the values of these parameters. Therefore, these parame- 
ters are assumed to be the deterministic factors in the planning problem. 

the demand for the current products and for the new one during the production 
period in ton per year: di, i E (1, 2, ..., n, n + 1) . 

The uncertainty of the demand during the production period is quite large and there- 
fore these factors are assumed to have a stochastic nature. The assumption is made 
that the planners have enough information to indicate the minimum and maximum 
demand that can be expected and the mode of the demand, that is, the demand for 
which the probability density function is maximized. 

The demand for the products will therefore be modeled by a triangular distribution 
with the probability density function given in Eq. (2). This triangular form (see Fig. 
3.2) corresponds with the shape used in fuzzy modeling. 

in which ai is the minimum, p, the mode and 
a certain product i. 

the maximum of the demand di for 

Figure 3.2 The triangular probabil- 

i ty density function of  the demand 

ffjl A, 
a; P, 3: d, 

The expected demand for product i will then be: 

E(di) = ~ r ,  + Pi + Yi , E { 1 , 2  ,..., n , n + l } .  

The probability distribution of the demand di reads: 
3 
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In Section 3.4 the mathematical description of the planning problem will be contin- 
ued, but the generic problem will first be applied to a case study in a plant where vari- 
ous types of food additives were made. 

I 

3.3.1 
Case Study in a Food Additives Plant 

In a multiproduct multipurpose batch plant different food additives are produced on 
two reactors. The present portfolio consists of two product groups A and B. Having 
strong indications about a growing demand for a new product C, operations manage- 
ment wants to reevaluate the current product portfolio and the production planning 
for the coming year. 

The product groups A and B are manufactured on two exchangeable reactors. 
Planning management has estimated the production times based on the current 
annual operation plan. The total amount of available operating time for the reactors is 
determined by the available time in a year minus 15 % down and changeover time, 
resulting in 4625 hours for reactor 1 and 4390 hours for reactor 2. Together this 
results in a total production time for the coming year of T = 9015 hours. 

Table 3.1 shows the estimated values for all parameters in the planning problem. 
From the figures it is clear that the total production capacity could have been sold out 
in the annual contracts, since the demand for the product groups A and B is high 
enough. The new product C however is expected to be very profitable and it would 
very likely be an unwise decision to sell out the total production capacity. Unfortu- 
nately the demand for the new product C is not very certain. 

Table 3.1 Estimated values for the planning parameters 

Product group A 

Production time in hours per ton 
Contract profit in $ per ton 

t A  = 0.24 
UA = 1478 

Demand for contracts in ton per year 6, = 20 000 
Profit in production period in $ per ton 
Minimum demand in ton per year 

eA = 1534 
a, = 16 040 

Mode of demand in ton per year 
Maximum demand in ton per year 

PA = 17550 
'/A = 19 900 

Product group B Product C 

ZB = 0.47 
UB = 897 - 

tc = 1.4 

6 B  = 11 000 - 

aB = 8350 Q = O  
eB = 953 ec = 3350 

bs = 8900 
'/B = 9150 

Pc = 850 
yc = 1600 

This case study will be continued in Section 3.4.1. 

3.4 
Modeling the Profit of the Production Planning 

The criterion on which planning will be assessed is the total profit that is achieved 
after the production period when the production is executed in accordance with the 
production planning. For that, not only is the expected profit important, but also the 



3.4 Modeling the Profit ofthe Production Planning I 833 

certainty that this profit will be achieved should be taken into account in the final 
decision. If a small deviation of the expected demand results in a much lower profit 
than expected, it could be safer to choose a more robust planning with a lower, but 
more certain profit. 

Let zi, i E { 1, 2, ... n, n + l} be the sold amount of products when the production 
period is finished. Together with the products that are sold before the production 
period in annual contracts, the final profit that will be made in this period equals: 

n n+ 1 

i=l i=l 

The amount of products sold during the production period will depend on the 
demand for these products and the available production time. 

If the demand is lower than the amount that can be produced in the available pro- 
duction time, then the total demand can be satisfied. However, if the demand is 
larger than the available capacity then only that amount of product can be made and 
sold. Therefore, the total amount of product sold during the production period will 
equal zi = min(di, xi), i E (1, 2, ... n, n + I}. The same holds for the amounts sold in 
annual contracts. The overall profit will then be 

n n+l 

P(yi,.  . . , yn, x i , .  . . , xn, xn+i) = Cai min(&, yi) + C p i  min(di, xi). (5) 
i= l  i=l 

For fned values of the decision variables, the maximum and minimum total profit 
that can be achieved depends on the planned amounts of the products on the produc- 
tion planning, and on the maximum, respectively minimum demand for the prod- 
ucts: 

n n+ 1 

max P(y1,  . . . , yn, ~ 1 ,  . . . , x n ,  xn+l) = C (Ti min(yi, si) + C pi min(xi, vi) 

n (6) 
i = l  i=l 

n + l  

minP(y1,. . . , yn, xi,. . . , xn, xn+i) = Cgi min(yi, h i )  + Cpi min(xi, ail. 
i=l i = l  

For fured values of the decision variables the probability density of the final profit can 
now be derived from the probability density of the demand for the products during 
the production period, under the assumption that the demands for these products 
are mutually independent. 

In general for a linear combination w = ax + by, where the stochastic variables x 
and y are independent, the density function of w reads (Papoulis 1965): 
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The final profit was defined by 
I 

” n+l 

i=l i-l 
P(yl, ..., yn, xl, ..., x,,, = 1 0, min(di, yi) + 1 pi min(di, xi). 

Let p i ,  i E { 1,2, ..., n, n + I} be the profit made by selling the amount zi of product 
i during the production period, then pi = pizi, with a minimum of 0 and a maximum 

Applying the general proposition (Eq. (1)) on the final profit P,  the probability den- 
of pixi. 

sity function of P reads: 

i=l i=l 

If the actual demand di, i E (1, 2,  ..., n, n + 1) is smaller than the planned capacity 
xi then the sold amount of product zi will equal the demand di. In that case, the prob- 
ability density of zi will follow the probability density of the demand di. However, if 
the actual demand di is larger than the planned capacity xi then only the amount zi = 

xi will be produced and sold. The probability that this will happen is the probability 
of a demand larger than the planned capacity, that is, di 2 xi (see Fig. 3.3). 

Figure 3.3 The probability density function o f  the sold amount o f  product 

By this observation, the probability densityfi,(zi), i E (1, 2, ..., n, a +  I} of the sold 
amount of product zi satisfies: 

0 < 2; < xi 

, i E [1,2,. . . , n, n +  1) (9) 

Unfortunately, by the local discontinuities in the probability density function of the 
final profit, the integrals cannot be solved analytically. The derived theoretical results 
will now be applied on the case study described in Section 3.3.1. 
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Figure 3.4 Simulation of the final 
profit for one possible production 
planning 

profit (in million 9) 

3.4.1 
Modeling the Profit for the Food Additives Plant 

In the aforementioned case study the production planning should be made for two 
current product groups A and B and one new product C. For reasons of comprehen- 
sibility, the assumption is made that no products were sold before the production 
period, that is yA = y B  = 0. 

The total profit that can be made will now depend on the demand for the products 
during the production period and on the planned amounts of the different products, 
that is, P(xA, x g .  xc) = 1534 min(dA, xA)  + 953 min(dB, xB)  + 3350 min(dc, xc) ,  

under the restriction that the total production time will not be exceeded, 0.24 xA + 

The probability density function of the profit satisfies: 
0.47 X B  + 1.4 XC = 9015. 

Although this probability density cannot be solved analytically, it can be simulated 
for fned values of xA, x9, xc by randomly picking a certain demand for the products 
A, B and C from their individual probability density functions. 

Figure 3.4 shows a probability histogram of the simulated profit for a production 
planning with xA = 17 000, xB = 9588, xc = 950 ton per year. The sample size taken is 
1000. The unequal distribution in the left tail is caused by the sample size and would 
not be present in the theoretical distribution. This histogram shows a very skewed 
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distribution to the left. This skewness is caused by the discontinuities in the function 
P(xA, xB, xc). In Section 3.5.1 this case study will be continued. 

I 

3.5 
Modeling the Objective Functions 

The quality of a certain production planning will be assessed on the expected value 
of the profit that can be achieved with the planning. The expected value of the final 
profit satisfies: 

n n+l 

EP(Y1,. . . , yn,  X I , .  . . , xn, x n + l )  = Cci min(di, yi) + C PiEzi(xi) (11) 
i=l i=l 

withyi 5 di,  i E (1,2,. . . , n) 

From the probability density functionfi,(zi), i E (1, 2,  ..., n, n + l} of the amount of 
sold products, the expected value of the amount zi can be determined by: 

There are four possibilities for the planned amount x, in comparison to the expected 
demand d,, i E (1, 2 ,  ..., n, n + l}. Remember that d, was expected to lie between al 
and y, with a mode 8. Elaboration of Eq. (12) yields: 

1. If x, 5 a, then Ez, (x,) = x,. 

2. If a, 5 x, 5 p, then 

a + S + y  4. If xi > yi then Ezi (xi) = 
3 

Unfortunately, the expected value of the profit that can be achieved with a certain 
production planning, does not guarantee that this profit will be achieved in reality. 

Due to the skewed density function, for most choices of the production planning, 
the median of the profit will be higher than the expected value of the profit. This 
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means that with a probability of more than 50% the real profit will be higher 
than the expected value. And with a probability of less than 50 % the real profit will 
be lower than the expected value. As a consequence, the average deviation below the 
expected profit will be larger than the average deviation above the expected profit. 

As a measure for the robustness of the planning the first quartile Qo(y,, x,) of the 
profit is chosen. The probability that the real profit will be lower than this first quar- 
tile equals 25 %. Under the assumption that the demands for the different products 
are mutually independent, the first quartile of the total profit will be a linear combi- 
nation of the first quartiles of the sold amounts of products z,, i E { 1, 2, . .., n, n + l} 
and can be written as: 

The first quartile of the sold product, Qz,(xJ, will equal the first quartile of the 
demand d, if the planned amount x, is larger than this demand, otherwise it will 
equal x,: 

Qz,(xi) = min(Qo,(di), xi), i E (1, 2,. . . , n, n+ 1) (14) 

As long as the first quartile Q,(di) is smaller than the mode PL of the demand, i.e., 

If the first quartile Q,(d,) is larger than the mode PI of the demand, i.e., P I  > 0.75 a, 
i 0.25 yL, then 

3.5.1 
Modeling the Objective Functions of the Food Additives Plant 

For the case study described in Section 3.4.1, the objective functions can now be 
modeled. 

The expected value of the final profit satisfies: 
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C 
'=- - - c e 
Q 

Figure 3.6 The expected profit for different choices o f  the production 
planning 

Figure 3.5 shows the functions of Ez,(xA), Ezs(xB) and Ezc(xc). respectively. The verti- 
cal lines indicate the different parts of the piecewise functions, that is, x, < a,, a, I 
x, 5 b,, PI < x, 5 Y,, x, > y,, i E {A, B, C}. 

Figure 3.6 shows the three-dimensional plot and the contour plot of EP(xA, xB, xc) 
with the restriction that the total production time is filled, but not exceeded, that is, 

9015 - 0 . 2 4 ~ ~  - 1 . 4 ~ ~  
xB = 

0.47 
The figures show that there is one production planning that leads to a maximum 

value for the expected profit Ep(xA, xB, xC). A rough estimation can already be made 
from the contour plot that in this production planning around 18,200 tons will be 
planned of product A, around 500 tons will be planned for product C, which will 
leave capacity for about 8400 tons of product B. 

The second objective function is the first quartile of the total profit, that is, 

Q p ( x ~ ,  X B ,  xc) = 1534 min(17247, xA)+953 min(8682, x~)+3350 min(583, xc). 

Figure 3.7 shows the three-dimensional plot and the contour plot of Qp(xA, xB, xc) 
again with the restriction that the total production time is filled, but not exceeded 

Also these figures show that there is one production planning that leads to a maxi- 
mum value for the first quartile Qp(xA, xB, xc) of the final profit. Again a rough esti- 
mation can be made from the contour plot. In this production planning around 
17,200 tons will be planned of product A, around GOO tons will be planned for prod- 
uct C, which will leave capacity for about 8600 tons of product B. 

(%I. (18)). 
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136.5 
I 

Figure 3.7 
production planning 

The first quartile o f  the profit for different choices o f  the 

3.6 
Solving the Optimization Problem 

The production planning problem is translated into a multicriteria piecewise linear 
optimization problem. The problem, however, will not be solved as a multicriteria 
problem, since the objectives are the extremes of one scale, from an uncertain but 
high profit to a more certain but low profit. For planning management willing to run 
a higher risk for a higher expected profit, the most profitable planning, correspond- 
ing with the maximum expected profit, may be the right choice. For planning man- 
agement not willing to run any risk the most robust planning, that is, the one with 
the highest first quartile will be a more certain choice, although the expected profit 
will be much lower in that case. For every nuance of profitableness at a certain risk, 
a production planning in between those two extremes can be found. 

The optimization problem is as follows: 

determine y1, ..., yn, XI ,  ..., x,, x , ,~  for which 
n n+l 

EP(Y1, .  . . I Yn, X I , .  . . , xn, xn+1) = Caiyi + C P i E z i ( X i )  
i=l  i=l 

or 
n 

is maximized, subject to 
n n+l 

T = C tiyi + c t i x i .  

i=l  i=l 
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3.6 Solving the Optimization Problem 

Due to the piecewise character of the objective functions, common gradient methods 
for optimization cannot be used. Therefore a choice is made to use a direct-search 
method, the simplex method of Nelder and Mead (Nelder 1965). The Nelder-Mead 
algorithm is mentioned in many textbooks, but very seldom explained in detail. That 
is why a short description of the working method is given here (Fig. 3.8). 

If there are n decision variables in the optimization problem, the Nelder-Mead 
algorithm will start by choosing n + 1 points arbitrarily. For reason of simplicity, 
assume that there are two decision variables. Then there will be 3 starting points (PI,  
P2, P3), which together form a triangle. This triangle is called the simplex. If the 
objective function is to be maximised then the point with the smallest value (P l )  is 
reflected into the middle of the opposite side, in the supposition that this will lead to 
a better value for the objective function. 

There are four different possibilities on how the search will continue. 

1. If the objective value of the new point (P4) lies between the best and the worst val- 
ues of the other points (P2, P3), then P4 is accepted as a new starting point and the 
new simplex is (P2, P3, P4) (Fig. 3.8a). 

2. If the objective value of the new point (P4) is better than all others then the point 
is even further drawn out, twice as far from the reflecting point as P4. Therefore, 
P5 will form the new simplex with P2 and P3 (Fig. 3.8b). 

3. If the objective value of the new point (P4) is worse than all others but better than 
the original (PI) ,  then a new point PG is evaluated half as far from the reflecting 
point as P4 (Fig. 3.8~). Again there are two possibilities: 
a. If P6 is worse than all others then the whole simplex is decreased by half 

towards the best point in the simplex. The new simplex is then (P2, P3’, PG’) 
(Fig. 3.8d). 

b. Otherwise, the new simplex is (P2, P3, PG). 
4. If the objective value of the new point (P4) is worse than P1 then a new point P7 

is defined halfway between the reflecting point and P1 itself. The new simplex will 
then be (P2, P3, P7) (Fig. 3.8e). 

The new simplex is now used as starting point and the same procedure is performed 
until the best point and the second best point differ less than a fxed value E. For both 
objective functions the Nelder-Mead algorithm could be used to find the production 
planning with the highest expected profit and the production planning with the high- 
est first quartile, that is, the most robust planning. The planners will be provided 
with information about the robustness and the expected profit of different possibili- 
ties of the planning, on which they can base their final choice. 

In the next paragraph, the Nelder-Mead algorithm will be applied on the objective 
functions in the case study. 
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Figure 3.8 Nelder-Mead algorithm 

3.6.1 
Solving the Optimization Problem in the Case Study 

For the case study the production planning problem is translated into the following 
optimization problem: 

Determine xA, x g ,  xcfor which 

Ep (%a, xg, xC) = 1534 EzA (xA)  + 953 Ez, ( x g )  + 3350 Ez, (xc) 

or 

Qp (xA, xg,  xc) = 1534 min(17247, xa) + 953 min(8682, xg)  + 3350 min(583, xc) 

is maximized, subject to 

xg = 
9015 - 0.24 X A  - 1.4 xc 

0.47 
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3.6 Solving the Optimization Problem 

Figure 3.9 The Nelder-Mead 
algorithm to determine the ma- 
ximum expected profit 

Figure 3.9 shows for the decision variables X, and xc, the contour plot of the expected 
profit Ep(xA,  xB, xc) with the simplices resulting from the Nelder-Mead algorithm. 

The optimal planning found is the planning in which 18,221 tons for product A, 
8445 tons for product B and 481 tons for product C are planned (Table 3.2). The 
expected profit for this planning equals: Ep(18221, 8445, 481) = 3.67 . lo7 dollars. 
The first quartile for this planning, that is, the robustness of the planning, equals 
Qp (18221, 8445, 481) = 3.61 . lo7 dollars. 

The most robust planning, that is, the one with the highest first quartile, is found 
by applying the Nelder-Mead algorithm to: 

Qp (xA,  xf l ,  xc) = 1534 min(17247, xA) + 953 min(8682, xB)  + 3350 min(583, x,-) 

subject to xf l  = 
9015 - 0.24 X A  - 1.4 xc 

0.47 

The company itself should now decide if they will speculate on a higher expected 
profit or if they will prefer a lower but more certain profit. The diagram in Fig. 3.10 
below can serve as an informative tool for the decision making. 

Table 3.2 Results of the optimization 

Optimization Ep (XA, XB! xc) Qp(xAr XB! XC) XA XB xc 

(million dollars) (million dollars) (ton) (ton) (ton) 
~ ~ ~~ ~~ 

Max. expected profit 36.7 
Max. robustness 36.3 

36.1 18221 8445 48 1 
36.6 17248 8647 579 
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planned new product C (in tons] 

Figure 3.10 The profit levels for planned amounts of product C 

In the planning with the maximum expected profit 481 tons were planned for 
product C. In the planning with the maximum 25 % limit of the profit 579 tons were 
planned for product C. Figure 3.10 shows for the interesting region for the planned 
amounts of product C, that is, between 400 and 700 tons, four different profit levels: 

Profit level 1 is the maximum expected profit that can be achieved with the 
planned amount of product C, assuming that the remaining capacity is optimally 
divided over the product groups A and B. 
Profit level 2 is the 25 % profit limit if the planning with the maximum expected 
profit (see profit level 1) is implemented. 
Profit level 3 is the maximum 25% profit limit that can be achieved with the 
planned amount of product C, assuming that the remaining capacity is optimally 
divided over the product groups A and B. 
Profit level 4 is the expected profit if the planning with the maximum 25 % profit 
limit (see profit level 3) is implemented. 

Assume that the company, based on the information from Fig. 3.10, decides to plan 
579 tons of product C. This seems to be a profitable but not too risky choice. Com- 
pared to the planning with for example xc = 481, the maximum expected profit is a 
bit lower, but all other profit levels are very high. It will now depend on the choice for 
the planned amounts of products in the groups A and B, if they can expect a higher 
profit with more uncertainty or a lower profit with less uncertainty. However, the 
25 % profit limit gives no information about how the profit is distributed below this 
limit. To have more information on how low the profit could be, Fig. 3.11 shows, for 
579 tons planned for product C, the probability distribution of the profit for different 
amounts planned for product groups A and B. 
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From Fig. 3.11 it is clear that the more product A is planned for, the more profit 
can be expected, but the more uncertainty exists whether this profit will be achieved. 
For instance, if the company decides to plan 18,000 tons for products from product 
group A, then the maximum profit they can achieve is about US $37.5 million and 
there is a probability of GO% that this profit will not be achieved. There even is a 
probability of 25 % that the profit will be lower than US $36.3 million. 

3.7 
Sensitivity Analysis of the Optimization 

The planners settle several parameters on which the determination of the optimal 
planning is based. Some deviation from the expected values will lead, after comple- 
tion of the production period, to profit results that differ from what was expected. To 
be able to make a good evaluation of the risks, the sensitivity of the profit and the 
optimal planning will be studied for small deviations from the expected values of the 
following parameters in the objective functions: 

1. the profit ei, i E (1, 2, ..., n, n + I} made on the sold amounts of the current pro- 

2. the minimum ai, the mode 6, and the maximum y, of the demand di, i E { 1 , 2 ,  ..., 
ducts and the new one during the production period; 

n, n + I} of all products during the production period. 

38 f 
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37.2 7 
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4 36.41 

E 36: 
E 

0s - - 
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cumulative probability 
Figure 3.11 
of product A 

Probability distributions of the profit for different amounts 
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Also the sensitivity of the solution to the parameters in the production time con- 
straint will be studied: 

3. the total production time T available per year; 
4. the production time ti, i E (1, 2, ..., n, n + 1} that is needed to make one ton of 

product. 
Let (yypT ,  xYPT) be the optimal planning with respect to the maximum expected 

The effect on the optimal value E$'" of a small change in for example the para- 

I 

profit. Let E$'PT = Ep crypT, _xYpT) be the maximum value of the expected profit. 

meter el is now given by - aE$'PT, the absolute sensitivity coefficient of el. The same 
a PI - -  

can be done for all other parameters and for both objective functions. 
The stepwise character of the objective functions is in this case for the differentia- 

tion not a problem, since the discontinuities of the function are only found in the 
decision variables, not in the parameters. For the parameters, the objective functions 
are continuous and therefore differentiable. 

The size of the absolute sensitivity coefficients depends on the scale on which 
the parameters are measured. To make them comparable they are scaled by 

-. - , which form the relative sensitivity coefficients, for example, for the 
de1 GPT 

parameter el. 

Cziyi + C tixi = T. Changes in the parameters ti or in Twill cause the optimal plan- 

ning to be no longer feasible. In practice a decrease in comparison to the expected 
values of ti, i E {1,2, ..., n, n + 1} or an increase in comparison to the expected value 
of Twill not cause any problem. The planned amounts of products can still be made 
and it will be possible to make an even higher amount of product than was planned, 
although it is not guaranteed that this extra amount can be sold as well. Information 
is needed to determine for which product the extra production time should be used 
to make as much profit as possible. 

An increase, however, ofthe values of t i ,  i E { 1,2, ..., n, n + 1} or a decrease of the 
overall production time T will cause the optimal planning to be unachievable, and 
information is needed at the expense of which product the reduction of production 
time should be found to keep the profit as high as possible. 

In general Lagrange multipliers can be used to investigate the influence of 
changes in the right hand side of the constraint parameters, but due to the piecewise 
character of the objective functions the Lagrange multiplier cannot analytically be 
calculated for an arbitrary T. The sensitivity analysis will be illustrated on the basis of 
the case study from Section 3.6.1. 

The other uncertain parameters influence the only constraint in the problem: 
n n+1 

i=l i-1 
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3.7.1 
Sensitivity Analysis in the Case Study 

Assume that the company, based on the information given in Figs. 3.10 and 3.11, has 
decided to plan 18,000 tons for product group A, 8265 tons for product group B and 
579 tons of product C. The expected profit for this planning equals US $36.6 million 
and there is a probability of 25 % that the real profit is lower than US $36.3 million. 

To study the sensitivity of the results for small changes in the profit parameters @A, 

@B, @c and the demand parameters aA, PA, y ~ .  aB, PB, yB, %, Pc, yc, the relative sensi- 
tivity coeffkients are calculated in the neighbourhood of the expected values of these 
parameters, presented in Table 3.3. 

Table 3.3 Sensitivity o f  the profit for different planning parameters 

Parameter Expected value Expected profit 25 % Probability limit 

Absolute Relative Absolute Relative 
sensitivity sensitivity sensitivity sensitivity 

@A 

Qc 

ee 

aA 

P A  

aB 
P B  

ac 
P C  

Y A  

Y e  

Y c  

1534 $ per ton 
953 $ per ton 

3350 $ per ton  
16,040 ton  
17,550 ton  
19,900 ton 

8350 ton  
8900 ton 
9150 ton  

0 ton  
850 ton 

1600 ton 

17,578 
8265 

531 
41 1 
347 
166 

0 
0 
0 

539 
188 
100 

~~~ 

0.74 1 
0.22 
0.05 
0.18 
0.17 
0.09 

0 
0 
0 
0 

0.00 
0.00 

17,247 0.73 
8265 0.22 

579 0.05 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

The expected profit and the first quartile of the profit are most sensitive for the 
profit that can be made with the current product A, due to the high amounts of this 
product planned to be made and sold, according to expectations. Furthermore, the 
profit is sensitive to changes with respect to the profit that can be made with one ton 
of product B, and for changes in the demand of product A. Small changes in the 
other parameters have hardly any influence on the profit that can be made with the 
chosen planning. 

A change in the total production time will also influence the profit that could be 
achieved with the implementation of the chosen planning. Figure 3.12 shows the 
change in expected profit, respectively 25 % profit limit, if the increase or decrease in 
production time T is totally covered by an increase, i.e., a decrease in planned 
amounts of product group A, B or product C. 

Figure 3.12 shows clearly that a decrease in the total production time should never 
be covered at the expense of product group A, but should be found in a smaller 
amount of product group B or product C. On the other hand, when the production 
time is higher than expected, the extra time should be used to produce more of prod- 
uct C, although the differences are not so large. The robustness of the planning for 
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34.5 
-400-300-200-100 0 100 200 300 400 

change in T (hours) ...... 
-400-300-200-100 0 100 200 300 400 

change in T (hours) 
m . . . . .  

Figure 3.12 The changes in profit for smaller or large production time 

a small decrease in total production time will not change if less of product A is made. 
However, a large decrease should go at the expense of the other products. An 
increase of the production time should as well be used to make more of the product 
group B or product C. 

Figure 3.13 shows the change in expected profit, respectively 25 % profit limit, if 
the increase or decrease in the time ta needed to produce one ton of product A is 
totally covered by an increase, i.e., a decrease in the planned amounts of product 
group A, B or product C. 

Figure 3.13 shows that an increase of the production time needed to make one ton 
of product A can best be covered by making less of product group B or product C, 
although to keep the same robustness it is better to make less of product A. For a 
decrease, it is best to make more of product C. An increase or decrease of the produc- 
tion time needed to make one ton of product group B or of product C, gives more or 
less the same results as for product group A. 
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3.8 
Implementation of  the Optimization of the Production Planning 

In the development of the method the focus was on the practical use for the planners 
in a multiproduct plant. The users of the method should not be bothered with the 
mathematical background of the method, which from their point of view can be con- 
sidered as a black box. The emphasis should be on the information that should be 
acquired from them as an input for the method and on the results obtained from this 
information to be presented in a comprehensible and useful way. Knowledge of the 
transformation from the input into the output can increase the confidence in the 
results, but is not required to be able to use the planning method (see Fig. 3.14). 

The informationjom the planners, needed as an input for the method, should con- 
sist of: 

- tnformatron from 
planners 

Figure 3.14 Implementation of the planning method 
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0 the profits made on the current products sold in annual contracts in dollars per 

0 the profits made on sold amounts of the current products and of new ones during 

0 the total production time available in hours per year; 
0 the production times needed to make the products in hours per ton; 
0 the demand for the current products that can be sold in the annual contracts; 
0 the demand for the current products and for the new ones during the production 

I 
ton; 

the production period in dollars per ton; 

period in ton per year described by: 
- the minimum demand in ton per year; 
- the mode of the demand in ton per year; 
- the maximum demand in ton per year. 

Table 3.1 is an example of such input information. 
The results for the planners, produced by the planning method, consist oE 

0 results of the optimization showing the optimal planning with respect to the maxi- 
mum expected profit and the optimal planning with respect to the maximum 25 % 
profit limit (Table 3.2); 

0 the profit levels for planned amounts of new products showing the maximum 
expected profit and its corresponding 25 % profit limit and the maximum 25 % 
limit and its corresponding expected profit for different choices of free capacity for 
the new product(s). If more than one new product is taken into consideration, 
then the aggregate free capacity for these new products will be showed on the x- 
axis (Fig. 3.10). 
probability distributions of the profit for different planned amounts of the prod- 
ucts showing the total probability distribution of a certain planning. For practical 
use, it should be easy to change the chosen amounts for all products to assess the 
effect of the changes on the profit distribution (Fig. 3.11). 
sensitivity of the profit for different planning parameters showing for a chosen 
planning which parameters are really influencing the profit, and by that require a 
good estimation of the expected value (Table 3.3); 

0 the changes in profit for smaller or larger production time (Fig. 3.12); 
0 the changes in profit for a smaller or larger time per ton for the products showing 

which adaptation to the planning should be made if the real values of production 
times differ from the expected ones (Fig. 3.13). 

When the results are presented in such a way that the planners have full insight into 
the consequences of a chosen planning, the method will serve as a valuable decision 
support tool. 
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3.9 
Conclusions and Final Remarks 

A production planning method has been presented for a multiproduct manufactur- 
ing plant, which optimizes the profit under uncertainties in product demands. In the 
method these uncertainties are modeled by means of a simple triangular probability 
distribution, which is easy to specify. The optimization goal can be formulated as 
either a maximum expected profit or a robust profit (first quartile of the profit) to 
lower the risk. Due to discontinuities in the probabilistic distribution function of sold 
products a direct search optimization technique, Nelder-Mead, must be applied 
rather than a gradient-based optimization. The development and the application of 
the method have been highlighted by means of a case study taken from a food addi- 
tives plant. 

This method is considered practical because the required input data for the 
demand and process models and the profit function is easy to get by the users of the 
method, while the output information facilitates the interpretation of sensitivities of 
the optimized production planning in terms of common economic and product 
demand specification parameters. The method should be accessible to plant produc- 
tion management rather than to operations research specialized planning experts. 
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