
CHAPTER 10

Stresses, Effective Stress, Water Stress, Air Stress, and Strains

10.1 GENERAL

A soil mass is subjected to internal and boundary forces due
to loading by a building, bridge, dam, retaining wall, or even
rain and evaporation near the ground surface. Under these
forces, displacements take place. The objective of the design
process is to ensure that the displacements are tolerable
and safe for the structure. It is difficult to use forces and
displacements as parameters in the design process because
they are not normalized quantities and therefore cannot be
compared between, for example, the full-scale behavior in the
field and a small-scale test in the laboratory. The concept of
stress and strain is used to normalize forces and displacements
to the point where such comparisons can be made. Note that
although using stresses and strains makes some problems
easier to deal with, it may create some difficulties at the same
time. For example, you cannot add stresses as you would add
forces. Any time one wishes to compose stresses, it is much
preferable to use the stresses to calculate the forces, then add
the forces by conventional means to find the resultant, and
then calculate the resultant stress.

10.2 STRESS VECTOR, NORMAL STRESS, SHEAR
STRESS, AND STRESS TENSOR

A stress is a force divided by the area over which it applies.
The force is not necessarily perpendicular or tangent to the
area. Because the force is a vector, so is the stress. For a given
point in a soil mass and for a given plane at that point, there
is one stress vector:

�t = lim
A→0

�F
A

(10.1)

where t is the stress vector, F is the resultant force at the
point considered, and A is the area of the plane on which
F is acting. The stress vector, like the force, can always be
decomposed into a normal stress σ and a shear stress τ. If
the force is perpendicular to the area, the stress is a normal

stress. If the force is tangential to the area, the stress is a shear
stress:

σ = N

A
, τ = T

A
, (10.2)

where σ is the normal stress, N is the force normal to the
surface of area A, τ is the shear stress, and T is the force
tangent to the surface of area A. For a given point in a soil
mass, there is one resultant force but there is an infinity of
stress vectors because, though there is only one force, one
can choose an infinity of planes with different orientations
through that point. By swiveling the plane around that point,
one will find three planes where the shear stresses are zero.
These planes are perpendicular to each other and are called
the principal planes; the normal stresses on the principal
planes are called principal stresses and are denoted σ1, σ2,

and σ3. The largest of the three is the major principal stress
σ1, the smallest is the minor principal stress σ3, and σ2 is
called the intermediate principal stress.

The stress state at one point is usually represented by
drawing a cube with axes in the x, y, and z directions. The
stress vector on each face of the cube is decomposed into a
normal stress (e.g., direction of x) and two shear stresses (e.g.,
directions of y and z). The definitions refer to the following
labeling system:

• σxx is the stress on the plane perpendicular to x and in
the direction of x; it is a normal stress.

• τxy is the stress on the plane perpendicular to x and in the
direction of y; it is a shear stress.

• τxy is the stress on the plane perpendicular to x and in the
direction of z; it is a shear stress.

Those three stresses are the decomposition of the stress
vector t along the three orthogonal directions associated with
the plane perpendicular to x (Figure 10.1).

For reasons of moment equilibrium, the shear stresses
on two perpendicular planes must be equal (τxy = τyx). For
reasons of symmetry and equilibrium, and because the cube is
at the infinitesimal scale, stresses on opposite faces are equal
and opposite. Therefore, while there are a total of 18 stresses
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Figure 10.1 Stresses on an elementary cube.

(6 faces times 3 stresses), there are only 6 independent stresses
(3 normal stresses and 3 shear stresses). These stresses are
organized and presented in a stress tensor, which is a 3 × 3
matrix. That matrix has 9 elements, but is symmetric because
the shear stresses on perpendicular planes are equal. Once the
stress tensor is known at one point, all stresses are known at
that point by simple geometric rules:

� =
⎡
⎣σxx τxy τxz

τyx σyy τyz
τzx τzy σzz

⎤
⎦ (10.3)

The stress tensor � can be decomposed into the spherical
tensor S and the deviatoric tensor D:

� =
⎡
⎣σxx τxy τxz

τyx σyy τyz
τzx τzy σzz

⎤
⎦ = S + D

=
⎡
⎣σM 0 0

0 σM 0
0 0 σM

⎤
⎦ +

⎡
⎣σxx − σM τxy τxz

τyx σyy − σM τyz
τzx τzy σzz − σM

⎤
⎦

(10.4)

where

σM = 1

3
(σxx + σyy + σzz) (10.5)

The spherical tensor represents a confinement effect at the
point considered in the soil; it creates consolidation of the soil
element with no shear. The deviatoric tensor represents the
effect of various shear stresses on the soil element; it creates
distortion with no mean normal stress.

10.3 SIGN CONVENTION FOR STRESSES
AND STRAINS

Sign conventions are necessary in engineering because
equations can differ for different conventions. Here, we will
use compression stresses as positive because compression
stresses are the most common case in soil mechanics. Note
that in structures it is the contrary: there tension stresses
are chosen to be positive normal stresses. Shear stresses are
more complicated, so two cases must be considered.

Figure 10.2 Positive sign convention for stress relationship
equations.

Figure 10.3 Positive sign convention for Mohr circle.

When dealing with the equations that relate stresses on two
perpendicular planes to the stresses on an inclined plane, the
positive convention for shear stress is as shown in Figure 10.2.
However, when dealing with the Mohr circle representation of
shear stresses, then the positive convention for shear stresses
is as shown in Figure 10.3. Note that Figure 10.3 does not
represent a feasible state of stress in a material, but simply
the sign convention for the Mohr circle.

For normal strains, compressive strains will be considered
positive. For shear strains, positive strains will be those that
decrease an initially right angle.

10.4 CALCULATING STRESSES ON ANY PLANE:
EQUILIBRIUM EQUATIONS FOR
TWO-DIMENSIONAL ANALYSIS

At a specific point in the soil mass, and given the stresses
on two perpendicular planes, the normal and shear stress on
any other plane forming a wedge with the two perpendicular
planes (Figure 10.4) can be related to the stresses on the two
perpendicular planes as follows.
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Figure 10.4 Wedge subjected to normal and shear stresses in
equilibrium.

Referring to Figure 10.4, horizontal and vertical equilib-
rium of forces lead to equations 10.6 and 10.7:

σyAcosα − τxyAsinα + τAsinα − σAcosα = 0 (10.6)

σxAsinα − τyxAcosα − τAcosα − σAsinα = 0 (10.7)

where σy and σx are the normal stresses on the planes
perpendicular to the y and x directions respectively, σ is the
normal stress on the oblique surface, τxy and τyx are the shear
stresses on the planes perpendicular to the x and y directions
respectively, τ is the shear stress on the oblique surface, A
is the area of the oblique surface, and α is the angle of the
oblique surface as shown on Figure 10.4. From Eqs. 10.6 and
10.7 we get:

σ = σy + σx

2
+ σy − σx

2
cos 2α − τxy sin 2α (10.8)

τ = −σy − σx

2
sin 2α − τxy cos 2α (10.9)

If the planes perpendicular to the x and y directions are
principal planes (zero shear), then equations 10.8 and 10.9
become:

σ = σ1 + σ3

2
+ σ1 − σ3

2
cos 2α (10.10)

τ = −σ1 − σ3

2
sin 2α (10.11)

where σ1 and σ3 are the major and minor principal stresses
respectively, σ is the normal stress on the oblique surface, τ

is the shear stress on the oblique surface, A is the area of the
oblique surface, and α is the angle of the oblique surface as
shown in Figure 10.4.

10.5 CALCULATING STRESSES ON ANY PLANE:
MOHR CIRCLE FOR TWO-DIMENSIONAL
ANALYSIS

In a set of coordinates where the shear stress on a plane is
plotted on the vertical axis and the normal stress on the same
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Figure 10.5 Shear stress vs. normal stress space and Mohr circle.

plane is plotted on the horizontal axis, three circles bound the
zone where the stress points are located (Figure 10.5). Indeed,
all the stress points with τ, σ coordinates obtained for all the
planes at that point fall in an area bounded by three circles
centered on the horizontal axis. The reason why the center
of the circles is on the horizontal axis goes back to the fact
that shear stresses on perpendicular planes are equal. The cir-
cles intersect the normal stress axis at the principal stress
values σ1, σ2, and σ3; therefore, the circles have common
points at the end of the diameter on the normal stress axis
(Figure 10.5).

If the intermediate principal stress σ2 is equal to the minor
or the major principal stress, then there are only two principal
stresses and the three circles collapse into one (Figure 10.5).
This circle is called the Mohr circle. Otto Mohr was a
German civil engineer who demonstrated in 1882 how this
single circle could be used to find stresses on any plane at
a point.

The case in which the intermediate principal stress is equal
to the minor or the major principal stress occurs in a number
of common situations (unconfined compression test, column
loading, triaxial test, tension test). In this case, the zone
representing all the stress points becomes the circle itself,
and simple geometric constructions can be used to find the
normal stress and the shear stress given a plane at that point in
the soil mass (e.g., the Pole method). The Mohr circle can be
defined as the graphical representation of the stresses at one
point in a mass for the case where the intermediate principal
stress is equal to the minor or the major principal stress. If
one considers a different point, then the Mohr circle will be
different. However, in the general case, there are three circles
at one point and most stress points are not on the circles.

In the simpler case where the three principal stresses reduce
to two, the following construction can be used to find the
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stresses on a randomly chosen plane (Figure 10.6). Although
the problem can be posed in many different ways, the key,
once the Mohr circle is known, is the relationship between:

1. a stress point on the Mohr circle for which we know the
plane on which these stresses act

2. the direction of another plane in the two-dimensional
(2D) space

3. the stresses on that other plane

If you known 1 and 2, you can find 3. If you know 1
and 3, you can find 2. The relationship is that if α is the
angle between the two planes in space, the angle between
the two stress points on the Mohr circle is 2α. This is
due to equations 10.8 and 10.9, which have 2α in them.
The angle 2α on the Mohr circle could be taken clockwise or
counterclockwise from the known stress point, and that would
lead to two different answers. The correct direction is such
that if you go from the known plane to the plane where you
seek the stresses by an angle α in space, you have to go from
the known stress point to the unknown stress point through
2α in the same direction on the Mohr circle. Figure 10.6
illustrates the case for the triaxial test; Figure 10.7 illustrates
the case for the direct shear test.

The Pole method is another popular method for solving
the same problem. The Pole is a point on the Mohr circle
such that a line on the Mohr circle passing through the stress
point and parallel to the plane on which the stresses act will
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(direct shear test).

intersect the Mohr circle at two points: the stress point and
the Pole. The Pole method always has three components:

1. the Pole on the Mohr circle
2. the stress point on the Mohr circle
3. the plane on which the stresses act in space

You always have to know 2 of these 3 components to solve
a problem. Typically, the first step is to find where the Pole
is. For this you need to know the Mohr circle and a plane on
which you know the stresses and therefore the stress point on
the Mohr circle. The steps are as follows:

1. Draw a line from the known stress point on the Mohr
circle parallel to the plane in the two-dimensional space on
which the stresses act.

2. That line intersects the Mohr circle at 2 points: the stress
point and the Pole. This gives the location of the Pole.

3. From the Pole on the Mohr circle, draw a line parallel
to the plane on which the stresses are to be found.

4. That line intersects the Mohr circle at 2 points: the
Pole and the stress point. The coordinates of this point are the
stresses on the chosen plane, and the direction of these stresses
are given by the sign convention discussed in section 10.3.

10.6 MOHR CIRCLE IN THREE DIMENSIONS

Section 10.5 dealt with the special case in which the inter-
mediate principal stress σ2 is equal to the minor principal
stress σ3 or to the major principal stress σ1. In this case,
there is only one Mohr circle and the stress points are on the
circle. In the general case, the intermediate principal stress
σ2 is not equal to σ1 or σ3. As a result, there are three Mohr
circles (Figure 10.5). In this general case, the stress point
is located within the area bound by the three circles. The
construction to find the stress point is more complicated than
in the 2D case, as might be expected. It requires knowledge
of the location of the point and plane considered in spherical
coordinates, and the graphical solution defines the stress point
at the intersection of three circles centered at the centers of
the Mohr circles. Most advanced mechanics books describe
this solution.

10.7 STRESS INVARIANTS

Stress invariants are combinations of stresses. There are three
stress invariants:

I1 = σ1 + σ2 + σ3 (10.12)

I2 = 1

6
((σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2) (10.13)

I3 = σ1σ2σ3 (10.14)

where I1, I2, I3 are the first, second, and third stress invariants,
and σ1, σ2, σ3 are the principal stresses. These stress invari-
ants are quite useful in describing yield criteria for soils. For
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example, the Drucker-Prager yield criterion (see Chapter 12)
is: √

I2 = A + BI1 (10.15)

where A and B are constants for a given material.

10.8 DISPLACEMENTS

Displacements take place as a result of many possible fac-
tors: loading change, temperature change, and water content
changes are common. They can occur in the three directions
x, y, and z. Any point A in a soil mass can experience
displacements in the three directions x, y and z. These dis-
placements can also be a function of time t. We will call the
displacements u, v, and w, corresponding to the directions
x, y, and z respectively. Figure 10.8 illustrates the displace-
ments in a two-dimensional space. For a point B different
from A but very close to A, the displacements will be slightly
different, so the displacements are a function of the loca-
tion of the point considered: u(x,y), v(x,y), w(x,y) for the
two-dimensional space of Figure 10.8.

Point A moves to A′ such that the displacements are u(x,y)
in the direction of x and v(x,y) in the direction of y. Point B
(Figure 10.8) is at a distance dx from A in the direction of x.
Point B moves to B′ such that the displacements are u(x +
dx, y) and v(x + dx, y). The displacement u(x + dx, y) can
be written as u(x,y) plus or minus a little bit. This little bit
is expressed mathematically as ∂u

∂x
dx, which is the product of

the partial derivative of u with respect to x times the distance
dx. So:

u(x + dx, y) = u(x, y) + ∂u

∂x
dx (10.16)

This equation can be understood by looking at the diagram
of Figure 10.9. In the same way, v(x + dx, y) can be written
as:

v(x + dx, y) = v(x, y) + ∂v

∂x
dx (10.17)
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Figure 10.8 Illustration of displacements in a two-dimensional
space.
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Now consider point D on Figure 10.8. Point D is at a
distance dy from A in the direction of y. Point D moves to D′
such that the displacements are u(x, y + dy) and v(x, y + dy).
These displacements satisfy equations similar to 10.16 and
10.17, as follows:

u(x, y + dy) = u(x, y) + ∂u

∂y
dy (10.18)

v(x, y + dy) = v(x, y) + ∂v

∂y
dy (10.19)

10.9 NORMAL STRAIN, SHEAR STRAIN,
AND STRAIN TENSOR

Strains are used to quantify the deformation of a material
as a result of a loading process, a temperature change, a
water content change, or some other change. Six strains are
defined at one point: three normal strains and three shear
strains. These six strains are defined from the knowledge of
the three displacements (u, v, w) at a given point. Therefore,
the six strains are not independent variables, and three strain
relationships can be written linking the six strains to one
another. Normal strains are used to quantify the change in
length between two points. Shear strains are used to quantify
the distortion of an angle.

Considering a point in a mass and an infinitesimal length
in the x direction, the normal strain εxx at that point in
the x direction is defined as the change in length of that
infinitesimal length divided by the original length. The same
definition applies for the normal strains in the y and z direction.
More precisely, and referring to Figure 10.8, the normal strain
εxx is defined as:

εxx = length A′B ′ − length AB

length AB

= dx + u(x + dx, y) − (dx + u(x, y))

dx
= ∂u

∂x
(10.20)

This equation assumes that the displacements are small and
that the error in taking the length A′B ′ equal to its projection
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on the x axis is very small. This is called the small strain
theory. By the same reasoning in this theory, the two other
normal strains are defined as:

εyy = ∂v

∂y
(10.21)

εzz = ∂w

∂z
(10.22)

Now consider the same point in the mass and two initially
perpendicular directions x and y (DAB on Figure 10.8). In
the deformed state, the right angle is deformed and becomes
the angle formed by D′A′B′. The shear strain at point A is
defined as one-half of the change in angle between DAB and
D′A′B′ expressed in radians:

εxy = 1

2
(DAB − D′A′B ′) = 1

2
(α + β)

= 1

2
(tan α + tan β) = 1

2

(
∂v

∂x
+ ∂u

∂y

)
(10.23)

This equation assumes that the displacements are small
because the angles α and β in radians are taken to be equal
to tan α and tan β respectively, and that the projection of
A′B′ on the x axis and the projection of A′D′ on the y axis
are equal to dx and dy respectively. The other shear strains
are then:

εyz = 1

2

(
∂w

∂y
+ ∂v

∂z

)
(10.24)

εzx = 1

2

(
∂u

∂z
+ ∂w

∂x

)
(10.25)

These six strains (Eqs. 10.20–10.25) form the strain tensor,
which is a 3 × 3 matrix where the shear strains are repeated on
either side of the diagonal. Mathematically, these six strains
are defined from the knowledge of the three independent
displacements; therefore, the six strains represent only three
independent variables.

ε =
⎡
⎣εxx εxy εxz

εyx εyy εyz
εzx εzy εzz

⎤
⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂u

∂x

1

2

(
∂v

∂x
+ ∂u

∂y

)
1

2

(
∂w

∂x
+ ∂u

∂z

)
1

2

(
∂u

∂y
+ ∂v

∂x

)
∂v

∂y

1

2

(
∂w

∂y
+ ∂v

∂z

)
1

2

(
∂u

∂z
+ ∂w

∂x

)
1

2

(
∂v

∂z
+ ∂w

∂y

)
∂w

∂z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10.26)

Note that there is a factor 1/2 in front of the shear strain. This
is because that shear strain is an average of the shear strains
in both directions. In engineering practice, the factor 1/2 is

ε3 ε2 ε1 εxx

εxy

ε3 ε2 ε1 εxx

εxy

Figure 10.10 Mohr circle for strain.

not used and the engineering shear strains are defined as
follows:

γxy = ∂v

∂x
+ ∂u

∂y
(10.27)

γyz = ∂w

∂y
+ ∂v

∂z
(10.28)

γzx = ∂u

∂z
+ ∂w

∂x
(10.29)

Note also that the same Mohr circle concepts apply to
strains as apply to stresses. One can draw Mohr circles for
strains on the shear strain vs. normal strains set of axes
(Figure 10.10). Note too that the Mohr circle for strains
applies to the ε values and not the γ values of shear strains.

10.10 CYLINDRICAL COORDINATES
AND SPHERICAL COORDINATES

Sometimes the geometry of a problem makes it convenient to
use cylindrical coordinates or even spherical coordinates to
solve the problem. In cylindrical coordinates (Figure 10.11),
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Figure 10.11 Stresses in cylindrical coordinates.



10.12 STRESSES IN THE THREE SOIL PHASES 251

point M has coordinates r, θ, and z and the displacements
of point M are u, v, and w in the directions of r, θ, and z

respectively. The stresses are shown in Figure 10.11 and the
stress tensor is:

� =
⎡
⎣σrr τrθ τrz

τθr σθθ τθz
τzr τzθ σzz

⎤
⎦ (10.30)

The strains definitions are:

εrr = ∂u

∂r
(10.31)

εθθ = u

r
+ 1

r

∂v

∂θ
(10.32)

εzz = ∂w

∂z
(10.33)

γrθ = ∂v

∂r
+ 1

r

∂u

∂θ
− v

r
(10.34)

γθz = 1

r

∂w

∂θ
+ ∂v

∂z
(10.35)

γzr = ∂u

∂z
+ ∂w

∂r
(10.36)

In spherical coordinates (Figure 10.12), point M has co-
ordinates r, θ, and ϕ and the displacements are u, v, and w,

in the directions of r, θ, and ϕ respectively. The stresses are
shown in Figure 10.12 and the stress tensor is:

� =
⎡
⎣σrr τrθ τrϕ

τθr σθθ τθϕ

τϕr τϕθ σϕϕ

⎤
⎦ (10.37)
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Figure 10.12 Stresses in spherical coordinates.

The strains definitions are:

εrr = ∂u

∂r
(10.38)

εθθ = u

r
+ 1

r

∂v

∂θ
(10.39)

εϕϕ = 1

r sin θ

(
∂w

∂ϕ
+ u sin θ + v cos θ

)
(10.40)

γrθ = ∂v

∂r
+ 1

r

∂u

∂θ
− v

r
(10.41)

γθϕ = 1

r

(
∂w

∂θ
+ 1

sin θ

∂v

∂ϕ
− w cot θ

)
(10.42)

γϕr = 1

r sin θ

∂u

∂ϕ
+ ∂w

∂r
− w

r
(10.43)

10.11 STRESS-STRAIN CURVES

Stress-strain curves are often obtained when one tests a
material in the laboratory or in the field. They usually relate
one of the six stresses applied to an element of the material
or to the mass to one of the six strains measured as a result
of the stress applied. These stress-strain curves are very
useful because they give fundamental soil properties that
enter into the design process. As a result of this stress-strain
curve relationship, one might be tempted to conclude that
stresses and strains are intimately linked. However, there
are exceptions to that intuitive statement. Take the example
of the rails of high-speed trains. These rails have very few
joints so that the very fast ride will be smooth. The rails
change temperature during the daily temperature cycle; this
temperature change would induce a change in length if such
a length change were possible—but the anchors of the track
do not permit such change and a stress develops because
the strain is being suppressed. There is stress but no strain.
Alternatively, consider a wire between two power-line poles.
When the temperature increases, the wire gets longer but
there is no change in stress. In this case there is strain but no
stress. Nevertheless, in most cases stresses and strains are in
fact intimately related.

10.12 STRESSES IN THE THREE SOIL PHASES

Concrete and steel are considered to be mono-phase materials
(only one material). Soils, however, are three-phase materials,
and stresses exist in each of the phases. The water can
experience compression (also called positive pore pressure),
or tension (also called suction or negative pore pressure).
The air can also experience compression or tension. The
shear stresses in the water and the air are neglected because
they are very small compared to the shear stresses existing
between the grains. The normal stress between the grains
is very important because it has a significant influence on
the shear strength and the compressibility of the soil. Note
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that failure in shear is the most common failure mechanism
in soils.

10.13 EFFECTIVE STRESS
(UNSATURATED SOILS)

Effective stress is a normal stress, and one of the most
important parameters to know when dealing with soils. The
effective stress equation gives the relationship between the
various normal stresses that exist in the three phases. The
derivation of this equation proceeds as follows. Consider a
half space of soil in equilibrium and then within that half
space consider an imaginary vertical cylinder. The top of
the cylinder is the ground surface and the bottom of the
cylinder is a generally horizontal plane that goes through
the grain contacts and cuts through the voids (Figure 10.13).
The external forces acting on that soil cylinder in the vertical
direction are the total weight, including the grains, the water,
and the air (acting downward); the vertical components of
the contact forces between the grains on the bottom plane
(acting upward); the vertical forces on the bottom plane
corresponding to the water stress times the area of the water;
and the vertical forces on the bottom plane corresponding to
the air stress times the area of the air. The water area plus
the air area plus the area of the contacts is equal to the total
area. There are no vertical forces on the sides of the cylinder
(shear forces) because there is no relative movement at that
boundary.

Writing vertical equilibrium leads to the following
equation:

F =
∑

fci +
∑

fwi +
∑

fai (10.44)

where F is the weight of the soil mass plus any surcharge,
and fci, fwi, and fai are the vertical components of the
forces between the grains, transmitted through the water, and
transmitted through the air along the lower boundary of the
free-body respectively. The forces fwi, and fai are equal to:

fwi = uwiawi (10.45)

fai = uaiaai (10.46)

where uwi and uai are the water stress and air stress respec-
tively, and awi and aai are the horizontal projections of the
areas of water and air respectively on the bottom surface

F

00

At

fai fwi fci

Figure 10.13 Free-body diagram for derivation of effective stress
equation.

of the free body. It is further assumed that uwi and uai are
constant along the bottom surface and equal to uw and ua

respectively. Therefore, equation 10.44 becomes:

F =
∑

fci + uw

∑
awi + ua

∑
aai (10.47)

Now divide both sides of the equation by the total horizontal
projected area At of the bottom of the cylinder:

F

At

=
∑

fci

At

+ uw

∑
awi

At

+ ua

∑
aai

At

(10.48)

On the left-hand side, we get a quantity that is the total
weight divided by the total area; this is called the total
(normal) stress σt. On the right-hand side, the first term is the
sum of the vertical components of the contact forces divided
by the total area; this is the effective (normal) stress σ ′. The
second term is the water stress times the water area divided
by the total area. This ratio of areas is lower than or equal to
1 and is called α. The third term is the air stress times the air
area divided by the total area. This ratio of areas is lower than
or equal to 1 and is called β. The total area can be written as:

At =
∑

aci +
∑

awi +
∑

aai (10.49)

Then

1 =
∑

aci

At

+
∑

awi

At

+
∑

aai

At

(10.50)

And

1 =
∑

aci

At

+ α + β (10.51)

where aci is the contact areas between particles. If it is
assumed that �aci is negligible compared to �awi and �aai,

then:
α + β = 1 (10.52)

So, in summary:

σ = σ ′ + αuw + βua (10.53)

Or
σ ′ = σ − αuw − βua (10.54)

where σ ′ =
∑

fci
At

is the effective stress, σ = F
At

is the total
stress, α and β are the water and air area ratios (α + β =
1), and uw and ua are the water stress and the air stress
respectively.

Note that σ ′ is not the contact stress σc, which is the sum of
the vertical components of the contact forces divided by the
contact areas. This real stress σc is not used in geotechnical
engineering because it is very difficult to know the area of
the contacts. The contact stress σc is much higher than the
effective stress σ ′.
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Note also that the effective shear stress is equal to the total
shear stress, because the shear stress in the water τw and the
shear stress in the air τa are neglected. The stresses τw and
τa are not zero, however, and are responsible in part for the
process of erosion (τw) and the drag force on airplanes (τa).

Nevertheless, their order of magnitude is in N/m2 rather than
kN/m2 as in the shear strength of soils.

τ = τ ′ (10.55)

Again, the shear stress calculated is the shear force at the
particle contacts divided by the total area rather than the
contact area; therefore, it does not represent the shear stress
at the contacts, but instead a much lower, well-defined value.

10.14 EFFECTIVE STRESS (SATURATED SOILS)

If the soil is saturated, Eq. 10.53 is simpler, as there is
no air. The left-hand side is unchanged and equal to the
total (normal) stress. The first term on the right-hand side
is unchanged and equal to the effective (normal) stress. The
second term reduces to uw because the α value becomes equal
to one, and the third term vanishes because there is no air in
the soil:

σ ′ = σ − uw (10.56)

In unsaturated soils, the water stress can be significantly
negative (high water tension); in this case the water stress
can contribute significantly to increasing the effective stress
between particles. For saturated soils with water in com-
pression, that water stress detracts from the effective stress
between particles. As in the case of unsaturated soils, how-
ever, the effective shear stress is the same as the total shear
stress and Eq. 10.55 is equally valid for saturated soils and
for unsaturated soils.

10.15 AREA RATIO FACTORS α AND β

In nature, the degree of saturation is either high enough that
the air is occluded (air bubbles surrounded by water) or low
enough that there is a continuous air path to the surface. The
transition from occluded air to continuous path occurs at a
degree of saturation approximately equal to 85%. If the air is
occluded, the air stress ua can be taken as being equal to the
water stress uw, as there is equilibrium at the bubble boundary
between the air and the water. In this case, Eq. 10.54 reduces
to Eq. 10.56 and the soil behaves as if it were saturated,
except that the water phase is much more compressible due
to the air bubbles. This increase in water compressibility
can have a beneficial effect, as in reducing the potential for
liquefaction. If the air phase is continuous, then the air path
to the atmospheric pressure ensures that the air stress is zero
and the term involving the air stress drops out. In this case,
the effective stress equation expresses that the total stress is

Soil grain

Water

Soil grain
Water
Air

Soil grain
Water
Air

Saturated Occluded air Continuous air
uw Þ 0

ua 5 0

s' 5 s 2 uw

S 5 100%

uw 5 ua

s' 5 s 2 uw

S > 85 %

uw Þ 0

ua 5 0

s' 5 s 2 auw

S < 85 %

Figure 10.14 Effective stress equation for various common
situations.

equal to the sum of the effective stress plus the product of the
water stress (negative) by the ratio of the water area divided
by the total area:

σ ′ = σ − αuw (10.57)

Therefore, for most common cases, the general effective
(normal) stress equation is Eq. 10.57. Figure 10.14 summa-
rizes these situations.

Note that in the case of occluded air, there can be a
difference between uw and ua because of the contractile skin.
Indeed, that membrane allows for a difference in pressure
that can be obtained by writing equilibrium of the free-body
diagram of half the bubble (Figure 10.15):

uaπ
D2

4
= uwπ

D2

4
+ πDT (10.58)

ua − uw = 4T

D
(10.59)

Therefore, the expression of the effective stress for the case
of the occluded air is an approximation. This approximation
is reasonable, as the value of β is much smaller than the value
of α in this case.

Because the effective stress has such a fundamental impact
on the behavior of soils, it is very important to be able to
evaluate the coefficient α in Eq. 10.57. This coefficient was
first proposed by Bishop in the 1960s as the factor χ. This
factor has been correlated with the degree of saturation S.

Uw

water

Ua

air

Uw

water

D

Ua

Uw

T (mN/m)

Figure 10.15 Pressure difference across an air-bubble boundary.
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This makes some sense, because when the soil has no water
(S = 0), α should also be zero, and when the soil is saturated
(S = 1), α should also be equal to 1. Furthermore, if it
is assumed that the area of the contacts Ac is negligible
compared to the area of the voids Av, then the definition of α

becomes:
α = Aw

At

= Aw

Av
(10.60)

Recall that the degree of saturation is defined as:

S = Vw

Vv
(10.61)

The analogy is tempting, but it must be said that the ratio
of areas Aw/Av is not likely equal to the ratio of volumes
Vw/Vv, because the plane that cuts through the contacts in
Figure 10.13 does not represent the general situation in the
soil volume. As a result, there is quite a bit of scatter in the
correlation between α and S (Figure 10.16).

Khalili and Khabbaz (1998) proposed a better relationship
to predict α (Figure 10.17):

α =
( (

ua − uw

)
(ua − uw)ae

)−0.55

(10.62)

which can be simplified without much loss of accuracy when
ua is zero as:

α =
√

uwae

uw
(10.63)

where ua is the air stress, uw is the water stress, and
(ua − uw)ae refers to the difference between ua and uw at
the air entry value. At the beginning of the drying process
of a saturated sample of soil, the water tension uw increases
(becomes more negative) as the water is evaporating out of
the soil and into the surrounding air, but the soil remains
saturated. As the drying continues, uw continues to become
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Figure 10.17 Water area ratio α vs. suction ratio. (After Khalili
and Khabbaz 1998. Courtesy of Nasser Khalili)

more negative and gets to a point where air first enters the
pores. This value of the water tension is called the air entry
value uwae. As the drying continues, the water tension contin-
ues to become more negative. The area ratio for air is β, and
because α + β is equal to 1 (Ac ∼ 0), once α is known so
is β.

10.16 WATER STRESS PROFILES

The water normal stress can be positive (pore pressure,
compression) or negative (suction, tension). In the field, the
groundwater level (GWL) is found at some depth below the
ground surface (Figure 10.18).

In some cases that depth is very large (deserts); in others it
is very shallow (regions close to oceans, lakes, or rivers). At
the GWL, the water stress is zero. Below the GWL, the water
is in compression (pore pressure) and, in the most common
case, the water stress profile shows a linear increase with
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Figure 10.16 Water area ratio α vs. degree of saturation S. (After Lu and Likos 2004)
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Figure 10.18 Groundwater level (GWL) and zones above the
GWL. (Adapted from a photo of Art Koenig, reproduced with
permission)

depth (hydrostatic pressure) and can be calculated as γwz
where γw is the unit weight of water and z is the depth below
the GWL. Sometimes the water stress profile below the GWL
is complicated by the presence of perched aquifers (water
bodies sandwiched between dry soil) or artesian conditions
(water body connected to a pressure higher than the local
hydrostatic pressure). Figure 10.19 shows examples of such
conditions.

Above the GWL, the water is in tension (suction). In the
zone above the GWL and deep enough to be unaffected by

0 uw

GWL

(a) General case

0 uw

(b) Perched water

GWL

0

(c) Artesian pressure 

uw

GWL

Figure 10.19 Examples of water stress profiles below the groundwater level.
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Figure 10.20 Examples of water stress profiles above the groundwater level.

the weather at the ground surface, the water stress is linear
and given by (−γwz) where z is the absolute value of the
vertical distance above the water table. In the zone above the
GWL and close enough to the ground surface that the weather
can influence the water stress profile by evapotranspiration
and rainfall (generally a few meters), the water stress profile
becomes curved to reach an equilibrium between the weather
and the soil (Figure 10.20). This part of the water stress
profile is very difficult to calculate and varies daily with the
weather.

10.17 WATER TENSION AND SUCTION

Water tension is the tension in the water expressed in kN/m2.

Suction is the potential that the water has to achieve a certain
water tension; it is also expressed in kN/m2. This suction
potential is not always realized. If the suction potential is
fully realized, the suction is equal to the water tension.
If the suction is not fully realized, the suction is higher
than the water tension. It is a bit like standing on top
of a building but not jumping: you have potential energy,
but you are not transforming it into velocity because you
are not jumping. Later we will discuss cases in which the
suction is not transformed into water tension. Although the
suction is important, the water stress is the one that enters
into most calculations. Note that suction is often defined as
the difference between the air stress and the water stress
(ua − uw). Because the air stress is often zero in the field
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(continuous air voids), suction is defined here as uw. Note
further that with ua − uw, suction is positive, whereas with
uw, suction is negative. Suction and water tension will always
be negative in the rest of this book, as compression has been
chosen as the positive sign convention for stresses.

The water tension and suction come from two different
sources: attraction of water to the minerals in the soil particles
and attraction of distilled water to salty water. The first one
is called matric suction; the second one osmotic suction.

10.17.1 Matric Suction

Matric suction is due to the attraction between water
molecules and the minerals in soil particles. If the mineral is
silica, the phenomenon is called capillary action. The attrac-
tion between water and silica generates a force of 73 mN/m.
Other minerals, such as smectite (Al2Si4O10(OH)2), can
generate much higher attraction forces and therefore much
higher water tension. Let’s discuss capillary attraction
first. The force of 73 mN/m is given per unit of length
because it exists along the contact line of the meniscus
interface between the water, the air, and the silica. Recall
that one Newton is about the weight of a small apple, so
73 mN is a very small force, yet it is responsible for some
major phenomena when dealing with very small scales. For
example, when a very-small-diameter glass (silica) tube
open at both ends is placed in water, that force lifts the water
in the tube like one would pull up a sock. If the glass tube
is small enough, the water can rise more than 10 m in the
tube. Note that if the tube were made of a different mineral,
the water would not rise to the same level. Also, if the tube
were made of glass, but instead of water you had mercury in
the container, the mercury would actually go down in the
small tube rather than up, because there is a basic repulsion
between mercury and silica.

The water rising in the silica tube does so up to a height
where the volume of water lifted in the tube has a weight
equal to the vertical component of the attraction force at the
top of the column times the contact length of the meniscus.
Equating the weight of the column of water to the vertical

component of the attraction force leads to the height of the
water column or capillary rise (Figure 10.21):

hc

πd2

4
γw = πdT cos α (10.64)

Therefore,

hc = 4T cos α

γwd
(10.65)

It is clear that the capillary rise depends on the diameter of
the tube; the capillary rise will be high in small-diameter tubes
and small in larger-diameter tubes. If the tube has a diameter
equal to the size of clay particles—say, 0.001 mm—Eq. 10.65
gives a height of capillary rise equal to 29.2 m (height of a
10-story building). The continuous voids in a soil play the
role of the tiny glass tube because, like glass, many soil
particles are made of silica. Continuous clay voids are similar
to tiny tubes and the water can saturate the clay high above
the groundwater level (15 m or more). In sands, the height to
which the water can rise is more limited.

Let’s study the water stress profile in the capillary tube
(Figure 10.21). Below the water level, in the big container,
the water is in compression and the water stress is positive.
Above that level, in the tiny glass tube, the water is in
tension because the water is pulled up into the tube by the
force πdTcosα. The water tension increases (becomes more
negative) linearly with the height in the tube, as shown in
Figure 10.21. At the top of the column, the water tension is
maximum and equal to −hcγw. Yet in the air immediately
above the water level in the small tube, the pressure is
atmospheric or zero gage pressure. It is not possible for such
a discontinuity to exist between two fluids unless there is a
membrane separating the water from the air: this membrane
is the contractile skin. It is similar to a car tire: the pressure
in the tire is much higher than outside the tire, and this is
made possible by the membrane represented by the tire. We
will discuss the contractile skin a bit later.

Consider now two soil particles in the form of spheres
(Figure 10.22). The soil is allowed to dry and the water
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Figure 10.21 Capillary tube experiment.
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Figure 10.22 Water tension at the contact between two spherical particles.

between the particles evaporates. When the water is almost
gone, the water is only found around the contact between
the two particles (Figure 10.22). The water is in tension and
the air is at atmospheric pressure. The contractile skin allows
large stress difference to exist between the two fluids. Now
let’s calculate the force at the contact. We draw a free-body
diagram of the upper particle and show the forces imparted by
the water and the contractile skin on the particle. The water is
under a tension stress uw, so the water pulls on the particles
above and below the contact area A with a force uwA. The
contractile skin is also in tension and pulls on the particle
at an angle α. The calculations are shown in Figure 10.22.
The force is a compression force equal to 10−6 N. Remember
that 1 N is about the weight of a small apple, so the force
is extremely small—yet the stress is very large (1000 kPa).
These stresses develop when the soil dries and are the reasons
why dry soils are a lot harder than saturated soils.

The preceding discussion focused on the case of water
attraction to silica and the water tension that can be gen-
erated due to this phenomenon. Some clay minerals, such
as smectite (Al2Si4O10(OH)2), can generate much higher
attraction forces and therefore water tension which can reach
100,000 kPa or even 1,000,000 kPa (Figure 10.23). These
water tension values correspond to soils that are very dry yet
have a little bit of water between particles. It is not clear in
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Figure 10.23 Water tension between soil particles.

these cases whether the water is still in liquid form, or in
viscous form, or possibly approaching solid form.

10.17.2 Contractile Skin

The membrane called the contractile skin exists at the in-
terface between the water and the air. The existence of this
membrane is rooted in the Van der Waals forces, which are
elementary attractive forces between molecules. In the water,
these forces act in all three directions and give water its tensile
strength. This tensile strength can be measured by placing
water in a cylinder and pulling on the piston until the water
breaks in tension, at about 20 MPa. This is remarkably large,
approaching the strength of concrete in compression.

At the interface between the water and the air, the molecules
of water attract those that are below the interface but are
unable to attract water molecules above the surface, as there
are none available. Instead, the water molecules enhance
their attraction in the horizontal direction, thereby creating a
membrane. Figure 10.24 shows a water strider resting on that
contractile skin. (So it is possible to walk on water, at least
for the water strider.)

This water membrane is able to generate 73 mN of force
for every meter of linear contact with silica. This represents

Figure 10.24 Water strider resting on contractile skin.
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a very small force, but the membrane is extremely thin. Its
thickness is estimated at 20 to 30 nanometers; therefore, the
stress in the contractile skin under 73 mN/m is larger than
20 MPa.

10.17.3 Osmotic Suction

There is a second reason why water can go into tension in
a soil: osmotic suction. Osmotic suction is due to the basic
attraction that exists between water and salt. The phenomenon
can be explained as follows. Imagine a container with two
sides (Figure 10.25). On one side is distilled water, and on
the other side is water with salt in it. Imagine that there is an
imaginary screen separating the two sides that allows water
molecules to travel across it but not salt molecules. This
imaginary screen therefore prevents the two water bodies
from mixing. In this experiment, the distilled water will
be attracted to the salt water and therefore a difference in
elevation will be generated, as shown in Figure 10.25. This
difference is a suction potential called the osmotic suction.
To help you remember that the distilled water goes towards
the salt water, just remember that when you eat salty food,
you get thirsty!

Osmotic suction depends on the salt concentration in the
water on the right side and on the type of salt in that water.
Osmotic suction exists in a soil if the soil contains dissolved

salts. This suction exists as a potential and is realized into
a water tension if there is a change in salt concentration
between two locations. This can happen when a sprinkler
system is installed in the backyard of a home. In the majority
of real situations, the osmotic suction is much smaller than the
matric suction. The sum of the matric suction plus the osmotic
suction is the total suction. Figure 10.26 shows values of total
suction or water tension for a range of conditions.

If the salt concentration is high, as would be the case in
a prepared solution, the osmotic suction can be very high.
Table 10.1 shows the values of osmotic suction associated
with various concentrations and various salt types. Note
that osmotic suction exists in saturated soils as well as in
unsaturated soils, as it is related only to the chemistry of the
pore fluid.

10.17.4 Relationship between Total Suction
and Relative Humidity

If you place water at the bottom of a container with air above
it and then you close the container, the humidity of the air
in the container will increase or decrease until it comes to an
equilibrium. This equilibrium depends on the pressure and
temperature in the container. At atmospheric pressure and at
a temperature of 25◦C, dry air consists of nitrogen (∼78%
by volume), oxygen (∼21% by volume), and a few other

Salt waterPure water

h 5 osmotic suction

After time t
initial timeInitial state

after time t

Figure 10.25 Osmotic suction experiment.
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Table 10.1 Osmotic Suction in kPa of Some Salt Solutions at 25◦C

Osmotic Suction in kPa at 25◦C

Molality (mol/kg) NaCl KCl NH4Cl Na2SO4 CaCl2 Na2S2O3 MgCl2

0.001 5 5 5 7 7 7 7
0.002 10 10 10 14 14 14 14
0.005 24 24 24 34 34 34 35
0.010 48 48 48 67 67 67 68
0.020 95 95 95 129 132 130 133
0.050 234 233 233 306 320 310 324
0.100 463 460 460 585 633 597 643
0.200 916 905 905 1115 1274 1148 1303
0.300 1370 1348 1348 1620 1946 1682 2000
0.400 1824 1789 1789 2108 2652 2206 2739
0.500 2283 2231 2231 2582 3396 2722 3523
0.600 2746 2674 2671 3045 4181 3234 4357
0.700 3214 3116 3113 3498 5008 3744 5244
0.800 3685 3562 3558 3944 5880 4254 6186
0.900 4159 4007 4002 4384 6799 4767 7187
1.000 4641 4452 4447 4820 7767 5285 8249
1.200 5616 5354 5343 N/A N/A N/A N/A
1.400 6615 6261 6247 N/A N/A N/A N/A
1.500 N/A N/A N/A 6998 13391 7994 14554
1.600 7631 7179 7155 N/A N/A N/A N/A
1.800 8683 8104 8076 N/A N/A N/A N/A
2.000 9757 9043 9003 9306 20457 11021 22682
2.500 12556 11440 11366 11901 29115 14489 32776

*All suction values are in kPa.
(After Bulut et al. 2001)

gasses. If such a dry air is in the container, there is plenty of
room for water molecules to become part of the air, thereby
increasing the relative humidity of the air. Part of the liquid
water at the bottom of the container will become vaporized,
and join the air phase by fitting vaporized water molecules
between the molecules of nitrogen and oxygen. This process
will continue until an equilibrium is reached.

Each gas component in the air has a partial pressure, and
the partial pressures add up to the total pressure, according to
the ideal gas law:

pair = pnitrogen + poxygen + pwater + · · · · (10.66)

At a certain relative humidity, the air has a corresponding
partial water vapor pressure pwater. At 100% relative humidity,
the partial water vapor pressure pwater equals the saturated
water vapor pressure pwater,sat. This pressure is 3.17 kPa
for conditions of atmospheric pressure (101.3 kPa) and a
temperature of 25◦C. The general equation for the saturated

partial vapor pressure of water in air pwater,sat at atmospheric
pressure for different temperatures is (Tetens 1930):

pwater,sat(kPa) = 0.611e

(
17.27 T (oC)

T (oC)+237.2

)
(10.67)

where T is the temperature in degree Celsius. The relative
humidity of the air is defined as the ratio:

RH = pwater

pwater,sat
(10.68)

The relationship between the relative humidity RH of the air
in the void of an unsaturated soil and the suction potential ψ

is given by Kelvin’s equation (Fredlund and Rahardjo 1993;
Lu and Likos 2004):

� = ρwRT

M
LnRH (10.69)

where ψ is the suction potential in Pa, ρw is the mass density
of the water (1000 kg/m3), M is the molecular weight of water
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(0.01802 kg/mol), T is the absolute temperature in Kelvin, R
is the universal gas constant (8.314 N m/mol K), and RH is the
relative humidity expressed as a ratio rather than a percent.
This suction potential in the void of the unsaturated soil can
develop into a water tension, in which case:

uw = ρwRT

M
LnRH (10.70)

At 20◦C and given the same constants used earlier, the
relationship is:

uw(kPa) = 135000LnRH (10.71)

where RH is taken as a fraction. This equation is shown in
Figure 10.27. It indicates, among other interesting observa-
tions, that a humidity room at 95% relative humidity has a
water tension potential of almost 7000 kPa and therefore is a
drying room.

10.17.5 Trees

Water is drawn up to the top of trees through suction.
Osmotic suction in the tree is due to the difference in mineral
concentration of the water in the tree and of the water in the
soil. Capillary suction is due to the very small size of the
tiny tubes (xylem conduits) that exist through the stem or tree
trunk; water is attracted to the walls of the xylem conduits
much like water is attracted to the glass (silica) wall of a
capillary tube. In trees, suction or water tension can reach
2000 kPa. Evaporation takes place from the leaf surfaces and
a continuous flow of water is generated in this fashion. This
flow can reach 1 m3 per day.

The tree absorbs carbon dioxide (CO2) from the air and
pumps water (H2O) from the ground. It then uses the energy
from the sun (photosynthesis) to combine the carbon dioxide
with the water to make sugar (C6H12O6) and release oxygen
(O2). Sugar is the essential basis for all plant growth. Trees
and plants in general are extremely important to humankind
because they absorb what we exhale (CO2) and produce what
we inhale (O2).

10.18 PRECISION ON WATER CONTENT
AND WATER TENSION

Water tension is more complicated to measure than water
content. Water content also typically varies much less than
water tension. A typical range of water content variation
is 5 to 50%, whereas the typical range for water tension
is −10 to −1,000,000 kPa. In an experiment conducted by
Garner (2002, unpublished), three samples were sent to eight
laboratories in Texas requesting that the water content and
the suction be measured. Most laboratories used the filter
paper method for the suction determination. The results were
collected and an error band was created for each sample.
The results are shown in Figure 10.28. They confirm that the
arithmetic value of the suction varies a lot more than the water
content. They also indicate that the error band for identically
prepared samples is much larger for the determination of
suction than for water content. If the log of the suction is
used instead of the arithmetic value, then the error band
of log(suction) approaches the error band of water content
(Figure 10.28).

10.19 STRESS PROFILE AT REST IN
UNSATURATED SOILS

The total vertical stress at rest σov at any depth z in a uniform
soil is equal to the total unit weight of the soil γt times the
depth z:

σov = γt z (10.72)

If the soil above the depth z is made of n layers, the total
vertical stress at rest σov at depth z is:

σov =
n∑

i=1

γt ihi (10.73)

where γti is the total unit weight of layer i and hi is the
thickness of layer i. Note that if there is water above the
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Figure 10.27 Water tension vs. relative humidity: (a) Relative humidity 0–100%. (b) Relative
humidity 80-100%.
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Sample 1
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Sample 3

Water content, %
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Water tension log
(uw, kPa)
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Sample 2

Sample 3

Water tension, kPa

0 15000 30000 45000 60000 kPa

Figure 10.28 Error bands for suction and water content determination by eight different labora-
tories in Texas for three identically prepared samples. (After Garner 2002)

ground surface, the water must be included as a layer to
calculate the total vertical stress. This is the case with a river,
a lake, or an ocean. At the bottom of the deep oceans, the
total vertical stress is very large and compresses any object
tremendously. For example a Styrofoam coffee cup going to
3000 m of water depth comes back the size of a thimble.

Below the groundwater level, the water stress at rest uwo is
calculated under normal circumstances as:

uwo = γw zw (10.74)

where γw is the unit weight of water and zw is the depth
below the GWL. Note that this water stress acts equally in
all directions (hydrostatic), as it is assumed that water has
no shear strength. This stress is a compressive stress. If an
artesian condition exists, then information about the water
stress in the artesian layer must be known or inferred from the
global aquifer analysis. If a perched GWL condition exists,
then information must be gathered where the groundwater
layer ends.

Above the GWL, in the zone saturated by capillary action,
the water stress uw is calculated as:

uwo = −γw zw (10.75)

where zw is positive and represents the vertical distance above
the GWL.

The water stress in this case is a tensile stress. Close to the
surface, the water tension no longer exhibits a linear profile
(Figure10.29). In that zone there is a power struggle between
the soil particle minerals, which tend to attract the water, and
the low relative humidity in the soil pores caused by the sun,
which tends to draw the water away from the particles. The

water is pulled hard in both directions, so high tensile stresses
develop. Quantifying the variation of uw with depth within
that region requires advanced computations and depends on
many factors, including rainfall, wind speed, solar radiation,
temperature, soil hydraulic conductivity, extent of the cracks
in the soil, and so on. Such computations are beyond the
scope of this book.

Once the total vertical stress at rest σov is known, and once
the water stress at rest uwo is known, the vertical effective
stress at rest σ ′

ov is calculated as:

σ ′
ov = σov − α uwo (10.76)

where α is the water area ratio estimated as the degree of
saturation or obtained from Eq. 10.63.

One of the important initial steps in solving a geotechnical
problem is to prepare the profile of vertical stresses at rest for
the site. This is done in the following steps:

1. Identify the layers and their thicknesses for the deposit
considered.

2. Determine the total unit weight of each layer.
3. Determine the location of the GWL and any irregularity

associated with the water regime (artesian pressure,
perched water table).

4. Identify the points of discontinuity versus depth. These
points include boundaries between two layers and depth
to the GWL.

5. Calculate the total vertical stress at rest, σov, at each
discontinuity using Eq. 10.73.

6. Calculate the water stress at rest, uw, at each disconti-
nuity using Eq. 10.74 below the GWL and Eq. 10.75
above the GWL).
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7. Calculate the water area ratio α at each discontinuity, es-
timated as the degree of saturation or by using Eq. 10.63
(α will be 1 under the GWL and in the zone saturated
by capillary action).

8. Calculate the effective vertical stress at rest, σ ′
ov, using

Eq. 10.76.
9. Plot the values of σ ′

ov on a graph at the depths corre-
sponding to the discontinuities and join these points by
straight lines.

Figure 10.29 is an illustration of this step-by-step procedure
under the following conditions:

1. The soil is uniform.
2. The total unit weight of the soil is equal to 20 kN/m3,

and the unit weight of water is taken as 10 kN/m3.

3. The GWL is at a depth of 5 m.
4. The points of discontinuity are the bottom of the profile

(z = 7 m), the GWL (z = 5 m), the top of the capillary
zone (z = 3 m), and the ground surface (z = 0 m).

5. The total vertical stress at rest at the bottom of the
profile is equal to σov = 20 × 7 = 140 kN/m2. At the
top of the profile, it is σov = 0. Because there is no
discontinuity in total unit weight between these two dis-
continuities, the profile is a straight line between the two
values.

6. The water stress at rest at the bottom of the profile is
equal to uwo = 2 × 10 = 20 kN/m2. At the GWL, the
water stress uwo is zero. At the top of the capillary zone,
the water stress is uwo = −2 × 10 = −20 kN/m2. The
profile of water stress in the unsaturated zone above
the top of the capillary zone is estimated as shown in
Figure 10.29.

7. The water area ratio is equal to 1 in the zone where
the soil is saturated. In the unsaturated zone, a linear
decrease of α from 1 at the top of the capillary zone to
0 at the ground surface is assumed in this case.

8. The effective stress is calculated according to Eq. 10.76.
For the point at the bottom of the profile, σ ′

ov = 140 −
20 = 120 kN/m2. For the point at the GWL, it is σ ′

ov =
100 − 0 = 100 kN/m2. For the point at the top of the
saturated capillary zone, it is σ ′

ov = 60 − 1 × (−20) =
80 kN/m2. In the unsaturated zone above the capillary
zone, the profile is obtained by using Eq. 10.76.

9. The values of effective stress are plotted in Figure 10.29.
Note that the effective stress decreases linearly as the
depth decreases when the soil is saturated, but increases
as the depth continues to decrease in the unsaturated
zone.

We can then calculate the shear strength of the soil on
horizontal planes by multiplying the vertical effective stress
by the tangent of the friction angle, assuming that the soil
has no effective stress cohesion: s = σ ′

ov tanϕ. Therefore, the
shear strength profile has the same shape as the effective
stress profile. The increase in effective stress, and therefore
strength close to the surface due to higher water tension, often
leads to a crust that can be a few meters thick.

10.20 SOIL WATER RETENTION CURVE

The soil water retention curve (SWRC), also known as the
soil water characteristic curve, is a property of the soil much
like the shear strength parameters (Figure 10.30). It is a plot
of the water content of the soil as a function of the water
tension stress (suction) in the soil pores.

Figure 10.30 is a SWRC on a semilog plot; the water
content is on a natural scale while the water tension is on
a log scale. From point A to point B on Figure 10.30,
the soil remains nearly saturated while the water tension
increases. At the air entry value (point B), the water content
decreases while the water tension increases. Up to point C on
Figure 10.30, the water content is usually well represented
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by a straight line and the slope of that line is the coefficient
Cw:

�w = Cw log
uw

uwae
(10.77)

where �w is the change in water content, Cw is the slope of
the SWRC, uw is the water tension, and uwae is the air entry
value of the water tension. From C to D, the water content
continues to decrease while the water tension continues to
increase, but at a much higher rate.

If a saturated soil sample is placed on a table top and is
strong enough to stand by itself, it is likely held together
by water tension unless it has some cementation (effec-
tive stress cohesion). As the soil dries, it initially shrinks
while remaining saturated. The water tension increases, and
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at a given water tension stress (suction), air enters the pores.
This water tension is called the air entry value (uwae). From
this point on during the drying process, the soil is unsaturated.
By definition, the water content at the air entry value is the
undisturbed shrinkage limit because, during the shrinkage
process, it is the last water content where the soil is saturated.

The gravimetric water content is the water content defini-
tion most commonly used in geotechnical engineering, but
for the SWRC, the volumetric water content is often used.
They are defined as follows:

Gravimetric water content: w = Ww/Ws (10.78)

Volumetric water content: θw = Vw/V (10.79)

When the term water content is used in this book, it means
gravimetric water content. Example SWRCs are presented
in Figure 10.31. Different soils have different SWRCs; for
instance, a sand will not retain water the same way a clay
would. Imagine that you insert a straw into a sand. It would
not take much sucking to get the water out of the sand. Now
imagine that your straw is inserted into a clay. In this case
it would take a lot of sucking to get a little bit of water out.
The suction or water tension that you would exert through the
straw would be much higher for the clay than for the sand.
This phenomenon is what the SWRC characterizes.

Soils under the groundwater level are generally saturated
and the water is in compression. Soils above the GWL can
be saturated or unsaturated, but in both cases the water is in
tension (suction). The SWRC is a property of a soil where
the water is in tension. Thus, the SWRC for a saturated
soil refers to the case where the soil is saturated above
the GWL by capillary action and other electrochemically
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based phenomena such as the affinity between water and clay
minerals (point A to B on Figure 10.30). Beyond point B the
soil is unsaturated.

10.21 INDEPENDENT STRESS STATE VARIABLES

Effective stress σ ′, as defined in Eq. 10.54, is:

σ ′ = σ − α uw − β ua (10.80)

Effective stress is defined on the basis of three stresses
(σ, uw, ua) and two soil properties (α, β). Therefore, it de-
pends not only on the state of stress in a soil, but also on
the soil properties. Hence, it cannot be considered an inde-
pendent stress variable, even if it is a very useful stress in
solving many soil problems. Equation 10.54 can be rewritten
as follows:

σ ′ = σ − α uw − β ua − ua + ua

= (σ − ua) − α uw + (1 − β)ua

= (σ − ua) + α (ua − uw) (10.81)

In this form, it becomes clear that two independent stress
state variables are necessary to describe the effective stress:

the net normal total stress in excess of air stress (σ − ua) and
the net water tension with respect to the air stress (ua − uw).

In terms of total stresses, the stress tensor at a point is
defined in Eq. 10.3. This stress tensor does not include infor-
mation on the water stress or the air stress. Keeping in mind
that shear stresses are unaffected by water or air stress, the
stress state in a soil can be fully described by the following
two stress tensors, which include all the stress information
necessary to solve an unsaturated soil problem.

�1 =
⎡
⎣σxx − ua τxy τxz

τyx σyy − ua τyz
τzx τzy σzz − ua

⎤
⎦ (10.82)

�2 =
⎡
⎣ua − uw 0 0

0 ua − uw 0
0 0 ua − uw

⎤
⎦ (10.83)

In the case of a saturated soil, only one tensor is necessary:

�1 =
⎡
⎣σxx − uw τxy τxz

τyx σyy − uw τyz
τzx τzy σzz − uw

⎤
⎦ (10.84)

PROBLEMS

10.1 A wedge has applied stress vectors on two faces as shown in Figure 10.1sa and Figure 10.1sb. Calculate the stress on the
third face in both cases. Hint: You can compose forces, but you cannot compose stresses unless they act on the same area.

s1 5 10 kPa

A1 5 1 m2

308

A2

A3

s3 5 ?
t3 5 ?

s2 5 10 kPa 

(a)

s1 5 10 kPa

308

A3

A2

t3 5 ?

A1 5 1 m2

t2 5 10 kPa

s3 5 ?

(b)

Figure 10.1s Stress vectors on wedge faces.

10.2 .In a triaxial test, the confining stress (minor principal stress) σ3 is 50 kPa, and the vertical stress (major principal stress)
σ1 is 150 kPa.

a. Form the total stress tensor shown in Eq. 10.3. Decompose the tensor into the deviatoric and spherical tensor forms
shown in Eq. 10.4.

b. The soil is saturated, and under the given stresses, the water stress is 20 kPa. Form the stress tensor in terms of
effective stress.

c. The soil is unsaturated, and under the given stresses, the air stress is 30 kPa and the water tension is −1000 kPa.
Form the two tensors describing the state of stress in the sample in terms of independent stress state variables.

10.3 A simple shear test is performed in a plane strain condition. The vertical normal stress on the plane of failure is 80 kPa,
the horizontal normal stress is 40 kPa, and the shear stress is 30 kPa on the horizontal plane. The Poisson’s ratio for the
soil is 0.35. Form the total stress tensor (Eq. 10.3). Decompose this tensor into the deviatoric and spherical tensor forms
shown in Eq. 10.4.
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10.4 .A sample of cohesionless silt is tested in a direct shear test. At failure, the vertical normal stress is 100 kPa and the shear
stress on the horizontal plane where failure occurs is equal to 40 kPa. The water stress is 20 kPa.

a. Calculate the effective principal stresses by using the equilibrium equations approach in two dimensions.
b. Calculate the effective principal stresses by using the Mohr circle approach in two dimensions.

10.5 For problem 10.4, use the Pole method to locate the planes where the principal stresses act.
10.6 .For the sample in Figure 10.6s:

a. Find the stresses on the plane shown.
b. On what plane does the maximum shear stress exist?

σ1 = 40 kPa

σ3 = 20 kPa σ3 = 20 kPa

στ 

30°

Figure 10.6s Stress state.

10.7 What happens to the Pole method when the diagram of a stress element in space is rotated by an angle θ? Does the Mohr
circle change? Do the stresses on any plane change? Does the Pole location change?

10.8 .In a simple shear test, the horizontal displacement at the top of the sample is 1 mm and the vertical displacement is a
reduction in height of 0.5 mm. The original height of the sample is 25 mm.

a. Calculate the shear strain and the vertical normal strain.
b. Is the sample dilating or contracting?

10.9 .In a triaxial test, the sample has an initial height of 150 mm and an initial diameter of 75 mm. During the loading in the
vertical direction, the vertical displacement is 3 mm and the increase in diameter is 2 mm.

a. Calculate the normal strains εzz and εrr.

b. Form the strain tensor.
c. Calculate the shear strain on a 45-degree plane.

10.10 .Consider the sphere-shaped soil particles shown in Figure 10.10s. The degree of saturation S is 1, the porosity n is 0.4,
and the ratio between the sum of the contact areas and the total area (Ac/At) is 0.01. Calculate the following quantities
and show the relationship between the total stress and the effective stress if the water stress is +40 kPa.

a. The average effective normal stress
b. The average normal stress at the contacts
c. The average normal total stress

1 mm 1 mm 1 mm

0.1 N 0.15 N 0.05 N

u 5 40 kPa

water water

Side view

3 mm

1 mm

Plan view

Figure 10.10s Sphere-shaped soil particles.

10.11 The surface tension of water is T = 73 mN/m, the diameter of a glass tube plunged into water is 0.002 mm, and the
contact angle between the wall of the clean glass and the water is α = 10 degrees. Find the height to which the water will
rise in the small tube.
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10.12 .Consider the sphere-shaped soil particles shown in Figure 10.11s. The porosity n is 0.4, the ratio between the sum of the
contact areas and the total area (Ac/At) is 0.01, and the ratio between the sum of the areas of water and the total area
(Aw/At) is 0.1. Calculate the following quantities and show the relationship between the total stress and the effective
stress if the water stress is −6000 kPa.

a. The average normal effective stress
b. The average normal stress at the contacts
c. The average normal total stress

1 mm 1 mm 1 mm

1 N 1.5 N 0.5 N

u 5 –6000 kPa

air air

Side view

3 mm

1 mm

Plan view

water

Figure 10.11s Sphere-shaped soil particles.

10.13 A soil has a degree of saturation of 92%. The air is occluded and the bubbles are 1 mm in diameter. Knowing that the
water tension can reach 73 mN/m, what is the maximum difference in pressure that can exist between the water stress and
the air stress?

10.14 A soil has a degree of saturation of 35%, an air entry value of −150 kPa, and a water tension stress of −1500 kPa at a
depth of 2 m. Estimate the vertical effective stress at rest at a depth of 2 m below the ground surface, assuming that the
unit weight of the soil is 19 kN/m3.

10.15 Draw the three profiles (σov, uo, σ
′
ov) for the layered system shown in Figure 10.12s.

2 m

4 m
Sand

γd = 20 kN/m3

Clay (saturated)

γd = 18 kN/m3
Capillary zone

Figure 10.12s Soil profile

10.16 Draw the effective stress profiles (σ ′
ov) for the layered system shown in Figure 10.14s.
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10.17 Draw the three profiles (σov, uw, σ ′
ov) at the center of the river for the layered system shown in Figure 10.16s.

River

9 m

4 m

7 mSand

Sand

Clay

Clay

Figure 10.16s River profile.

10.18 An insect has 4 legs and is able to walk on water. The depression created under each foot is a sphere, as shown in
Figure 10.18s. What is the maximum possible weight of the insect?

W/4

358

3 mm

FT FT

FTcosu

u u
558

358

W/4

FTcosu

Contractive skin

Figure 10.18s Free-body diagram of insect.

10.19 A soil has a water content of 42% and an air entry value of −8 kPa. If the slope of the soil water retention curve is 0.2
per log cycle of water tension in kPa, calculate the water tension for a water content of 10%.

10.20 A tree’s root system occupies a volume equal to 1000 m3. How much water is available to that tree if it is rooted in the
three soils described by the retention curves of Figure 10.31?

Problems and Solutions

Problem 10.1

A wedge has applied stress vectors on two faces as shown in Figure 10.1sa and Figure 10.1sb. Calculate the stress on the
third face in both cases. Hint: You can compose forces, but you cannot compose stresses unless they act on the same area.

Solution 10.1

s1 5 10 kPa

A1 5 1 m2

308

A2

A3

s3 5 ?
t3 5 ?

s2 5 10 kPa 

(a)

s1 5 10 kPa

308

A3

A2

t3 5 ?

A1 5 1 m2

t2 5 10 kPa

s3 5 ?

(b)

Figure 10.1s Stress vectors on wedge faces.

Part a:
F1 = σ1.A1 = 10 (kN)

A2 = A1

tan θ
= 1

tan 30◦ = 1.732 (m2)

F2 = σ2.A2 = 10 ∗ 1.732 = 17.32 (kN)
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A3 = A1

sin θ
= 1

sin 30◦ = 2 (m2)

3∑
i=1

Fxi = 0 → Fx3(shear). cos 30 + Fx3(normal). sin 30 − 10 = 0 → (I )

3∑
i=1

Fyi = 0 → Fy3(shear). sin 30 − Fy3(normal). cos 30 + 17.32 = 0 → (II)

(I )&(II) →
{

FS3 = 0 (kN)

FN3 = 20 (kN)
→

{
τ3 = 0 (kPa)

σ3 = 10 (kPa)

Part b:
F1 = σ1.A1 = 10 (kN)

A2 = A1

sin θ
= 1

sin 30◦ = 2 m2

A3 = A1

tan θ
= 1

tan 30◦ = 1.732 (m2)

3∑
i=1

Fxi = 0 → −F1 + t2A2 + τ3A3 = 0 → τ3 = −5.77 kPa

3∑
i=1

Fy = 0 → σ3 = 0

Problem 10.2

In a triaxial test, the confining stress (minor principal stress) σ3 is 50 kPa, and the vertical stress (major principal stress) σ1 is
150 kPa.

a. Form the total stress tensor shown in Eq. 10.3. Decompose the tensor into the deviatoric and spherical tensor forms
shown in Eq. 10.4.

b. The soil is saturated, and under the given stresses, the water stress is 20 kPa. Form the stress tensor in terms of effective
stress.

c. The soil is unsaturated, and under the given stresses, the air stress is 30 kPa and the water tension is −1000 kPa. Form
the two tensors describing the state of stress in the sample in terms of independent stress state variables.

Solution 10.2

a.

� =
⎡
⎣σxx τxy τxz

τyx σyy τyz
τzx τzy σzz

⎤
⎦ =

⎡
⎣50 0 0

0 50 0
0 0 150

⎤
⎦ (kPa)

σM = (σxx + σyy + σzz)

3
= (50 + 50 + 150)

3
= 83.33 (kPa)

� =
⎡
⎣σxx τxy τxz

τyx σyy τyz
τzx τzy σzz

⎤
⎦ =

⎡
⎣σM 0 0

0 σM 0
0 0 σM

⎤
⎦ +

⎡
⎣σxx − σM τxy τxz

τyx σyy − σM τyz
τzx τzy σzz − σM

⎤
⎦

� =
⎡
⎣83.33 0 0

0 83.33 0
0 0 83.33

⎤
⎦ +

⎡
⎣50 − 83.33 0 0

0 50 − 83.33 0
0 0 150 − 83.33

⎤
⎦ (kPa)

� =
⎡
⎣83.33 0 0

0 83.33 0
0 0 83.33

⎤
⎦ +

⎡
⎣−33.33 0 0

0 −33.33 0
0 0 66.67

⎤
⎦ (kPa)
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b.
σ ′ = σ − u

� =
⎡
⎣σ ′

xx τ ′
xy τ ′

xz
τ ′

yx σ ′
yy τ ′

yz
τ ′

zx τ ′
zy σ ′

zz

⎤
⎦ =

⎡
⎣50 − 20 0 0

0 50 − 20 0
0 0 150 − 20

⎤
⎦ =

⎡
⎣30 0 0

0 30 0
0 0 130

⎤
⎦ (kPa)

c.
σ ′ = (σ − ua) + α(ua − uw)

�1 =
⎡
⎣σxx − ua τxy τxz

τyx σyy − ua τyz
τzx τzy σzz − ua

⎤
⎦ =

⎡
⎣50 − 30 0 0

0 50 − 30 0
0 0 150 − 30

⎤
⎦ (kPa)

�1 =
⎡
⎣20 0 0

0 20 0
0 0 120

⎤
⎦ (kPa)

�2 =
⎡
⎣ua − uw 0 0

0 ua − uw 0
0 0 ua − uw

⎤
⎦ =

⎡
⎣30 − (−1000) 0 0

0 30 − (−1000) 0
0 0 30 − (−1000)

⎤
⎦ (kPa)

�2 =
⎡
⎣1030 0 0

0 1030 0
0 0 1030

⎤
⎦ (kPa)

Problem 10.3

A simple shear test is performed in a plane strain condition. The vertical normal stress on the plane of failure is 80 kPa, the
horizontal normal stress is 40 kPa, and the shear stress is 30 kPa on the horizontal plane. The Poisson’s ratio for the soil
is 0.35. Form the total stress tensor (Eq. 10.3). Decompose this tensor into the deviatoric and spherical tensor forms shown
in Eq. 10.4.

Solution 10.3

tzx 5 30 kPa

szz 5 80 kPa

tzx 5 30 kPa

sxx 5 40 kPa

x

y

z

Figure 10.2s Stresses during the simple shear test.

Eq. 10.4:

∑
=

⎛
⎝σxx τxy τxz

τyx σyy τyz
τzx τzy σzz

⎞
⎠ = S + D =

⎛
⎝σm 0 0

0 σm 0
0 0 σm

⎞
⎠ +

⎛
⎝σxx − σm τxy τxz

τyx σyy − σm τyz
τzx τzy σzz − σm

⎞
⎠ kPa

where σm = 1
3 (σxx + σyy + σzz).
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From the problem statement: σxx = 40 kPa, σzz = 80 kPa, τxz = τzx = 30 kPa, and τxy = τyz = 0 due to the plane strain
condition. The value of σyy is found using the plain strain condition:

εyy = 0 = 1

E
(σyy − v(σxx + σzz))

so that
σyy = ν(σxx + σzz) = 0.35(40 + 80) = 42 kPa

Therefore,
σm = 1

3
(40 + 42 + 80) = 54 kPa.

The deviatoric and spherical tensor forms are:

∑
=

⎛
⎝σxx τxy τxz

τyx σyy τyz
τzx τzy σzz

⎞
⎠ = S + D =

⎛
⎝54 0 0

0 54 0
0 0 54

⎞
⎠ +

⎛
⎝−14 0 30

0 −12 0
30 0 26

⎞
⎠ kPa

Problem 10.4

A sample of cohesionless silt is tested in a direct shear test. At failure, the vertical normal stress is 100 kPa and the shear
stress on the horizontal plane where failure occurs is equal to 40 kPa. The water stress is 20 kPa.

a. Calculate the effective principal stresses by using the equilibrium equations approach in two dimensions.
b. Calculate the effective principal stresses by using the Mohr circle approach in two dimensions.

Solution 10.4
a. The effective principal stresses are related to the shear and normal stress on the failure plane through the equilibrium

equations (Eq. 10.10 and Eq. 10.11):

σ ′ = σ ′
1 + σ ′

3

2
+ σ ′

1 − σ ′
3

2
cos 2α

τ = −σ ′
1 − σ ′

3

2
sin 2α

Because the sample is at failure and the silt is cohesionless, the shear strength equation can be written as:

τ = σ ′ tan ϕ′

This also means that:
sin ϕ′ = σ ′

1 − σ ′
3

σ ′
1 + σ ′

3

The last four equations, together with the given values of σ ′ = 80 kPa and τ = 40 τ = 40 kPa, give the values of the
four unknowns: ϕ′, σ ′

1, σ
′
3, and α. The solution is ϕ′ = 26.6o, σ ′

1 = 144.4 kPa, σ ′
3 = 55.4 kPa, and α = 59o.

b. The effective principal stresses can be found using the Mohr circle as shown in Figure 10.3s.
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Figure 10.3s Mohr circle for direct shear test.
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Problem 10.5

For problem 10.4, use the Pole method to locate the planes where the principal stresses act.

Solution 10.5

First we draw the failure stress point on the shear stress vs. effective normal stress set of axes (τ = 40 kPa, σ = 80 kPa).
This point is on the failure envelope, and because the soil has no cohesion intercept, the failure envelope can be drawn
through the origin and the failure point. The Mohr circle is found tangent to the failure envelope at the failure stress point.
According to the Pole method, the line parallel to the plane on which the stresses act (horizontal plane) intersects the Mohr
circle at two points: the stress point and the Pole. This allows us to find the Pole (Figure 10.4s). Knowing the Pole, we draw
the lines that join the Pole to the two principal stress points σ ′

1 and σ ′
3. These lines define the directions of the planes on

which the principal stresses are acting (Figure 10.5s).
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Figure 10.4s Pole method.

Fu

Fu

s9 5 80 kPa

59° 31°

t9 5 80 kPa

s39 5 55 kPa
s19 5 144 kPa

Figure 10.5s Principal planes in direct shear test.

Problem 10.6

For the sample in Figure 10.6s,

a. Find the stresses on the plane shown.
b. On what plane does the maximum shear stress exist?

σ1 = 40 kPa

σ3 = 20 kPa σ3 = 20 kPa

στ 

30°

Figure 10.6s Stress state.
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Solution 10.6

a. We can solve this problem with the equilibrium equations or with the Mohr circle. Recall Eqs 10.10 and 10.11 from the
text:

σ = σ1 + σ3

2
+ σ1 − σ3

2
cos 2α

τ = −σ1 − σ3

2
sin 2α

By using these equations, we obtain:

σ = 40 + 20

2
+ 40 − 20

2
cos(2 × 30◦

) = 35 kPa

τ = −40 − 20

2
sin(2 × 30◦

) = −8.67 kPa

We then confirm the solutions by use of the Mohr circle (Figure 10.7s).
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Figure 10.7s Mohr circle.

b. To find the plane where the maximum shear stress acts, we use the Pole method. We first find the Pole by drawing a line
parallel to the plane where σ1 acts (horizontal). That line intersects the Mohr circle at two points: the σ1 stress point and
the Pole. Then we join the Pole to the largest shear stress point of the Mohr circle. That line is a 45-degree line and
gives the plane on which the highest shear stress acts (Figure 10.8s).
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Figure 10.8s Pole method.
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Problem 10.7

What happens to the Pole method when the diagram of a stress element in space is rotated by an angle θ? Does the Mohr
circle change? Do the stresses on any plane change? Does the Pole location change?

Solution 10.7

When the diagram of the stress element in space is rotated by an angle θ, the Mohr circle does not change because the
principal stresses do not change; accordingly, the stresses on any plane do not change either. However, the location of the
Pole on the Mohr circle rotates with the diagram to maintain the rule of parallelism.

Problem 10.8

In a simple shear test, the horizontal displacement at the top of the sample is 1 mm and the vertical displacement is a reduction
in height of 0.5 mm. The original height of the sample is 25 mm.

a. Calculate the shear strain and the vertical normal strain.
b. Is the sample dilating or contracting?

Solution 10.8

a. The shear strain and the vertical normal strain are (Figure 10.9s):

εshear = tan−1 1

25
= 0.04 or 4% shear strain

εnormal = 0.5

25
= 0.02 or 2% compression normal strain

b. The sample is contracting.

0.5 mm
1 mm

g25 mm

Figure 10.9s Normal and shear strain.

Problem 10.9

In a triaxial test, the sample has an initial height of 150 mm and an initial diameter of 75 mm. During the loading in the
vertical direction, the vertical displacement is 3 mm and the increase in diameter is 2 mm.

a. Calculate the normal strains εzz and εrr.

b. Form the strain tensor.
c. Calculate the shear strain on a 45-degree plane.

Solution 10.9

a. The normal strains εzz and εrr are:

εzz = 3

150
= 0.02, εrr = 2

75
= −0.027

b. The strain tensor is: [
ε

rr
1
2γrz

1
2γzr εzz

]
=

[
−0.027 0

0 0.02

]

c. The shear strain on a 45-degree plane is:

γ45 = (εzz − εrr) sin 2α = (0.02 − (−0.027)) ∗ sin(90) = 0.047
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Problem 10.10

Consider the sphere-shaped soil particles shown in Figure 10.10s. The degree of saturation S is 1, the porosity n is 0.4, and
the ratio between the sum of the contact areas and the total area (Ac/At) is 0.01. Calculate the following quantities and show
the relationship between the total stress and the effective stress if the water stress is +40 kPa.

a. The average effective normal stress
b. The average normal stress at the contacts
c. The average normal total stress

1 mm 1 mm 1 mm

0.1 N 0.15 N 0.05 N

u 5 40 kPa

water water

Side view

3 mm

1 mm

Plan view

Figure 10.10s Sphere-shaped soil particles.

Solution 10.10
A = 3 × 1 × 10−6 = 3 × 10−6 m2

The average effective normal stress is:

σ ′
aver = (0.1 + 0.15 + 0.05) × 10−3

3 × 10−6
= 100 kPa

The average normal stress at the contacts is:

σc−aver = (0.1 + 0.15 + 0.05) × 10−3

3 × 10−6 × 0.01
= 10000 kPa

The average normal total stress is:

σaver = (0.1 + 0.15 + 0.05) × 10−3 + 40 × (1 − 0.01) × 3 × 10−6

3 × 10−6
= 139.6 kPa

By definition, the relation between the total stress and the effective stress is:

σ = σ ′ + u = 100 + 40 = 140 ≈ 139.6 kPa

Problem 10.11

The surface tension of water is T = 73 mN/m, the diameter of a glass tube plunged into water is 0.002 mm, and the contact
angle between the wall of the clean glass and the water is α = 10 degrees. Find the height to which the water will rise in the
small tube.

Solution 10.11
d = 0.002 mm

T = 73 mN/m

α = 10 deg

hc = 4T cos α

dγw
→ hc = 4 × 73 × 10−6 × cos(10)

0.002 × 10−3 × 10
= 14.37 m
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Problem 10.12

Consider the sphere-shaped soil particles shown in Figure 10.11s. The porosity n is 0.4, the ratio between the sum of the
contact areas and the total area (Ac/At) is 0.01, and the ratio between the sum of the areas of water and the total area (Aw/At)

is 0.1. Calculate the following quantities and show the relationship between the total stress and the effective stress if the
water stress is −6000 kPa.

a. The average normal effective stress
b. The average normal stress at the contacts
c. The average normal total stress

1 mm 1 mm 1 mm

1 N 1.5 N 0.5 N

u 5 –6000 kPa

air air

Side view

3 mm

1 mm

Plan view

water

Figure 10.11s Sphere-shaped soil particles.

Solution 10.12
A = 3 × 1 × 10−6 = 3 × 10−6m2

a. The average normal effective stress is:

σ ′
aver = (1 + 1.5 + 0.5) × 10−3

3 × 10−6
= 1000 kPa

b. The average normal stress at the contacts is:

σc−aver = (1 + 1.5 + 0.5) × 10−3

3 × 10−6 × 0.01
= 100000 kPa

c. The average normal total stress is:

σaver = (1 + 1.5 + 0.5) × 10−3 − 6000 × 0.1 × 3 × 10−6

3 × 10−6
= 400 kPa

The relation between the total stress and the effective stress is:

σ ′ = σ − αu = 400 − 0.1 × (−6000) = 1000 kPa

Problem 10.13

A soil has a degree of saturation of 92%. The air is occluded and the bubbles are 1 mm in diameter. Knowing that the water
tension can reach 73 mN/m, what is the maximum difference in pressure that can exist between the water stress and the air
stress?

Solution 10.13

It seems reasonable that the air is occluded, as the degree of saturation of the soil is 92%, which is larger than 85%. Based
on the equilibrium of the free-body diagram of half the bubble, and knowing that the water tension is 73 mN/m, we have
(Eq. 10.59):

ua − uw = 4T

D
= 4 × 73 × 10−6 kN/m

1 × 10−3 m
= 0.29 kPa
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Problem 10.14

A soil has a degree of saturation of 35%, an air entry value of −150 kPa, and a water tension stress of −1500 kPa at a depth
of 2 m. Estimate the vertical effective stress at rest at a depth of 2 m below the ground surface, assuming that the unit weight
of the soil is 19 kN/m3.

Solution 10.14

The soil has a degree of saturation of 35%, which means the soil is unsaturated and the relationship between the effective
stress and total stress is:

σ ′ = σ − α uw

Here, α can be obtained based on Khalili and Khabbaz (1998):

α =
√

uwae

uw
=

√ −150

−1500
= 0.316

Therefore, at the given depth of 2 m below the ground surface, the vertical effective stress at rest is:

σ ′ = σ − α uw = γ Z − α uw = 19 × 2 − 0.316 × (−1500) = 512 kPa

Problem 10.15

Draw the three profiles (σov, uo, σ
′
ov) for the layered system shown in Figure 10.12s.

2 m

4 m
Sand

γd = 20 kN/m3

Clay (saturated)

γd = 18 kN/m3
Capillary zone

Figure 10.12s Soil profile.

Solution 10.15

2 m

4 m

2 3 18 5 36 kN/m2

36 1 4 3 20 5 116 kN/m2

s0v

22 3 9.81 5 219.6 kN/m2

4 3 9.81 5 39.2 kN/m2

(+)

(2)

Capillary zone

u0 s90v

19.6 kN/m2

36 kN/m2

76.8 kN/m2

Figure 10.13s Stress profiles.
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Problem 10.16

Draw the effective stress profiles (σ ′
ov) for the layered system shown in Figure 10.14s.
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Top of 
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10

gw 5 10

kN/m3

Figure 10.14s Soil and stress profile.

Solution 10.16

The effective vertical stress σ ′
ov profile is shown in Figure 10.15s.
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Figure 10.15s Stress profiles.

Problem 10.17

Draw the three profiles (σov, uw, σ ′
ov) at the center of the river for the layered system shown in Figure 10.16s.

River

9 m

4 m

7 mSand

Sand

Clay

Clay

Figure 10.16s River profile.
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Solution 10.17

The stress profile for σov, uw, σ ′
ov is shown in Figure 10.17s:

Water

Clay

Sand

g  5 20 kN/m3

g  5 18 kN/m3

g  5 10 kN/m3

s0v (kPa)0

40

220 130 200

40 0

0 0uw (kPa) s90v (kPa)

9020

0 m

4 m

13 m

Figure 10.17s Stress profile in the river.

Problem 10.18

An insect has 4 legs and is able to walk on water. The depression created under each foot is a sphere, as shown in
Figure 10.18s. What is the maximum possible weight of the insect?

Solution 10.18

The contact radius of the insect foot with the contractile skin is:

r = 3 mm × sin 35◦ = 1.72 mm

For a water temperature of 20◦C, the surface tension (σT) is 73 mN/m.

W/4

358

3 mm

FT FT

FTcosu

u u
558

358

W/4

FTcosu

Contractive skin

Figure 10.18s Free-body diagram of insect.

∑
Fv = 0

FT × 2πr cos θ − W/4 = 0

W = 8πrFT cos θ

W = 8π(0.00172m)(73 mN/m) cos 55◦ = 1.79 mN
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Problem 10.19

A soil has a water content of 42% and an air entry value of −8 kPa. If the slope of the soil water retention curve is 0.2 per
log cycle of water tension in kPa, calculate the water tension for a water content of 10%.

Solution 10.19

Given values:

Cw = −0.2

uwae = −8 kPa

w1 = 42%

w2 = 10%

�w = 0.42 − 0.10 = −0.2 log

(−8

uw

)

log

(−8

uw

)
= 0.32

−0.2
= −1.6

10−1.6 = −8

uw

uw = −8

10−1.6

uw = −318.5 kPa

Problem 10.20

A tree’s root system occupies a volume equal to 1000 m3. How much water is available to that tree if it is rooted in the three
soils described by the retention curves of Figure 10.31?

Solution 10.20

From the portion in the graph referring to “Water available to plants”:
Change in volumetric water content (�):

1. Clay: �� = 0.50 − 0.34 = 0.16
2. Silt: �� = 0.40 − 0.02 = 0.38
3. Sand: �� = 0.15 − 0 = 0.15

�� × Volume of soil in root system = Water available to the tree

1. Clay: 0.16 × 1000 m3 = 160 m3

2. Silt: 0.38 × 1000 m3 = 380 m3

3. Sand: 0.15 × 1000 m3 = 150 m3


