
CHAPTER 12

Soil Constitutive Models

Asoil model is a mathematical representation of the be-
havior of the soil under load. The model typically relates

the stresses applied to the strains experienced by the soil as
a result. The simplest of these relationships is the theory of
elasticity.

12.1 ELASTICITY

12.1.1 Elastic Model

The theory of elasticity states that stresses and strains are
linearly related (Figure 12.1).

Because there are 6 stresses and 6 strains, the matrix
relating the stresses to the strains is made of 36 constants.
Satisfying isotropy and symmetry reduces those 36 constants
to only 2: the modulus of elasticity E (also called Young’s
modulus), and the Poisson’s ratio ν. The equations are:

εxx = 1

E
(σxx − ν(σyy + σzz)) (12.1)

εyy = 1

E
(σyy − ν(σzz + σxx)) (12.2)

εzz = 1

E
(σzz − ν(σxx + σyy)) (12.3)

εxy = 1 + ν

E
τxy = γxy

2
(12.4)

εyz = 1 + ν

E
τyz = γyz

2
(12.5)

εzx = 1 + ν

E
τzx = γzx

2
(12.6)

s

«
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to E and v

Figure 12.1 Linear elasticity stress-strain curve.

where σii is the normal stress on the plane perpendicular
to i in the direction of i, τij is the shear stress on the plane
perpendicular to i in the direction of j, εii is the normal strain
associated with the normal stress σii, εii is the shear strain
associated with the shear stress τij, γij is the engineering
shear strain associated with the shear stress τij, E is Young’s
modulus or modulus of elasticity, and ν is Poisson’s ratio.
Young’s modulus is named after Thomas Young, a British
physician and physicist who made his contribution around
the turn of the 1800s. Poisson’s ratio is named after Simeon
Poisson, a French mathematician and physicist who lived
around the turn of the 1800s and had Lagrange and Laplace
as his doctoral advisors at the École Polytechnique in Paris.
In matrix form, the elasticity equations are:⎡
⎢⎢⎢⎢⎢⎢⎣

εxx
εyy
εzz
εxy
εyz
εzx

⎤
⎥⎥⎥⎥⎥⎥⎦

= 1

E

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 1 + ν 0 0
0 0 0 0 1 + ν 0
0 0 0 0 0 1 + ν

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

σxx
σyy
σzz
τxy
τyz
τzx

⎤
⎥⎥⎥⎥⎥⎥⎦

(12.7)
or⎡
⎢⎢⎢⎢⎢⎢⎣

σxx
σyy
σzz
σxy
σyz
σzx

⎤
⎥⎥⎥⎥⎥⎥⎦

= E

(1 + ν)(1−2ν)

×

⎡
⎢⎢⎢⎢⎢⎢⎣

1−ν ν ν 0 0 0
ν 1−ν ν 0 0 0
ν ν 1−ν 0 0 0
0 0 0 1−2ν 0 0
0 0 0 0 1−2ν 0
0 0 0 0 0 1−2ν

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

εxx
εyy
εzz
εxy
εyz
εzx

⎤
⎥⎥⎥⎥⎥⎥⎦

(12.8)

Note that the normal strain in one direction is affected by
the normal stress in that direction and also by the normal
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346 12 SOIL CONSTITUTIVE MODELS

stresses in the other two directions–yet this is not true for the
shear strains. Indeed, the shear strain is affected by the shear
stress in that direction, but not by the shear stresses in the
other two directions. Note also that although εxy is the shear
strain, the engineering shear strain γxy (=2 εxy) is often used
in practice.

Other elasticity moduli have been defined from E and ν.
They are the shear modulus G, the bulk modulus K, and
the constrained modulus M. The shear modulus G can be
obtained by performing a simple shear test; it is defined as the
ratio of the shear stress τ over the corresponding engineering
shear strain γ . The bulk modulus K is obtained when a soil
sample is subjected to an all-around (hydrostatic) pressure σ ;
it is defined as the ratio of the pressure σ over the volumetric
strain generated εv = �V/V. The constrained modulus M is
obtained when a soil sample is subjected to a vertical normal
stress in a cylinder that prevents any lateral movement; it
is defined as the ratio of the normal stress applied over the
vertical strain obtained. The relationships are as follows:

Shear modulus G = τxy

γxy
= τxy

2εxy
= E

2(1 + ν)
(12.9)

Bulk modulus K = σ

�V/V
=

1

3
(σxx + σyy + σzz)

εxx + εyy + εzz

= E

3(1 − 2ν)
(12.10)

Constrained modulus M = σxx

εxx
= E(1 − ν)

(1 + ν)(1 − 2ν)

(12.11)

The term plane strain means that the normal strain in one
direction is zero throughout the soil mass. The term plane
stress means that the normal stress in one direction is zero
throughout the soil mass. Such conditions lead to an additional
equation, as setting the normal strain in one direction equal
to zero (for example) gives a relationship between the normal
stresses in the three directions.

One of the advantages of the elastic model is the associ-
ated superposition principle, which is possible because the
equations are linear. Table 12.1 indicates some of the possi-
ble superposition operations. The superposition principle is
not applicable to nonlinear theories, such as the theory of
plasticity.

Table 12.1 Superposition Principle Operations

Force Stress Strain Displacement

F1 σ1 ε u1

λF1 λσ1 λε1 λu1

F2 σ2 ε2 u2

F1 + F2 σ1 + σ2 ε1 + ε2 u1 + u2

szz

srr

srr

suu

r

r0

r

r dr

u u 1 du

w 5 0

v 5 0

Stresses Displacements

srr0

Figure 12.2 Element of soil around an expanding cylindrical
cavity.

12.1.2 Example of Use of Elastic Model

The problem is to solve the expansion of an infinitely long
cylinder subjected to a pressure p in an elastic soil space
(Figure 12.2). The geometry of the problem indicates that
this is an axisymmetric problem and a plane strain problem
in the vertical direction. The initial state of stress is σov in the
vertical direction and σoh in the radial direction at any point
in the soil space. After applying the pressure p at the cavity
surface, the stresses in the mass become:

σrr = σoh + �σrr (12.12)

σθθ = σoh + �σθθ (12.13)

σzz = σov + �σzz (12.14)

where σrr and σ θθ are the radial stress and the hoop stress
respectively at a distance r from the axis of the cylinder, and
�σrr and �σθθ are the increments of the radial and hoop
stress above the at-rest stress value.

The radial displacement u is the only displacement type
in this problem, as there are no displacements in the hoop
direction or in the vertical direction. The radial strain is εrr,
the hoop strain is εθθ , and the vertical strain is εzz, which is
zero because of the plane strain condition in the z direction.
The relationships between the displacement and the strains
for small-strain theory are:

εrr = −du

dr
(12.15)

εθθ = −u

r
(12.16)

εzz = 0 (12.17)

The minus sign is used in Eqs. 12.15 and 12.16 because
compression has been chosen to be positive. In fact, u is
positive but decreases with radial distance; hence, if the
minus sign were not there, du/dr would be negative and
associated with compression considering the loading for this
problem. The equations of equilibrium reduce to:

dσrr

dr
+ �σrr − �σθθ

r
= 0 (12.18)
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The constitutive equations are:

εrr = 1

E
(�σrr − ν(�σθθ + �σzz)) (12.19)

εθθ = 1

E
(�σθθ − ν(�σzz + �σrr)) (12.20)

εzz = 1

E
(�σzz − ν(�σrr + �σθθ )) (12.21)

By combining equations 12.12 to 12.21, the governing
differential equation is obtained as:

r2 d2u

dr2
+ r

du

dr
− u = 0 (12.22)

The boundary conditions are:

u = 0 at r = infinity

u = uo at r = ro

The solution that satisfies Eq. 12.22 and the boundary
conditions is:

u = uoro

r
(12.23)

εrr = uoro

r2
εθθ = −uoro

r2
εzz = 0 (12.24)

σrr = σoh + 2G
uoro

r2
σθθ = σoh − 2G

uoro

r2
σzz = σov

(12.25)
At the wall of the cylindrical cavity, the equations become:

uo = uo (12.26)

εrro = uo

ro

εθθo = −uo

ro

εzzo = 0 (12.27)

σrro = σoh + 2G
uo

ro

σθθo = σoh − 2G
uo

ro

σzzo = σov

(12.28)
In a pressuremeter test, the relative increase in radius

(uo/ro = εθθo) of the cavity is measured along with the
pressure exerted on the cavity wall σ rro. Therefore, the
pressuremeter curve is a direct plot of a stress-strain curve of
the soil (Figure 12.3).

In the case of large-strain theory, the large-strain definitions
require use of the current radius ρ, the initial radius r, and the
displacement u:

ρ = r + u (12.29)

Then the strains can be defined as:

Radial strain αr = 1

2

(
dρ2 − dr2

dρ2

)
(12.30)

Hoop strain αθ = 1

2

(
ρ2 − r2

ρ2

)
(12.31)

1

«uy «uo, auo

soh

sry srry 5 soh 1 su

pL 5 soh 1 su (1 1 Ln      ) 

srro 5 soh 1 2G«uuo

sro

2G

G
su

srro 5 soh 1 su (1 1 Ln     auo) 
G
su

Figure 12.3 Expansion of a cylindrical cavity.

and the solution becomes:

σrr= σoh + 2Gαθ= σoh + G

(
ρ2 − r2

ρ2

)
= σoh + G

(
�V

V

)
(12.32)

where �V is the increase in volume of the cylinder having
an initial radius r and V is the current volume of the cylinder
having a current radius ρ and an initial radius r.

12.2 LINEAR VISCOELASTICITY

When load is applied to a linear elastic material, the
stresses, strains, and displacements occur instantaneously
and remain constant with time. Viscoelasticity introduces the
influence of time on the deformation process (Figure 12.4).
Linear viscoelasticity further simplifies the phenomenon by
allowing superposition of the elastic deformation and the
time-dependent deformation. A good way to understand
viscoelasticity is to start by studying simple models.

12.2.1 Simple Models: Maxwell
and Kelvin-Voigt Models

Simple, one-dimensional models help to understand the
potential use of linear viscoelasticity (Figure 12.5). These
models make use of mechanical elements such as a spring
and a dashpot (also called damper). The spring behavior is
governed by σ = k ε where σ is the axial stress applied, k
is the spring stiffness, and ε is the axial strain. The dashpot
behavior is governed by σ = η (dε/dt) where η is the viscosity
and dε/dt the strain rate. The dashpot behavior is very similar
to the behavior of a shock absorber in a car suspension. If
you load it fast, it generates a stiff response; if you load it

« increases with time
under s 5 constant

s decreases with time
under « 5 constant

RelaxationCreep
« «

s s

Figure 12.4 Creep and relaxation of viscous models.
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Figure 12.5 One-dimensional viscoelastic models: (a) Spring, σ =
k ε. (b) Dashpot, σ = η (dε/dt). (c) Maxwell, σ = σ1 = σ2, ε = ε1
+ ε2. (d) Kelvin-Voigt, σ = σ1 + σ2, ε = ε1 = ε2.

slowly, it offers little resistance. These mechanical elements
can be combined to represent a more complex behavior. The
Maxwell model is made of a spring and a dashpot in series,
whereas the Kelvin-Voigt model is made of a spring and
a dashpot in parallel. The Maxwell model is named after
James Maxwell, a British physicist and mathematician of the
mid-1800s. The Kelvin-Voigt model is named after William
Thompson, First Baron Kelvin, a British physicist and en-
gineer of the late 1800s; and Woldemar Voigt, a German
physicist of the late 1800s.

Two basic phenomena can be investigated with these mod-
els: creep and relaxation (Figure 12.4). Creep refers to the
increase in strain as a function of time when a constant stress
is applied. For example, creep could occur in the soil under a
high embankment. Relaxation refers to the decrease in stress
as a function of time when a constant strain is applied. For
example, relaxation of the horizontal total stress could occur
against the side of a pile after driving. To find out how the
Maxwell model creeps and relaxes, we write (Figure 12.5):

σ = σ1 = σ2 (12.33)

ε = ε1 + ε2 (12.34)

Therefore, the governing equation for the Maxwell model
is:

dε

dt
= 1

k

dσ

dt
+ σ

η
(12.35)

Creep occurs under a constant stress σ o. If that stress
is applied instantaneously, only the spring deflects and the
initial value of the strain is εo = σ o/k. Therefore:∫ ε

σo/k

dε = σo

η

∫ t

0
dt and ε = σo

k
+ σo

η
t (12.36)

which shows that the Maxwell model creeps linearly. This
does not fit well with observed soil behavior. Relaxation
occurs under constant strain εo. If that strain is applied
instantaneously, only the spring deflects and the initial value
of the stress is σ o = k εo, Therefore:∫ σ

kεo

dσ

σ
= −k

η

∫ t

0
dt and σ = kεoe

− t
η/k (12.37)

Time, t

S
tr

es
s,

 s
S

tr
ai

n
, «

Creep Relaxation

k
«0 5  

s0

s0

Figure 12.6 Creep and relaxation of the Maxwell model.

Equation 12.37 shows a relaxation process that is closer to
what one would expect in actual soils. Figure 12.6 summarizes
the behavior of the Maxwell model.

To find out how the Kelvin-Voigt model creeps and relaxes,
we write (Figure 12.5):

σ = σ1 + σ2 (12.38)

ε = ε1 = ε2 (12.39)

Therefore, the governing equation for the Maxwell model
is:

σ = kε + η
dε

dt
(12.40)

Creep occurs under a constant stress σ o. If that stress is
applied instantaneously, the dashpot is infinitely stiff, all the
stress is carried by the dashpot, no strain occurs initially under
σ o, and εo = 0. After an infinite time, however, the dashpot
carries no load, the stress is entirely carried by the spring, and
εt = infinity = σ o/k. Therefore:

∫ ε

0

dε

ε − σo

k

= −k

η

∫ t

0
dt and ε = σo

k

(
1 − e

− t
η/k

)
(12.41)

which shows that the Kelvin-Voigt model creeps in a way
consistent with what can be expected for actual soils. Relax-
ation occurs under constant strain εo, therefore there is no
contribution from the dashpot and the stress is simply:

σ = kεo (12.42)

The Kelvin-Voigt model does not relax. Figure 12.7 sum-
marizes the behavior of the Kelvin-Voigt model.

12.2.2 General Linear Viscoelasticity

The simple models from section 12.2.1 indicate that stress
behavior over time is related to the strain through a func-
tion called the relaxation modulus function G(t). Similarly,
the strain behavior over time of a viscoelastic material is
related to the stress through a function called the creep
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Figure 12.7 Creep and relaxation of the Kelvin-Voigt model.

compliance function J(t). For example, Eq. 12.37 indicates
that the relaxation modulus function G(t) for the Maxwell
model is:

G(t) = σ(t)

εo

= ke
− t

η/k (12.43)

and that the creep compliance function J(t) for the Kelvin-
Voigt model (Eq. 12.41) is:

J (t) = ε(t)

σo

= 1

k

(
1 − e

− t
η/k

)
(12.44)

Ludwig Boltzmann, an Austrian physicist of the late 1800s,
generalized these observations by proposing a superposition
principle that can be explained as follows. At time t ′1 = 0,
a constant stress σ1 is applied and the strain induced is
(Figure 12.8):

ε1(t) = J (t)σ1 (12.45)

Then at a time t′2 an increment of stress (σ2 − σ1) is imposed
and the strain increase is:

ε2(t) = J (t − t ′2)(σ2 − σ1) (12.46)

Note here that the function J is the same as in equation
12.41 and independent of the stress level. This is the property
of linear viscoelasticity. Again, at a time t ′3, an increment of
stress (σ3 − σ2) is imposed and the strain increase is:

ε3(t) = J (t − t ′3)(σ3 − σ2) (12.47)

And so on, so that in the end the total strain is:

ε(t) =
n∑

i=1

εi(t) =
n∑

i=1

J (t − t ′i )(σi − σi−1) (12.48)

For a continuous stress function σ (t), Eq. 12.48 becomes:

ε(t) =
∫ t

0
J (t − t ′)

dσ(t ′)
dt′

dt′ (12.49)

This represents the viscous part of the strain, to which
should be added the elastic part. So, in the end, the general
form of the model is:

εij(t) = εij(elastic) +
∫ t

0
J (t − t ′)

dσij(t
′)

dt′
dt′ (12.50)

Similarly, for the relaxation modulus the equation is:

σij(t) = σij(elastic) +
∫ t

0
G(t − t ′)

dεij(t
′)

dt′
dt′ (12.51)

12.3 PLASTICITY

One way to model a soil is to consider that it behaves elasti-
cally at first, then reaches a yield point, and then continues to
deform plastically until it reaches failure. Beyond the yield
point, the soil can strain harden, strain soften, or be perfectly
plastic (Figure 12.9).

If the material is perfectly plastic beyond the yield point,
the yield criterion and the failure criterion are the same.
If the material strain hardens, they are not the same; and if
the material strain softens, the yield criterion and the failure
criterion are the same but postyield behavior requires further
calculations. It is accepted that strain can be decomposed
into an elastic component and a plastic component. Further-
more, because plasticity is primarily a nonlinear theory, the
calculations involve strain increments dεij:

dεij = dεe
ij + dε

p

ij (12.52)

where dεe
ij is the elastic part of the strain increment, and dε

p
ij is

the plastic part of the strain increment. There are four elements
to any plasticity method (Potts and Zdravkovic 1999; Davies

Stress, s Strain, «

s1

t91 t92 t93
t1 t2 t3

s1

s3

Time, t Time, t

Figure 12.8 Boltzmann superposition principle.
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Strain hardening Perfectly plastic Strain softening

s s s

« « «

Figure 12.9 Plastic models.

and Selvadurai, 2002): coincidence of axes, yield function,
plastic potential function, and hardening or softening rule.
The coincidence of axes is a common assumption stating
that the axes of the accumulated principal stress vectors (σ1,
σ2, σ3) and the axes of the plastic principal strain increment
vectors (dε

p

1 , dε
p

2 , dε
p

3 ) coincide. This is an extension of what
is used in elasticity, but in plasticity it applies to the stress
and the corresponding strain increment and not to the stress
increment and the corresponding strain increment. The yield
function and associated yield criterion give the combination
of stresses that lead to yielding of the soil. The plastic potential
function gives the direction of the plastic strain increments
through a flow rule, and the hardening or softening rule gives
the magnitude of the plastic strain increments.

12.3.1 Some Yield Functions and Yield Criteria

The combination of stresses that create yielding of the soil
are given by the yield function, which is set equal to zero to
give the yield criterion. The yield function involves a state

parameter k:
Y (σij, k) = 0 (12.53)

The two most common yield criteria in soil mechanics
are the Tresca yield criterion and the Mohr-Coulomb yield
criterion. The Tresca yield criterion is named after Henri
Tresca, a French mechanical engineer, who proposed it in
1864. When applied to soil mechanics and the undrained
behavior of fine-grained soils, it states that yield will occur
when the difference between the major principal stress and
the minor principal stress reaches a value equal to two times
the undrained shear strength su (Figure 12.10):

σ1 − σ3 − 2su = 0 (12.54)

As can be seen in the Tresca criterion, su is the state
parameter. It corresponds to the Mohr circle plotted in the
shear stress vs. total stress set of axes reaching the undrained
shear strength failure envelope.

The Mohr-Coulomb yield criterion is named after Otto
Mohr, a German civil engineer of the late 1800s, and Charles
de Coulomb, a French civil engineer of the late 1700s. It states
that yield will occur when the Mohr circle reaches the line
corresponding to the shear strength equation (Figure 12.11):

τf − c′ − σ ′ tan ϕ′ = 0 (12.55)

As can be seen in the Mohr-Coulomb criterion, c′ and ϕ′
are the state parameters. This can be rewritten in terms of
major and minor principal stresses by using the rectangular

s3

s3

Su

Failure envelope

Tresca yield surface

t

s1

s2

s1

s1 5 s2 5 s3

s

Figure 12.10 Tresca yield criterion.
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Figure 12.11 Mohr-Coulomb yield criterion.
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triangle ABC in Figure 12.11.

sin ϕ′ =
σ ′

1 − σ ′
3

2
c′

tan ϕ′ + σ ′
1 + σ ′

3

2

(12.56)

or

σ ′
1 − σ ′

3 − 2c′ cos ϕ′ − (σ ′
1 + σ ′

3) sin ϕ′ = 0 (12.57)

The Mohr circle starts at a stress state that corresponds to
the soil equilibrium in situ. As the soil is loaded, it deforms
elastically at first until the circle reaches the yield criterion
envelope (shear strength equation). At that point, the circle
cannot grow past the envelope, but it can grow along the
envelope (strain hardening) or decrease in size along the
envelope (strain softening). Note that in sand (c′ = 0), the
Mohr-Coulomb yield criterion simplifies to:

σ ′
1

σ ′
3

− 1 + sin ϕ

1 − sin ϕ
= 0 (12.58)

Yet another yield criterion is the Von Mises criterion,
named after Richard Von Mises, an Austrian engineer in the
early 1900s: √

J2 − k = 0 (12.59)

where J2 is the second stress invariant of the deviatoric tensor
(Section 10.7) and k is a constant to be determined experi-
mentally. The Drucker-Prager criterion is a generalization of
the Von Mises criterion named after two American engineers
of the mid-1900s. It introduces the influence of the mean
stress on the strength of soils:√

J2 − A − BI1 = 0 (12.60)

where I1 is the first invariant of the stress tensor.
These four yield criteria are compared (Figure 12.12) on

the π plane, the plane perpendicular to the bisectrice of the
three-dimensional space σ1 − σ2 − σ3. This bisectrice has the
equation σ1 = σ2 = σ3.

Mohr-coulomb

Tresca

Drucker-prager

Von mises

s3

s2s1

Figure 12.12 Yield criteria compared on the π plane.

12.3.2 Example of Use of Yield Criteria

Let’s go back to the expansion of an infinite cylinder subjected
to an internal pressure p and find out at what pressure the soil
first yields. We will first use the Tresca criterion (undrained
fine-grained soil behavior). The radial stress at the cavity wall
σ rro increases with p, because it is equal to p, and represents
the major principal stress σ 1. The hoop stress at the cavity
wall σ θθo decreases as much as the radial stress increases
(Eq. 12.28), and represents the minor principal stress σ3. The
difference σ 1 − σ 3 increases as p increases, and when p
reaches a value where the Tresca criterion is first satisfied,
the soil yields.

σ1 − σ3 = 2su (12.61)

where su is the undrained shear strength of the soil. A plastic
zone is initiated around the cylindrical cavity and grows as
the pressure continues to increase (Figure 12.13).

Using Eqs. 12.12 and 12.13 plus the observation that the
increase in stress �σ in the radial direction is equal to the
decrease in stress �σ in the hoop direction, we write:

σoh + �σ − (σoh − �σ) = 2su or �σ = su (12.62)

Therefore, the yield pressure py will be:

py = σoh + su (12.63)

If we use the Mohr-Coulomb criterion for a soil with c′ =
0 (drained behavior of a coarse-grained soil, for example),
then we write that:

σ ′
1

σ ′
3

= 1 + sin ϕ

1 − sin ϕ
= Kp (12.64)

Using Eqs. 12.12 and 12.13 plus the observation that the
increase in stress in the radial direction is equal to the decrease

Plastic Elastics
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ry
2
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Figure 12.13 Elastic zone and plastic zone around an expanding
cylindrical cavity.
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in stress in the hoop direction, we write:

σ ′
oh + �σ ′

σ ′
oh − �σ ′ = 1 + sin ϕ

1 − sin ϕ
or �σ ′ = σ ′

oh sin ϕ (12.65)

Therefore, the yield pressure py will be:

py = σ ′
oh(1 + sin ϕ) (12.66)

Note that this solution is presented in terms of effective
stresses; thus, the water stress would have to be taken into
account to obtain the total stress.

12.3.3 Plastic Potential Function
and Flow Rule

Because the behavior in the plastic domain is nonlinear, the
relationship is written in terms of strain increments dεii. It is
accepted that the strain increment can be separated into an
elastic portion and a plastic portion (Figure 12.14):

dεij = dεe
ij + dε

p
ij (12.67)

Now we need a way to predict the direction and magnitude
of the plastic strain increments in the plastic region as we
stress the soil beyond the yield point (if that is possible).
As will be seen, the plastic potential gives the direction of
the plastic strain increment, while the flow rule gives its
magnitude. Von Mises proposed the existence of a plastic
potential P(σ ij, m) function of the stress state at one point and
material parameters m. This plastic potential is used to define
a flow rule such that:

dε
p
ij = λ

dP(σij,m)

dσij
(12.68)

where λ is a proportionality constant. If P(σ ij, m) is set equal
to zero, the equation defines a surface in the stress space
and dP

dσij
is a vector perpendicular to that surface. This is

called the normality rule, indicating that the increment of
plastic strain dε

p
ij is perpendicular to the plastic potential

surface. Figure 12.15 shows plastic potential contours in the
q − p′ plane where q is the deviator stress (q = σ 1 − σ 3 for
a triaxial test) and p′ is the mean normal effective stress
(p′ = 0.33(σ ′

1 + 2σ ′
3) for a triaxial test).
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A flow rule is said to be an associated flow rule if the plastic
potential is equal to the yield function (Figure 12.15a):

P(σij,m) = Y (σij, k) (12.69)

So, in the case of an associated flow rule, the plastic strain
increment is perpendicular to the yield surface, because:

dε
p
ij = λ

dY

dσij
(12.70)

For example, if we use the Tresca yield criterion, the plastic
potential would be:

P(σij,m) = Y (σij, k) = σ1 − σ3

2
− su (12.71)

the derivatives dY
dσij

would be:

dY

dσ1
= 1

2
,

dY

dσ2
= 0,

dY

dσ3
= −1

2
(12.72)

and the flow rule would be:⎡
⎢⎢⎢⎢⎣

dε
p

1

dε
p

2

dε
p

3

⎤
⎥⎥⎥⎥⎦ = dλ

⎡
⎣+0.5

0
−0.5

⎤
⎦ (12.73)

If the plastic potential P(σ ij, m) is different from the
yield function F(σ ij, k), then the flow rule is said to be
nonassociated (Figure 12.15b). Associated flow rules work
well for pressure-nonsensitive soils (undrained behavior of
fine-grained soils) but nonassociated flow rules work better
for pressure-sensitive soils (effective stress approach for
soils). Nonassociated flow rules require more complicated
calculations and increase the computing time.

12.3.4 Hardening or Softening Rule

Now we know the direction of the plastic strain increment
vector, because it has to be normal to the plastic potential
surface. We need to determine its magnitude, which is done
by using a hardening or softening rule. As mentioned before,
beyond the yield point the soil can strain harden, strain
soften, or be rigid plastic (Figure 12.9). The hardening or
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softening rule defines what happens to the yield function
beyond yield. If the hardening/softening is due to the plastic
strains, it is called strain hardening/softening; if it is due to the
plastic work done, it is called work hardening/softening. The
hardening/softening rule describes how the state parameters
k vary with plastic strain. This relationship can then be used
in Eq. 12.68 or 12.70 as appropriate. Figure 12.14 illustrates
how the hardening rule can be obtained for a simple axial
compression test.

12.3.5 Example of Application of Plasticity Method

Let’s go back to the expansion of the infinite cylinder sub-
jected to an internal pressure p and find out the relationship
between stress and strain in the plastic domain beyond the
yield pressure py. We will first take the case of the undrained
behavior of fine-grained soils and use the Tresca criterion.
Because the cavity expands beyond small-strain theories, we
need to use large-strain definitions (section 12.1.2) to still
be able to form a valid strain tensor. In the plastic zone
(Figure 12.13), the constitutive law has changed from elas-
ticity to plasticity, but the equilibrium equation is still valid:

dσrr

dρ
+ �σrr − �σθθ

ρ
= 0 (12.74)

The Tresca criterion gives:

σ1 − σ3 = σrr − σθθ = σoh + �σrr − (σoh + �σθθ )

= �σrr − �σθθ = 2su (12.75)

This leads to the solution:

dσrr = −2su

dρ

ρ
and σrr = −2suLnρ + A (12.76)

The constant A is defined by the boundary condition, which
states that at the boundary between the elastic region and the
plastic region the radial stress is equal to py, as given by
Eq. 12.63. Therefore, A is found as:

A = σoh + su(1 + Lnρ2
y) (12.77)

and the radial stress σrr in the plastic zone at a radial distance
ρ from the axis of the cylinder (Figure 12.13) is given by:

σrr = σoh + su

(
1 + Ln

ρ2
y

ρ2

)
(12.78)

This equation gives the value of the radial stress any-
where in the plastic zone. At the cavity wall, the pressure is
therefore:

σrro = σoh + su

(
1 + Ln

ρ2
y

ρ2
o

)
(12.79)

Now we want to evaluate the maximum pressure that can be
resisted by the soil at the cavity wall, called the limit pressure

pL. This limit pressure pL is reached when the entire soil
mass has reached the yield criterion—in other words, when
ρy becomes infinite. Therefore, we are looking for the limit:

Lim
ρy→∞

ρ2
y

ρ2
o

(12.80)

For this we need a flow rule. Because we are dealing with
the undrained behavior of a fine-grained soil, it makes sense
to assume that there will be no volume change in the soil mass
(a simple flow rule). Thus, the volume increase at radius ro has
to be the same as the volume increase at radius ry, so that the
soil mass in between the two radii does not change volume:

ρ2
o − ro

2 = ρ2
y − r2

y (12.81)

or

αθoρ
2
o = αθyρ

2
y and

αθo

αθy
= ρ2

y

ρ2
o

(12.82)

At the boundary between the elastic and plastic regions,
both the yield criterion and the elastic solution must be
satisfied. Using Eqs. 12.32 and 12.63:

Elastic side of the boundary σrry = σoh + G

(
ρ2

y − r2
y

ρ2
y

)

(12.83)

Plastic side of the boundary σrry = py = σoh + su

(12.84)

Then
ρ2

y − r2
y

ρ2
y

= su

G
= αθy (12.85)

and Eq. 12.79 becomes:

σrro = σoh + su

(
1 + Ln

G

su

αθo

)
(12.86)

This equation gives the curve linking the radial stress at
the cavity wall vs. the hoop strain at the cavity wall (the
pressuremeter curve) (Figure 12.3). The limit of αθo when
ρo goes to infinity (limit pressure) is 1 because ro

2 becomes
negligible compared to ρo

2. Then the limit pressure pL can be
given from Eq. 12.86 as:

pL = σoh + su

(
1 + Ln

G

su

)
(12.87)

12.4 COMMON MODELS

12.4.1 Duncan-Chang Hyperbolic Model

The Duncan-Chang model or DC model (Duncan and Chang
1970) is a nonlinear stress-dependent model where the
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Figure 12.16 Duncan-Chang model.

stress-strain curve is described by a hyperbola (Figure 12.16):

σ = ε

1

Eo

+ ε

Rf σult

(12.88)

where σ is typically taken as the deviator stress, ε is the axial
strain, Eo is the initial tangent modulus, which depends on
the stress level, σ ult is the asymptotic value of the deviator
stress, and Rf is a reduction factor such that RF times σ ult
is the soil strength. The initial tangent modulus Eo increases
when the mean confinement stress increases:

Eo = Eo@pa

(
σm

pa

)n

(12.89)

where Eo@pa
is the initial tangent modulus for the reference

pressure pa (often taken as the atmospheric pressure), σ m is
the mean principal stress (σ m = 0.33(σ1 + σ2 + σ3)), and n is a
soil-specific stress influence exponent. The nonlinearity of the
model also recognizes the decrease in modulus with increase
in strain. The volume change is characterized by a Poisson’s
ratio model dependent on the log of the confining stress. An
unload-reload modulus Eur is used to characterize the unload-
reload path. The DC model uses the Mohr-Coulomb criterion
as the failure criterion with a friction angle dependent on the
confining stress level but does not directly include dilatancy.
The soil parameters needed for the Duncan-Chang model are
easily obtained from triaxial tests. Although this model does
not have a plasticity framework, it is a very practical model.

12.4.2 Modified Cam Clay Model

Roscoe, Schofield, and Wroth (1958) at Cambridge Univer-
sity (UK) used the theory of plasticity to develop a complete
stress-strain model for normally consolidated and lightly
overconsolidated saturated clays, which they called the Cam
Clay model (named after the River Cam, which passes through
the campus of Cambridge University). This model was modi-
fied in 1965 (Roscoe and Burland 1968) and became known as
the Modified Cam Clay (MCC) model. The MCC model is an
elastic plastic strain hardening model based on critical-state
soil mechanics (CSSM) theory, which makes the assumption
that all stress paths end up at failure on the critical state line
(CSL on Figure 12.17). On the critical state line (CSL), there
is no more change in volume or stress. This line exists in the
e–Ln p′ set of axes and in the q − p′ set of axes (Figure 12.17).

e
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11
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Figure 12.17 Modified Cam Clay model.

Recall that q is the deviator stress (q = σ1 − σ3 for the triaxial
test) and p′ is the mean normal stress (p′ = 0.33(σ ′

1 + 2σ ′
3)

for the triaxial test). The parameters defining these two lines
are shown in Figure 12.17. In addition, a shear modulus G is
necessary, as well as the initial state of the soil described by
its initial void ratio eo, its initial effective stress p′

o, and its
initial overconsolidation ratio (OCR).

Note that for the consolidation test, the axial strain ε and
the change in void ratio �e from eo to e are linked by:

ε = �e

1 + eo

(12.90)

The normal compression line (NCL) describes the stress-
strain curve as a straight line in the e − Ln p′ set of axes
where e is the void ratio and p′ is the mean effective stress
(p′ = 0.33(σ ′

1 + σ ′
2 + σ ′

3)):

e = eo − λLn
p′

p′
o

(12.91)

where eo is the initial void ratio corresponding to the initial
mean effective stress po

′, e is the void ratio corresponding to
the current mean effective stress p′, and λ is the isotropic
logarithmic compression index (slope of the line). The line
in the e–Lnp′ set of axes corresponding to the critical state
(the critical state line or CSL) links the critical void ratio ec
to Lnp′ and is assumed to have the same slope as the NCL.
Recall that the critical void ratio is obtained at the end of
loading when the soil reaches a state where no more volume
change and no more stress increase or decrease occurs:

ec = eco − λLn
p′

p′
o

(12.92)

The part of the strain recovered upon unload is the elastic
component of the strain, ee. This unload-reload line is con-
sidered to be a straight line in the e–Lnp′ set of axes and is
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expressed as:

ee = ey − κLn
p′

p′
y

(12.93)

where ey is the void ratio corresponding to the yield stress
py

′, and κ is the swelling index (slope of the line). The critical
state line in the q − p′ plot is:

q = M p′ (12.94)

where q is the deviator stress (q = σ 1−σ 3 for a triaxial test),
M is the critical state parameter, and p′ is the mean confining
stress (p′ = 0.33(σ ′

1 + 2σ ′
3) for a triaxial test). The plastic

potential is the same as the yield function because the MCC
model uses an associated flow rule. The yield function f is an
ellipse (Figure 12.18) with the following equation:

f = q2 − M2(p′(p′
y − p′)) (12.95)

where f is the plastic potential and the yield function; it
becomes the yield surface for f = 0. The direction of the
plastic strain is perpendicular to the yield surface and the
magnitude is given by the hardening rule (Figure 12.18).
For the Cam Clay model, the hardening rule is an isotropic
hardening rule. It is obtained from the increase in yield stress
and from the recognition that the strain is made of the elastic
part related to the swelling line and the plastic part associated
with the difference between the normal compression line and
the swelling line (Figure 12.19):

dep = (λ − κ)
dp′

p′ (12.96)
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12.4.3 Barcelona Basic Model

Alonso, Gens, and Josa (1990) proposed a model to describe
the behavior of unsaturated soils. It has become known as the
Barcelona Basic Model (BBM), named after the city where
the researchers’ university is located. The BBM is an elastic
plastic strain hardening model that makes use of two stress
variables: the net normal stress (p* = σ − ua) and the net
water tension or suction (s = uw − ua). The model is based
on several observations of the behavior of unsaturated soils,
including reversible swelling and shrinking at low confining
pressures, collapse at high pressures, and increase in yield
stress (preconsolidation pressure) with increase in net water
tension. BBM becomes equal to the Modified Cam Clay
model when the suction is equal to zero. Like the MCC
model, the BBM uses a linear relationship between the void
ratio e and the natural logarithm of the net normal stress p*,
called the normal compression loading (NCL) curve (Figure
12.20a). The BBM adds another NCL curve with a linear
relationship between the void ratio e and the natural logarithm
of the net water tension or suction s. The reference NCL
curve in the e − Lnp* set of axes corresponds to a suction
equal to zero (Figure 12.20) and has the same equation as in
the MCC model except that the stress is now the net mean
normal stress p* instead of the mean effective stress p′:

e = eo − λoLn
p∗

p∗
o

(12.97)

where e is the void ratio corresponding to p*, eo is the initial
void ratio corresponding to p∗

o , and λo is the compression
index for zero suction. Then the NCL curve for a suction s
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different from zero is:

e = eso − λLn
p∗

p∗
o

(12.98)

where eso is the initial void ratio corresponding to p∗
o , and λ

is the compression index for a suction s.
The unload-reload line is also considered to be a straight

line and is expressed as:

ee = ey − κLn
p∗

p∗
y

(12.99)

where ee is the void ratio after elastic rebound swelling, ey is
the void ratio corresponding to the yield stress p∗

y , and κ is
the swelling index (slope of the line). The NCL curve is also
presented in the e − Lns set of axes (Figure 12.20b) and the
equations are similar to those of the NCL curve in the e − Lnp*
set of axes. However. p* is replaced by s and the slopes λs and
κs are defined as the compression index with respect to suction
s and the swelling index with respect to suction s, respectively.

The yield stress p∗
y depends on the suction s (Figure

12.20a), and the curve linking the two is called the loading-
collapse curve or LC curve (Figure 12.20c). The LC curve is
a yield curve and the equation of this curve is given by:

Ln
p∗

y

pr

=
(

λo − κ

λ∞ − (
λ∞ − λo

)
e−βs − κ

)
Ln

p∗
yo

pr

(12.100)

where p∗
y is the yield pressure at a suction s, pyo* is the

yield pressure at a suction s = 0, pr is a reference pressure
(atmospheric pressure, for example), λo is the compression
index for a suction s = 0, λ∞ is the compression index at
very high suction, β is a coefficient controlling the rate of
compression index λ with suction, and κ is the swelling index.
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The LC curve dictates whether the sample will swell, shrink,
or collapse. Figure 12.21 illustrates this point. To the left of
the LC curve in Figure 12.21a, the soil behaves elastically; it
yields on the LC curve and with strain hardening it deforms
plastically to the right of the LC curve. If the soil is far inside
the elastic domain, the soil will swell upon wetting (suction
decreases) and the volume change will be reversible (path
ABC on Figure 12.21b). If the soil is inside the elastic zone
but not far enough from the LC curve, the soil can swell upon
wetting (suction decreases) at first and then collapse (path
DEF on Figure 12.21b). If the soil is outside the LC curve, the
soil will collapse upon wetting (suction decreases) (path GH
on Figure 12.21b). In all three cases, the suction decreases
under constant total stress; this means that the water stress
increases (e.g., from −1000 kPa to −100 kPa) and therefore
the effective stress decreases. These three cases show that for
unsaturated soils, there is not a single relationship between
the volume change of the soil and the effective stress, unlike
for saturated soils as postulated by Terzaghi. The inability
of effective stress to explain this dual behavior has been
the biggest obstacle in the development of a single effective
stress model for unsaturated soils.

In the case of the swelling-collapse path DEF in
Figure 12.21b, the soil moves from the NCL@s2 curve on
Figure 12.21a to the NCL@s1 curve and finally comes to rest
on the NCL@s = 0 curve. During that process, the value of
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the net normal stress does not change and remains equal to
the yield stress p∗

y1; it starts associated with s2 and ends up
associated with s = 0. Therefore, the starting point of the LC
curve for the soil after collapse is p∗

y1, which represents the
new value of p∗

y0. This shows how the LC curve can evolve
as the material experiences wetting or drying.

The LC curve is capped by the suction increase curve or
SI curve (Figure 12.21), indicating that during drying the soil
will reach a maximum suction value. This maximum suction
is nearly independent of the net stress, and a horizontal line is
chosen to represent this yield limit. Much like the LC curve,
the SI curve can evolve with straining, wetting, or drying of
the soil (Figure 12.21).

The critical state line (CSL) failure envelope in the q − p′
plot is the same as in the MCC model, but the suction in-
creases the apparent cohesion capp by a value linearly related
to the suction s:

capp = ks (12.101)

where k is a constant of proportionality. The CSL equation
(Eq. 12.90) is modified as follows:

q = Mp∗ + ks (12.102)

The shape of the yield surface is kept as an ellipse but
is modified to include the contribution of the suction on the
apparent cohesion (Figure 12.22):

q2 − M2(p∗ + k s)(p∗
y − p∗) = 0 (12.103)

The postyield behavior for the BBM is described through
the strain hardening of the yield function. Much like in the
MCC model, the incremental plastic strain is given by:

dep = (λ − κ)
dp∗

p∗ (12.104)

What is different with the BBM is that the flow rule that
gives the direction of the incremental plastic strain is non-
associated and given by a plastic potential:

G = αq2 − M2(p∗ + k s)(p∗
y − p∗) (12.105)

where α is a parameter determined from the condition that
the flow rule predicts zero lateral strains in a K0 stress path
(Alonso et al. 1990).
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Figure 12.22 Increase in yield surface with increase in suction.

12.4.4 Water Stress Predictions

The prediction of water stresses for saturated and unsatu-
rated cases in numerical methods can be classified in four
categories:

1. No water. This is the case where the soil has no water.
In this case the numerical simulations proceed on the basis of
total stress or effective stress without distinction, as there is
no difference between the two.

2. Saturated and drained. This is the case where the soil
is saturated but the loading is slow enough that no water stress
in excess of hydrostatic is generated. In this case the solution
proceeds in terms of effective normal stress and the water
stress is added at the end to obtain the total normal stress.

3. Total stress approach. In this case the numerical sim-
ulation proceeds in terms of total stresses regardless of the
water regime. This is not a theoretically satisfying approach,
as it does not recognize the basic and separate behavior of the
soil skeleton and the water in the soil. This type of analysis
can be accepted in the case of undrained behavior of satu-
rated soils or in the case of high-water-tension soils. In both
cases, it is approximately acceptable to consider the soil as
a one-phase material, as it is likely that there is very little
movement of the water in the soil mass. An exception is the
liquefaction of loose sands.

4. Saturated or unsaturated with water stress formula-
tion. This is the best and most appropriate way to simulate
soil behavior, but it is also the most complicated. This ap-
proach requires one to formulate the flow of water through
soil in the case of either a saturated soil or an unsaturated
soil. This is the topic of Chapter 13.

PROBLEMS

12.1 Develop the expression for the bulk modulus K (hydrostatic compression) and the constrained modulus M (no lateral
strain) by using the equations of elasticity linking the stresses and the strains.

12.2 A triaxial test is performed on an elastic soil and the result is plotted as major principal stress σ1 versus axial strain ε1.
Is the slope of the line equal to the modulus E? If not, what is it? Give the expression of Poisson’s ratio in terms of the
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stresses σ1 and σ3, and strains ε1 and ε3, for this test. What measurements would you have to make to back-calculate the
modulus and Poisson’s ratio from such a test?

12.3 Find the ultimate pressure that can be resisted by a soil subjected to a cylindrical expansion in the following case. The
cylinder is infinitely long and the initial radius is ro. The soil is a clay that behaves as a rigid plastic material with a yield
criterion σ1 − σ3 = 2su. Beyond the yield criterion, the soil deforms without changing volume (undrained behavior of the
clay).

12.4 Find the ultimate pressure that can be resisted by a soil subjected to a spherical expansion in the following case. The
sphere has an initial radius equal to ro. The soil is a clay that behaves as a rigid plastic material with a yield criterion
σ1 − σ3 = 2su. Beyond the yield criterion, the soil deforms without changing volume (undrained behavior of the clay).

12.5 Find the ultimate pressure that can be resisted by a soil subjected to a cylindrical expansion in the following case. The
cylinder is infinitely long and the initial radius is ro. The soil is a sand that behaves as a rigid plastic material with a
yield criterion σ1/σ3 = Kp. Beyond the yield criterion, the soil deforms without changing volume. (Although “no volume
change” is not a common case in sand, it drastically simplifies the mathematics of this problem.)

12.6 Find the ultimate pressure that can be resisted by a soil subjected to a spherical expansion in the following case. The
sphere has an initial radius ro. The soil is a sand that behaves as a rigid plastic material with a yield criterion σ1/σ3 = Kp.
Beyond the yield criterion, the soil deforms without changing volume. (Although “no volume change” is not a common
case in sand, it drastically simplifies the mathematics of this problem.)

12.7 .A Duncan-Chang (DC) model soil has an initial tangent modulus Eo equal to 100 MPa, a strength ratio Rf equal to 0.9,
and a stress exponent n equal to 0.5. This DC soil is tested in a triaxial test with a confinement stress σ3 = 60 kPa. The
cohesion intercept if 5 kPa and the friction angle 34◦.

a. Generate the complete σ1 vs. ε1 curve.
b. Derive the equation for the modulus as a function of stress level and strain level.

Problems and Solutions

Problem 12.1

Develop the expression for the bulk modulus K (hydrostatic compression) and the constrained modulus M (no lateral strain)
by using the equations of elasticity linking the stresses and the strains.

Solution 12.1

The bulk modulus K:

K = σ

�V

V

=
1

3

(
σxx + σyy + σzz

)
εxx + εyy + εzz

= E

3(1 − 2υ)

εxx = 1

E

(
σxx − υ

(
σyy + σzz

))
εyy = 1

E

(
σyy − υ

(
σxx + σzz

))
εzz = 1

E

(
σzz − υ

(
σxx + σyy

))
εxx + εyy + εzz = 1

E

[(
σxx + σyy + σzz

) − 2υ
(
σxx + σyy + σzz

)]
εxx + εyy + εzz = 1

E

(
σxx + σyy + σzz

)
(1 − 2υ)

If substituted in K formula:

K =
1

3

(
σxx + σyy + σzz

)
εxx + εyy + εzz

=
1

3

(
σxx + σyy + σzz

)
1

E

(
σxx + σyy + σzz

)
(1 − 2υ)

= E

3(1 − 2υ)
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The constrained modulus M:

M = σxx

εxx
= E(1 − υ)

(1 + υ)(1 − 2υ)

Because there is no lateral strain:

εyy = 1

E

(
σyy − υ

(
σxx + σzz

)) = 0 → σyy = υ
(
σxx + σzz

)
(I)

εzz = 1

E

(
σzz − υ

(
σxx + σyy

)) = 0 → σzz = υ
(
σxx + σyy

)
(II)

(I) + (II) → (
σyy + σzz

) = 2υσxx + υ
(
σyy + σzz

)
(
σyy + σzz

) = 2υσxx

(1 − υ)

By substituting in M formula:

M = σxx

εxx
= σxx

1

E

(
σxx − υ

(
σyy + σzz

)) = σxx

1

E

(
σxx − 2υ2σxx

(1 − υ)

) = Eσxx

σxx

(
1 − 2υ2

(1 − υ)

)

M = Eσxx

σxx

(
1 − υ − 2υ2

(1 − υ)

) = E(1 − υ)

(1 + υ)(1 − 2υ)

Problem 12.2

A triaxial test is performed on an elastic soil and the result is plotted as major principal stress σ1 versus axial strain ε1. Is the
slope of the line equal to the modulus E? If not, what is it? Give the expression of Poisson’s ratio in terms of the stresses σ 1
and σ 3, and strains ε1 and ε3, for this test. What measurements would you have to make to back-calculate the modulus and
Poisson’s ratio from such a test?

Solution 12.2

No. The slope of the line is not the modulus E and is given by the following expression.
In a triaxial test, σ2 = σ3

ε1 = 1

E
(σ1 − 2νσ3)

σ1

ε1
= Eσ1

σ1 − 2νσ3

If σ3 is equal to zero (unconfined compression test) then the slope is E. The Poisson’s ratio is calculated as follows.

ε1 = 1

E
(σ1 − 2νσ3)

ε3 = 1

E
[σ3 − 2ν(σ1 + σ3)]

ν = ε3σ1 − ε1σ3

2ε3σ3 − ε1(σ1 + σ3)

The following measurements should be made to back-calculate the modulus and Poisson’s ratio: confining pressure (σ3),
deviatoric stress (σ 1 − σ3), axial strain (ε1) or (εa) and radial strain (ε3) or (εr).

Problem 12.3

Find the ultimate pressure that can be resisted by a soil subjected to a cylindrical expansion in the following case. The cylinder
is infinitely long and the initial radius is ro. The soil is a clay that behaves as a rigid plastic material with a yield criterion σ1
− σ3 = 2su. Beyond the yield criterion, the soil deforms without changing volume (undrained behavior of the clay).
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Solution 12.3

Step 1

The elastic solution is summarized as follows:
dσr

dr
+ σr − σθ

r
= 0

where σr = σoh + �σr , σθ = σoh + �σθ

εr = 1

E
(�σr − ν(�σθ + �σz)) = −du

dr

εθ = 1

E
(�σθ − ν(�σr + �σz)) = −u

r

εz = 1

E
(�σz − ν(�σr + �σθ)) = 0

The governing differential equation is
r2 d2u

dr2
+ r

du

dr
− u = 0

By applying the boundary conditions, we have:
u = u0r0

r

Then the strains are:

εr = du

dr
= u0r0

r2

εθ = u

r
= −u0r0

r2

�σr(r=r0) = E

1 + ν

u0r0

r2
0

= E

1 + ν

u0

r0
= 2Gεθ0

We know that:
εθ0 = −u0

r0
= −2πr0u0

2πr0r0
= −1

2

�V

V

Therefore,

σr(r=r0) = σoh − 2Gεθ0 = σoh + G
�V

V
and σθ = σoh − G

�V

V

Step 2

In plasticity and for this problem, the yield criterion is Tresca:

σ1 − σ3 = 2su

σr − σθ = 2su

We know that (equilibrium using the current radius ρ):

dσr

dρ
+ σr − σθ

ρ
= 0

dσr

dρ
+ 2su

ρ
= 0

dσr = −2su

dρ

ρ∫
dσr =

∫
−2su

dρ

ρ

σr = −2su ln ρ + A
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Boundary conditions:
σr = pF @ρ = ρF

A = pF + 2su ln ρF

σr = pF − su ln
ρ2

ρ2
F

Compatibility equations at the plastic-elastic boundary:

σr = pF − su ln
ρ2

F

ρ2
F

σr = pF

When assuming no volume change, �V = const, σθ = σoh − G
�V

V
, and σr = σoh + G

�V

V
, so:

σr − σθ = 2G
�V

V
= 2su

at the interface., so:
pF = σoh + su (for Tresca criterion)

Step 3

Find pL in plasticity condition (Figure 12.1s).
To get the limit pressure:

pL = pF − su ln
ρ2

0

ρ2
F

Let us look at no volume change,
∂�V

∂r
= 0

�V0 = �VF = const

πρ2
0 − πr2

0 = πρ2
F − πr2

F

ρ2
F − r2

F = ρ2
0 − r2

0 = const

ρ2
F − r2

F

ρ2
F

= �VF

VF

ρ2
0 − r2

0

ρ2
0

= �V0

V0
= ρ2

F − r2
F

ρ2
0

When ρF → ∞, we have
�V0

V0
→ 1

ρ2
0

ρ2
F

= �VF

VF

r0

rf

r0

rf

Elastic Region

Plastic Region

Y
ie

ld

Y
ie

ld

Figure 12.1s r and ρ definition.
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We already know that:

G
�V

V
= su

pL = pF − su ln
su

G
= pF + su ln

G

su

pL = σoh + su

(
1 + su ln

G

su

)

Problem 12.4

Find the ultimate pressure that can be resisted by a soil subjected to a spherical expansion in the following case. The sphere
has an initial radius equal to ro. The soil is a clay that behaves as a rigid plastic material with a yield criterion σ 1 − σ 3 =
2su. Beyond the yield criterion, the soil deforms without changing volume (undrained behavior of the clay).

Solution 12.4

Step 1

The elastic solution is summarized as follows (problem 11.5) Equilibrium in spherical space (σθ = σφ) gives:

dσr

dr
+ 2

σr − σθ

r
= 0

where σr = po + �σr , σθ = po + �σθ , and po is the initial hydrostatic stress at rest in the soil.

εr = 1

E
(�σr − 2ν�σθ) = −du

dr

εθ = εφ = 1

E
[(1 − v)�σθ − ν�σr ] = −u

r

or

�σθ = − E

(1 + v)(1 − 2v)

(
u

r
+ v

du

dr

)

�σr = − E

(1 + v)(1 − 2v)

[
2v

u

r
+ (1 − v)

du

dr

]

The governing differential equation is:

r2 d2u

dr2
+ 2r

du

dr
− 2u = 0

By applying the boundary conditions we get:

u = u0r
2
0

r2

The strains are:

εr = −du

dr
= 2

u0r
2
0

r3

εθ = −u

r
= −u0r

2
0

r3

�σr = 2E

1 + ν

u0r
2
0

r3
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Therefore,

�σr(r=r0) = 2E

1 + ν

u0

r0
= −4Gεθ0

�V

V
= 4πr2u

4

3
πr3

= 3
u

r
= −3εθ → �σr = −4Gεθ = 4

3
G

�V

V

By the same process:

�σθ = 2Gεθ = −2

3
G

�V

V

Step 2

In plasticity and for this problem, the yield criterion is Tresca:

σr − σθ = 2su

We know that (using the current radius ρ):

dσr

dρ
+ 2

σr − σθ

ρ
= 0

dσr

dρ
+ 4su

ρ
= 0

dσr = −4su

dρ

ρ∫
dσr =

∫
−4su

dρ

ρ

σr = −4su ln ρ + A

The boundary conditions are:

σr = pF @ρ = ρF

A = pF + 4su ln ρF

σr = pF + 4su ln
ρF

ρ

From elasticity theory, we have already proved that:

σr = p0 + 4G
u0r

2
0

r3

σθ = p0 − 2G
u0r

2
0

r3

At yield:

σr = pF = p0 + 4G
u0r

2
0

r3
f

= p0 + 4

3
G

�V

V

σθ = p0 − 2G
u0r

2
0

r3
f
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At the boundary between the elastic zone and the plastic zone and using the Tresca criterion gives

σr = pF

σr − σθ = 6G
u0r

2
0

r3
f

= 2G
�V

V

G
�V

V
= su

pF = p0 + 4

3
su

Step 3

Find pL in a plasticity condition:
pL = pF + 4su ln

ρF

ρ0

�V0 = �VF = const

Furthermore

ρ3
F − r3

F

ρ3
F

= �VF

VF

ρ3
0 − r3

0

ρ3
0

= �V0

V0
= ρ3

F − r3
F

ρ3
0

ρ3
F

ρ3
0

= �V0

V0

VF

�VF

when ρF → ∞ we have
�V0

V0
→ 1 so at infitnite expansion

ρ3
F

ρ3
0

= VF

�VF

�V

V
= su

G

ρF

ρ0
=

[
G

su

]1/3

pL = pF + 4

3
su ln

G

su

pL = p0 + 4

3
su

(
1 + ln

G

su

)

Problem 12.5

Find the ultimate pressure that can be resisted by a soil subjected to a cylindrical expansion in the following case. The
cylinder is infinitely long and the initial radius is ro. The soil is a sand that behaves as a rigid plastic material with a yield
criterion σ1/σ3 = Kp. Beyond the yield criterion, the soil deforms without changing volume. (Although “no volume change”
is not a common case in sand, it drastically simplifies the mathematics of this problem.)

Solution 12.5

Step 1

The elasticity constitutive model (problem 12.3, step 1) gives:

σr = p0 + G
�V

V
and σθ = p0 − G

�V

V
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Step 2

In plasticity and for this problem, the yield criterion is Mohr-Coulomb:

σθ + c

tan φ

σr + c

tan φ

= 1 − sin φ

1 + sin φ
= ka (12.1s)

From elasticity theory, we have already proved that:

σr = p0 + 2G
u0r0

r2

σθ = p0 − 2G
u0r0

r2

At the boundary between the elastic and the plastic region, we have:

σr = pF = p0 + 2G
u0r0

rF
2

(12.2s)

σθ = p0 − 2G
u0r0

rF
2

(12.3s)

From Eq. 12.2s, we can get

r2
F = 2Gu0r0

pF − p0

Therefore,

σθ = p0 − 2Gu0r0

2Gu0r0
(pF − p0)

σθ = 2p0 − pF (12.4s)

σr = pF (12.5s)

Plugging Eqs. 12.4s and 12.5s into Eq. 12.1s, we get:

2p0 − pF + c

tan φ

pF + c

tan φ

= 1 − sin φ

1 + sin φ

so
pF = p0 + p0 sin φ + c cos φ

Step 3

Find pL in a plasticity condition.
From Eq. 12.1s, we get:

σθ =
(

σr + c

tan φ

)
ka − c

tan φ
(12.6s)

Plugging Eq. 12.6s into the equilibrium equation, we get:

dσr

dr
+

σr −
(

σr + c

tan φ

)
ka + c

tan φ

r
= 0

dσr

dr
+ σr(1 − ka)

r
+ c

tan φ
(1 − ka)

1

r
= 0

r
dσr

dr
+ σr(1 − ka) = c

tan φ
(ka − 1) (12.7s)



366 12 SOIL CONSTITUTIVE MODELS

The solution for σ r includes a general solution and a particular solution. The general solution of σ r is:

r
dσr

dr
+ σr(1 − ka) = 0

σr = Aρ(ka−1)

The particular solution of σ r is:

σ ∗
r = − c

tan φ

The solution of σ r is:

σr = Aρ(ka−1) − c

tan φ

Based on the boundary conditions:

ρ = ρF , σr = pF

therefore,

pF = Aρ
ka−1
F − c

tan φ

So,

A =
(

pF + c

tan φ

) (
1

ρF

)ka−1

Therefore,

σr =
(

pF + c

tan φ

)(
ρ

ρF

)ka−1

− c

tan φ

The no volume change condition gives:

�V0 = �VF = const

πρ2
0 − πr2

0 = πρ2
F − πr2

F

ρ2
F − r2

F = ρ2
0 − r2

0 = const

ρ2
F − r2

F

ρ2
F

= �VF

VF

ρ2
0 − r2

0

ρ2
0

= �V0

V0
= ρ2

F − r2
F

ρ2
0

when ρF → ∞, we have
�V0

V0
→ 1, Therefore at the limit pressure we have

ρ2
0

ρ2
F

= �VF

VF

In elasticity, σr = p0 + G
�V

V
; therefore at the elastic-plastic boundary,

�VF

VF

= pF − p0

G
= p0 + p0 sin φ + c cos φ − p0

G
= p0 sin φ + c cos φ

G
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The limit pressure pL corresponds to
�Vo

Vo

= 1; therefore,

pL =
(

pF + c

tan φ

) (
ρ

ρf

)ka−1

− c

tan φ

pL =
(

p0 + p0 sin φ + c cos φ + c

tan φ

) (
G

p0 sin φ + c cos φ

) 1−ka
2

− c

tan φ

Problem 12.6

Find the ultimate pressure that can be resisted by a soil subjected to a spherical expansion in the following case. The sphere
has an initial radius ro. The soil is a sand that behaves as a rigid plastic material with a yield criterion σ1/σ3 = Kp. Beyond
the yield criterion, the soil deforms without changing volume. (Although “no volume change” is not a common case in sand,
it drastically simplifies the mathematics of this problem.)

Solution 12.6

Step 1

The elasticity solution is presented in problem 12.4, step 1.

Step 2

In plasticity and for this problem, the yield criterion is Mohr-Coulomb:

σr + c

tan φ

σθ + c

tan φ

= 1 + sin φ

1 − sin φ
= kp = 1

ka

(12.8s)

From elasticity theory, we have already proved that:

σr = p0 + 4G
u0r

2
0

r3

σθ = p0 − 2G
u0r

2
0

r3

At yield:

σr = pF = p0 + 4G
u0r

2
0

r3
f

= p0 + 4

3
G

�V

V
(12.9s)

σθ = p0 − 2G
u0r

2
0

r3
f

= p0 − 2

3
G

�V

V

Combining Eq. 12.8s and 12.9s, we get.

pF = 3p0(1 + sin φ) + 4c cos φ

3 − sin φ
(12.10s)

Step 3

Find pL in plasticity. From Eq. 12.8s, we get:

σθ =
(

σr + c

tan φ

)
ka − c

tan φ
(12.11s)
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Plugging Eq. 12.11s into the equilibrium equation, we get:

dσr

dr
+ 2

σr −
(

σr + c

tan φ

)
ka + c

tan φ

r
= 0

dσr

dr
+ 2

σr(1 − ka)

r
+ c

tan φ
(1 − ka)

2

r
= 0

r

(1 − ka)

dσr

dr
+ 2σr = −2

c

tan φ
(12.12s)

The solution for σ r includes a general solution and a particular solution. The general solution of σ r is:

r
dσr

dr
+ 2σr(1 − ka) = 0

σr = Aρ2(ka−1)

The particular solution of σ r is:
σ ∗

r = − c

tan φ

The solution of σ r is:
σr = Aρ2(ka−1) − c

tan φ

At the elastic-plastic boundary, we have:
ρ = ρf , σr = pF

therefore,
pF = Aρ

2(ka−1)
f − c

tan φ

So,
A =

(
pF + c

tan φ

)
ρf

−2(ka−1)

Therefore,

σr =
(

pF + c

tan φ

) (
ρ

ρf

)2(ka−1)

− c

tan φ

by using pF from Eq. 12.10s:

PL = σr = (c + p0 tan φ)

(
3 (1 + sin φ) cos φ

(3 − sin φ) sin φ

) (
r

rf

)2(ka−1)

− c

tan φ
(12.13s)

Using the no volume change condition leads to

�V0 = �VF = const

ρ3
F − r3

F = ρ3
0 − r3

0

ρ3
F − r3

F

ρ3
F

= �VF

VF

ρ3
0 − r3

0

ρ3
0

= �V0

V0
= ρ3

F − r3
F

ρ3
0

ρ3
F

ρ3
0

= �V0

V0

VF

�VF
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when ρF → ∞, we have
�V0

V0
→ 1

ρ3
F

ρ3
0

= VF

�VF

(12.14s)

From Eqs. 12.9s and 12.10s:

G
�V

V
= 3p0 sin φ + 3C cos φ

3 − sin φ
(12.15s)

By using Eqs. 12.13s, 12.14s, and 12.15s, we get:

pL = (c + p0 tan φ)

(
3 (1 + sin φ) cos φ

(3 − sin φ) sin φ

) [
G

c + p0 tan φ

(
3 − sin φ

3 cos φ

)] 4
3

(
sin φ

1+sin φ

)
− c

tan φ

Problem 12.7

A Duncan-Chang (DC) model soil has an initial tangent modulus Eo equal to 100 MPa, a strength ratio Rf equal to 0.9, and a
stress exponent n equal to 0.5. This DC soil is tested in a triaxial test with a confinement stress σ3 = 60 kPa. The cohesion
intercept if 5 kPa and the friction angle 34o. Generate the complete σ1 − σ3 vs. ε1 curve.

Solution 12.7

Given: Eo = 100 MPa, Rf = 0.9, n = 0.5, c = 5 kPa, ϕ = 34◦, and σ3 = 60 kPa, we can get the σ1 vs. ε1 curve using the
DC formulation:

σ1 − σ3 = ε1

1

Eo

+ ε1

Rf σult

Based on the information from the triaxial test and the Mohr Coulomb failure criterion, the soil strength in term of
deviator stress is computed as follows:

(σ1 − σ3)f = 2c cos φ + 2σ3 sin φ

1 − sin φ

(σ1 − σ3)f = 2 × 5 × cos 34 + 2 × 60 × sin 34

1 − sin 34

(σ1 − σ3)f = 171 kPa

The asymptotic value is given by

(σ1 − σ3)ult = (σ1 − σ3)f

Rf

= 171 kPa

0.9
= 190 kPa
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Figure 12.2s Stress-strain curve.


