
CHAPTER 16

Thermodynamics for Soil Problems

16.1 GENERAL

Heat flow in soils involves several different phenomena:
convection, radiation, and conduction. Convection takes place
when a fluid flows over a solid that is at a different temperature
than the fluid. When you set up a fan to blow air toward
your body and cool yourself down in the summer, you use
convection heat transfer. Radiation refers to the fact that all
bodies continuously emit energy because of their temperature.
This energy propagates to other nearby fluids or bodies
through electromagnetic waves. Hot radiators that you may
use in the winter to warm yourself up operate by radiation heat
transfer. Conduction is a heat transfer mechanism whereby
energy moves from a region of high temperature to a region
of lower temperature. The phenomenon is due to the motion
and impact of molecules, which increase as the temperature
rises. Conduction of heat in soil is very similar to the flow of
water through soil and is the most important mechanism of
heat transfer through soils.

16.2 DEFINITIONS

Because of the analogy between temperature propagation
and water flow, it is useful to draw a parallel between the
parameters used in both fields of geotechnical engineering.
Heat, Q, is a quantity of energy measured in joules (N × m).
It is named after James Prescott Joule (1818–1889), an
English physicist. The heat Q is equivalent to the volume of
water V (m3) in flow problems.

Temperature, T, is a measure of how hot a material is; it is
sometimes measured in degrees Kelvin (K), but more com-
monly in degrees Celsius (C). The Kelvin is named after the
British engineer and physicist William Thomson, First Baron
Kelvin (1824–1907). The Celsius is named after the Swedish
astronomer Anders Celsius (1701–1744). The Kelvin scale
starts at absolute zero temperature, which is −273◦C. There
is in fact a lower bound to the temperature scale: It corre-
sponds to the point where none of the molecules are moving.
There is no known upper bound to the temperature scale.

The temperature T is equivalent to the total head ht (m) in
flow problems.

The temperature gradient it is defined between two points in
the soil mass; it is the ratio between the change in temperature
dT over the distance dx separating the two points and is
expressed in K/m. It corresponds to the hydraulic gradient i
for the flow problem:

it = dT

dx
in K/m (16.1)

The heat transfer rate H is the amount of heat transferred
per amount of time and is expressed in joules per second
or watts, named after the Scottish engineer James Watt
(1736–1819) (J/s or W). The heat transfer rate is equivalent
to the flow rate Q (m3/s) in flow problems:

H = dQ

dt
in J/s (16.2)

The heat flow q is the amount of heat dQ per unit time dt
and per unit area A or the heat transfer rate H per unit area A.
It is expressed in watts per meter square (W/m2) or in joules
per second and per meter square (J/s.m2). It is equivalent to
the velocity v (m/s) in the flow problem:

q = dQ

dt
× 1

A
= H

A
in J/s.m2 (16.3)

The thermal conductivity kt is a property of the soil.
It takes units of J/s.K.m and is defined through Fourier’s
law (section 16.3) as the ratio between the heat flow and the
thermal gradient:

kt = q

dT

dx

in J/s.K.m (16.4)

The thermal conductivity is an indication of the speed with
which the heat flows through the soil under a given temper-
ature gradient. It is equivalent to the hydraulic conductivity
for the flow problem.
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The specific heat c is a property of the soil and takes units
of J/kg.K. It is defined as:

c = 1

m

dQ

dT
in J/kg.K (16.5)

where m is the mass of the soil element considered, and dQ is
the increase in heat stored in the element when the temperature
is raised by dT. In the flow problem, the compressibility of
the soil skeleton plays the role of the inverse of the specific
heat. The inverse of the specific heat tells you how much
heat you can squeeze out of the soil for a given change
in temperature, much like the compressibility tells you how
much water you can squeeze out the soil if you apply a change
in effective stress.

The diffusivity α appears in the governing differential
equation. It is in m2/s and is defined as:

α = k

ρ c
in m2/s (16.6)

The diffusivity gives the speed with which the temperature
will decay in a soil. It is closely linked to the thermal
conductivity kt , but is also influenced by the specific heat,
which indicates how much heat can be squeezed out of the
soil for a given change in temperature. In other words, you
could have two soils with the same thermal conductivity but
different specific heats. In this instance the heat would flow at
the same speed in both soils for the same thermal gradient, but
if the heat source stopped, the one with the highest specific
heat would cool down the slowest because it would be harder
to squeeze the heat out of the soil.

Table 16.1 Equivalency between Thermal Conductivity
and Hydraulic Conductivity

Parameter Flow of water Flow of heat

Quantity Volume V (m3) Heat Q (J)
Potential Head ht(m) Temperature T (K)
Gradient Hydraulic gradient

ih(unitless)
Temperature

gradient it(K/m)

Flux Flow rate Q (m3/s) Heat transfer rate H
(J/s)

Flux density Velocity v (m/s) Heat flow q (J/s.m2)

Conductivity Hydraulic
conductivity
kh(m/s)

Thermal
conductivity
kt(J/s.K.m)

Law Darcy Fourier
Storage Compressibility Specific heat c

(J/kg.K)
Decay

coefficient
Coefficient of

consolidation
cv(m

2/s)

Thermal diffusivity
α(m2/s)

Table 16.1 summarizes the equivalency between soil ther-
mal flow problems and soil hydraulic flow problems.

16.3 CONSTITUTIVE AND FUNDAMENTAL LAWS

Fourier’s law is the constitutive law for heat flow. It is named
after Joseph Fourier (1768–1830), a French mathematician
and physicist. Fourier’s law (Fourier 1822) states that the heat
flow q is linearly related to the temperature gradient through
the thermal conductivity kt :

q = −kt it = −kt

dT

dx
(16.7)

where q is the heat flow, kt is the thermal conductivity,
it is the temperature gradient, T is the temperature, and x
is the length in the direction of the heat flow. Therefore,
the units of thermal conductivity are J/s.K.m. The minus
sign indicates that heat flows in the direction of decreasing
temperatures. Fourier’s law is equivalent to Darcy’s law in
the flow problem. By the way, the R rating of house insulation
comes from Eq. 16.7 and is based on very much the same
concept as the resistance of an electrical conductor:

R = dT

q
= dx

kt

or dT = R q (16.8)

The fundamental law is the conservation of energy. For the
purpose of this chapter, this law states that during an amount
of time dt, the amount of heat dQin flowing into an element
of soil is equal to the amount of heat dQout flowing out of the
element plus the heat stored or extracted dQstored from the
element.

dQ

dt in
= dQ

dt out
+ dQ

dt stored
(16.9)

16.4 HEAT CONDUCTION THEORY

Let’s first address the problem of one-dimensional heat
conduction. An example is the penetration of frost into a
surface layer of soil due to low air temperature in the winter
months. To solve this problem, we follow the normal steps
(see section 11.4):

1. Consider an element of soil dx wide, dy long, and with
a unit length perpendicular to the page (Figure 16.1).

0

0

dx

dy
AqxDt Aqx 1 dx Dt

Area A

Figure 16.1 Element of soil.
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2. The heat flows through the element volume, which has a
cross-sectional area A(dy × 1) and a length dx. During
a time dt, the quantity of heat entering the element is
Aqxdt, whereas the quantity of heat leaving the element
is Aqx+dxdt.

3. Conservation of energy allows us to state that the differ-
ence (Aqxdt − Aqx+dxdt) is equal to the stored heat in
the element.

dQ = A qxdt − A qx+dxdt (16.10)

4. The constitutive law is Fourier’s law:

q(x, t) = −k
dT(x, t)

dx
(16.11)

where q is the heat flow (J/s.m2), k is the thermal
conductivity (J/s.K.m), T is the temperature (K), and x

is the length (m) in the direction of the heat flow.
5. The second constitutive law is associated with the

definition of specific heat. The amount of heat dQ will
generate an increase in temperature dT in the element of
mass m such that:

dQ = m c dT = A dx ρ c dT (16.12)

where ρ is the mass density of the material (kg/m3) and
c is the specific heat of the material (J/kg.K).

6. Regrouping Eqs. 16.10 and 16.12 gives:

Aqxdt − Aqx+dxdt = A dx ρ c dT (16.13)

Or, in partial derivative form:

−∂q

∂x
= ρ c

∂T

∂t
(16.14)

Combining Eqs. 16.11 and 16.14, we get:

k
∂2T

∂x2
= ρ c

∂T

∂t
(16.15)

If we define the thermal diffusivity α as:

α = k

ρ c
(16.16)

where α is the diffusivity in m2/s, then the govern-
ing differential equation for one-dimensional conduction
heat is:

∂T

∂t
= α

∂2T

∂x2
(16.17)

In three dimensions, it becomes:

∂2T

∂x2
+ ∂2T

∂y2
+ ∂2T

∂z2
= 1

α

∂T

∂t
(16.18)

7. Now the boundary and initial conditions have to be
expressed. This depends on the problem at hand. The
complexity of the solution depends on the complexity

of the boundary conditions, but numerical methods can
always be used to solve such problems. Note that
Eq. 16.17 is identical to Eq. 11.56 for the consolida-
tion theory, where the temperature T is replaced by the
excess water stress ue. Therefore, the solutions are iden-
tical for identical boundary conditions. Jumikis (1977)
presents the solution for a sinusoidal temperature fluc-
tuation input at the ground surface to replicate seasonal
variations.

16.5 AXISYMMETRIC HEAT PROPAGATION

In the case of an axisymmetric geometry, Eq. 16.18 becomes:

1

r

∂T

∂r
+ ∂2T

∂r2
= 1

α

∂T

∂t
(16.19)

where r is the radial distance from the axis, t is time, T

is temperature, and α is the thermal diffusivity of the soil.
Carslaw and Jaeger (1947) solved this problem in the case
of an infinitely long cylindrical heat source of radius Ro

maintained at a temperature To at the center of a full space,
which was initially at a temperature equal to zero. In this
case the time t required for a given temperature Tm to reach a
certain distance R into the soil is given by:

t = TF

R2
o

α
(16.20)

where TF is the time factor (Figure 16.2), and is a function
of the ratio R/Ro and Tm/To. This equation is very similar
to the consolidation equation, which yields the time for
excess water stress dissipation around a pile. At first glance,
Eq. 16.20 seems to indicate that t increases with Ro

2. But in
fact, t decreases as Ro increases, because TF decreases with
Ro faster than R2

o increases.
The following reasoning illustrates this point. In Eq. 16.20,

if Ro is multiplied by
√

10, the time t is not multiplied
by 10 because the time factor TF is not the same in both
cases. If t was multiplied by 10, it would mean that it
would take 10 times longer for the temperature to reach a
value Tm at a distance R−Ro from the boundary in the case
of the large-radius heat source (

√
10Ro) than for the same

temperature Tm to be reached at the same distance R − Ro in
the case of the smaller-radius heat source (Ro). This does not
make sense: Because the heat source is larger, it should take
less time—and indeed it does, because the time factor TF

decreases more than by a ratio of 10 in this case (Figure 16.2).
Therefore, as Ro increases, t in fact decreases nonlinearly.

For example, consider a hot cone penetrometer with a
radius Ro of 20 mm that is kept at a temperature To of
100◦C in a soil with an initial temperature of 20◦C and
a diffusivity of 1 mm2/s. Let’s calculate the time it will
take for the temperature to reach 40◦C at a distance of
R equal to Ro + 100 mm = 120 mm. Considering that the
temperature of the soil is at 20◦C initially, the ratio of net
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Figure 16.2 Time factor. (After Carslaw and Jaeger 1947)

temperature increase is (40 − 20)/(100 − 20) = 0.25. For
this temperature ratio and a radius ratio of 120/20 = 6,
Figure 16.2 yields a time factor TF equal to 32, and the time
for the temperature to reach 40◦C at R = 120 mm is:

t = 32
202

1
= 12800 s = 3.55 hours (16.21)

Now consider a hot oil conductor in the bottom of the
Gulf of Mexico with a radius Ro of 500 mm, that is kept at
a temperature To of 100◦C. Let’s calculate the time it will
take for the temperature to reach a temperature of 40◦C at a
distance of R equal to Ro + 100 mm = 600 mm. Considering
that the temperature of the soil is at 20◦C initially, the ratio
of net temperature increase is (40 − 20)/(100 − 20) = 0.25.
For this temperature ratio and a radius ratio of 600/500 = 1.2,
Figure 16.2 yields a time factor T equal to 0.02, and the time
for the temperature to reach 40◦C at R = 600 mm is:

t = 0.02
5002

1
= 5000 s = 1.39 hours (16.22)

16.6 THERMAL PROPERTIES OF SOILS

Any material can be found in solid, liquid, or gas form. For
water, the transition from solid to liquid is at 0◦C and the
transition from liquid to gas is at 100◦C. These temperatures
correspond to 1 atmosphere of pressure, but would be different
at different pressure levels. Figure 16.3 shows the pressure-
temperature phase diagram for water and its triple point. By
the way, the latent heat of a material is the heat necessary to
change the phase of the material (solid to gas, for example).
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Figure 16.3 Temperature phases for water.

The temperature on the Earth varies from about −50◦C
to about +50oC. The temperature in the Earth varies from
−50◦C on the surface to 5500◦C at the center of the Earth.
Rocks and soil particles melt at a temperature varying between
600◦C and 1200◦C. The temperature gradient in the Earth
varies and may be taken as 15◦C per km over the first
100 km of depth. The deepest types of projects involving
the geotechnical engineer may be offshore platforms and the
associated retrieval of oil. The water depth in which the
largest platforms are constructed reaches several kilometers.
At the bottom of such oceans, the temperature is only a
few degrees Celsius. The oil reservoir may be at a depth of
15 km; thus, the temperature of the oil can easily be 100◦C
when it comes back up to the surface (Figure 16.4). So, for
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Figure 16.4 Temperature gradient for an offshore platform. (After
Briaud and Chaouch 1997)
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the geotechnical engineer, soil particles and rocks remain
in solid form. However, within the range of Earth surface
temperatures, water can be in liquid or in solid form (frozen),
and the thermal properties of the soil may differ depending
on whether the soil is frozen or not.

The thermal properties of interest are the thermal con-
ductivity k(J/s.m.oC), the specific heat C(J/kg.oC), and the
diffusivity α(m2/s). A high value of thermal conductivity
means that heat travels easily through the material; a high
value of specific heat means that it takes a lot of heat to raise
the temperature of the material; and a high value of diffusivity
means that it will take little time for the temperature to rise in
the material. These thermal properties depend on a number
of factors, among which are the temperature level T , the
pressure level p, the moisture content w, and the density ρ.
Table 16.2 shows an estimate of the range of values one can
expect for those thermal properties at ordinary temperature
and pressure levels. The range of values in this table helps one
to understand the factors affecting the thermal properties. For
example, a dry soil will have a thermal conductivity lower
than the same soil once saturated, because air has a lower
thermal conductivity than water. Also, sand in a very dense
state will have a higher thermal conductivity than the same
sand in a very loose state, because soil particles have a higher
thermal conductivity than air or water.

16.7 MULTILAYER SYSTEMS

Heat can flow through a layered system, such as an asphalt-
concrete pavement over soil in the heat of the summer or a
layer of snow covering the soil surface in the winter. Consider
the case in which heat flows parallel to the interface of the
two layers (Figure 16.5), where the starting temperature and
the ending temperature are maintained at TA and TB.

These temperatures exist at two points separated by a
horizontal distance L. Layer 1 is h1 thick and layer 2 is h2

Layer 1

Layer 2

TA TB

TA TB

A BHeat
flow

L

k1, h1

k2, h2

Figure 16.5 Horizontal heat flow through two layers.

thick. The thermal gradient is the same in both layers:

i1 = i2 = TB − TA

L
= ie (16.23)

However, the total heat transfer rate H is the sum of the
heat transfer rate H1 in layer 1 plus the heat transfer rate H2
in layer 2:

H = qe(h1 + h2) × 1 = H1 + H2 = q1h1 × 1 + q2h2 × 1
(16.24)

where qe is the total heat flow, q1 is the heat flow in layer 1,
and q2 is the heat flow in layer 2. Using Fourier’s law gives:

keie(h1 + h2) × 1 = k1i1h1 × 1 + k2i2h2 × 1 (16.25)

where ke is the equivalent thermal conductivity, k1 is the
thermal conductivity of layer 1, k2 is the thermal conductivity
of layer 2, ie is the equivalent gradient, i1 is the gradient in
layer 1, and i2 is the gradient in layer 2. Therefore:

ke = k1h1 + k2h2

h1 + h2
(16.26)

This result can be generalized for n layers:

ke =

n∑

i=1

kihi

n∑

i=1

hi

(16.27)

Table 16.2 Thermal Properties for Various Earth Materials at Standard Conditions of
Temperature and Pressure

Material
Density

ρ(kg/m3)

Specific
Heat c(J/kg.oC)

Thermal Conductivity
k(J/s.m.oC)

Thermal Diffusivity
α(mm2/s)

Air 1 to 1.4 1000 to 1050 0.02 to 0.03 13 to 30
Water 960 to 1000 4190 to 4220 0.5 to 0.8 0.13 to 0.17
Ice 917 to 920 1960 to 2110 2.0 to 2.6 1.24 to 1.52
Clay (unfrozen) 1400 to 1800 750 to 920 0.8 to 2.8 0.1 to 1.66
Clay (frozen) 1400 to 1800 650 to 800 1.0 to 3.6 0.15 to 2.3
Sand (unfrozen) 1500 to 2200 630 to 1460 2.3 to 3.8 0.87 to 3.0
Sand (frozen) 1500 to 2200 500 to 1200 2.9 to 4.7 1.2 to 4.2
Rock 2200 to 3000 710 to 920 2 to 6 1.1 to 3.0
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Figure 16.6 Vertical heat flow through two horizontal layers.

Now consider the case in which heat flows perpendicular
to two layers (Figure 16.6), where the starting temperature
and the ending temperature are maintained at TA and TB .

Layer 1 is h1 thick and layer 2 is h2 thick. The temperatures
TA and TB exist at two points separated by a distance
(h1 + h2). The heat transfer rate is the same in both layers:

H = H1 = H2 and

H = keieL × 1 = k1i1L × 1 = k2i2L × 1 (16.28)

The change in temperature, however, is additive:

�T = �T1 + �T2 = TA − TB (16.29)

But

ie = �T

h1 + h2
and i1 = �T1

h1
and i2 = �T2

h2

(16.30)
Therefore

h1 + h2

keL
H = h1

k1L
H1 + h2

k2L
H2 (16.31)

and

ke = h1 + h2

h1

k1
+ h2

k2

(16.32)

This result can be generalized for n layers:

ke =

n∑

i=1

hi

n∑

i=1

hi

ki

(16.33)

16.8 APPLICATIONS

Let’s consider a soil deposit in a cold country (Figure 16.7).
The question is: How deep will the frost penetrate during
a very cold period? At depth, where the soil is not frozen,
the temperature is Td . The air is at a temperature Ta , much
lower than 0◦ Celsius. It is assumed that the temperature of
the soil surface Ts is the same as the air temperature Ta . The

zfkf

ku

Ta

q

Ground surface

Frost penetration depth

Ts

Tf 5 0

Td

i
1

Air

0 T (°C)

Figure 16.7 Frost penetration depth for a uniform soil.

temperature at the bottom of the frozen soil is assumed to be
0◦ Celsius (C).

The gradient of temperature in the frozen layer is i and is
associated with a heat flow q and a thermal conductivity kf .
Therefore, the depth of the frozen soil is:

zf = 0 − Ts

i
= −T kf

q
(16.34)

Now let’s consider that a layer of snow covers the ground
surface (Figure 16.8). The question here is: Would the depth
of the frozen soil zf be the same? The thickness of the snow
cover is hs and the thermal conductivity of the snow is ks. The
air temperature is Ta , and the temperature of the snow surface
is Ts and is assumed equal to Ta . The thermal conductivity of
the frozen soil is kf .

The difference in temperature between the bottom of the
frozen soil layer at 0◦C and the surface of the snow layer at
Ts can be written as:

0 − Ts = 0 − T1 + T1 − Ts (16.35)

where T1 is the temperature at the interface between the
bottom of the snow layer and the soil surface (Figure 16.8).
By using the definition of the temperature gradient and then
Fourier’s law, Eq. 16.35 can be rewritten as:

0 − Ts = isnhsn + if zf = qsn

ksn
hsn + qf

kf

zf (16.36)

zf

Frost penetration depth

Tf 5 0

Td

1

Ta

Snow surfaceTs

T1

Air

0 T (°C)

isn

if

1 Ground surface
hsn

Figure 16.8 Frost penetration depth for a two-layer system.
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For continuity purposes, though, the heat flow has to be the
same in the snow and the frozen part of the soil layer. Then:

qsn = qf = q (16.37)

and the frost penetration depth zf is:

zf = −Tskf

q
− hsn

kf

ksn
(16.38)

As can be seen, the snow cover reduces the frost penetration

depth by hsn

kf

ksn
.

16.9 FROZEN SOILS

The general term frozen soils regroups problems of freezing
soils, frozen soils, and thawing soils. Frozen soils are usually
classified in three categories: soils with nonvisible ice (N),
soils with visible ice and ice lenses less than 25 mm thick
(V), and soils with visible ice with ice lenses larger than
25 mm thick (ICE). Permafrost is a term indicating that the
ground, including soil and rock, is at or below 0◦ Celsius for
more than two consecutive years. The temperature at which
the water in the voids will freeze depends on many factors,
including the salt content. The more salt there is, the lower the
temperature has to be before the water will freeze. Generally,
freezing starts at around −1◦C, and at −20◦C most soils are
completely frozen. Figure 16.9 shows typical temperature
profiles in frozen soils. It indicates that close to the surface
there is usually a zone that freezes and thaws each year, called
the active zone.

The water very close to the mineral surface of a particle
can be tightly bound to the particle, especially for very small
particles. This adsorbed water layer practically never freezes.
Therefore, clays tend to resist freezing more than sands. The
water film the furthest away from that boundary is the first
one to freeze. Figure 16.10 shows conceptually the evolution
of the water content of a soil as the temperature plunges
below zero. As can be seen, the equilibrium frozen water
content is higher for clayey soils than for sandy soils.
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Figure 16.10 Evolution of water content with temperature.

Table 16.3 Frost Susceptibility and Soils

Soil Type Frost Susceptibility

High-plasticity clays Negligible
Low-plasticity clays, clays with

sand and gravel
Moderate

Silty clays Moderate to severe
Silts, silty sands, very fine sands Severe
Gravels and sands with fines Moderate
Clean sands and gravels Negligible

Frost susceptibility is smallest for clean gravels and clean
sands, on the one hand, and for high-plasticity clays on the
other. The most frost-susceptible soils are silts, as shown in
Table 16.3. The reason is that frost heave requires the soil to
have the ability to lift water by capillary action and let the
water flow through its voids. Clean gravels and clean sands
have high hydraulic conductivity but little ability for capillary
action; in other words, it is easy for the water to move, but the
water has no energy to go anywhere. High-plasticity clays,
in contrast, have a very high ability for capillary action but
a very low hydraulic conductivity; in other words, the water
has plenty of energy, but it is very hard to move through
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Figure 16.9 Typical temperature profiles in frozen soils.



16.9 FROZEN SOILS 479

the clay. Silts optimize the two requirements of capillary
potential and water flow and are therefore some of the most
frost-susceptible soils.

Note that the unit weight of ice is about 10% less than
the unit weight of water. Therefore, if a certain weight of
water becomes ice, it will occupy about 10% more volume.
This is why icebergs float with only one-tenth of the iceberg
mass showing up above the water level and 90% below it
(hence the expression “this is only the tip of the iceberg”).
If a soil becomes frozen, it will expand according to the in-
crease in volume of the water becoming ice. These ice lenses,
once started, continue to attract water and become thicker
by something called the cryosuction process. Such ice lenses
have significant lifting potential; the uplift pressures can be
several hundreds of kPa and can reach 2000 kPa if the heave
is confined. Heave magnitudes of 50 to 75 mm are common.
The frozen soil can also develop an “adfreeze” bond with
neighboring objects such as foundation piles. This bond can
generate shear stresses from 50 to 150 kPa.

Frozen soils have four phases instead of three. Note that
nearly all frozen soils contain liquid water. The phase diagram
is shown in Figure 16.11. For the water content, a distinction
must be made between the unfrozen water content and the
frozen water or ice content. They are defined as:

Total water content w = Ww + Wi

Ws

(16.39)

Unfrozen water content wu= Ww

Ws

(16.40)

Frozen water (ice) content wi=
Wi

Ws

(16.41)

w= wu + wi (16.42)

where Ww is the weight of water, Wi is the weight of ice, and
Ws is the weight of solids (Figure 16.11). In all other index
parameters it is necessary to state what is included and what
is not. For example, the degree of saturation, the void ratio,
and the porosity can be defined by including or not including
the ice.

The thermal properties of a frozen soil are the combination
of the properties of the water, the ice, the air, and the soil
skeleton. Table 16.2 shows these properties for each material

Air

Water

frozen

Water

unfrozen

Solids

Va

VwF

VwU

VV

VS

VT

Wa 5 0

WwF

WwU

WS

WT

Figure 16.11 Phase diagram for a frozen soil.

individually and the impact they have on the soil. As can be
seen, the frozen soil will have a higher thermal conductivity,
a lower specific heat, and a higher thermal diffusivity. In
other words, the heat will flow faster in the frozen soil, and it
will be easier to squeeze the heat out of the frozen soil.

The mechanical properties will also be affected. The shear
strength will increase significantly, as the ice will contribute
to increasing the cohesion intercept. The stiffness will also
increase, as the ice essentially increases the amount of solids
in the soil. However, the creep component of the settlement
will be increased as the ice content increases. Indeed, ice ex-
hibits creep properties that depend on the ice temperature; the
lower the ice temperature, the less it will creep. The viscous
exponent mentioned in Eq. 15.56 varies in the range of 0.1 to
0.5 for ice. Recall that the same exponent for unfrozen clays
was 0.02 to 0.05 (see Figure 15.18). As a result, a frozen
soil will creep more than the unfrozen soil under constant
load, but the initial movement will be less. The hydraulic
conductivity will decrease, as there is less area for the water
to flow through. In that sense, frozen soils act according to
the same principles as unsaturated soils. The best way to
obtain the mechanical properties of frozen soils is to perform
a laboratory or in situ test that duplicates the conditions under
which the soil will be stressed in the project at hand.

There is a close analogy between frozen soils and unsatu-
rated soils, and more interaction between these two fields is
likely to be very rewarding.

PROBLEMS

16.1 A house is built on a frozen soil layer. The house generates heat such that it maintains a temperature of 20◦C in the
house. If the thermal conductivity of the frozen soil is kfrozen = 1.3 W/m.K, if the thermal conductivity of thawed-out soil
is kunfrozen = 1.1 W/m.K, and the temperature gradient in the frozen soil ifrozen = −15◦C/m, what thickness of soil will
thaw out?

16.2 A building is to be built with a geothermal foundation in a soil with a thermal diffusivity α equal to 5 × 10−7 m2/s. The
energy piles are 0.4 m in diameter and water circulates up and down the piles to take advantage of the beneficial effect
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of the soil temperature (hotter in the winter and cooler in the summer). The energy piles operate 8 months out of the
year, and for optimum operation performance, the increase in temperature in adjacent energy piles due to the operation of
one energy pile must not exceed 10% of the initial temperature difference between pile and soil. Calculate the minimum
spacing between energy piles.

16.3 A cylindrical soil sample (D = 0.075 m, L = 0.150 m) is put in an oven where the temperature is kept at Tf = 45oC.
The initial temperature of the soil sample is Ti = 25oC. The soil sample thermal conductivity k is 1.2 W/m.K and the
volumetric heat capacity C is 1.2 × 106 J/m3.K. Using the literature, find the solution that gives the increase in temperature
at the center of the cylindrical soil sample as a function of time and calculate how long it will take for the center of the
sample to reach 30◦C, 35◦C, and 40◦C.

16.4 . A two-layer system is made of a concrete pavement overlaying a sandy subgrade. The thermal properties of the two
layers are shown in Figure 16.1s.

Concrete
k 5 0.9 W/m.K

Sand
k 5 1.6 W/m.K

0.2 m

0.6 m

Figure 16.1s Two-layer system.

a. What is the equivalent thermal conductivity of the system if the heat flows horizontally?
b. What is the equivalent thermal conductivity of the system if the heat flows vertically?

16.5 Calculate the change in volume of a saturated soil with a water content of 30% and unit weight of 18 kN/m3 if 90% of the
water by weight becomes frozen.

16.6 Add a column to Table 16.1 dealing with electricity. Write Ohm’s law and compare it to Darcy’s and Fourier’s laws.
16.7 A 0.3 m diameter, 10 m long probe is pushed into a clay. The clay has a thermal conductivity equal to 1.2 W/m.K and a

thermal diffusivity equal to 2 × 10−6m2/s. The probe is at 2500◦C and the intent is to bake the clay in place to create a
baked-in-place pile with a wall thickness equal to 0.1 m. If the clay becomes permanently solidified at 1700◦C and the
initial clay temperature is 0◦C, how long will it take before the pile is cooked and the probe can be removed to bake the
next pile?

Problems and Solutions

Problem 16.1

A house is built on a frozen soil layer. The house generates heat such that it maintains a temperature of 20◦C in the house.
If the thermal conductivity of the frozen soil is kfrozen = 1.3 W/m.K, if the thermal conductivity of thawed-out soil is
kunfrozen = 1.1 W/m.K, and the temperature gradient in the frozen soil ifrozen = −15◦C/m, what thickness of soil will thaw
out?

Solution 16.1

Based on the principle of continuity of heat flow, and assuming that the surface temperature is Ts , the freezing temperature is
Tf (equal to 0◦C), and the thawing depth is x, we can write:

qunfrozen = qfrozen
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kunfrozen × A × Tf − Ts

x
= kfrozen × A × ifrozen

kunfrozen × A × Tf − Ts

x
= kfrozen × A × ifrozen

x = kunfrozen

kfrozen
× Tf − Ts

ifrozen

The thawing depth is thus:

x = 1.1

1.3
× 0 − 20

(−15)
= 1.13 m

Problem 16.2

A building is to be built with a geothermal foundation in a soil with a thermal diffusivity α equal to 5 × 10−7 m2/s. The
energy piles are 0.4 m in diameter and water circulates up and down the piles to take advantage of the beneficial effect of the
soil temperature (hotter in the winter and cooler in the summer). The energy piles operate 8 months out of the year, and for
optimum operation performance, the increase in temperature in adjacent energy piles due to the operation of one energy pile
must not exceed 10% of the initial temperature difference between pile and soil. Calculate the minimum spacing between
energy piles.

Solution 16.2

From the problem data and using Figure 16.2 from the text, Tm/To = 0.1. The time factor TF is calculated using
Eq. 16.20:

TF = t × α

R2
o

= 8 × 30 × 24 × 3600 × 5 × 10−7

0.22 = 259.2

From Figure 16.2, log10R/R0 = 1.3; therefore, R/R0 = 19.95 and the minimum distance between energy piles should be
R = Ro × 19.95 = 4 m.

Problem 16.3

A cylindrical soil sample (D = 0.075 m, L = 0.150 m) is put in an oven where the temperature is kept at Tf = 45oC. The
initial temperature of the soil sample is Ti = 25oC. The soil sample thermal conductivity k is 1.2 W/m.K and the volumetric
heat capacity C is 1.2 × 106 J/m3.K. Using the literature, find the solution that gives the increase in temperature at the center
of the cylindrical soil sample as a function of time and calculate how long it will take for the center of the sample to reach
30◦C, 35◦C, and 40◦C.

Solution 16.3

Carslaw and Jaeger (1947) developed the solution for the temperature increase at the center of a cylindrical sample as a
function of time. The percentage increase or decrease in soil sample temperature U can be plotted versus the normalized time
factor T as shown in Figure 16.1s, for both a finite-length sample and an infinite-length sample.

U = T − Tmin

Tmax − Tmin

T = α(m2/s) × t (s)

D2(m2)
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Figure 16.2s Percent temperature change U versus time factor T .

The thermal diffusivity α of the soil sample is:

α(m2/s) = k

C
= 1.2

1.2 × 106
= 10−6

When the temperature reaches 30◦C, U = 25%; from Figure 16.1s, T = 0.03:

t (s) = T × D2

α
= 0.03 × 0.0752

10−6
= 168 sec

When the temperature reaches 35◦C, U = 50%; from Figure 16.1s, T = 0.04:

t (s) = T × D2

α
= 0.04 × 0.0752

10−6
= 225 sec

When the temperature reaches 40◦C, U = 75%; from Figure 16.1s, T = 0.07:

t (s) = T × D2

α
= 0.07 × 0.0752

10−6
= 393 sec

Problem 16.4

A two-layer system is made of a concrete pavement overlaying a sandy subgrade. The thermal properties of the two layers
are shown in Figure 16.2s.

a. What is the equivalent thermal conductivity of the system if the heat flows horizontally?
b. What is the equivalent thermal conductivity of the system if the heat flows vertically?
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Concrete
k 5 0.9 W/m.K

Sand
k 5 1.6 W/m.K

0.2 m

0.6 m

Figure 16.1s Two-layer system.

Solution 16.4

a. The equivalent thermal conductivity of the system if the heat flows horizontally can be calculated using Eq. 16.26:

ke = k1h1 + k2h2

h1 + h2
= 0.9 × 0.2 + 1.6 × 0.6

0.2 + 0.6
= 1.42 W/m.K

b. The equivalent thermal conductivity of the system if the heat flows horizontally can be calculated using Eq. 16.32:

ke = h1 + h2

h1

k1
+ h2

k2

= 0.2 + 0.6
0.2

0.9
+ 0.6

1.6

= 1.34 W/m.K

Problem 16.5

Calculate the change in volume of a saturated soil with a water content of 30% and unit weight of 18 kN/m3 if 90% of the
water by weight becomes frozen.

Solution 16.5

First we have to calculate the weight of water in unfrozen conditions. The total unit weight γ is:

γt = Ww + Ws

Vt

= 18 kN/m3

The water content is 30%; therefore, Ww = 0.3Ws. Assuming a soil unit volume of 1 m3, the water weight Ww is 4.15 kN
and the solid weight Ws is 13.85 kN.

The volume of water in the unfrozen condition is:

γw = Ww

Vw
= 10 kN/m3 or Vw = 0.415 m3

If 90% of water weight becomes frozen, then the weight of ice Wi is 3.735 kN. The unit weight of ice γi is 10% less than
the unit weight of water; therefore, the volume of ice is:

Vi = Wi

γi

= 3.735

9
= 0.415 m3

The volume of remaining unfrozen water is:

Vw = Ww

γw
= (4.15 − 3.735)

10
= 0.0415 m3

The total volume of water and ice when 90% of water mass becomes frozen is 0.4565 m3; therefore, the change in volume
of the soil is 0.0415 m3 or 4.15% of the original volume.
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Problem 16.6

Add a column to Table 16.1 dealing with electricity. Write Ohm’s law and compare it to Darcy’s and Fourier’s laws.

Solution 16.6

Parameter Flow of water Flow of heat Flow of current

Quantity Volume V (m3) Heat Q (J) Electric charge (C)
Potential Head ht (m) Temperature T (K) Voltage (V)
Gradient Hydraulic gradient ih(unitless) Temperature gradient it (K/m) Electric field gradient E(V/m)
Flux Flow rate Q (m3/s) Heat transfer rate H (J/s) Electric current flow (C/s)
Flux density Velocity v (m/s) Heat flow q (J/s.m2) Electrical flux density (C/m2)

Conductivity Hydraulic conductivity
kh(m/s)

Thermal conductivity
kt (J/s.K.m)

Electric conductivity, σ(S/m)

Law Darcy Fourier Ohm
Storage Compressibility Specific heat c (J/kg.K) Capacitance
Decay coefficient Coefficient of consolidation

cv (m2/s)
Thermal diffusivity α(m2/s) Electrical diffusivity D(m2/s)

Problem 16.7

A 0.3 m diameter, 10 m long probe is pushed into a clay. The clay has a thermal conductivity equal to 1.2 W/m.K and a
thermal diffusivity equal to 2 × 10−6m2/s. The probe is at 2500◦C and the intent is to bake the clay in place to create a
baked-in-place pile with a wall thickness equal to 0.1 m. If the clay becomes permanently solidified at 1700◦C and the initial
clay temperature is 0◦C, how long will it take before the pile is cooked and the probe can be removed to bake the next pile?

Solution 16.7

The probe can be considered an infinite cylindrical heat source, because the length-to-diameter ratio is very large. The
increase in temperature that must be achieved at a radial distance R = Ro + 0.1 = 0.25 m is 1700◦C. Using Figure 16.2:

Tm/To = 1700/2500 = 0.68

R/Ro = 0.25/0.15 = 1.67

log(R/Ro) = 0.222

From Figure 16.2, Tf = 1. Therefore:

TF = 1 = t × α

R2
o

⇒ t = R2
o

α
= 0.152

2 × 10−6
= 11250 sec . = 3.125 hours


