
CHAPTER 18

Deep Foundations

18.1 DIFFERENT TYPES OF DEEP FOUNDATIONS

Shallow foundations are typically less expensive than deep
foundations. Therefore, it is economically prudent in most
cases to start by investigating whether a shallow foundation
can be used. Only if it is shown to be insufficient should
the design proceed with deep foundations. It is nearly always
possible to use a shallow foundation to carry a vertical load,
but the area required may be excessive or unavailable. For
example, a building with a column spacing equal to s has a
limited amount of room between columns to place the footing.
Typically, if the area B2 required for the footing is more than
one-half of the area available (s2), then it is better to use a mat
foundation or a deep foundation (Figure 18.1). In other words:

B ≤ 0.707s (18.1)

where B is the footing width and s is the column spacing.
A typical deep foundation consists of a cluster of piles

installed down to a certain depth in order to transfer the load
to a more competent bearing layer or to distribute the load
over a larger depth. Piles come in many different shapes and
are made of many different materials. The cross section can be
circular and full, tubular, square, or hexagonal. The diameter
varies from 0.15 m for micropiles to 3 m for some of the bored
piles and offshore pipe piles. The length may be as short as
a few meters (bored piles for a house foundation) to more
than 100 m for offshore piles (pipe piles to anchor offshore
platforms). The material may be steel for pipe piles and H
piles, concrete for bored piles or driven concrete piles, wood
for timber piles, or even plastic (more recent installations).
These piles may be prefabricated in a factory or cast in place.
The installation process may consist of driving the piles into
the soil with either impact hammers or vibratory hammers
(driven piles), or the installers may proceed drilling a hole in
the ground, lowering a reinforcing cage, and filling the hole
with concrete (bored piles, also known as drilled shafts or
drilled piers). There are many variations of these two basic
installation techniques, but driven piles and bored piles remain
the two major installation categories. The names end-bearing
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Figure 18.1 Maximum area for shallow foundation.

piles and friction piles are used to refer to the load distribution
in the pile. End-bearing piles carry the load mostly at the pile
point, whereas friction piles carry the load mostly in friction
along the pile shaft. Battered piles are piles installed at an
inclined angle in order to better resist horizontal loads.

18.2 DESIGN STRATEGY

The design of a deep foundation consists of selecting the
type of piles and calculating the length, size, and number
of piles necessary to carry the load safely and within a
tolerable settlement. The design also includes the planning
of the installation process. Much like in the case of shallow
foundations, deep foundations are now designed on the basis
of the LRFD approach (see section 17.4). Here again two
limit states are considered: the ultimate or strength limit
state and the service limit state (section 17.4). In the LRFD
approach, the limit state is written as:

n∑
i=1

γiLi ≤
m∑

j=1

ϕjRj (18.2)

where γi is the load factors for the loads Li, and ϕj is the
resistance factors for the resistances Rj . The load factors γ
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554 18 DEEP FOUNDATIONS

are the same for shallow and deep foundations (Chapter 17,
Table 17.1), but the resistance factors ϕ are different, as
they are tied to specific design methods for calculating the
pile capacity. These resistance factors for the ultimate limit
state vary between 0.2 and 0.5 (AASHTO 2010) and will be
discussed in sections 18.5.1 and 18.6.4. The ultimate limit
state or strength limit state might look like this:

γ1DL + γ2LL ≤ ϕ1Ruf + ϕ2Rup (18.3)

where DL is the dead load, LL is the live load, Ruf is the pile
ultimate friction resistance, and Rup is the pile ultimate point
resistance. The service limit state can be presented as:

γ3DL + γ4LL ≤ ϕ3R(sall) (18.4)

where sall is the allowable settlement of the foundation, and
R(sall) is the pile load that generates the allowable settlement.
For the service limit state, the load factors and the resistance
factors are usually taken equal to 1. Furthermore, if the
settlement will take place over a long period of time, the live
load is not included in the settlement calculations except for
the permanent live load.

Prior to the development of the load and resistance factor
design approach (LRFD; also called limit state design or
LSD), the working stress design (WSD; also called allowable
stress design or ASD) approach was used. WSD consists of
applying a global factor of safety against the ultimate bearing
capacity of the soil in order to obtain the safe load. The
equation is:

L < Ru/F (18.5)

where L is the applied load to be safely carried, Ru is the
ultimate resistance, and F is the global factor of safety. The
factor of safety varied from 2.5 to 3 when Ru was based on
calculations down to 2 when Ru was based on an appropriate
number of load tests.

The type and size of piles selected for a project are often
influenced by what is available locally; for example, in Hawaii
steel pipe piles are rare, but concrete piles are common. Also,
in given stratigraphies, some piles are easier to install than
others; for example, in stiff clay with a water table at a large
depth, bored piles drilled dry are very economical. In very
soft soils, it is very difficult to drill and keep open a clean
hole, so driven piles are preferred because they are easy to
drive. Sometimes the size of the load to be carried dictates
the pile type; for example, large, heavy loads can be carried
more readily by a single large-diameter bored pile than by an
equally large driven pile because it is easier to drill a large
hole in the ground than to drive a large-diameter pile unless
the soil is very soft.

The pile length can be determined by calculations. This
is the case with offshore piles, where a required ultimate
pile capacity is determined by using the load and resistance
factors; then an ultimate pile capacity profile is generated as a

function of depth, and the pile length is chosen to correspond
to the depth where that ultimate capacity is first reached.
In many instances, however, the pile length is chosen by
inspecting the stratigraphy of the site. If a hard layer exists
at some reasonable depth below the ground surface, the piles
will be founded in that bearing layer and the pile length is
fixed. If the stratigraphy is uniform and does not have a strong
layer, or if the strong layer is too thin to support the pile group,
the pile length may be dictated by the maximum length that
can be transported without special permits, or the maximum
length available; for example, timber piles are typically no
longer than 20 m. In onshore practice and for driven piles,
the length of the pile is often dictated by the pile blow count
that is written into the specifications: this is called driving to
a blow count. In simple terms, onshore you drive until you
reach a set blow count; offshore you drive until you reach a
set penetration.

If the pile size, type, and length are determined, then the
design consists of finding the number of piles required to
carry the load safely and within a tolerable settlement. Note
that this load may be a vertical load, a horizontal load with
or without overturning moment, or a combination of all of
these. Combination loading is handled by considering the
two load types separately and ignoring the interaction effect.
The reason for this choice is that the resistance to vertical
load tends to be mobilized at depth, whereas the resistance
to horizontal loads tends to be mobilized close to the ground
surface. The design strategy for either load case proceeds
according to the following steps:

1. Choose the pile size, type, and length.
2. Calculate the ultimate bearing capacity of one pile (and

maximum bending moment for horizontal loads).
3. Calculate the number of piles required to satisfy the

ultimate limit state criterion under the given load.
4. Check the group effect.
5. Reiterate steps 1 through 4 until the ultimate limit state

criterion is satisfied.
6. Under the foundation load, calculate the movement of

the pile group and check that the service limit state is
satisfied.

7. If the calculated movement is larger than the acceptable
movement, the foundation must be modified (increase
pile depth, pile size, use different pile type) and step 6
repeated.

8. If the movement is acceptable, the design is complete,
as the ultimate limit state and the service limit state will
have been satisfied.

Design methods for deep foundations can be classified into
three categories: design by theory, design by empiricism, and
design by analogy. Design methods by theory rely on the-
oretical derivations for recommending the design equations.
Design methods by empiricism rely on experimental data and
correlations for recommending the design equations. Design
methods by analogy rely on the close analogy between the
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mode of deformation in the soil test and in the foundation
case. Generally speaking, the best methods are those that
combine the advantages of all three methods by including a
close analogy, experimental data, and appropriate theoretical
background.

18.3 PILE INSTALLATION

18.3.1 Installation of Bored Piles

Bored piles are also known as drilled shafts or drilled piers.
Bored piles are installed by drilling a hole in the ground,
removing the drilling tool, inserting the reinforcement cage,
and filling the hole with concrete. In more detail, the sequence
is as follows: First the hole is drilled with a drill rig. The diam-
eter of the hole varies from 0.3 m all the way to 3 m. If the soil
is free standing over the depth drilled, the hole is drilled dry. If
not, slurry is placed into the hole to help prevent caving of the
hole. The level of the slurry in the drilling hole must always
be higher than the groundwater level, to ensure a positive flow
from the drill hole to the soil through the borehole wall. Slur-
ries can be mineral slurries or polymers. The most common
type of mineral slurry is bentonite slurry, prepared by mixing
bentonite particles with water. The consistency of this slurry
is very liquid. When the slurry stands in the open hole, the
slurry starts flowing horizontally into the soil; during this pro-
cess, the bentonite particles accumulate on the wall and form
a thin cake that seals the hole from incoming or outgoing wa-
ter. This minimizes the sloughing of the soil into the hole that
is often caused by entrainment of the incoming flow of water.
Polymer slurries are viscous, but they do not form cakes on the
wall; rather, they simply continue to flow into the soil, so new
slurry must be added continuously. The unit weight of a ben-
tonite slurry is between 3 and 10% higher than the unit weight
of water, whereas the unit weight of a polymer slurry is less
than 3% higher than that of water. The chemical composition
of slurries should be checked before use (Brown et al. 2010).

If slurry is insufficient to keep the hole open, a steel casing
can be lowered in the open hole and advanced as drilling
progresses, to prevent collapse. After the hole is drilled, the
casing may be left in place permanently or retrieved. Once
the hole is opened, a steel reinforcement cage is lowered in
the center of the hole. Then a tremie pipe is lowered to the
bottom of the hole and concrete is poured into the hole from
the bottom up. Because concrete is heavier than bentonite
slurry, the concrete displaces the slurry upward, to overflow
in a desanding pit, for example. It is very important to keep
the bottom of the tremie pipe below the concrete level to
prevent contamination of the concrete by the slurry. If the
bottom of the tremie pipe is raised above the concrete-mud
interface (called burping the tremie) during concreting, there
is a possibility that some slurry or soil may become trapped
in the concrete. This would create a weak inclusion or defect
in the bored pile. Onshore, the slurry is recirculated, but for
offshore drilled and grouted piles, the slurry is wasted on the

ocean floor. Once the hole is full of concrete, it is allowed to
cure; thereafter, the bored pile is complete.

In summary, there are three main procedures for placing a
bored pile (Brown et al. 2010):

1. Dry method (Figure 18.2)
2. Casing method (Figure 18.3)
3. Wet method (Figure 18.4)

Note that often a bored pile is constructed by using a
combination of two or three of the methods listed here. In
addition to those methods, two other techniques are sometime
used for bored piles: base grouting and underreams (also
called bells). Base grouting consists of injecting grout under
pressure at the base of the bored pile after the concrete is
sufficiently hard (Figure 18.5). This increases the pressure
at the base by reaction against the side friction of the bored
pile. This increase in pressure stiffens and strengthens the soil
under the pile point and actually prestresses the pile against
the soil. This technique aims at decreasing the settlement and
increasing the capacity of the pile under load. Underreams
or bells are created by lowering a special drilling tool to
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Figure 18.2 Installation of bored piles: Dry method (After Brown
et al. 2010).
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Figure 18.3 Installation of bored piles: Casing method (After
Brown et al. 2010).
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Figure 18.4 Installation of bored piles: Wet method (After Brown et al. 2010).
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Figure 18.5 Installation of bored piles: Base grouting (After
Brown et al. 2010).

the bottom of the hole before concreting takes place. This
tool expands sideways and creates a cone-shaped opening
by rotation (Figure 18.6). The angle of the cone with the
horizontal is commonly in the range of 45 to 60 degrees.
The purpose of an underream or bell is to increase the point
resistance of a bored pile or the uplift capacity without having
to increase the diameter over the entire length of the pile.

Some of the important issues in bored piles installation are
as follows (ADSC-DFI 2004):

1. For bored piles drilled dry, one must ensure that the
concrete that falls in the hole is not segregated by
hitting against the reinforcing bars.

2. One must also ensure that there is enough room between
the outside rebar and the soil for the concrete aggregates
to fit properly.

3. For bored piles constructed under slurry and in sand, it
is important to de-sand the slurry as drilling progresses
(settling pond). If not, sand will settle at the bottom of

Shaft
extension Notch

angle

Toe
height

Underream
angle (458

or 608)

Figure 18.6 Installation of bored piles: Underream or bell (After
Brown et al. 2010).

the hole and form a soft, compressible cushion that will
hinder the settlement performance of the pile.

4. For bored piles constructed under slurry, it is also
important not to keep the slurry in the hole too long. If
it stays in the hole too long, the slick bentonite cake that
forms on the wall of the hole will become very thick
and will significantly decrease the friction capacity of
the shaft.

5. In all cases, it is important to clean any loose soil
from the bottom of the shafts just before concreting,
to minimize settlement due to recompression of the
excavated soil.

An experiment was conducted for two bored piles 1 m
in diameter and 10 m long in sand (Briaud et al. 2000). In
the first case, the contractor was asked to do the worst job
possible (Pile 1) and in the second case the contractor was
asked to do the best job possible (Pile 2). For Pile 1, the
contractor did not de-sand the slurry, left the slurry in place
in the finished hole for 72 hours, and did not clean the bottom
of the pile. A 0.3 m thick cushion of soft sand was observed
at the bottom of the pile and a 10 mm thick layer of bentonite
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Figure 18.7 NDT techniques for bored piles: (a) Cross hole logging. (b) Gamma-gamma logging.
(c) Sonic echo and impulse response (After Brown et al. 2010).

mud was measured on the walls of the bored pile hole by
horizontal sampling. For Pile 2, the contractor was careful
not to make any of those errors. Both piles were concreted,
cured, and load tested to 150 mm of penetration. At 150 mm
of penetration, Pile 1 carried only 1500 kN, whereas Pile
2 carried 4500 kN. The load distribution in the pile was
measured with extensometers. Most of the difference in load
came from the friction, which was reduced by a factor of 10;
the point resistance was the same in both cases. This shows
how important it is always to control the quality of foundation
construction.

Drilled and grouted piles are also bored piles. These piles
are installed by drilling a hole dry or under slurry; lowering
a steel element such as an H beam, a steel pipe, or a rebar in
the center; and filling the annulus between the reinforcement

and the soil with grout. Offshore casings for oil wells are
placed that way. Micropiles are small-diameter versions of
bored piles or drilled and grouted piles. Augercast piles were
initially installed in such a way that the drilling, lowering of
the reinforcement, and grouting were done in a single down-
and-up process. This was very efficient, but was limited to
smaller diameters, and the reinforcement was also limited to a
centralized bar or small casing placed through the center of the
hollow stem auger used to drill the hole. Now augercast piles
are drilled with larger diameter augers, the auger is retrieved,
and a reinforcement cage with centralizers is lowered in the
holefull of cement paste before the cement sets.

Deep soil mixing is yet another process leading to stronger
elements placed in the ground to carry the load from a struc-
ture. This process consists of drilling the soil with a cement
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slurry and mixing the soil and cement in place while drilling.
The cement and the soil harden into a soil-cement column
made of a material with a strength intermediate between soil
and concrete. The cement volume is around 20% of the soil
volume and typical column diameters are around 1 m. The
strength of this material varies significantly, but an unconfined
compression strength equal to 2 MPa is not uncommon.

18.3.2 Nondestructive Testing of Bored Piles

Nondestructive testing (NDT) can be used on any deep foun-
dation member. However, it is most often used in conjunction
with the evaluation of onshore bored pile foundations. Several
methods can be used (Figure 18.7):

1. Cross hole sonic logging
2. Gamma-gamma logging
3. Sonic echo
4. Impulse response

Cross Hole Sonic Logging

The cross hole sonic logging technique requires that at least
two access holes and casings be left in the bored pile during
construction. This is achieved by attaching the casings to
the reinforcing cage. The casings are typically around 50 to
57 mm in diameter and should be very well connected to the
bored pile to avoid loss of signal across the interface. A source
transmitter is lowered in one of the access casings while a
receiver is lowered to the same depth in another casing. The
source emits a compression wave signal and the time t needed
to receive the signal across the bored pile at the receiver is
monitored. The compression wave speed is calculated as:

v = d

t
(18.6)

where v is the wave speed, d is the distance from the source
to the receiver, and t is the travel time. The compression
wave speed v in sound concrete is about 4000 m/s, in water
is 1500 m/s, in air is 300 m/s, and in soils is anywhere from
400 to 2000 m/s. Therefore, any values much lower than
4000 m/s will be an indication of a problem with the bored
pile. Table 18.1 gives an indication of how to rate concrete
for various velocity readings. It is also possible to place the
source and the receiver at different depths in the bored pile and

Table 18.1 Concrete Rating from Wave Speed

Compresion Wave Speed Concrete Quality

3600 to 4000 m/s Good
3200 to 3600 m/s Questionable
< 3200 m/s Poor/defective

(After Brown et al. 2010.)

across different horizontal paths. The data are then inverted
to get a three-dimensional rendition of the bored pile. This is
called cross hole tomography (Hollema and Olson 2002).

Gamma-Gamma Logging

The gamma-gamma logging technique requires that an access
tube be left in the bored pile during construction. A gamma
ray source and a gamma ray detector are placed in the same
cylindrical probe and lowered in the access tube. Gamma
rays are beams of photons; some of the photons bounce back
to the detector and are counted upon arrival. The gamma ray
arrivals are recorded in counts per second (cps). There is a
reasonably linear correlation between the concrete density
and the log base 10 of the cps:

γconc = a log(cps) + b (18.7)

where γconc is the unit weight of concrete, cps is the gamma
ray count recorded at the detector per second, and a and
b are calibration constants. The radius of influence of the
gamma ray test is about half the distance between the source
and the detector on the probe. In most cases, the radius of
influence is less than 0.2 m. The result of a gamma-gamma
logging test is a profile of unit weight along the bored pile.
This profile gives many values of the unit weight, thereby
allowing one to calculate a mean and standard deviation.
Any unit weight value that is less than 3 standard deviations
below the mean reading for the pile is considered anomalous
(Brown et al. 2010).

Sonic Echo Method

The sonic echo technique does not require any access tube in
the bored pile. Thus, it can be used even if plans were not
made ahead of time to NDT the bored piles. However, it is not
as reliable as the more rigorous cross hole or gamma-gamma
testing. The sonic echo test consists of hitting the top of the
bored pile with a carpenter-size hammer and recording the
return signal at a geophone glued to the top of the pile. The
departure and arrival of the compression-tension wave are
recorded and the distance travelled is calculated according
to a known wave speed. If the wave encounters a necking
defect (reduction in concrete cross section), then it returns
as a tension wave. If the wave encounters a bulb defect
(increase in cross section), then it returns as a compression
wave. Hence, the sign of the return wave indicates whether
the defect is a necking or a bulb.

The reason for the return wave being a compression or a
tension wave is explained as follows: If you hit a set of billiard
balls lined up in a row (Figure 18.8) with a hammer, the last
ball will leave the row. The reason is that the compression
wave you generate with the hammer propagates through the
balls and gets to the end. Finding no resistance, it tries to
go back as a tension wave, but because there is no tension
capacity between the balls, the last ball leaves. Now, if the
billiard balls are in line but the last one is against a wall, and
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Figure 18.9 Sonic echo idealized signals.

if you hit the first one with a hammer, it is the first one that
leaves the lineup. The reason is that the compression wave
propagates through the balls, hits the wall, and returns as a
compression wave back toward the first ball. There it finds no
resistance and returns as a tension wave. Because there is no
tension capacity between the balls, the first one leaves. The
same thing happens in a bored pile. If the compression wave
hits a necking defect (low resistance), it returns as a tension

wave; if it hits a bulb defect (high resistance), it returns as a
compression wave (Figure 18.9).

Some of the limitations of the sonic echo method are:

1. The soil strength affects the intensity of the return wave.
Pile length-to-diameter ratios larger than 10 in rock
are unlikely to give satisfactory returns. In soft soils,
however, length-to-diameter ratios of up to 50 can give
satisfactory returns.

2. The interface of soil layers with contrasting strengths
can create some return waves that must be distinguished
from defects in the bored pile.

3. The smallest defect that can be detected improved from
about 50% in 1993 (Baker et al. 1993; Briaud et al.
2002) to 10% in 2001 (Iskander et al. 2001).

4. An important distinction must be made between an
anomaly and a defect. What may be detected as an
anomaly may not represent a defect that would make a
bored pile unusable.

Impulse Response Method

The impulse response technique is similar to the sonic echo
method, but in this case the head of the hammer is instru-
mented with a dynamic load cell. During the impact that
generates the wave propagation, the force-time signal of the
hammer is recorded through this load cell. In addition, the
velocity is recorded at the pile top. The force-time signal
and the velocity time signal are then transformed into the
frequency domain to create the force spectrum F and the
velocity spectrum V. The ratio V/F is called the mobility and
is plotted against the frequency (Figure 18.10).

Interpretation of the mobility curve proceeds as follows
(Finno and Gassman 1998). The slope of the initial part of
the mobility curve gives the small strain stiffness of the bored
pile–soil system. The distance between peaks on the mobility
curve gives the pile length or the distance between anomalies:

�f = vconc

2L
(18.8)

M
o

b
il
it

y
 5

 V
/F

Initial slope
indicative of
small-strain
stiffness

Frequency, f (Hz)

P Q
N 5 Shaft

Mobility 5 PQ

5

Df 5 Vc/2L D f

rcVcAc

1

Figure 18.10 Mobility curve from an impulse response test.
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where �f is the distance between frequency peaks on Figure
18.10, vconc is the compression wave velocity in concrete, and
L is the length of the pile or the distance between anomalies.
The mean value of the ratio V/F (Figure 18.10) is the inverse
of the impedance:(

V

F

)
mean

= 1

I
= 1

ρcvcAc

(18.9)

where (V/F )mean is the mean mobility from the mobility
curve (Figure 18.10), I is the impedance of the system, ρc is
the mass density of the concrete, vc is the compression wave
velocity in the concrete, and Ac is the cross-sectional area of
the concrete pile.

Impedance Log Method

The impedance log technique is a derivative of the impulse
response method. As mentioned regarding the impulse re-
sponse method, the variation in impedance as a function of
frequency can be generated. By comparing the mobility curve
with the mobility curve for an infinitely long and constant-
diameter bored pile, the variation in impedance as a function
of depth can be generated (Hertlein 2009). This impedance
log represents a two-dimensional rendition of the bored pile
cross section as a function of depth (Figure 18.11). Note that
in this rendition, because the impedance I is the product of
ρcvcAc, all changes in mass density, wave velocity, and area
are interpreted as changes in area. The impedance log has the
advantage of giving a picture of the bored pile.

18.3.3 Installation of Driven Piles

A pile can be driven into the ground either by impact hammers
or vibratory hammers. Impact hammers are big, heavy masses,
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Figure 18.11 Example of impedance log of a bored pile (After
Brown et al. 2010).

called rams, that are lifted and dropped repeatedly on the top
of a pile to drive it into the ground. These hammers are
of different types: steam hammers, diesel hammers, and
hydraulic hammers. Steam hammers, the oldest types, use
compressed steam to lift the ram; they may be single acting or
double acting. In a single-acting hammer, the steam pressure
lifts the ram which then falls under its own weight. In a
double-acting hammer, the steam pressure also lifts the ram,
but when the ram is ready to fall, the steam pressure acts on
top of the ram to accelerate it downward, thereby increasing
the force at impact. Diesel hammers, which use an explosion
of ignited diesel fuel to lift the ram, can also be single acting or
doubling acting. Hydraulic hammers use the hydraulic action
of a piston. Hammers are rated in terms of maximum energy
that can be delivered (drop height times weight of ram); these
energies range from 20 kN.m or kJ to 800 kJ onshore and
can reach up to 3000 kJ for offshore underwater hydraulic
hammers. A cushion is placed between the hammer and the
pile top to limit the stress generated in the pile material (soften
the blow) by the hammer impact. Cushions made of wood
are common and thicknesses can range from 25 to 100 mm.
Sometimes a pile cap is also placed between the hammer and
the pile. Pile driving formulas and the wave equation analysis
(Lowery et al. 1967) are used to make calculations regarding
drivability, hammer size, pile stresses, and pile capacity. Piles
onshore are typically driven until a chosen blow count for a
given hammer is reached. This blow count is usually around
75 blows per 0.3 meters of penetration. Offshore piles are
usually driven to a penetration depth regardless of the blow
count required.

Vibratory hammers grab the top of the pile and shake it
vertically into the soil. The vibration is created by eccentri-
cally rotating masses and the peak force is generated by the
static weight of the hammer plus the centrifugal vibrating
force. Although the frequency can vary from 10 to 100 Hz,
the most common vibratory hammers operate at around 25
to 30 Hz. Resonance of the hammer-pile system is rarely
reached, as it is typically higher than 30 Hz unless the pile is
very long. Low-frequency, high-weight vibratory hammers
(e.g., 1500 kN at 10 Hz) are used to drive large piles and cais-
sons. Medium-frequency vibratory hammers (e.g., 250 kN at
25 Hz) are most common and are used for driving sheet pile
and small piles. They work particularly well in sands where
vibrations easily displace the soil particles. High-frequency
vibratory hammers (e.g., 90 to 120 Hz) are rare and aim at
reaching hammer-pile system resonance. Methods based on
empirical formulas rooted in energy consideration as well as
variances of the wave equation analysis are used to analyze
these systems (Warrington 1992; Chua et al. 1987; Rausche
2002). The advantage of vibratory driving is that it is usu-
ally faster than impact driving, with a penetration rate that
can be 10 times faster. The drawback is that it has limited
penetration capability and does not develop residual stresses
in the pile at the end of driving like impact-driven piles. As
a result, a vibrodriven pile tends to exhibit more settlement
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at working loads than an impact-driven pile, although both
may have the same ultimate load (Briaud et al. 1990). Some-
times vibratory-driven piles are impact driven at the end of
penetration to benefit from the advantages of both methods.

18.3.4 Pile Driving Formulas

Pile driving analysis started by assuming that the pile motion
into the soil under each blow was a rigid body motion. Under
this assumption, the energy conservation equation gives:

Rud = Wh

s
(18.10)

where W is the weight of the hammer, h is the drop height,
Rud is the ultimate pile capacity at the time of driving, and s
is the penetration of the pile. This simple equation turns out
to be riddled with problems:

1. The fall of the ram is not unimpeded (e.g., friction)
and there are other energy losses (e.g., compression of the
cushion), so that the energy delivered to the pile is not Wh
but a fraction of Wh′. This can be written as eWh where
e is the efficiency of the driving system; e values are very
difficult to quantify unless special measurements are made
during driving, and can vary from 0.3 to 0.9.

2. The pile is not a rigid body; it compresses and rebounds
during each hammer blow. This compression and rebound
uses up energy that is not used to advance the pile penetration.
This elastic energy is often represented by a term equal to
Rudc/2 (Figure 18.12) and is added to the resistance side of
the energy equation (Eq. 18.10).

3. The movement of the pile during the driving process
is best represented by a wave propagation in the pile. This
process is not consistent with a single energy equation such
as Eq. 18.10. This process is better represented by what is
called the wave equation analysis.

4. If the static ultimate capacity Rus is the quantity sought
from Eq. 18.10, then the dynamic component of Rud due to
rate and inertia effects must be subtracted from Rud to get
Rus.

Nevertheless, various forms of Eq. 18.10 have been pro-
posed and used. The incentive was clearly the simplicity and
great usefulness of this equation. Referring to Figure 18.12,
the energy used in driving the pile is equated to the effective
energy delivered by the hammer, and an improved version of
Eq. 18.10 is:

Rud = eWh

s + c

2

(18.11)

where Rud is the ultimate capacity of the pile at the time of
driving; e is the efficiency of the driving system; W is the
weight of the ram; h is the height of drop (Wh is the rated en-
ergy of the hammer); s is the net downward movement of the
pile after the blow, often called the permanent set; and c is the
elastic rebound of the pile (c is usually taken as 5 mm, based

C

S

Movement (mm)

Time (ms)

h

W

CS
Movement

C
Energy = RUD

2
S1

RUD

Figure 18.12 Pile driving event.

on experience). If the number of blows per 300 mm penetra-
tion is N, then the permanent set s is equal to s = 300/N. In
order to include the effect of water stress dissipation and soil
relaxation on the ultimate capacity, it is very desirable to use
the blow count Nredrive from redriving the pile a good while
after the end of driving. Then Eq. 18.11 becomes:

Rud = eWh(mm)

300

Nredrive
+ 2.5

(18.12)

This equation indicates how the pile resistance at the time
of redriving is linked to the blow count. The R-N curve
(Figure 18.13) gives the following information:

1. It gives the pile resistance at the time of driving Rud for
an observed value of the blow count N.

2. Alternatively, if Rud is known, if a reasonable blow
count N for the end of driving is selected, and if the
efficiency e of the system can be estimated, then the
rated hammer energy Wh required to drive the pile can
be obtained.

3. Equation 18.12 is a hyperbola with an asymptotic value
of the pile resistance at the time of driving Rud(max) of:

Rud(max) = eWh(mm)

2.5
(18.13)

This is the maximum resistance that can be overcome
by the hammer.



562 18 DEEP FOUNDATIONS

Pile driving blow count, n

For a given
hammer 

P
il
e
 r

e
s
is

ta
n

c
e
 a

t 
th

e
 t

im
e

o
f 

d
ri

v
in

g
RUD (max)

Figure 18.13 Pile driving R-N curve.

4. If a load test is performed to obtain the static ultimate
capacity after driving Rus, the ratio K between Rus and
Rud can be calculated and used to evaluate Rus from the
Rud values on other piles.

One of the shortcomings of the pile driving equation is
that it considers rigid body motion of the pile. In fact, a com-
pression wave imparted by the hammer propagates down
the pile and back up the pile in a time ranging from 5 to
20 milliseconds. This phenomenon must be accounted for to
arrive at a more satisfactory analysis of the driving event.

18.3.5 Wave Propagation in a Pile

Before we talk about the wave equation for pile driving
analysis, let’s talk about wave propagation in a pile. We will
apply the general principle to develop the solution for the
displacement problem described in section 11.4.3.

1. We zoom in on an element of pile dz long (Figure
18.14).

2. We identify the knowns and unknowns, including the
stresses in the pile element, the inertia force associated
with the element mass, and the soil friction on the side
of the element.

3. The fundamental equation in this case is the equation of
motion:∑
F = ma or (σ + dσ)A − σA + fPdz = ρAdz

d2u

dt2

(18.14)

Particle displacement u(z, t)

Particle velocity v 5 du/dt

Particle acceleration a 5 d2u/dt2

Strain in pile « 5 du/dz

Pile behavior s 5 E«

Soil behavior f 5 f(z, u, t)

m a

u (z, t)

dz f f

s 1 ds

s

Figure 18.14 Element of pile.

where σ is the normal stress in the pile, A is the cross-
sectional area of the pile, f is the shear stress at the
interface, P is the pile perimeter, dz is the element
length, ρ is the mass density of the pile, u is the pile
particle displacement, and t is the time.

4. The constitutive equation for the pile is:

σ = Eε = E
du

dz
(18.15)

where E is the pile modulus of elasticity, ε is the strain
in the pile, and z is the depth. This equation ignores the
influence of confinement on the pile. This confinement
plays a minor role because the stress in the pile is
typically much larger than the confining stress from the
surrounding soil.

5. The constitutive equation for the soil links the shear
stress f at the pile soil interface to the displacement u of
the pile. The shear stress f is then a function of u, and of
the depth z if the soil is not uniform, and also the time t:

f = f (u, z, t) (18.16)

6. Equations 18.14 through 18.16 are regrouped to give
the wave equation:

d2u

dz2
− ρ

E

d2u

dt2
+ P

AE
f = 0 (18.17)

7. The boundary and initial conditions are the hammer im-
pact velocity at z = 0 and t = 0 and the point resistance
from the soil at z = L and t = 0. The wave equation
program solves this equation by stepping into time, as
will be shown later.

The wave speed c = dz/dt is different from the pile particle
velocity v = du/dt. The wave speed c is typically thousands
of times larger than the pile particle velocity. The wave
travels down and up the pile during the few milliseconds of
impact, whereas the particle only moves around its point of
equilibrium. When a particle in the pile moves, it pushes its
neighbor, which moves in turn. The very slight delay between
the movements of these two neighbors is what creates the
propagation of the wave. Of course, the stiffer the pile is,
the faster the neighbor feels the push; thus, c is higher for
stiffer materials. In contrast, the denser the pile is, the harder
it is for the particle to move its neighbor, so c is lower for
higher-density materials. The equation for the wave speed
(compression) is derived as follows. We will use the case of a
compression wave propagating in a pile without surrounding
soil.

d2u

dz2
= ρ

E

d2u

dt2
(18.18)

In this instance it is convenient to change variables:

x = z +
√

E

ρ
t and y = z −

√
E

ρ
t (18.19)
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Then Eq. 18.18 becomes:

d2u

dxdy
= 0 (18.20)

for which the solution is of the form:

u = f (x) + g(y) = f

(
z +

√
E

ρ
t

)
+ g

(
z −

√
E

ρ
t

)
(18.21)

Let’s now consider the position of the wave at time t and
t + �t (Figure 18.15). At time t, the wave is at a depth z,

at time t + �t the wave is at a depth z + �z, and the wave
speed is c = �z/�t. The two functions f and g represent
two waves, one coming down and one coming up in the
pile. Let’s consider one of the two waves represented by
function f. The displacement u(t) at time t and depth z is

u = f
(
z +

√
E
ρ

t
)

and the displacement u(t + �t) at time

t + �t and depth z + �z is u = f
(
z + �z +

√
E
ρ

(t + �t)
)

.
Because we have unimpeded propagation of the wave, the
two values of u must be equal for all values of t and z. This
requires that:

�z =
√

E

ρ
�t and c =

√
E

ρ
(18.22)

where c is the wave speed.
The impedance I is defined as the ratio between the force

and the velocity. The relationship is established as follows.

F = σA = EεA = E
du

dz
A = E

du

dt

dt

dz
A = EA

c
v = Iv

(18.23)
where F is the force generated by the impact, σ is the normal
stress, A is the cross-sectional area, E is the modulus of
elasticity, ε is the normal strain, u is the particle displacement,
z is the depth, t is the time, c is the wave speed, v is the
particle velocity, and I is the impedance equal to EA/c.

Equation 18.21 indicates that the particle velocity is made
of the influence of a wave going down plus a wave going up
in the pile. Similarly, the force F is made of a force going

z at t

z 1 Dz at t 1 Dt

Figure 18.15 Wave location at time t and t + �t.

down plus a force going up:

F = AE
du

dz
= AE

(
df↓
dz

+ dg↑
dz

)
= F↓ + F↑ (18.24)

The equation for the particle velocities is also similar:

v = du

dt
= df↓

dt
+ dg↑

dt
= v↓ + v↑ (18.25)

Note that:

df↓
dz

= c
df↓
dt

and
dg↑
dz

= −c
dg↑
dt

(18.26)

Therefore, using the impedance I, defined as:

I = AE

c
(18.27)

we get the following relationships:

F↑ = 0.5(F + Iv) = Iv↑ (18.28)

F↓ = 0.5(F − Iv) = −Iv↓ (18.29)

18.3.6 Wave Equation Analysis

In 1960, Smith proposed a calculation scheme to include the
wave propagation in the analysis. This was the beginning
of the modern pile driving analysis. The equations proposed
by Smith are based on a discretization of the hammer, the
cushion, the pile, and the soil. This discretization breaks the
pile into elements that have a mass M and a spring constant
K (Figure 18.16). The hammer, the cap-block, the helmet,
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Figure 18.16 Discretization of the pile for wave equation analysis.
(After Lowery et al. 1967).
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and the cushion can also be represented by an element with a
mass and a spring constant to represent their compressibility
under load. The soil is represented as a series of springs tied
to the pile elements with a dashpot for dynamic effects and
a sliding block for maximum resistance. The soil model for
the static resistance is an elastic, perfectly plastic model, as
shown in Figure 18.17. The movement required to reach the
plastic plateau is called the quake Q. The dynamic resistance
of the soil is obtained from the static resistance by:

RDYN = RSTA(1 + Jv) (18.30)

where RDYN and RSTA are the dynamic and static resistance
of the soil respectively, v is the particle velocity of the pile
element, and J is a damping coefficient. Table 18.2 gives
the values for Q and J originally recommended by Coyle
et al. (1973). Tables 18.3 and 18.4 give the values currently
recommended in the GRLWEAP manual (2012). GRLWEAP

Table 18.4 Recommended Damping Coefficient J

Soil Type Side Damping Point Damping

Coarse-grained soils 0.16 s/m
Fine-grained soils 0.65 s/m
All soils 0.50 s/m

(GRLWEAP 2012.)

makes additional comments regarding the quake values:

1. Nondisplacement piles are sheet piles, H piles, or open-
ended pipe piles that are not plugging during driving.

2. Displacement piles are solid piles (concrete piles) or
piles that plug during driving.

3. Typically, pipe piles with diameters larger than 900 mm
will not plug, whereas H piles and pipe piles with
diameters smaller than 500 mm will plug during driving.

4. For vibratory-driven piles in fine-grained soils, the
quake value should be doubled.

5. For vibratory-driven piles in all soils, the damping
values should be doubled.

The equations used to solve the wave equation are as
follows:

D(m, t) = D(m, t − 1) + V (m, t − 1)�t (18.31)

where D(m, t) is the displacement of mass number m at
the time step number t, V (m, t − 1) is the velocity of mass
number m at time step number t − 1, and �t is the time

Table 18.2 Original Values of Quake Q and Damping Coefficient J

Soil Type Side Damping Point Damping Side Quake Point Quake

Clay 0.65 s/m 0.03 s/m 2.5 mm 2.5 mm
Silt 0.33 s/m 0.50 s/m 2.5 mm 2.5 mm
Sand 0.16 s/m 0.50 s/m 2.5 mm 2.5 mm

(Lowery et al. 1967)

Table 18.3 Recommended Quake Q

Soil Type Pile Type or Size Side Quake Point Quake

All soil types All pile types 2.5 mm
All soil types, soft rock Nondisplacement piles (unplugged) 2.5 mm
Very dense and hard soils Displacement piles with diameter or width D (solid or plugged) D(mm)/120
Loose or soft soils Displacement piles with diameter or width D (solid or plugged) D(mm)/60
Hard rock All types 1 mm

(GRLWEAP 2012.)
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increment. This time increment must be very small, as the
entire event may take only 20 milliseconds. Samson et al.
(1963) recommend that �t be less than:

�t ≤ �L√
E
ρ

(18.32)

where �L is the pile element length, E is the pile modulus of
elasticity, and ρ is the mass density of the pile material. This
ensures that the wave does not propagate past one element
during one time step. Once the displacements of all the
pile elements are calculated, the compression of the springs
between the pile elements can be calculated:

C(m, t) = D(m, t) − D(m + 1, t) (18.33)

where C(m, t) is the compression of spring number m at time
step number t, and D(m, t) is the displacement of the mass
number m at time step number t.

Once the spring compressions are known, the force in the
spring can be calculated:

F(m, t) = C(m, t)K(m) (18.34)

where F(m, t) is the force in spring number m at time
step number t and K(m) is the spring constant for spring
number m.

The soil resistance is calculated as follows:

R(m, t) = (D(m, t) − D′(m, t))K ′(m)(1 + JV(m, t − 1))

(18.35)

where R(m, t) is the dynamic soil resistance on the side of
mass m or under the last mass at time step number t;D(m, t)

is the displacement of mass number m at time step number
t;D′(m, t) is the displacement beyond the quake if D(m, t)

is larger than the quake (if not, D′(m, t) is zero); K ′(m) is
the soil spring for mass number m; J is the soil damping
factor; and V (m, t − 1) is the velocity of mass number m at
time step number t − 1. Then the velocity of the element is
calculated as follows:

V (m, t) = V (m, t − 1)

+ (F (m − 1, t) − F(m, t) − R(m, t))
g�t

W(m)

(18.36)

where V (m, t) is the velocity of mass number m at time step
number t, F (m − 1, t) is the force in spring m − 1 above
mass number m at time step number t, F (m, t) is the force in
spring m below mass number m at time step number t, R(m, t)

is the dynamic soil resistance on the side of mass number m at
time step number t, g is the acceleration due to gravity, �t is
the time step, and W(m) is the weight of mass number m. In
this string of equations, Eq. 18.34 is the constitutive equation

for the pile, Eq. 18.35 is the constitutive equation for the soil,
and Eq. 18.36 is the fundamental equation (F = Ma).

Several computer programs have been written to automate
the calculations, which consist of stepping into time and mak-
ing a set of calculations within each time step. These programs
include MICROWAVE (Lowery 1993), GRLWEAP (2012),
and TNOWAVE (2012). The first two use the equations de-
scribed in this subsection; the last one uses the method of
characteristics. The best way to understand the calculations
is to go through a simple example.

Example of Wave Equation Calculations

A square concrete pile (Figure 18.18) has a cross section 0.3 m
by 0.3 m and a length of 8 m. The concrete modulus Econc
is 2 × 107 kN/m2 and the concrete unit weight is 25 kN/m3.

The hammer weighs 20 kN and strikes the pile at 3 m/s.
Between the hammer and the pile is an oak cushion that
has the same cross-sectional area as the pile, a thickness of
0.20 m, a modulus Ecush equal to 2 × 106 kN/m2, and a unit
weight of 7 kN/m3. The pile is driven into a sand with a
point resistance of 500 kN, a quake of 2.5 mm, and a damping
coefficient of J = 0.2 s/m.

The following idealizations are made to simplify the calcu-
lations. Such extreme simplifications are not necessary when
using one of the computer programs mentioned earlier. The
hammer is idealized as a rigid mass with a weight W1 equal
to 20 kN. The cushion is idealized as a spring with no mass;
the spring constant K1 comes from the equation giving the
compression C of a column:

C = FL

AE
or K = F

C
= AE

L
(18.37)

where F is the force in the column, L is the length of the
column, A is the column cross section, and E is the modulus
of the column material. Therefore:

K1 = 0.3 × 0.3 × 2 × 106

0.2
= 900 kN/mm (18.38)

The pile itself is decomposed into two elements. (In a
computer program, at least 10 elements are recommended.)
Both elements are 4 m long and have weights W2 and W3
equal to:

W2 = W3 = 0.3 × 0.3 × 4 × 25 = 9 kN (18.39)

The elasticity or springiness of each pile element is char-
acterized by a spring K2, given by:

K2 = K3 = 0.3 × 0.3 × 2 × 107

4
= 450 kN/mm (18.40)

The soil model is the point resistance model for the pile
represented by an elastic, perfectly plastic model. The spring
(Figure 18.12) is given by:

K ′ = 500

2.5
= 200 kN/mm (18.41)
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Figure 18.18 Example of wave equation analysis for a simple pile.

Figure 18.18 shows the real pile and the idealized pile.
Note that I have placed the spring for pile element 2 under the
pile segment, ignored the spring K3, and kept only the spring
K ′ under the pile point. If we wished to keep K3, we would
have to put it in series with K ′. The time step is chosen by
using Eq. 18.32:

�t ≤ 4√
2 × 107

2500

= 0.045s (18.42)

This value of �t is very large because the length of the
pile element is very large, to simplify the calculations. We
would normally have a pile element that is much smaller than
4 m. Nevertheless, we will use a time step of 0.0005 seconds.
The results of all calculations for the first four time steps are
shown in Table 18.5.

Residual stresses are generated in an impact-driven pile in
the following way. During the last hammer blow, the pile
goes down, say, 7 mm, and mobilizes the upward resistance
of the soil in both friction and point resistance. Then the
pile rebounds, and in doing so it reverses the direction of
the friction stresses. Indeed, it takes very little movement for
the friction to be mobilized (say, 2 mm). However, because

it takes a lot more movement to totally decompress the
pile point—say, 10 mm—the soil still pushes upward on
the pile at the pile point. Equilibrium establishes itself at
the end of the blow between the downward friction load
and the upward point load (Figure 18.19). This creates a
residual compression load in the pile. Thus, impact-driven
piles end up being prestressed in the soil and their settlement
is minimized because of this phenomenon. Briaud and Tucker
(1984) showed how the wave equation can be used to simulate
residual stresses. Under the first blow simulation, the pile is
driven from a stress-free initial state, but the wave equation
calculations end up with the residual stresses prediction.
Using the residual loads from the output at the end of the
first blow simulation as input to the second blow simulation
allows one to simulate the influence of residual stresses.
This influence makes pile driving easier, particularly for hard
driving (e.g., Figure 18.20). Post grouting of bored piles is
a way to establish beneficial residual stresses in bored piles
and reduce potential settlement.

18.3.7 Information from Pile Driving Measurements
(PDA, Case, CAPWAP)

Several methods are available to obtain the static capacity
of the pile from dynamic measurements made at the top
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Table 18.5 Wave Equation Calculations

1 2 3 4 5 6 7

A Time s 0.000 0.0005 0.001 0.0015 0.002
B D(1,t) mm 0.000 1.500 2.834 3.897 4.672
C D(2,t) mm 0.000 0.000 0.368 1.296 2.708
D D(3,t) mm 0.000 0.000 0.000 0.045 0.241
E C(1,t) mm 0.000 1.500 2.467 2.601 1.964
F C(2,t) mm 0.000 0.000 0.368 1.250 2.467
G F(1,t) kN 0.000 1350.000 2219.923 2341.013 1767.614
H F(2,t) kN 0.000 0.000 165.544 562.706 1110.058
I R(3,t)s kN 0.000 0.000 0.000 9.022 48.211
J R(3,t)d kN 0.000 0.000 0.000 9.185 51.990
K V(1,t) mm/s 3000.000 2668.913 2124.476 1550.343 1116.836
L V(2,t) mm/s 0.000 735.750 1855.387 2824.564 3182.932
M V(3,t) mm/s 0.000 0.000 90.221 391.890 968.537

Compression

Ultimate
load

Residual
load

Tension

Residual
load

Ultimate
load

Measured True

Ultimate
load

Measured True

(a) (b)

Figure 18.19 Residual load in an impact-driven pile.
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Figure 18.21 Free-end pile signal: (a) Pile. (b) Signal. (After
Hannigan et al. 1998)

of the pile. The notion of making such measurements goes
back a long way, but the credit for commercializing the
idea goes to George Goble. Dynamic measurements made at
the top of the pile usually include two strain gages and two
accelerometers. ASTM has a standard for this test: D4945–89,
entitled “Standard Method for High Strain Testing of Piles.”
The purpose of the strain gages is to obtain the force in the
pile during the impact of the hammer and the purpose of the
accelerometers is to obtain the acceleration as a function of
time and then the velocity by integration of the acceleration
signal. The pile driving analyzer or PDA (Likins and Hussein
1988) is a device used to record, digitize, and process the
strain and acceleration signals measured at the pile head.

Understanding the signals is important. The following
example helps in this process. Imagine a pile suspended
horizontally from the ceiling and hit at one end (Figure 18.21).
There is no soil surrounding it and the end of the pile is free.
Then the compression force in the pile will be proportional to
the particle velocity (F = Iv, from Eq. 18.23). Now the wave
is racing along the pile at the wave speed c. When it gets to the
end of the pile, the compression force F finds no resistance
and reflects as a tension force, but the magnitude of the
particle velocity doubles while the wave speed is unchanged
(see Eqs. 18.24 to 18.26). The F and Iv signals are as shown
in Figure 18.21. This would be close to a case of easy driving
with very little point resistance. Now let’s say that the pile is
still suspended from the ceiling and it is hit at one end, but
the other end is against a strong wall (Figure 18.22). When
the compression wave gets to the wall, it cannot displace it.
As a result, the compression force doubles and the velocity
vanishes; the F and Iv signals are shown in Figure 18.22.
Again, see Eqs. 18.24 to 18.26 for the mathematical reason.
This would be close to hard driving into a strong bearing
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Figure 18.22 Fixed-end pile signal: (a) Pile. (b) Signal. (After
Hannigan et al. 1998)

layer. Actual force and impedance times velocity signals
for different driving conditions are shown in Figure 18.23
(Hannigan et al. 1998).

The Case Method

The Case Method (Likins and Hussein 1988) is a simple
method for obtaining the dynamic and static pile capacity
from the force and velocity signals. It is rooted in Eq. 18.43,
which states that:

RD = F − Ma (18.43)

where RD is the pile resistance, F is the force at the top of
the pile, M is the mass of the pile, and a is the acceleration
of the pile. This equation is based on rigid motion. To
recognize the influence of the wave, Eq. 18.43 is modified
empirically by taking average values of F and a during the
time corresponding to the travel of the wave down and back
up to the top of the pile:

RD = 0.5(F(t1) + F(t1+2L/c)) − M
(v(t1+2L/c) − v(t1))

(t1 + 2L/c − t1)

(18.44)
where RD is the dynamic resistance of the pile, F(t1) is the
force at the top of the pile read at a time equal to t1, t1 is
the time corresponding to the first peak of the force signal,
F(t1+2L/c) is the force at the top of the pile read at a time
equal to (t1 + 2L/c), L is the length of the pile, c is the
wave speed in the pile material, M is the mass of the pile,
v(t1) is the velocity at the top of the pile read at the time t1,

and v(t1+2L/c) is the velocity at the top of the pile read at a
time (t1 + 2L/c) (Figure 18.24). The term 2L/c corresponds
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Figure 18.23 Actual force and impedance times velocity signals
for different conditions. (After Hannigan 1990)

to the time necessary for the wave to travel to the bottom
of the pile and back to the top, so (t1 + 2L/c) corresponds
to the first return of the wave. Figure 18.24 shows a record
of force-time signal at the top of a pile.

Eq. 18.44 can be rewritten as:

RD = 0.5(F(t1) + F(t1+2L/c) + I (v(t1) − v(t1+2L/c)))

(18.45)
w because I, the impedance of the pile, is given by:

I = AE

c
= Mc

L
(18.46)

In this equation A is the cross-sectional area of the pile, E is
the modulus of the pile material, c is the wave speed, M is the

mass of the pile, and L is the length of the pile. Figure 18.24
shows as a dashed line the signal obtained by multiplying the
velocity measured at the top of the pile (actually integrated
from accelerometer measurements) by the pile impedance I.

The resistance RD is the dynamic resistance of the pile. To
get the static resistance of the pile RS, a case damping factor
Jc is used:

RD = RS + JcIv (18.47)

The velocity v is chosen to be the pile point velocity vpoint,

which can be obtained from wave propagation theory as:

vpoint (t1) = F(t1) + Iv(t1) − RD

I
(18.48)

where vpoint(t1) and v(t1) are the pile point and pile top
velocities respectively, evaluated at the time t1 corresponding
to the first peak of the force signal; F(t1) is the force at the
pile top at time t1; I is the pile impedance; and RD is the
dynamic resistance at the time of driving. Regrouping Eqs.
18.45, 18.47, and 18.48 gives the static capacity of the pile as:

RS = 0.5((1 − Jc)(F(t1) + Iv(t1))

+ (1 + Jc)(F(t1+2L/c) − Iv(t1+2L/c))) (18.49)

The recommended Case damping coefficients are shown in
Table 18.6.

Table 18.6 Case Damping Coefficient Jc.

Soil Type Case Damping Coefficient Jc

Clean sands 0.10 to 0.15
Silty sands 0.15 to 0.25
Silts 0.25 to 0.40
Silty clays 0.40 to 0.70
Clays 0.70 to 1.00

(Likins and Hussein 1988.)

F
o

rc
e

 (
k

N
)

2000

1000

0

1846 kN

1557 kN

311 kN

Time

Force

Velocity x (EA)/c

t1

2L/c

t2 5 t1 1 2L/c

Figure 18.24 Force and impedance times velocity signals at the top of a pile. (After Likins and
Hussein 1988.)



570 18 DEEP FOUNDATIONS

The CAPWAP Method

The CAPWAP method (Goble et al. 1993) makes use of the
wave equation analysis described in section 18.3.5 and solves
the inverse problem. It progresses by iterations to curve-fit
the pile response determined in a wave equation model to
the measured response of the actual pile during one hammer
blow. The measured acceleration is used as input to the pile
model and reasonable estimates are made for the soil resis-
tance, quake, and damping parameters. The force-time signal
at the pile head is calculated using a wave equation pro-
gram and compared to the measured force-time signal. The
input parameters, including the soil-resistance distribution,
quake, and damping, are modified until the match between
the measured and calculated signals is deemed satisfactory.
Figure 18.25 shows an example of a comparison between
measured and calculated force signals for a pile. Once an ac-
ceptable match is achieved, the solution yields an estimate of
the ultimate static capacity, the distribution of soil resistance
along the pile, and the quake and damping parameters. CAP-
WAP (PDI, CAse Pile Wave Analysis Program, 2012) and
DLTWAVE (Dynamic Load Testing WAVE, TNO, 2012)
are two programs that can be used.

Note that the soil resistance predicted from data collected
during pile driving is tied to the blow count. Indeed, if the
blow count is high, the pile penetration per blow is low and
the associated pile capacity is low (Figure 18.26). However, if
a much bigger hammer is brought in and the pile penetration
per blow increases significantly, the soil resistance predicted
from such measurement on the same pile can be much higher.
For a given pile, the bigger the hammer, the larger the
predicted soil resistance is. Figure 18.26 indicates the reason
for this observation.

18.3.8 Suction Caissons

Suction caissons have become very popular in the last decade
for the foundation of offshore platforms and offshore wind
turbines. They consist of upside-down coffee cans (large
ones!) pushed into the seafloor by sucking water out of the
inside (Figure 18.27).

0

500

1000

1500

2000

2500

0 20 40 60 80

F
o

rc
e
 (

k
N

) 

Time (ms) 

Calculated
Measured

Figure 18.25 Signal matching using CAPWAP. (After Goble et al.
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They are used primarily in clays, but occasionally have to
penetrate through sand layers. In clays they have aspect ratios
around 5 to 1, with diameters in the range of 3 to 6 m and
lengths in the range of 15 to 30 m. Capacities in clays vary
from 5 to 20 MN. Sand layers can offer high resistance to
penetration; as a result, in sand, the aspect ratio is usually
reduced, with values of around 2 to 1. The differential pressure
between the inside and the outside of the caisson must be
large enough to create a downward force that can overcome
the soil resistance to penetration. In clays, this penetration
resistance Qtot is calculated as follows (API-RP 2SK, 2012):

Qtot = Qside + Qtip = αsuAwall + (Ncsu + γ ′z)Atip
(18.50)

where Qside is the soil friction resistance on the outside and
the inside of the wall of the suction caisson, Qtip is the area
at the tip of the caisson corresponding to the thickness of
the wall, α is the adhesion factor during installation (taken,
for example, as the ratio of the residual shear strength over
the peak shear strength), su is the average peak undrained
shear strength obtained from direct simple shear tests, Awall
is the area of the inside wall plus the outside wall in contact
with the soil, Nc is the bearing capacity factor (taken as
7.5), γ ′ is the effective unit weight of the soil, z is the final
penetration depth, and Atip is the area of the tip of the caisson
corresponding to the cross-sectional area of the wall.
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Figure 18.27 Installation of a suction caisson.

The underpressure �ureq needed to enable installation of
the suction caisson can then be calculated as:

�ureq = Qtot − W ′

Ain
(18.51)

where �ureq is the difference in pressure between the top and
bottom of the roof of the suction caisson, Qtot is the total
resistance at full penetration, W ′ is the submerged weight of
the suction caisson, and Ain is the area under the roof of the
caisson where the underpressure is acting.

The amount of suction that can be generated has a limit
which is set by any associated failure mechanism. For
example, an excessive underpressure could create an inverse
bearing capacity failure (Ncsu) and excessive plug movement
inside the wall of the caisson (αsu). The failure underpressure
can then be evaluated as follows:

�ucrit = Ncsu + αsuAwall

Ain
(18.52)

where �ucrit is the underpressure that would create inward
failure of the soil, Nc is the bearing capacity factor (taken
as 6.2 to 9 depending on the relative embedment; see Figure
17.7), su is the undrained shear strength measured in a
direct simple shear test, α is the adhesion factor during
installation (taken, for example, as the ratio of the residual
shear strength over the peak shear strength), su is the average
peak undrained shear strength obtained from direct simple
shear tests, Awall is the area of the inside wall in contact with
the soil, and Ain is the area under the roof of the caisson
where the underpressure is acting. Similar rules have been
developed for suction caissons in sand (Andersen et al. 2008).
The actual underpressure used is limited to �ucrit divided by
a factor of safety equal to 1.5, for operation at a safe level.

18.3.9 Load Testing (Static, Statnamic, Osterberg)

Static Load Tests

Static load tests are still the best way to obtain the load
settlement curve for a pile (ASTM D1143). Most typically,
these tests consist of installing two or more reaction piles
on each side of the test pile, placing a beam across the two
reaction piles, and pushing or pulling on the test pile with
a jack (Figure 18.28). The load is measured by a load cell
between the beam and the jack, while the settlement of the pile
is measured by dial gages or LVDTs connected to a settlement
beam with supports far away from the test pile. The result
of the load test is a load settlement curve (Figure 18.29) up
to the capacity of the test pile, the capacity of the reaction
system, or the target load for proof tests. For more advanced
load tests, the test pile is instrumented with strain gages or
extensometers to measure the load in the pile at different
depths. This is very useful when separate measurements are
needed for the load carried in friction and the load carried in
point resistance. For driven piles, the instrumentation should
be read right after driving to obtain the distribution of the
residual loads.

The ultimate load is obtained from the load settlement
curve. For piles in fine-grained soils, the ultimate load
is usually clearly identifiable as a plunging load. For
coarse-grained soils, the ultimate load is much harder to
identify because the curve tends to gradually curve without
a plunging load. In this case, an ultimate load criterion is
used. There are many such criteria; the most appropriate
ultimate load definition seems to be the load corresponding
to a settlement s (Figure 18.29) equal to:

s = B

10
+ PL

AE
(18.53)
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where B is the pile diameter, P is the load at the pile top,
L is the pile length, A is the pile cross-sectional area, and E

is the modulus of the pile material. The Davisson criterion
(Figure 18.29) gives a load corresponding to a much smaller
settlement:

s = 4 mm + B

120
+ PL

AE
(18.54)

For a 1 m diameter, 10 m long concrete pile loaded to 5000
kN, the two criteria give a settlement s of 103 mm (B/10)
and 15 mm (Davisson). It is clear that the Davisson criterion
corresponds to a much smaller settlement than the B/10
criterion.

Osterberg Load Cell Test

The Osterberg load cell test (Figure 18.30) is another form of
static load test. The Osterberg cell or O-cell was developed
by Jorge Osterberg (1984). The idea is to place a hydraulic
flat jack at the bottom of the pile, so that after pile installation
the jack can be inflated, thereby pushing the pile upward
against the point resistance. During the test, the soil friction
acts downward on the pile and the point resistance acts
upward. The test ends when the ultimate friction load or
the point resistance load is reached, whichever comes first.
If the friction load is the smaller of the two, the ultimate
friction load is determined, but only a lower bound of the
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ultimate point resistance is obtained. If the point resistance is
the smaller of the two, the ultimate point load is determined,
but only a lower bound of the ultimate friction resistance
is obtained. In this case, the drawback can be mitigated by
placing the O-cell along the pile at a location that balances the
load above and the load below the O-cell position. Generally,
ASTM Standard D1143 is followed, and loads as high as 300
MN have been generated on large piles. The cost of an O-cell
test seems to be about one-third to two-thirds of the cost of
a conventional load test, with more savings being realized as
the maximum load necessary increases. Figure 18.30 shows
an example of results from an O-cell test. There is one load
settlement curve for the friction and one load settlement
curve for the point resistance. These two curves are added
to reconstruct the top load top settlement curve for the pile;
however, this reconstructed curve assumes that either the
friction or the point resistance remains constant at the end of
testing (conservative).

The Statnamic Load Test

The Statnamic load test (Figure 18.31) was developed by
Berminghammer (Bermingham and Janes 1989). It consists
of placing a dynamic pressure chamber fueled by solid pro-
pellant on top of the pile and a large mass on top of the jack.
When the fuel is ignited, the large mass is accelerated upward
to about 20 g, and by reaction the same force acts downward
on the pile. The loading event takes about 100 milliseconds.
The load is measured through a dynamic load cell, the accel-
eration with an accelerometer, and the displacement through
a laser beam on a target. Integrating the accelerometer data
once for velocity and twice for displacement complements
the data.

ASTM Standard D7383 is followed, and loads as high as
50 MN have been generated. Figure 18.32 shows an example
of the data collected. The load Fstn measured during the
Statnamic test is composed of the static resistance of the soil
Fs, the rate effect component of the soil Fd, and the inertia
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force Fi due to accelerating the pile and surrounding soil:

Fstn(t) = Fs(t) + Fd(t) + Fi(t) (18.55)

The purpose of the test is to obtain the static resistance
Fs. The rate effect force Fd is considered to be linearly
proportional to the velocity:

Fd(t) = Cv(t) (18.56)

where C is a damping factor similar to the J values for the
wave equation analysis. Furthermore, the force Fi can be
expressed as:

Fi(t) = Ma(t) (18.57)

where M is the mass of the pile and a(t) is the measured
acceleration at the top of the pile. Here it is assumed that
the entrained soil mass is negligible and that rigid body
motion prevails. At the point of maximum displacement on
the unloading part of the load settlement curve (point A in
Figure 18.33), the velocity is zero and therefore the force Fd

is zero. Then, if it is assumed that at A the displacement is
large enough to mobilize the ultimate pile capacity, the load
at point A is the sum of the static ultimate capacity of the pile
Fsu and the inertia force Fi :

Fsu(tA) = Fstn(tA) − Ma(tA) (18.58)

where Fstn(tA) is the load measured in the Statnamic test at
time tA, tA is the time corresponding to the largest displace-
ment during the Statnamic test (point A in Figure 18.33), M

is the mass of the pile, and a(tA) is the acceleration measured
at the pile top at time tA.

The damping coefficient C can be obtained by using the
maximum load measured at point B on the load settlement
curve as follows:

C = Fstn(tB) − Fsu(tA) − Ma(tB)

v(tB)
(18.59)
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where Fstn(tB) is the load measured in the Statnamic test at
time tB, tB is the time corresponding to the largest load during
the Statnamic test (point B in Figure 18.33), M is taken as
the mass of the pile, a(tB) is the acceleration measured at the
pile top at time tB, Fsu(tA) is the static load obtained from
Eq. 18.58, and v(tB) is the velocity measured at the top of
the pile a time tB. If it is further assumed that C is a constant
during the load test, then point by point and for any given
time t, the static load Fs versus displacement curve can be
obtained from:

Fs(t) = Fstn(t) − Cv(t) − Ma(t) (18.60)

Figure 18.33 shows the result of such a procedure.

18.4 VERTICAL LOAD: SINGLE PILE

If a pile is installed in the ground, is left to rest until it gains its
full capacity, and is then load tested, the results of the load test
could look like the load settlement curve of Figure 18.29. At
the beginning of the load test, the load increases proportional
to the settlement. This is the linear part of the behavior, and
it is usually within this range of loads that the settlement
of a single pile is calculated. When the load increases past
that point, permanent deformations occur, nonlinear behavior
becomes apparent, and, at high loads, a small increase in load
leads to a large increase in settlement of the pile.

In clay, that part of the curve usually exhibits a plunging
failure mode where the pile simply cannot sustain any in-
crease in load. In sand, however, that part of the curve usually
exhibits a continuous increase in load as a function of settle-
ment. The reason for this difference is that during a typical
load test, the behavior under the point of a pile in clay is
undrained (for saturated soils), whereas the behavior in sand
is drained. Under undrained conditions, the shear strength is
nearly constant regardless of the total stress increase (plung-
ing failure of the pile), whereas under drained conditions the
shear strength increases with the total stress increase and so
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Figure 18.34 Load distribution in a single pile.

does the pile resistance. The distribution of the load in the
pile is shown in Figure 18.34.

The issues to be discussed next—always in the simple
case of a single pile—include how to estimate the ultimate
load of the pile, estimate the settlement of the pile, negotiate
downdrag problems, and handle shrink-swell situations.

18.4.1 Ultimate Vertical Capacity for a Single Pile

The ultimate load Ru of a single pile (Figure 18.35) is given
by:

Ru = Ruf + Rup =
n∑

i=1

fuiAsi + puAp (18.61)
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Figure 18.35 Vertical capacity of a single pile.
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Table 18.7 Methods for Ultimate Capacity of Single Piles

Bored Piles Driven Piles

Fine-Grained Soils
LPC-PMT method
LPC-CPT method
FHWA, 2010

LPC-PMT method
LPC-CPT method
API RP2A
Effective stress method

Coarse-Grained Soils
LPC-PMT method
LPC-CPT method
FHWA, 2010

LPC-PMT method
LPC-CPT method
API RP2A
Briaud-Tucker SPT method

where Ruf is the ultimate resistance in friction, Rup is the
ultimate resistance in point bearing, Asi is the side area of
the ith pile element, fui is the ultimate friction between the
soil and the pile acting on the ith pile element, Ap is the area
of the pile point, and pu is the ultimate bearing pressure of
the soil at the pile point.

Many methods exist for estimating the values of fu and pu.

Most of them are empirical with some theoretical content.
The methods listed in Table 18.7 have been selected for
presentation in this book.

LPC-PMT Method

The LPC-PMT method (Frank, 1999, 2013, Norme Francaise
AFNOR P94-262) was developed by the Laboratories des

Ponts et Chaussees after 30 years of instrumented load testing
of piles by Bustamante and his colleagues. It is not restricted
to a pile type or a soil type. It makes recommendations of fu

and pu for bored piles and driven piles and for fine-grained
soils and coarse-grained soils. It is based on the limit pressure
from the pressuremeter test (PMT). Although the PMT is not
a very common test in many countries, it has the significant
advantage over all other tests of being possible in almost
all soils and rock. The steps to follow for the LPC-PMT
method are:

1. Classify the soil according to Table 18.8.
2. Identify the pile type on Table 18.9 and Table 18.10.

Table 18.8 Soil Classification for LPC-CPT and LPC-PMT Methods

SOIL TYPE STRENGTH
PMT

pL
∗ (MPa)

CPT
qc (MPa)

SPT
N (bpf)

Shear Strength
su (kPa)

Clay, Silt Very soft to soft < 0.4 < 1 < 75
Firm 0.4 to 1.2 1 to 2.5 75 to 150
Stiff 1.2 to 2 2.5 to 4 150 to 300

Very stiff > 2 > 4 > 300
Sand, Gravel Very loose < 0.2 < 1.5 < 3

Loose 0.2 to 0.5 1.5 to 4 3 to 8
Medium dense 0.5 to 1 4 to 10 8 to 25

Dense 1 to 2 10 to 20 25 to 42
Very dense > 2 > 20 42 to 58

Chalk Soft < 0.7 < 5
Weathered 0.7 to 3 5 to 15

Intact > 3 > 15
Marl and Marly Limestone Soft < 1 < 5

Hard 1 to 4 5 to 15
Very hard > 4 > 5

Rock Weathered 2.5 to 4
Fissured > 4

(After Frank 2013 and Norme Francaise AFNOR P94-262)
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Table 18.9 Choosing the Friction Parameters for the LPC-PMT Method.

Clay, Silt Sand, Gravel Chalk
Marl and Marly

Limestone
Weathered

rock

Friction curve Q1 Q2 Q3 Q4 Q5

α

flim
(kPa) α

flim
(kPa) α

flim
(kPa) α

flim
(kPa) α

flim
(kPa)

Bored, dry 1.1 90 1.0 90 1.8 200 1.5 170 1.6 200
Bored, mud 1.25 90 1.4 90 1.8 200 1.5 170 1.6 200
Bored w. casing (left in place) 0.7 50 0.6 50 0.5 50 0.9 90 - -
Bored w. casing (retrieved) 1.25 90 1.4 90 1.7 170 1.4 170 - -
Driven concrete 1.1 130 1.4 130 1.0 90 0.9 90 - -
Driven metal (closed end) 0.8 90 1.2 90 0.4 50 0.9 90 - -
Driven metal (open end) 1.2 90 0.7 50 0.5 50 1.0 90 1.0 90
Driven H pile 1.1 90 1.0 130 0.4 50 1.0 90 0.9 90
Driven sheet pile 0.9 90 0.8 90 0.4 50 1.2 50 1.2 90
Micropiles (single injection) 2.7 200 2.9 380 2.4 320 2.4 320 2.4 320
Micropiles (repeated injections) 3.4 200 3.8 440 3.1 440 3.1 440 3.1 500

(After Frank 2013 and Norme Francaise AFNOR P94-262)

Table 18.10 Bearing Capacity Factor kp for LPC-PMT Method

Clay, Silt Sand, Gravel Chalk
Marl and Marly

Limestone
Weathered

rock

Bored, dry 1.15 1.1 1.45 1.45 1.45
Bored, mud 1.15 1.1 1.45 1.45 1.45
Bored w. casing (left in place) 1.15 1.1 1.45 1.45 1.45
Bored w. casing (retrieved) 1.15 1.1 1.45 1.45 1.45
Driven concrete 1.35 3.1 2.3 2.3 2.3
Driven metal (closed end) 1.35 3.1 2.3 2.3 2.3
Driven metal (open end)* 1.0 1.9 1.4 1.4 1.2
Driven H pile* 1.3 3.1 1.7 2.2 1.5
Driven sheet pile* 1.0 1.0 1.0 1.0 1.2
Micropiles (single injection) 1.15 1.1 1.45 1.45 1.45
Micropiles (repeated injections) 1.15 1.1 1.45 1.45 1.45

*For vibrodriven piles, use one half of these kp values.
(After Frank 2013 and Norme Francaise AFNOR P94-262)

3. From Table 18.9, read the designation of the fsoil curve
to be used (Q1 to Q5) as well as the α value and the
maximum allowable value for fsoil called flim.

4. Enter the proper curve on Figure 18.36a and read the
value of fsoil corresponding to the value of the net limit
pressure pL∗ defined as pL − σoh where pL is the PMT
limit pressure and σoh is the total horizontal stress at
rest at the depth of the pressuremeter test that gave the
value of pL. The value of fu to be used in Eq. 18.61 is

given by: fu = αfsoil ≤ flim (18.62)

5. Repeat steps 1 through 4 to obtain the values of fui for
all values of pLi∗ in the soil profile next to the pile.

6. The value of pu is given by:

pu = kpp∗
L (18.63)

where pL∗ is the average net limit pressure within 1.5B
below the pile point, and B is the pile point diameter or
width.
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Figure 18.36 (a) Soil friction vs. PMT limit pressure curves and (b) vs. CPT point resistance
curves. (After Frank 2013 and Norme Francaise AFNOR P94-262)

7. Obtain kp for Eq. 18.63 from Table 18.10 and calculate
pu.

8. Calculate the ultimate vertical capacity Ru of the single
pile according to Eq. 18.61.

LPC-CPT Method

The LPC-CPT method (Frank 1999, 2013; Norme Francaise
AFNOR P94-262) was developed by the Laboratories des
Ponts et Chaussees after 30 years of instrumented load testing
of piles by Bustamante and his colleagues. It was developed
in parallel with the LPC-PMT method as CPT soundings
were performed at each load test site. It is not restricted to a
pile type or a soil type. It makes recommendations of fu and
pu for bored piles and driven piles and for fine-grained soils
and coarse-grained soils. It is based on the point resistance
of the cone penetrometer test (CPT). Although the CPT is a
very popular test, which is becoming even more popular as
time goes by, it is limited to soils that can be penetrated with
a 200 kN truck to sufficient depth for pile design. The steps
to follow for the LPC-CPT method are:

1. Classify the soil according to Table 18.8.
2. Identify the pile type on Table 18.11 and Table 18.12
3. From Table 18.11, read the designation of the fsoil curve

to be used (Q1 to Q5) as well as the α value and the
maximum allowable value for fsoil called flim.

4. Enter the proper curve on Figure 18.36b and read the
value of fsoil corresponding to the value of the CPT
point resistance qc at the depth where fu is required.
The value of fu to be used in Eq. 18.61 is given by:

fu = αfsoil ≤ flim (18.64)

where flim is the maximum permissible value of fu.

5. Repeat steps 1 through 4 to obtain the values of fui for
all values of qc in the CPT sounding next to the pile.

6. The value of pu is given by:

pu = kcqc (18.65)

where qc is the average CPT point resistance within 1.5B
below the pile point, and B is the pile point diameter or
width and kc a bearing capacity factor.

7. Obtain kc for Eq. 18.65 from Table 18.12 and calculate
pu.

8. Calculate the ultimate vertical capacity Ru of the single
pile according to Eq. 18.61.

FHWA Method for Bored Piles in Fine-Grained Soils

The FHWA method evolved from the initial recommenda-
tions of O’Neill and Reese (1999) and was modified by
Brown et al. (2010). It gives the following recommendations
for fu and pu:

From ground surface to depth of 1.5 m:

fu = 0 (18.66)

For the rest of the pile and su < 150 kPa:

fu = 0.55su (18.67)

For the rest of the pile and 150 < su < 250 kPa:

fu =
(

0.55 − 0.1

(
su

pa

− 1.5

))
su (18.68)

where su is the undrained shear strength of the soil at the
depth where fu is calculated.

pu = Ncsu (18.69)

where Nc is 9 unless the bored pile has length-to-diameter
ratio less than 3, in which case Nc is given by Figure 17.7
(see section 17.6.1), su is the undrained shear strength of the
soil averaged over 2B below the point of the bored pile, and
B is the pile point diameter.

FHWA Method for Bored Piles in Coarse-Grained Soil

This FHWA method also evolved from the initial recommen-
dations of O’Neill and Reese (1999) and was modified by
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Table 18.11 Choosing the Friction Parameters for LPC-CPT Method

Clay, Silt Sand, Gravel Chalk
Marl and Marly

Limestone
Weathered

Rock

Q1 Q3 Q2 Q2 Q2

Friction curve α

flim
(kPa) α

flim
(kPa) α

flim
(kPa) α

flim
(kPa) α

flim
(kPa)

Bored, dry 0.55 90 0.7 90 0.8 200 1.4 170 1.5 200
Bored, mud 0.65 90 1.0 90 0.8 200 1.4 170 1.5 200
Bored w. casing (left in place) 0.35 50 0.4 50 0.25 50 0.85 90 - -
Bored w. casing (retrieved) 0.65 90 1.0 90 0.75 170 0.13 170 - -
Driven concrete 0.55 130 1.0 130 0.45 90 0.85 90 - -
Driven metal (closed end) 0.4 90 0.85 90 0.2 50 0.85 90 - -
Driven metal (open end) 0.6 90 0.5 50 0.25 50 0.95 90 0.95 90
Driven H pile 0.55 90 0.7 130 0.2 50 0.95 90 0.85 90
Driven sheet pile 0.45 90 0.55 90 0.2 50 1.25 50 1.15 90
Micropiles (single injection) 1.35 200 2.0 380 1.1 320 2.25 320 2.25 320
Micropiles (repeated injections) 1.7 200 2.65 440 1.4 440 2.9 440 2.9 500

(After Frank 2013, Norme Francaise AFNOR P94-262)

Table 18.12 Bearing Capacity Factor kc for LPC-CPT Method

Clay, Silt Sand, Gravel Chalk
Marl and Marly

Limestone
Weathered

Rock

Bored, dry 0.4 0.2 0.3 0.3 0.3
Bored, mud 0.4 0.2 0.3 0.3 0.3
Bored w. casing (left in place) 0.4 0.2 0.3 0.3 0.3
Bored w. casing (retrieved) 0.4 0.2 0.3 0.3 0.3
Driven concrete 0.45 0.4 0.4 0.4 0.4
Driven metal (closed end) 0.45 0.4 0.4 0.4 0.4
Driven metal (open end)* 0.35 0.25 0.15 0.15 0.15
Driven H pile* 0.4 0.4 0.35 0.2 0.20
Driven sheet pile* 0.35 0.15 0.15 0.15 0.15
Micropiles (single injection) 0.45 0.2 0.3 0.3 0.25
Micropiles (repeated injections) 0.45 0.2 0.3 0.3 0.25

*For vibrodriven piles, use one half of these kc values.
(After Frank 2013, Norme Francaise AFNOR P94-262)

Brown et al. (2010). It gives the following recommendations
for fu and pu:

fu = K tan δ σ ′
ov = β σ ′

ov = (1 − sin ϕ′)
(

σ ′
p

σ ′
ov

)sin ϕ′

tan ϕ′σ ′
ov

(18.70)
where K is taken as the at-rest horizontal earth pressure
coefficient, δ is taken as the effective stress friction angle
ϕ′, σ ′

ov is the vertical effective stress at rest in the soil at
the depth where fu is calculated, β is K tan δ, and σ ′

p is

the effective stress preconsolidation pressure of the soil. The
value of σ ′

p can be estimated by:

σ ′
p(kPa) = 47(N60)

m (Mayne 2007a; 2007b) (18.71)

σ ′
p(kPa) = 15N60 (Kulhawy and Chen 2007)

(18.72)

where N60 is the SPT blow per 0.3 m corrected for 60% of
maximum energy, and m is 0.6 for clean quartz sands and
0.8 for silty sands and sandy silts. O’Neill and Reese (1999)
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gave a value of β related to the depth z in meters at which fu

is calculated:

β = 1.5 − 0.244[z(m)]0.5 with 0.25 ≤ β ≤ 1.2 (18.73)

The FHWA 2010 method retained the previous recommen-
dation for pu as:

pu(kPa) = 60N60 (18.74)

where N60 is the SPT blow per 0.3 m corrected for 60% of
maximum energy averaged over 2B below the point of the
bored pile, with B being the pile point diameter.

API-RP2A Method for Driven Piles in Fine-Grained Soils

The API-RP2A method also evolved over the years and is
now based on the work of Randolph and Murphy (1985). It
gives the following recommendations for fu and pu:

fu = αsu = 0.5

(
su

σ ′
ov

)−0.5

su for
su

σ ′
ov

≤ 1 (18.75)

fu = αsu = 0.5

(
su

σ ′
ov

)−0.25

su for
su

σ ′
ov

> 1 (18.76)

where su is the undrained shear strength, and σ ′
ov is the

vertical effective stress at rest in the soil at the depth where
fu is calculated. Then pu is obtained by:

pu = 9su (18.77)

Effective Stress Method for Driven Piles
in Fine-Grained Soil

The effective stress method theoretically gives the long-term
capacity of a pile in fine-grained soil because it uses the
effective stress approach and the drained strength parameters
of the soil. It is fundamentally correct, but the parameters
that enter into the calculations are more difficult to obtain
accurately than those for the total stress method (such
as API-RP2A) for the same case. It appears that much
precision is lost through adding steps and complexity in the
calculations. At this time, it seems that simplicity wins over
theoretical correctness. As research progresses, it is likely
that theoretical correctness will prevail. Nevertheless, this
method gives the following recommendations for fu and pu:

fu = K tan δ σ ′
ov = β σ ′

ov (18.78)

The problem is to obtain reliable and accurate values of β.

The following values have been proposed (Jeanjean 2012):

β = (1 − sin ϕ′)OCR0.5 tan ϕ′ (18.79)

where ϕ′ is the effective stress friction angle of the soil, and
OCR is the overconsolidation ratio (defined as the ratio of the
preconsolidation pressure σ ′

p over the vertical effective stress
σ ′

ov). Briaud and Tucker (1997) proposed the values shown
in Table 18.13.

For the ultimate point pressure pu, there is very little
data available to make a recommendation, so one could use
the ultimate bearing capacity of a shallow foundation. The

Table 18.13 Proposed Values of β for Clays

Soil Type β value

Soft clays and soft silts 0.2 to 0.25
Medium clays and medium silts 0.25 to 0.30
Stiff clays and stiff silts 0.3 to 0.35

(Briaud and Tucker 1997.)

following equation seems to fit the FHWA recommendations
quite well (Hannigan et al. 1998).

For ϕ′ between 25 and 40 degrees:

pu = Nqσ
′
ov = 400(tan ϕ′)6σ ′

ov (18.80)

API-RP2A Method for Driven Piles in Coarse-Grained
Soils

The API-RP2A method gives the following recommendations
for fu and pu:

fu = K tan δ σ ′
ov (18.81)

where K is the horizontal earth pressure coefficient (taken as
0.8), δ is the friction angle of the pile soil interface, and σ ′

ov
is the vertical effective stress at rest in the soil at the depth
where fu is calculated. Then pu is obtained by:

pu = Nqσ
′
ov (18.82)

where Nq is the bearing capacity factor. Recommendations
for δ and Nq are presented in Table 18.14.

Briaud-Tucker SPT Method for Driven Piles
in Coarse-Grained Soils

This method (Briaud and Tucker 1984) was developed for
sands and gravels, and for driven piles only. It makes use of
the SPT blow count N and is based on a database of pile load
tests that included measured residual loads in the piles at the
end of driving and before load testing. The values of fu and
pu are given by:

fu(kPa) = 5 (N)0.7 (18.83)

pu(kPa) = 1000 (N)0.5 (18.84)

where N is the SPT blow count (blows per 0.3 m). The
database used to develop these equations was populated with
uncorrected N values, but it seems logical to use N60 if the en-
ergy is measured or can be estimated during the SPT. Indeed,
most of the data came from U.S. pile load tests where drill
rigs generate about 60% of maximum energy on the average.

18.4.2 Miscellaneous Questions about the Ultimate
Capacity of a Single Pile

Minimum Thickness of the Bearing Layer

A question about the minimum thickness of the bearing layer
arises when the layer in which the point of the pile ends has
a finite thickness and is underlain by a weaker layer. The
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Table 18.14 Recommended Values of δ and Nq

Soil Type Density Angle δ

Limiting
Friction (kPa)

Bearing Factor
Nq

Limiting Point
Pressure (kPa)

Sand
Sand-silt
Silt

Very loose
Loose
Medium

15 48 8 1900

Sand
Sand-silt
Silt

Loose
Medium
Dense

20 67 12 2900

Sand
Sand-silt

Medium
Dense

25 81 20 4800

Sand
Sand-silt

Dense
Very dense

30 96 40 9600

Gravel
Sand

Dense
Very dense

35 115 50 12000

(API-RP 2A 2000.)

question is: How thick should the bearing layer be to generate
the full pu capacity of that layer? One of the important factors
is the difference in strength between the bearing layer and the
underlying layer. One of the best ways to answer this question
is to perform a failure load analysis (see section 17.6.3). Short
of that, and if the difference in strength between the bearing
layer and the underlying layer is not extreme (say, less than 4
to 1), then a thickness to pile width ratio of more than 4 may
be appropriate.

H

B
> 4 (18.85)

where H is the distance between the pile point location and
the bottom of the bearing layer and B is the pile diameter or
width. One very important observation is that at 4 times the
pile width, the thickness of the bearing layer may sustain the
capacity of a single pile—but the question is very different
for a pile group.

Which Area to Consider for As and Ap in Equation 18.61

For solid piles such as bored piles and concrete or timber
driven piles, and also for closed-end pipe piles, the issue is
clear: The side area should be the pile perimeter times the pile
segment length. The question arises in the case of open-end
pipe piles and H piles. These piles may plug or not plug
during driving and later on during loading. Whether the pile
plugs or not depends on the soil type, the pile diameter, and
the loading. Some piles may not plug during driving, but most
common-size piles plug during subsequent slow loading. It
is common practice to calculate the ultimate load Ru (plug)
corresponding to a plugged condition on the one hand, and
then Ru (unplug) corresponding to an unplugged condition
on the other, and to take the minimum of the two as the failure
load Ru. For an open-end pipe pile, the plugged condition
would be the addition of the outside friction plus the point

capacity using the total area, whereas the unplugged condition
would be the friction on the outside and the inside of the pile
plus the point capacity on the thickness of the pipe wall.

Plugged case Ru(plug) =
∑

fuiπD�Li + pu

πD2

4
(18.86)

Unplugged case Ru(unplug) =
∑

2fuiπD�Li + puπDt

(18.87)

Ultimate capacity Ru = Min(Ru(plug), Ru(unplug))

(18.88)

where D is the pile diameter, �L is the pile segment length,
and t is the wall thickness. The recommendations in Table
18.15 are made by Frank 2013, Norme Francaise AFNOR
P94-262.

Compression vs. Tension

An important thing to know is whether the friction in com-
pression is the same as the friction in tension. One issue is

Table 18.15 Pile Areas to Be Used in Ultimate Capacity
Calculations according to Frank (2013), Norme
Francaise AFNOR P94-262

Point Side

Open-end pipe
D = diameter

Ap = πD2

4
As = πDL

H pile
B = width of flange
W = height of web

Ap = BW As = 2(B + W)L



582 18 DEEP FOUNDATIONS

the Poisson’s effect, which makes the pile expand laterally
when in compression and contract laterally when in tension.
This creates a lower lateral stress in tension than in compres-
sion, thereby leading to less friction capacity in tension than
in compression. Counter to this is the fact that soil masses
tend to relax and creep around piles and maintain horizontal
stresses in the long term. This was measured by placing
total stress pressure cells on driven piles and monitoring the
horizontal pressure as a function of time (Briaud and Tucker
1989). Another problem is that the failure surface of the pile
in compression may be different from the failure surface of
the pile in tension. This was observed on 23 m long H piles
in sand that had an ultimate load in friction-tension equal to
one-half of the ultimate load in friction-compression (Briaud
et al. 1984). The American Petroleum Institute recommends
the same friction coefficient in compression and in tension
for long pipe piles in clay and in sand. All in all, it appears
that significantly different friction capacities in tension and in
compression are the exception rather than the rule; however,
they can exist and probably more so for short piles.

Should I Add γ d or Not Add γ d to the Expression
Giving pu?

The question about adding γ d is related to the following two
expressions:

pu = ks (18.89)

pu = ks + γ d (18.90)

where pu is the ultimate point pressure, k is a bearing capacity
factor, s is a soil strength measurement (CPT qc, PMT pL,

SPT N, undrained shear strength su), γ is the soil unit weight,
and d is the depth of the foundation below the nearby ground
surface. The answer is that at the level of the foundation,
the actual pu value is given by Eq. 18.90. Thus, if Eq. 18.90
is used, then the weight of the foundation must be included
on the load side of the ultimate limit state equation. If it
is assumed that the pressure exerted by the weight of the
foundation plus backfilling is equal to the pressure of the
overburden on each side of the foundation, then the two
cancel out and the term γ d can be ignored. Generally, it is
best to add γ d and include the weight of the foundation on
the load side, especially in more complex cases where the
cancellation may not apply.

What about Buoyancy when the Foundation
Is Under Water?

The problem of buoyancy is again associated with the term γ d
or the vertical total stress at the depth of the foundation σov. If
the total weight of the foundation is W and the water pressure
under the foundation is uw applied over the bottom surface Ap

of the foundation, the buoyant weight is W ′ = W − uwAp.

The point resistance puAp contains the term γ dAp (or better,

σovAp) and therefore includes the buoyancy force of the
foundation. Indeed, σovAp is the sum of σ ′

ovAp and uwAp,

which is the buoyancy force. So there are two alternatives:

1. Use the buoyant weight W ′ of the pile and then use
σ ′

ovAp.

2. Use the total weight W of the pile and then use σovAp.

It is usually best to use the total weight and the total vertical
stress at the foundation level.

Rate of Loading Effect

Soils are somewhat viscous, so if the rate of loading or
straining is not changed much, the difference in the pile
ultimate capacity can be neglected. If, however, there is a
drastic change in loading rate or strain rate, then the difference
must be included in the calculations. For example, most of
the calculation methods presented in section 18.4.1 are based
on load test databases where the pile was pushed to large
displacements in several hours. However, under a building or
a bridge, the pile will experience the load for the design life of
the structure, which may be 75 years, for example. In contrast,
the rise time of a hurricane wave against an offshore structure
may be only 3 seconds. In these two cases, the ultimate
capacity would be significantly affected. The model used for
the undrained shear strength of saturated clays (see section
15.8) is extended to pile capacities (Briaud and Garland 1985):

Ru1

Ru2
=

(
t1

t2

)−n

(18.91)

where Ru1 is the ultimate pile resistance when loaded to
failure in a time t1 and Ru2 is the ultimate pile resistance
when loaded to failure in a time t2. Values of the viscous
exponent n vary from 0.01 to 0.03 for sand and from 0.02 to
0.08 for clays (see Figure 15.18). So, if a pile has a capacity
of 1000 kN according to usual methods associated with load
tests averaging 3 hours, and if that pile is loaded in 3 s by a
hurricane wave, then the load will be such that:

Ru1

1000
=

(
3

3 × 3600

)−0.05

= 1.5 (18.92)

The capacity Ru1 of the pile during the hurricane is 50%
larger than the capacity calculated by conventional methods.
However, if Eq. 18.91 is applied to long-term loading under
a 75-year-old building, the capacity becomes:

Ru1

1000
=

(
75 × 365 × 24

3

)−0.05

= 0.54 (18.93)

The capacity Ru1 of the pile after 75 years would be 50%
smaller than the capacity calculated by conventional methods.
The data upon which Eq. 18.91 is based are mostly populated
with tests done in less than 3 hours; therefore, using this
model for the long-term capacity of piles is not based on data.
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Figure 18.37 Cyclic loading of piles.

Cyclic Loading Effect

Soils are sensitive to cyclic loading and tend to weaken with
the accumulation of cycles. Figure 18.37 shows the load
settlement curve for a pile subjected to cyclic loading. Two
main parameters are defined: the cyclic amplitude ratio Rcy
and the average load ratio Rav:

Rcy = Qmax − Qmin

2Qus
and Rav = Qmax + Qmin

2Qus
(18.94)

where Qus is the vertical ultimate capacity of the pile under
static monotonic loading, and Qmax and Qmin are the maxi-
mum and minimum load applied respectively during cyclic
loading. The ultimate cyclic capacity Quc is the maximum
load that can be reached when performing a monotonic test to

failure at the end of the cycles. Note also that Qcy and Qav are
the cyclic load amplitude and the average load respectively. If
a test reaches failure after N cycles, then Quc is equal to Qmax
for N cycles. If the load does not change direction during
loading (always compression, for example), it is called one-
way cyclic loading. If it does change direction (compression
to tension, for example), it is called two-way cyclic loading.
The most severe loading seems to be symmetrical two-way
cyclic loading where Rav is equal to zero.

Studies have been performed and recommendations made
to quantify the influence of Rcy and Rav on the ratio Quc/Qus.

One of them is the work of Karlsrud et al. (1986) at NGI. The
results, shown in Figure 18.38, indicate that for these tests
and for full reversal of load (Qav = 0), the cyclic capacity
Quc is 35 to 50% of the static capacity Qus depending on the
number of cycles to failure.

Briaud and Felio (1986) studied the impact of cyclic vertical
loading on the response of piles by quantifying the increase
in vertical movement as a function of the number of cycles.
After collecting a database of 16 studies on cyclic full-scale
pile load tests and 10 studies on model pile load tests, they
used the following power law model:

s(N)

s(1)
= Na (18.95)

where s(N) and s(1) are the movement of the pile top for
the Nth and first cycle respectively, N is the cycle number,
and a is the cyclic exponent. Figure 18.38 shows the range
of a values obtained as a function of the cyclic load ratio
Qmax/Qus.

Prediction Method vs. Design Method

A distinction should be made between a prediction method
and a design method (Figure 18.39). The goal of a prediction
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Figure 18.38 Results of two studies on cyclic loading of piles in clays: (a) Karlsrud et al. (1986).
(b) Briaud and Felio (1986).
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Figure 18.39 Difference between a prediction method and a design
method.

method is for the calculated value to be as close as possible
to the measured value on the average. The goal of a design
method is to minimize the number of times the calculated
value is unsafe. This is a big difference, and for ultimate
pile capacity a design method will tend to give lower values
than a prediction method. This also brings into play the
issue of precision versus accuracy. An accurate method is a
method that gives the right answer on the average. A precise
method is a method that exhibits very little scatter around
the mean. A precise and accurate method is a method that
gives the right answer on the average with very little scatter
around the mean; that is, very little uncertainty. An inaccurate
but precise method is more desirable than an imprecise but
accurate method. Indeed, it is easier to apply a calibration
factor to the mean value of an inaccurate but precise method
than to reduce the scatter of an imprecise but accurate method.

Resistance Factor

To use the LRFD approach, one must have the load factors
γ and resistance factors ϕ in Eq. 18.3. These factors are
given in the codes or guidelines specific to each method.
For the load factors γ, see Table 17.1. For the resistance

factors, some methods make a distinction between the side
friction resistance factor ϕf and the point resistance factor
ϕp. Some methods use one global resistance factor ϕ. Table
18.16 shows suggested ranges of global resistance factors as
collected from various sources.

Length Effect on Ultimate Capacity

The length of the pile may have an effect on the pile capacity.
This is particularly clear when the soil is overconsolidated and
the pile is long. Here is why. Overconsolidated soils exhibit
a peak shear strength followed by a lower to much lower
residual shear strength. Long piles, when loaded, exhibit
much more movement at the pile top than at the pile point
because of the elastic compression of the pile (same in
tension). At ultimate load, the displacement at the pile top
will be large enough to be on the residual part of the strength
curve while, at the pile point, the displacement will just reach
the peak strength. As a result, the ultimate load will be lower
than the one obtained by using the peak shear strength all
along the pile for obtaining fu. The best way to quantify the
influence of pile length on ultimate load is to use a settlement
analysis at large displacement. This topic is covered in section
18.4.3.

18.4.3 Settlement of a Single Pile

The settlement of the top of a pile stop is equal to the settlement
of the point of the pile spoint plus the compression of the pile:

stop = spoint + PL

AcsEp

(18.96)

where P is the average load in the loaded portion of the pile,
L is the length of pile under load, Acs is the pile cross section,
and Ep is the modulus of elasticity of the pile material. The
load in the pile is Qtop at the top and Qpoint at the point

Table 18.16 Estimated Resistance Factor ϕ for Ultimate Limit State in Pile Design

Bored Piles Driven Piles

Method
Resistance

factor ϕ Method
Resistance

factor ϕ

Fine-grained soils LPC-PMT method
LPC-CPT method
FHWA, 2010

0.5 to 0.6
0.5 to 0.6
0.35 to 0.45

LPC-PMT method
LPC-CPT method
API RP2A
Effective stress method

0.5 to 0.6
0.5 to 0.6
0.6 to 0.7
0.3 to 0.4

Coarse-grained soils LPC-PMT method
LPC-CPT method
FHWA, 2010

0.5 to 0.6
0.5 to 0.6
0.45 to 0.55

LPC-PMT method
LPC-CPT method
API RP2A
Briaud-Tucker SPT method

0.5 to 0.6
0.5 to 0.6
0.6 to 0.7
0.35 to 0.45
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Figure 18.40 Load distribution in the pile.

(Figure 18.40). If the friction is constant between the top and
the point of the pile, Eq. 18.96 becomes:

stop = spoint + (Qtop + Qpoint )L

2AcsEp

(18.97)

As a preliminary estimate, (Qtop + Qpoint)/2 is often taken
as 0.6Qtop. Of course this is an estimated average. For friction
piles where most of the pile capacity comes from the side
friction, 0.6Qtop would likely be larger than the true average
load, and in fact L is likely not the total length of the pile,
as the load becomes zero along the pile length. For an end-
bearing pile, though, 0.6Qtop may be too small, as much of
the load is carried in point resistance. The settlement spoint
is related to the load at the point through a load transfer
curve that can be idealized as an elastic, perfectly plastic
curve (Figure 18.41). The slope of the elastic part is a spring
constant kp such that:

Qpoint = kpspoint (18.98)

Then Eq. 18.97 becomes:

stop = Qpoint

kp

+ (Qtop + Qpoint )L

2AcsEp

(18.99)

The spring constant kp has been related to the modulus of
the soil under the point through theory. The relationship for a
closed-end circular pile (Randolph and Wroth 1978) is:

Qpoint = kpspoint =
(

DEs

1 − ν2

)
spoint (18.100)

where D is the diameter of the pile point, and Es and ν are
the modulus and the Poisson’s ratio of the soil below the pile
point. In terms of pressure p under the pile point, the equation
becomes:

p = 4Es

πD(1 − ν2)
spoint (18.101)
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Figure 18.41 Point load transfer curve model.
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Figure 18.42 Friction load transfer curve model.

The friction load transfer curve can also be represented by
an elastic, perfectly plastic curve (Figure 18.42). The slope
of the elastic part of the friction transfer curve (Frank, Zhao
1982) is given by:

f = Es

(1 + ν)(1 + Ln(L/D))D
sfriction (18.102)

where f is the friction stress at the interface between the
pile and the soil, Es and ν are the soil modulus and the
Poisson’s ratio at depth z where the friction is generated, L is
the embedded pile length, D is the pile diameter, and sfriction
is the downward movement of the pile at depth z.

We still do not know what the load distribution is in the pile
for a given load at the top. Solving this problem requires a
load transfer curve analysis, which is best explained through
an example (Figure 18.43).

A 0.3 m diameter closed-end pipe pile with a 5 mm thick
wall is driven 10 m below the ground surface. The steel has
a modulus of 2 × 108 kPa. The soil is made of 9 m of a soft
clay underlain by a thick layer of dense sand. The modulus
of the soft clay is 5 × 103 kPa, and the modulus of the sand
layer is 105 kPa. The drained Poisson’s ratio is 0.35 for both
soils. The ultimate friction fu in the soft clay at the pile-soil
interface is 20 kPa, and in the dense sand fu is 80 kPa. The
ultimate point pressure under the pile point in the dense sand
is 10,000 kPa.

1. Divide the pile into a number of elements. We would
typically use a minimum of 10 elements for the com-
puter solution. For this hand calculation, we will use
only 3 elements, as shown in Figure 18.43.
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Figure 18.43 Pile problem and load transfer curves.

2. Prepare the load transfer curves for each element:
three friction curves for elements 1, 2, and 3 and one
point curve under element 1. To prepare these curves,
the elastic slopes of Eqs. 18.101 and 18.102 are used
together with the ultimate values of fu and pu. These
curves are shown in Figure 18.43.

3. Assume a point movement of 1 mm and calculate
the point load corresponding to that movement using
Eq. 18.100:

Qpoint =
(

0.3 × 100000

1 − 0.352

)
× 0.001 = 34.2 kN

(18.103)
This corresponds to point 1 on the point load transfer
curve in Figure 18.43.

4. Evaluate the friction f1 mobilized in element 1 by
reading the friction transfer curve for a movement of
1 mm (Eq. 18.102):

f1 = 100000

(1 + 0.35)(1 + Ln(10/0.3))0.3
× 0.001

= 54.8 kPa < 80 kPa (18.104)

More correctly speaking, we should first calculate
the movement at the midpoint in element 1 and then
use that movement to obtain the friction value from
the transfer curve. This would require an iteration. For
simplicity in these hand calculations, we will use the

movement at the bottom of the element to obtain the
friction value in that element.

5. Calculate the load carried in friction in element 1:

Qfriction1 = f1πD�L1 = 54.8 × 3.14 × 0.3 × 1

= 51.6 kN (18.105)

6. Calculate the movement at the bottom of element 2:

s2 = spoint +
(
Qp + Qf 1

2

)
�L1

AcsEp

= 1 +
(
34.2 + 51.6

2

)
1000

3.14 × 0.3 × 0.005 × 2 × 108

= 1.063 mm (18.106)

7. Evaluate the friction f2 mobilized in element 2 by
reading the friction transfer curve for the movement s2
(Eq. 18.102):

f2 = 5000

(1 + 0.35)(1 + Ln(10/0.3))0.3
× 0.001063

= 2.91 kPa < 20 kPa (18.107)

8. Calculate the load carried in friction in element 2:

Qfriction2 = f2πD�L2 = 2.91 × 3.14 × 0.3 × 4.5

= 12.3 kN (18.108)

9. Calculate the movement at the bottom of element 3:

s3 = s2 +
(
Qp + Qf 1 + Qf 2

2

)
�L2

AcsEp

= 1.063 +
(
34.2 + 51.6 + 12.3

2

)
4500

3.14 × 0.3 × 0.005 × 2 × 108

= 1.502 mm (18.109)

10. Evaluate the friction f3 mobilized in element 3 by
reading the friction transfer curve for the movement s3
(Eq. 18.102):

f3 = 5000

(1 + 0.35)(1 + Ln(10/0.3))0.3
× 0.001439

= 3.94 kPa < 20 kPa (18.110)

11. Calculate the load carried in friction in element 3:

Qfriction3 = f3πD�L3 = 3.94 × 3.14 × 0.3 × 4.5

= 16.7 kN (18.111)
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12. Calculate the movement at the top of element 3:

stop = s3 +
(
Qp + Qf 1 + Qf 2 + Qf 3

2

)
�L3

AcsEp

= 1.502 +
(
34.2 + 51.6 + 12.3 + 16.7

2

)
4500

3.14 × 0.3 × 0.005 × 2 × 108

= 2.01 mm (18.112)

13. Calculate the load at the top of the pile:

Qtop = Qp + Qf 1 + Qf 2 + Qf 3

= 34.2 + 51.6 + 12.3 + 16.7 = 114.8 kN
(18.113)

14. Now we have a point on the top load versus top move-
ment curve for the vertically loaded pile. A second
point can be generated by going back to step 3 and as-
suming a point movement of, say, 2 mm and repeating
steps 3 to 13 to get the corresponding values of Qtop
and stop. Point by point, the load settlement curve for
the pile is generated in this fashion.

Note that typically it takes very little displacement to mobi-
lize the ultimate friction, whereas it takes more displacement
to mobilize the ultimate point resistance. The displacement
associated with full friction mobilization is often estimated to
be 2.5 mm, while the displacement associated with full point
resistance mobilization can be 10 mm or more.

18.5 VERTICAL LOAD: PILE GROUP

Piles are often installed in groups (Figure 18.45) to carry
higher loads under columns of buildings, bridges, dams, and
other structures. Again the questions of ultimate resistance
and settlement arise.

18.5.1 Ultimate Vertical Capacity of a Pile Group

What we want to know is if a group of n piles, each having an
isolated ultimate capacity Rus, will have an ultimate capacity
of n times Rus. The first estimate of Rug for the group can be
written as:

Rug = enRus (18.114)

where Rug is the ultimate capacity of the pile group, e is
the efficiency of the pile group, n is the number of piles in
the group, and Rus is the ultimate capacity of one pile. The
efficiency e of the group may be smaller than 1, but sometimes
is larger than 1. Two cases are identified: sand and clay.

Sand

For sand, a further distinction is made between bored piles
and driven piles. For bored piles, the current AASHTO
recommendation (2010) is to use efficiencies as follows:

Bored pile groups in sand e = 0.67 for s/B = 2.5
(18.115)

Bored pile groups in sand e = 1.0 for s/B > 4
(18.116)

where e is the group efficiency, s is the center-to-center pile
spacing, and B is the pile diameter. For values of s/B between
2.5 and 4, extrapolation is used. For driven pile groups in
sand, it is reasonable to think that the efficiency depends on
the relative density of the sand. In loose sands, driving piles
in a group would densify the sand more than driving a single
pile would. Thus, the efficiency of a driven pile group in loose
sand should be higher than 1. In very dense sand, however,
the pile driving could not make the sand any denser, so the
efficiency of the driven pile group would not be enhanced.

A large-scale experiment was performed to check if the
efficiency of driven pile groups in loose sand was larger
than 1 (Briaud et al. 1989). A five-pile group was driven in
place, as was a separate reference single pile (Figure 18.44).
The piles were closed-end steel pipe piles with a diameter of
0.273 m, an embedded length of 9.15 m, and a wall thickness
of 9.3 mm. The soil was a clean, fine sand hydraulic fill
with the following properties: dry unit weight 15.7 kN/m3,

water content 23%, friction angle 35.4o, SPT blow count 15
blows per 0.3 m, CPT point resistance averaging 6200 kPa,
and a PMT limit pressure averaging 500 kPa. The piles were
instrumented with strain gages to obtain the residual load due
to driving and (separately) the load carried in friction and
in point resistance during load testing. The single pile and
the pile group were load tested (pushed) to a penetration of
40 mm and exhibited plunging failure. At that penetration the
single pile carried an ultimate load of 505 kN and the pile
group an ultimate load of 2499 kN for an efficiency of 0.99.
However, it is interesting to note that although the top load
was the same for the single pile and each pile in the group, the
distribution of point load and friction load was quite different.
The ultimate point load was 360 kN for the single pile and
240 kN per pile in the group, leading to a point efficiency
of 0.67. The ultimate load carried in friction was 150 kN
for the single pile and 270 kN per pile in the group, leading
to a friction efficiency of 1.8. The significant difference in
point load between the single pile and the piles in the group
was attributed to the difference in residual stresses. When a
single pile is driven, it locks in a residual point load. Driving
additional piles in the group next to the first pile releases the
residual point load and decreases its beneficial effect. The
significant difference in friction load between the single pile
and the piles in the group was attributed to the difference in
horizontal stresses. When a single pile is driven, it generates
a certain horizontal stress. Driving additional piles in the
group next to the first pile increases the horizontal stresses
and therefore the pile friction. Based on these results, it may
be best to write the efficiency equation for a pile group as:

Rug = n(ef Rufs + epRups) (18.117)
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Figure 18.44 Pile group load test and results.

where Rug is the ultimate capacity of the pile group, n is the
number of piles in the group, ef and ep are the efficiencies of
the pile group in friction and in point resistance respectively,
and Rufs and Rups are the ultimate capacity of one pile in
friction and in point resistance respectively. The pile group
load test just described suggests ef and ep values of 0.67
and 1.8 respectively. In the case history just described, the
increase in friction balanced the decrease in point resistance
perfectly. Shorter piles that rely more on point resistance
would have global efficiencies e lower than 1, and longer
piles that rely more on friction resistance would have global
efficiencies e higher than 1. In the absence of further evidence,
it is suggested that the efficiency of driven piles in loose sand
be taken as 1.

Clay

For clay, the group efficiency can be taken as 1, but it is very
important also to check a second failure mechanism called
block failure. This mechanism corresponds to the case where
the pile group fails as a block, as shown in Figures 18.45 and
18.46. The ultimate capacity of the block is given by:

Rublock = Rublock(friction) + Rublock(point)

= 2(Bg + Lg)Dfu + BgLgpu (18.118)

D

BG

LG

Figure 18.45 Pile group: (a) Closely spaced slender piles. (b)
Strong layer not thick enough.

where the ultimate friction fu is taken as the undrained shear
strength su because the shearing will take place mostly in
the clay, and pu is Ncsu with Nc being obtained from the
Skempton chart (see Figure 17.7). Note that for the single
pile, Nc is likely equal to 9, because the relative embedment
of the single pile, D/B, is often larger than 4; for the group,
the relative embedment is much smaller, as it is equal to
D/Bg. The ultimate capacity of the pile group is then the
smaller of:

Rug = Min(nRus, Rublock) (18.119)

There are two cases in which Rublock will be the smaller of
the two (Figure 18.46). The first case is when the center-to-
center pile spacing is small (say, 3 or less) and the piles are
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Figure 18.47 Difference in zone of influence between single pile
and pile group.

long and slender (say, D/B > 30). The second case is when
the pile point is in a strong layer that gives a high single-pile
ultimate capacity but is not thick enough to prevent the pile
group from punching through into a weaker layer below. In
this case the Rus (point) would involve the strength of the
strong layer, whereas the Rublock (point) would involve the
strength of the weak layer below.

18.5.2 Settlement of Pile Groups

The settlement of a pile group can be much larger than the
settlement of a single pile. The major difference is the increase
in the depth of influence under the pile group compared to
the single pile (Figure 18.47) and the accumulation of load
effect from all the piles. Many empirical equations have
been proposed to relate the settlement of the group sg to
the settlement of the single pile ss . The following one is
recommended by O’Neill (1983):

sg

ss

=
√

Bg

Bs

(18.120)

where ss is the settlement of the single pile under the working
load Q, sg is the settlement of the group under nQ, n is the
number of piles in the group, Bg is the width of the group, and
Bs is the width of the single pile. This equation indicates that
the settlement of the group does not increase linearly with Bg
but rather with the square root of Bg. This is corroborated by
limited data (O’Neill 1983).

For large groups of piles in a uniform soil deposit, Terzaghi
proposed to calculate the settlement of the group by consider-
ing that the group was equivalent to a spread footing having
the dimensions Bg by Lg and located at a depth equal to 2/3 of
the pile embedded depth (Figure 18.48). If the piles penetrated
through a weak layer into a strong layer (end-bearing piles),
the equivalent footing is placed on top of the strong layer. If
the penetration into the strong layer is significant, then the 2/3
rule would apply to the strong layer (Figure 18.48). Note that
such an approach gives a linear increase of sg with Bg which
is more severe than Eq. 18.120. The Terzaghi approach has
been found to be conservative in some cases.
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Figure 18.48 Terzaghi equivalent footing approach.
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A third approach to calculating the settlement of a pile
group is to use a computer program that solves the problem
of superposition of displacements induced by all piles (Poulos
and Davis 1980). This is called the interaction factor method.
Each pile stresses the soil surrounding it; therefore, each
pile contributes to the global settlement at any other point.
Each pile is first discretized as n pile elements versus depth
(Figure 18.49). For a group of two identical and equally
loaded piles, the movement of any node on pile 1 is given by:

[ρs] = d

Es

[I1 + I2][f ] (18.121)

where [ρs] is the vector of the displacements at all nodes i

(1 to n) of pile 1 (same as pile 2), d is the pile diameter, Es is
the soil modulus, [f ] is the vector of shear stresses at all nodes

j (1 to n) of pile 1 (same as pile 2), [I1 + I2] is the n + 1
by n + 1 matrix (n + 1 because there are n friction elements
and 1 point) of displacement influence factors containing
elements I1ij and I2ij, and I1ij and I2ij are the displacement
influence factors at element i on pile 1 caused by shear stress
(friction) on element j of piles 1 and 2 respectively. These
factors are obtained by integration of the Mindlin equation
(1936). Note that the solution for pile 2 is the same, because
the two piles are identical and equally loaded.

Of particular interest is the displacement at the top of one
of the piles. By setting this displacement equal to 1, the
distribution of shear stresses along the piles can be generated
by solving Eq. 18.121. The interaction factor α is defined as:

α = additional settlement due to adjacent pile

settlement of pile under its own load
(18.122)

Figure 18.50 shows the range of expected values for the
interaction factor depending on the spacing between piles,
the slenderness of the pile, and the relative stiffness between
the pile and the soil.

In the general case of n identical piles, the settlement of
pile k can be expressed as:

ρk = ρ1

n∑
j = 1
j �= k

(Pjαkj) + ρ1Pk (18.123)

where ρk is the settlement of pile k, ρ1 is the settlement of a
single pile under a unit load, Pj is the load at the top of pile
j, and αkj is the interaction factor for spacing between piles
k and j. Equation 18.123 can be written for all piles in the
group, giving n equations. In addition, the load on the group
can be written as:

PG =
n∑

j=1

Pj (18.124)

The n + 1 equations thus assembled can be solved for the
boundary conditions imposed by the pile cap. Two simple
conditions exist:
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Figure 18.51 Construction sequence and settlement path for a case of downdrag: (a) Construction
sequence. (b) Settlement path.

1. Equal load on all piles (perfectly flexible pile cap)
2. Equal settlement of all piles (perfectly rigid pile cap)

The program DEFPIG (Poulos 2012) automates these
calculations. Other programs based on somewhat different

approaches include PIGLET (Randolph 1980) and FLPIER
(Hoit et al. 1997). Of course it is now possible to use the
general finite element method to model a group of piles and
the surrounding soil in three dimensions and with nonlinear
soil behavior.
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18.6 DOWNDRAG

18.6.1 Definition and Behavior

In the normal case, the loaded pile moves down more than the
soil surrounding it. Downdrag refers to the special case where
the soil around the upper part of the pile moves downward
more than the pile. This occurs, for example, when a pile
is driven through a compressible layer into a stronger layer,
and then an embankment is placed on the compressible layer,
creating significant settlement of the ground surface. A con-
struction sequence leading to downdrag and the associated
settlement path are shown in Figure 18.51. Table 18.17 gives
some clues indicating when downdrag might occur. A guide-
line manual for downdrag on uncoated and bitumen coated
piles should be consulted for further information on downdrag
(Briaud and Tucker 1997; http://ceprofs.tamu.edu/briaud/).

Table 18.17 Some Situations in which Downdrag
Can Occur

1 The total settlement of the ground surface will be
larger than 100 mm

2 The settlement of the ground surface after the piles
are installed will be larger than 10 mm

3 The height of the embankment to be placed on the
ground surface exceeds 2 m

4 The thickness of the soft compressible layer is larger
than 10 m

5 The water table will be drawn down by more than 4 m
6 The piles are longer than 25 m

18.6.2 Downdrag on a Single Pile

A shallow, soft layer loaded by an embankment, for example,
settles more than the pile, which may rest in a strong deeper
layer. In this instance the soil drags the pile down during the
soil settlement. Because the pile does not move downward
as much as the soil, at the ground surface it looks like the
pile is coming out of the ground. So, when you see piles
coming slowly out of the ground, it could be downdrag. This
downdrag load extends to the point where the settlement of
the soil becomes equal to the settlement of the pile (Figure
18.52); that point is called the neutral point (NP). In the
case of no downdrag, the load in the pile decreases from
the top down to the pile point (Figure 18.52). In the case of
downdrag, the load increases to the NP and then decreases to
the pile point. In extreme cases the NP is at the pile point. The
evolution of the loads during and after construction is shown
in Figure 18.53 for the case of downdrag and no downdrag.

As with other foundation design problems, the two limit
states must be satisfied: serviceability limit state (allowable
settlement) and ultimate limit state (ultimate capacity). What
is special about downdrag cases is that the serviceability
limit state (allowable settlement criterion) controls the design
much more often than does the case of no downdrag. Indeed,
downdrag induces larger settlement of the pile and settlement
calculations must be performed with this in mind. Also, one
must check that the load at the NP, which is most often
the highest load in the pile, will not crush the pile material.
Two main equations are the basis for finding the location of
the neutral point. Vertical equilibrium gives the following
expression:

Qt + Fn = Fp + Qp (18.125)
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Figure 18.52 Settlement profile and load distribution: (a) Settlement profile. (b) Load distribution.
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Evaluation of load distribution without downdrag
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Figure 18.53 Evolution of the loads during and after construction.

where Qt is the top load on the pile, Fn is the downdrag or
negative friction load, Fp is the positive friction load, and Qp

is the point load (Figure 18.52). Compatibility of movement
at the NP gives:

wNP(soil) = wNP(pile) (18.126)

where wNP(pile) is the pile movement at the NP and wNP(soil)
is the soil movement at the NP. These two equations are
used together with an iteration procedure to find the depth
of the NP. Although the necessary calculations have been
automated in computer programs (e.g., PILNEG, available at
http://ceprofs.tamu.edu/briaud/), these calculations are best
illustrated through hand calculations.

18.6.3 Sample Downdrag Calculations

Consider the square concrete pile of Figure 18.54. It is
30 m long and 0.3 m × 0.3 m in cross section. The concrete
has a modulus of elasticity of 2 × 107 kN/m2. The soil
develops an ultimate friction that is constant with depth
(simplification) and equal to 25 kN/m2. To simplify the
problem further, it is assumed that the friction load transfer
curve is rigid-perfectly plastic, so that any pile displacement
generates the ultimate friction. The point resistance load
transfer curve (Figure 18.54) is elastic-perfectly plastic, with
an ultimate point resistance of 1000 kN and a 5 mm movement
required to reach that ultimate value. The soil settlement
profile shown in Figure 18.54 indicates that, at the pile point,
the soil movement is zero (hard layer) and the ground surface
settles 200 mm. The allowable settlement for the structure
is 15 mm.

1. Find the ultimate capacity of the pile.

Qu = 25 × 1.2 × 30 + 1000 = 1900 kN (18.127)

If the pile was not subjected to downdrag, we would
apply the load and resistance factor design and end up
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Figure 18.54 Example downdrag problem and results.
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with a top load of around 800 kN for such a pile. Because
we have downdrag, we need to reduce this load.

2. Try a top load of Qt = 500 kN.

a. Assume that the NP is at a depth of 20 m.
From the soil settlement profile, we read a soil move-
ment at the assumed depth of the NP (20 m) of:

wNP(soil) = 50 mm (18.128)

Vertical equilibrium of the pile gives us the load in
the pile at the NP, QNP, and the point load Qp (Eq.
18.125):

QNP = 500 + 25 × 1.2 × 20 = 1100 kN (18.129)

Qp = 500 + 25 × 1.2 × 20 − 25 × 1.2 × 10

= 800 kN (18.130)

We can now use the point load transfer curve to-
gether with the calculated point load to obtain the
corresponding point movement wp:

wp = 4 mm (18.131)

Then we can calculate the pile movement at the
location of the neutral point by adding the elastic
compression of the pile between the pile point and the
NP. First, the average load in the pile between the pile
point and the NP is:

Qave = 800 + 1100

2
= 950 kN (18.132)

The pile movement at the NP is:

wNP(pile) = 4 + 950 × 10

0.3 × 0.3 × 2 × 107 × 1000

= 9.3 mm (18.133)

Comparing Eq. 18.128 with Eq. 2a shows that the
movement of the soil at the NP is quite difference
from the movement of the pile at the NP. Therefore,
this cannot be the NP; our first guess was incorrect.
Let’s try another guess.

b. Assume that the NP is at a depth of 29 m.
From the soil settlement profile, we read a soil move-
ment at the NP of:

wNP(soil) = 5 mm (18.134)

Vertical equilibrium of the pile gives us the point load,
Qp (Eq. 18.125):

Qp = 500 + 25 × 1.2 × 29 − 25 × 1.2 × 1 = 1340 kN
(18.135)

This is not possible because the ultimate point load
is only 1000 kN. What would happen in this case
is that the pile point would settle into the soil until
the settlement of the pile point became sufficient for
equilibrium to be reached. This would happen when
(Eq. 18.125):

500 + Fn = Fp + 1000 (18.136)

Knowing that:

Fn + Fp = 25 × 1.2 × 30 = 900 kN (18.137)

Then (Figure 18.54):

Fn = 700 kN and Fp = 200 kN (18.138)

This means that the neutral point would be at a depth
of:

zNP = 700

25 × 1.2
= 23.3 m (18.139)

From the soil settlement profile, we get a settlement at
the NP of:

wNP(soil) = 35 mm (18.140)

The mean load in the pile between the top and the NP
is:

Qave = 500 + 1200

2
= 850 kN (18.141)

and the settlement at the top of the pile is:

wtop = 35 + 850 × 23.3

0.3 × 0.3 × 2 × 107 × 1000 = 46 mm

(18.142)
This is more than the allowable settlement, not to
mention that the pile point would be at failure. We
need to reduce the top load on the pile.

3. Try a top load of Qt = 100 kN.

a. Assume that the NP is at a depth of 25 m.
From the soil settlement profile, we read a soil move-
ment at the NP of:

wNP(soil) = 25 mm (18.143)

This is already larger than the allowable settlement, so
we need to move the NP deeper.

b. Assume that the NP is at a depth of 29 m.
From the soil settlement profile, we read a soil move-
ment at the NP of:

wNP(soil) = 5 mm (18.144)
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Vertical equilibrium of the pile gives us the load in
the pile at the NP, QNP, and the point load Qp (Eq.
18.125):

QNP = 100 + 25 × 1.2 × 29 = 970 kN (18.145)

Qp = 100 + 25 × 1.2 × 29 − 25 × 1.2 × 1 = 940 kN
(18.146)

We can now use the point load transfer curve to-
gether with the calculated point load to obtain the
corresponding point movement wp:

wp = 4.7 mm (18.147)

Then we can calculate the pile movement at the
location of the neutral point by adding the elastic
compression of the pile between the pile point and the
NP. First, the average load in the pile between the pile
point and the NP is:

Qave = 940 + 970

2
= 955 kN (18.148)

The pile movement at the NP is:

wNP(pile) = 4 + 955 × 1

0.3 × 0.3 × 2 × 107 × 1000 = 5.2 mm

(18.149)
The movement of the soil at the NP is very close to
the movement of the pile at the NP. Let’s calculate the
movement at the top of the pile. The mean load in the
pile between the NP and the top of the pile is:

Qave = 100 + 970

2
= 535 kN (18.150)

and the movement of the top of the pile is:

wtop = 5 + 535 × 29

0.3 × 0.3 × 2 × 107 × 1000 = 13.6 mm

(18.151)
Therefore, the settlement at the top of the pile is
allowable. However, the pile point is close to failure,
and this pile, which would typically carry about 800 kN
of load with no downdrag, is reduced to carrying 100
kN under precarious conditions. What if we coated that
pile with a friction reducer such as bitumen? Let’s say
that this friction reducer reduces the friction from 25
kN/m2 to 2.5 kN/m2 (common for properly selected
bitumen).

4. Try a top load of 350 kN on the coated pile.
a. Assume that the NP is at a depth of 29.5 m.

From the soil settlement profile, we read a soil move-
ment at the NP of:

wNP(soil) = 2.4 mm (18.152)

Vertical equilibrium of the pile gives us the load in
the pile at the NP, QNP, and the point load Qp (Eq.
18.125):

QNP = 350 + 2.5 × 1.2 × 29.5 = 438.5 kN (18.153)

Qp = 350 + 2.5 × 1.2 × 29.5 − 25 × 1.2 × 0.5 = 423.5 kN
(18.154)

We can now use the point load transfer curve to-
gether with the calculated point load to obtain the
corresponding point movement wp:

wp = 2.2 mm (18.155)

Then we can calculate the pile movement at the
location of the neutral point by adding the elastic
compression of the pile between the pile point and the
NP. First, the average load in the pile between the pile
point and the NP is:

Qave = 423.5 + 438.5

2
= 431 kN (18.156)

The pile movement at the NP is:

wNP(pile) = 2.2 + 431 × 0.5

0.3 × 0.3 × 2 × 107 × 1000 = 2.3 mm

(18.157)
The movement of the soil at the NP is very close to
the movement of the pile at the NP. Let’s calculate the
movement at the top of the pile. The mean load in the
pile between the NP and the top of the pile is:

Qave = 350 + 438.5

2
= 394.2 kN (18.158)

and the movement at the top of the pile is:

wtop = 5 + 394.2 × 29.5

0.3 × 0.3 × 2 × 107 × 1000 = 11.5 mm

(18.159)
Therefore, the settlement is acceptable. Note that the
ultimate capacity of the pile is reduced because of the
coating:

Qu = 2.5 × 1.2 × 29.5 + 25 × 1.2 × 0.5 + 1000

= 1103.5 kN (18.160)

18.6.4 LRFD Provisions

The preceding example showed calculations of settlement
associated with the serviceability limit state. In the case of
settlement, the unfactored dead load, the unfactored perma-
nent live load, and the unfactored downdrag are included
in the settlement calculation, but the transient live load is
not. The transient live load is included when checking the
ultimate limit state at the top of the pile, but not when the
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ultimate limit state is checked at the NP. The reason is that
the transient live load does not last long enough to reverse
the downdrag load.

Briaud and Tucker (1997) proposed to check the ultimate
limit state at two locations along the pile: the pile top and
the NP.

At the pile top 1.25DL + 1.75PLL + 1.75TLL < 0.5Ru

(18.161)

At the NP 1.25DL + 1.75PLL + 1.75Fn < 0.75(Qpu + Fpu)

(18.162)
where DL is the dead load, PLL is the permanent live load,
TLL is the transient live load, Ru is the ultimate capacity of
the pile, Fn is the downdrag load, Qpu is the ultimate point
resistance, and Fpu is the friction resistance below the NP.

The resistance factors (0.5 and 0.75 on the right side of the
equations) are for a high-quality static method of computing
the resistances; they should be adjusted for other cases. Note
that at the pile top the ultimate limit state is the same as the
case of no downdrag, because the ultimate capacity of the
pile is the same whether or not there is downdrag. The use of
a higher resistance factor at the neutral point, 0.75, compared
to 0.5 at the top, means that the consequence of exceeding
the ultimate load below the neutral point is not as drastic as
that of exceeding the ultimate load at the pile top. Indeed, if
the ultimate capacity of the pile below the neutral point is
exceeded, some settlement will take place, the neutral point
will move up and the pile will find a new equilibrium; as long
as the top load is less than the ultimate capacity, downdrag
by itself cannot create plunging failure. In contrast, if the top
load reaches the ultimate capacity of the pile, the pile will
plunge, as there is no reserve in this case. AASHTO (2010)
recommends checking the ultimate limit state at the neutral
point as follows:

If Fn > Fpu 1.25DL + 1.75PLL + 1.75(Fn − Fpu) < 0.5Qpu
(18.163)

If Fn < Fpu 1.25DL + 1.75PLL < 0.5(Qpu + Fpu − Fn)

(18.164)
Going back to the example of section 18.6.3, case 4a, and

assuming that the dead load is 300 kN and the permanent live
load is 50 kN, then Eq. 18.162 gives:

1.25 × 300 + 1.75 × 50 + 1.75 × 88.5 < 0.75(1000 + 15)

or 617.4 < 761.2 (18.165)

This Briaud-Tucker ultimate limit state at the NP is satis-
fied. The AASHTO guidelines give (Eq. 18.158):

1.25 × 300 + 1.75 × 50 + 1.75(88.5 − 15) < 0.5 × 1000

or 591.1 < 500 (18.166)

This AASHTO limit state would not be satisfied.

18.6.5 Downdrag on a Group of Piles

The downdrag force on a group of n closely spaced piles is
less than n times the downdrag force on an isolated single
pile. The reason is that the soil tends to settle on the outside
of the pile group but does not settle as much between piles
inside the group, as illustrated in Figure 18.55. The full-scale
case history by Okabe (1977) demonstrates the impact of this
observation very clearly. Figure 18.56 shows the pile group
configuration together with the load distribution for different
piles in the group compared to a single pile. The center-to-
center spacing for the piles in the group is approximately 2.1
diameters. It can be seen that the single pile experiences a large
downdrag load (7000 kN), that the outer piles in the group
carry about one-half of the single pile downdrag load (3500
kN), and that the interior piles in the group are subjected to
only about 500 to 1000 kN of downdrag, or 7% to 14% of the
single-pile downdrag load. The reduction of downdrag on the
interior piles in the group is dramatic. After calibrating their
three-dimensional nonlinear finite element simulation against
Okabe’s result, Jeong and Briaud (1994) performed a large
parametric study to investigate the downdrag reduction in
pile groups. Based on those results and other measurements,
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Figure 18.55 Soil settlement pattern around a pile group.
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Table 18.18 Downdrag Reduction Factors for Groups of Piles

S/D = 5 S/D = 2.5

Fn(corner) = 0.9 Fn(single)

Fn(side) = 0.8 Fn(single)

Fn(interior) = 0.5 Fn(single)

Corner pile

Side pile

Interior pile
D

S

Fn(corner) = 0.5 Fn(single)

Fn(side) = 0.4 Fn(single)

Fn(interior) = 0.15 Fn(single)

Definitions:
S = center-to-center spacing
D = pilediameter
Fn(single) = downdrag force on the single pile
Fn(corner) = downdrag force on a corner pile in the group
Fn(side) = downdrag force on a side pile in the group
Fn(interior) = downdrag force on an interior pile in the group

(Briaud and Tucker 1997)

Briaud and Tucker (1997) recommended the reduction factors
listed in Table 18.18. Most often the piles in the groups are
embedded into a rigid pile cap. The fact that the outside piles
undergo more downdrag than the inside piles means that the
outside piles pull down on the pile cap while the inside piles
push up on it. This is the case of pile 1 in Okabe’s experiment
(Figure 18.56). Therefore, the connection between the pile
cap and the outside piles should be designed for tension. The
best way to simulate downdrag of a pile group is with the
finite element method.

18.7 PILES IN SHRINK-SWELL SOILS

Piles in shrink-swell soils are subjected to soil movements
that may increase or decrease the compression load in the
pile (Figure 18.57). These vertical soil movements take place
during the year as the top part of the soil deposit changes
water content from one season to another. The depth of the
zone influenced by these movements, called the active zone,
seems to be on the order of 3 to 5 m. If the soil shrinks, the
soil moves down with respect to the pile; this is a case similar
to downdrag, where excessive settlement and excessive load
in the pile are the design issues. If the soil swells, the soil
moves up with respect to the pile and could create excessive
upward movement of the foundation if the pile is not deep
enough.

18.7.1 The Soil Shrinks

The case in which the soil shrinks is very similar to the case
of downdrag, except that the neutral point is found at the
bottom of the soil shrinkage zone. If the soil is uniform and

H

Q Q

L

Comp CompTsneTsne

Zone of change
in water
content

Not top load
on pile

QQ

Soil shrinks
Ground
surface

Soil swells

Figure 18.57 Load distribution in piles in shrink-swell soils.

the depth of the active zone is H, a pile length equal to 2.5 H
must be ignored in the calculation of load carrying capacity.
This minimum pile length is used to ensure that the shrinkage
of the soil pulling down on the pile does not create downward
movement of the structure. The downward load is applied over
the top H of the pile, the next H resists that movement, and the
next 0.5 H is there as a safety factor. An additional length of
pile beyond 2.5 H and/or the point resistance is necessary to
safely carry the compressive structural load in friction and/or
point resistance. Note that there is some uncertainty as to
whether the shrinking soil can truly load the pile downward;
indeed, the shrinkage is usually in all directions, including
away from the pile in the radial direction. At the same time,
the shrinking soil can be much stronger than the soil below
the active zone, which does not shrink.
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18.7.2 The Soil Swells

In the case of swelling soil, the soil swells against the pile
and pulls it upward over the depth H of the active zone. If
the soil is uniform and the depth of the active zone is H,
again the minimum length of pile must be 2.5 H, excluding
other loads. This minimum pile length is used to ensure that
the swelling of the soil pulling up on the pile does not create
upward movement of the structure. The uplift load is applied
by the swelling soil over the top H, the next H resists that
movement, and the next 0.5 H is there as a safety factor. If
the structure applies a compressive load, this will counteract
to some extent the uplift created by the soil. In this instance
there is no need to lengthen the pile, unless the structural load
is so large that the movement of the soil is overcome and the
pile moves downward with respect to the soil over its entire
length. In this extreme case, the swelling of the soil can be
ignored and the pile is designed as an ordinary pile.

The friction load created by swelling Fu(swell) or shrinking
Fu(shrink) of the soil over the depth of the active zone is
calculated as:

Fu(swell) = Fu(shrink) = fuPH (18.167)

where fu is the ultimate friction, P is the pile perimeter, and
H is the depth of the active zone. Reese et al. (1976) give
some limiting values for the parameter fu.

18.8 HORIZONTAL LOAD AND MOMENT:
SINGLE PILE

18.8.1 Definitions and Behavior

This section deals with piles subjected to horizontal loads and
overturning moments. Examples of such loading on pile foun-
dations include wire tension at corner towers of power lines,
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hurricane waves on offshore platforms, ship impact on bridge
piers, and earthquake shaking of a building and walls. A hori-
zontal load test on a pile often consists of placing two piles at
some distance from each other and either pulling them toward
each other or pushing them apart. The resulting load displace-
ment curve for one pile gives the horizontal load Ho versus the
horizontal displacement yo (Figure 18.58). From this curve,
an ultimate load Hou can be defined as the horizontal load Ho
corresponding to a displacement equal to one-tenth of the pile
diameter (B/10). With such a definition, the load test curve
can be normalized as Ho/Hou as a function of yo/0. B. Using
a database of 20 piles, Briaud (1997) generated such normal-
ized horizontal load test curves (Figure 18.59). It was found
that the curves with the least amount of curvature came from
steel piles, whereas the curves with the largest amount of cur-
vature came from concrete piles. The reason is that concrete
piles gradually crack as they are bent; steel piles do not. The
bending stiffness EI (E modulus of elasticity of the pile mate-
rial, I moment of inertia around the bending axis) of concrete
piles decreases due to cracking as the pile bends, inducing
more and more curvature; by comparison, the EI of the steel
piles does not change measurably within the elastic range.

18.8.2 Ultimate Capacity

The ultimate capacity Hou can be determined by using the
free-body diagram of the upper part of the pile from the
ground surface down to the point of zero shear force or max-
imum bending moment (Figure 18.60). By writing horizontal
equilibrium, we get:

Hou = pBzmax (18.168)

where p is the mean pressure against the pile within that
depth, B is the pile width, and zmax is the depth to zero shear

Ho

Pile

V = 0

M

Soil
resistance
P (kN/m)

Zmax

Figure 18.60 Free-body diagram of upper part of horizontally
loaded pile.

force (maximum bending moment). By using the database
of pile load tests and the associated pressuremeter data,
Briaud found that p was equal to 0.75 pL (pressuremeter limit
pressure). Therefore, the ultimate load and the depth to zero
shear are given by:

Hou = 3

4
plBzmax

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zmax =
(π

4

)
lo for L > 3lo

zmax = L

3
for L < lo

lo =
(

4EpI

K

)1/4

K = 2.3Eo

(18.169)
where Hou is the ultimate horizontal load (the load that
“breaks” the soil around the pile, not the load that “breaks”
the pile), pL is the average limit pressure from pressuremeter
tests within the depth zmax, zmax is the depth to zero shear
(maximum bending moment), B is the projected pile width,
Ep is the modulus of the pile material, I is the pile moment of
inertia, K is the soil stiffness, L is the length of the pile, lo is the
transfer length, and Eo is the pressuremeter first load modulus.

A comparison between predicted Hou and measured Hou is
shown in Figure 18.61. The success of this methodology is
attributed to the close analogy between the pressuremeter test
and the lateral loading of the soil around the pile. It reminds
us that when there is a close analogy between the test and the
loading of the prototype, there is a very good chance for close
predictions. Note that all piles in the database were pushed
horizontally with no moment or very small moments applied
at the ground surface. If a sizeable moment is applied, the
value of zmax can change significantly (sections 18.8.3 and
18.8.4).

18.8.3 Displacement and Maximum Moment:
Long Flexible Pile

The problem of predicting the behavior of a laterally loaded
pile is solved in section 11.4.4 for a long flexible pile. A long
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flexible pile corresponds to the case where:

L > 3lo with lo =
(

4EpI

K

)1/4

(18.170)

where L is the length of the pile, lo is the transfer length,
Ep is the modulus of the pile material, I is the pile moment
of inertia, and K is the soil stiffness. The soil stiffness K is
taken as equal to 2.3 Eo where Eo is the pressuremeter first
load modulus. The equations for the displacement y(z), slope
y ′(z), bending moment M(z), shear V (z), and line load P(z)

as a function of depth z are repeated here for convenience
(Figure 18.62):

y(z) = 2Ho

loK
e
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lo cos
z

lo
+ 2Mo
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(18.171)

y ′(z) = − 2Ho
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Figure 18.62 Displacement, slope, bending moment, shear, and
line load profiles for a laterally loaded pile.

P(z) = −K y(z) (18.175)

where Ho and Mo are the horizontal load and moment
respectively applied at the ground surface, lo is the transfer
length given in Eq. 18.170, and K is the soil stiffness.

Using the same database of pile load tests and pressureme-
ter data as for the ultimate load equation, Briaud (1997)
recommended that the soil stiffness K be taken as:

K = 2.3Eo (18.176)

where Eo is the pressuremeter first load modulus. The impor-
tant design quantities for the pile obtained from Eqs. 18.171
to 18.175 are the displacement at ground surface yo, the
pressure close to ground surface po, the slope at the ground
surface y ′

o, the depth to the maximum bending moment zmax,

and the maximum bending moment Mmax. The displacement
at the ground surface comes from Eq. 18.171 for z = 0:

yo = 2Ho

loK
+ 2Mo

lo
2K

(18.177)

The pressure close to the ground surface is:

po = −Kyo

B

= −K

B

(
2Ho

loK
+ 2Mo

lo
2K

)
(18.178)

where B is the diameter or width of the pile. This pressure
should be compared to the yield pressure of the soil close to
the ground surface. For the pressuremeter, this yield pressure
py is on the order of 50% of the limit pressure pL in clays and
33% of the limit pressure pL in sands. Alternatively, a factor
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of safety can be applied to the limit pressure to ensure that
the pressure po is acceptable:

po <
pL

F
or po < py (18.179)

The slope at the ground surface comes from Eq. 18.172 for
z = 0:

y ′
o = − 2Ho

lo
2K

− 4Mo

lo
3K

(18.180)

The depth zmax to the location of the maximum bending
moment Mmax is found by setting the expression for the shear
force (derivative of M) equal to zero and solving for zmax.

This gives:

zmax = lotan−1
(

loHo

loHo + 2Mo

)
(18.181)

Note that zmax must be calculated in radians; any other unit
for angles, such as degrees or grades, will not give the right
answer. Then Mmax is calculated by using Eq. 18.173 and the
calculated value of zmax.

Equation 18.177 was evaluated against the 20-pile
database by comparing predicted versus measured values of
yo (Figure 18.63). As can be seen, the scatter is much larger
than in the case of the ultimate load. This is in part due to the
fact that the precision on the modulus is usually lower than
the precision on the limit pressure or strength in general.
Most of the piles in the database were flexible, but some were
rigid. The case of a rigid pile is addressed in section 18.8.4.

18.8.4 Displacement and Maximum Moment:
Short Rigid Pile

The case of a short rigid pile corresponds to:

L < lo with lo =
(

4EpI

K

)1/4

(18.182)
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Figure 18.63 Predicted vs. measured horizontal displacements.

where L is the length of the pile, lo is the transfer length, Ep

is the modulus of the pile material, I is the pile moment of
inertia, and K is the soil stiffness. In this case the constitutive
law for the pile is no longer the relationship between the
bending moment and the curvature of the pile, as the pile
does not bend (rigid). Instead, the constitutive law for the pile
expresses that the deflected shape is a straight line:

y = az + b (18.183)

where y is the horizontal displacement of the pile and z is
depth. The parameter a represents the first derivative of y
with respect to z, which is the slope of the pile (y ′

o), while b
represents the horizontal displacement at the ground surface
(yo at z = 0). The solution is much like the solution for the
case of the flexible pile.

The constitutive law for the soil is assumed to be a lin-
ear relationship between the line load on the pile and the
horizontal displacement:

P = −Ky (18.184)

where P is the line load on the pile, K is the soil stiffness
(Eq. 18.176), and y is the horizontal displacement of the pile.

The shear force V at a depth z on the pile can be calculated
by integration of the line load P as follows:

V = Ho −
∫ z

0
Pdζ = Ho + Ka

z2

2
+ Kbz (18.185)

where Ho is the horizontal load applied to the pile at the
ground surface, z is the depth where V is calculated, and ζ is
the running variable varying between 0 and z.

The bending moment at a depth z in the pile can be obtained
by integration of the shear force as follows:

M = Mo + Hoz −
∫ z

0
P(z − ζ )dζ

= Mo + Hoz + Ka
z3

6
+ Kb

z2

2
(18.186)

We use the boundary conditions to find the values of a and
b that represent the slope y ′

o and the horizontal displacement
yo at the ground surface respectively:

for z = 0, V = Ho, M = Mo (18.187)

for z = L, V = 0, M = 0 (18.188)

The condition at z = 0 is already satisfied and the condition
at z = L leads to:

y ′
o = +6(HoL + 2Mo)

KL3
= a (18.189)

yo = −2(2HoL + 3Mo)

KL2
= b (18.190)
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The pressure close to the ground surface is:

po = −Kyo

B
= 2

K

B

(
2HoL + 3Mo

KL2

)
(18.191)

where B is the diameter or width of the pile. This pressure
should be compared to the yield pressure of the soil close to
the ground surface. For the pressuremeter, this yield pressure
py is about 50% of the limit pressure pL in clays and 33%
of the limit pressure pL in sands. Alternatively, a factor of
safety can be applied to the limit pressure to ensure that the
pressure po is acceptable:

po <
pL

F
or po < py (18.192)

The depth zmax to the location of the maximum bending
moment Mmax is found by setting the expression for the shear
force (derivative of M) equal to zero and solving for zmax.

This gives:

zmax = HoL
2

3(HoL + 2Mo)
(18.193)

Then Mmax is calculated by using Eq. 18 and the calculated
value of zmax.

18.8.5 Modulus of Subgrade Reaction

There are three types of soil stiffness, as shown in the
following equations 18.194 to 18.196:

Spring constant:

K1(kN/m) = H(kN)

y(m)
(18.194)

Soil stiffness:

K2(kN/m2) = P(kN/m)

y(m)
(18.195)

Modulus of horizontal subgrade reaction:

K3(kN/m3) = p(kN/m2)

y(m)
(18.196)

where H is the resultant force on the side of a given length of
pile, y is the horizontal displacement of the pile, P is the line
load on the pile, and p is the average pressure on the side of
a given length of pile.

K1 and K3 contain foundation and soil properties, but K2
is a soil property only. This can be illustrated by using the
equation for the settlement of a square plate on an elastic soil:

y = I
pB

Es

= I
H

BEs

(18.197)

where y is the settlement of the plate, I is an influence factor,
p is the mean pressure under the plate, B is the width of
the plate, Es is the soil modulus, and H is the load on the

plate. Using Eq. 18.197, the values of K1,K2, and K3 can be
obtained as:

Spring constant:

K1 = BEs

I
(18.198)

Soil stiffness:

K2 = Es

I
(18.199)

Modulus of horizontal subgrade reaction:

K3 = Es

IB
(18.200)

As can be seen, K1 and K3 have the width of the plate and
the soil modulus in their expression, whereas K2 only has the
soil modulus. Therefore, one should use K2 and not K1 and
K3, especially if K1 and K3 are derived from tests performed
at a scale very different from the field application.

18.8.6 Free-Head and Fixed-Head Conditions

A free-head condition exists when the loading at the top of the
pile consists only of a horizontal load (no moment) (Figure
18.64):

Mo = 0 (18.201)

A fixed-head condition exists when the loading at the top
of the pile is such that the top of the pile remains vertical
during the horizontal displacement:

y ′
o = 0 (18.202)

For the same horizontal load Ho, the displacement of the
free-head pile will be larger than the displacement of the
fixed-head pile. However, the fixed-head pile will develop a
significant moment at the ground surface in the process. This
moment is given in Eqs. 18.203 and 18.204 for a flexible pile
and a rigid pile:

H0 H0

M0

y0 y0

y95 0y9±0

Figure 18.64 Free-head and fixed-head piles.
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Table 18.19 Ground Surface Displacement for Horizontally Loaded Piles

Free head Fixed head

Long flexible pile yo = 2Ho

loK
for L > 3lo yo = Ho

loK
for L > 3lo

Short rigid pile yo = −4Ho

LK
for L < lo yo = −Ho

KL
for L < lo

Fixed-head flexible pile:

Mo = −Holo

2
(18.203)

Fixed-head rigid pile:

Mo = −HoL

2
(18.204)

These moments also happen to be the maximum bending
moments in the pile. Table 18.19 summarizes the equation
giving the ground surface displacement yo for flexible and
rigid piles in free-head and fixed-head conditions.

18.8.7 Rate of Loading Effect

The rate of loading has an effect on the ultimate horizontal
load and on the horizontal displacement at the ground surface.
The model proposed by Briaud and Garland (1985) leads to
the following relationships:

Hou(t)

Hou(to)
=

(
t

to

)−n

(18.205)

yo(t)

yo(to)
=

(
t

to

)n

(18.206)

where Hou(t) and Hou(to) are the ultimate horizontal load
reached in a time t and to respectively, yo(t) and yo(to)
are the horizontal displacements reached in a time t and to
respectively, and n is the viscous exponent for the soil.

The value of n varies between 0.01 to 0.03 for sand and
from 0.02 to 0.05 for clays, with values up to 0.08 or even 0.1
being reached for very soft, high-plasticity clays (see Figure
15.18). For example, if a retaining wall is founded on bored
piles in stiff clay and is designed for 50 years of life, then
the load Hou(to) obtained from Eq. 18.161 must be altered,
because of the long-term sustained load. The reference time to
is associated with the load tests used to calibrate the method.
These tests are typically done in a few hours. If we say that
to is equal to 2 hours, then Eq. 18.205 gives:

n = 0.02 Hou(50yrs) = Hou(2hrs)

(
50 × 365 × 24

2

)−0.02

= 0.78Hou(2hrs) (18.207)

n = 0.06 Hou(50yrs) = Hou(2hrs)

(
50 × 365 × 24

2

)−0.06

= 0.48Hou(2hrs) (18.208)

In contrast, if the pile is hit by a truck and the impact lasts
50 milliseconds, the results are:

n = 0.02 Hou(50ms) = Hou(2hrs)

(
0.050

2 × 3600

)−0.02

= 1.27Hou(2hrs) (18.209)

n = 0.06 Hou(50ms) = Hou(2hrs)

(
0.050

2 × 3600

)−0.06

= 2.04Hou(2hrs) (18.210)

The same model can be applied to the horizontal displace-
ment yo(t). Note that the viscous exponent n can be measured
directly and on a site-specific basis with a pressuremeter test.
The PMT consists of holding the pressure in the probe for a
chosen amount of time and recording the increase in radius
as a function of time (Figure 18.65). Then n is given by the
following equations:

E(t)

E(to)
=

(
t

to

)−n

or n =
− log

(
E (t)

E(to)

)

log

(
t

to

) (18.211)

t = to

t = o

log Eto

log Et

log to log t

nt

Eto

Et

tEt = Eto(    )2nt
tot = t

t

s

1

«

Figure 18.65 Obtaining the viscous exponent from a pressureme-
ter test.
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Horizontal pile load test, 30-min and 30-day load steps. (b) Pressuremeter test, 30-min pressure
steps.

where E(t) and E(to) are the first load PMT moduli at time
t and to respectively. They are obtained from the slopes as
shown in Figure 18.65.

Usually to is chosen as the reading at 1 minute after the start
of the pressure holding step that lasts 10 minutes. The viscous
exponent n should be obtained from a pressure holding step
in the pressuremeter performed at a ratio p/pL equal to the
ratio Ho/Hou.

Figure 18.66 shows the results of a horizontal pile load
test in a stiff clay which was performed with 30-minute
and 30-day-long load steps and a pressuremeter test that
was performed next to the pile with 30-minute-long pressure
steps. The parallel is striking.

18.8.8 Cyclic Loading Effect

The effect of cycles on the behavior of laterally loaded piles
can be modeled as follows:

yN = y1N
a (18.212)

where y1 and yN are the ground surface horizontal displace-
ment at the top of the first and the nth cycle respectively, N

is the number of cycles, and a is the cyclic exponent.
A major distinction should be made between one-way

cyclic loading and two-way cyclic loading (Figure 18.67).
In one-way cyclic loading, the direction of the load is not
reversed, whereas in the case of two-way cyclic loading the
direction of the load is reversed. This distinction makes a
difference in the response of the pile depending on the type of
soil loaded. If the soil behaves in such a way that pushing the
pile in one direction does not affect the behavior of the soil in

y

y

Ho
One way cyclic

loading

(a)

(b)

Ho Two way cyclic
loading

Figure 18.67 Difference between one-way and two-way cyclic
loading: (a) One-way cyclic loading. (b) Two-way cyclic
loading.

the opposite direction, then there is little difference between
one-way and two-way cyclic loading. This is typically the
case in clay. There are cases, such as in dry sands, for example,
where pushing the pile in one direction opens a gap behind
the pile which fills up when the sand falls into it. Then, when
the pile is pushed in the opposite direction, the pile is stiffer
than it would have been had the sand not fallen into the open
gap. This phenomenon can stiffen the pile during two-way
cyclic loading and make two-way loading less detrimental to
accumulation of displacement than one-way cyclic loading.
The cyclic exponent a was collected from cyclic lateral load
tests (Briaud 1992) and found to vary in the ranges shown in
Table 18.20.

The pressuremeter test can be performed by including
cycles of loading (Figure 18.68). The cyclic exponent can be
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Table 18.20 Range of Measured Cyclic Exponent for
Piles Subjected to Cyclic Horizontal Loads

Cyclic Loading
Type

Soil
Types

Range of Values of
Cyclic Exponent a Average

One-way and
two-way

Clay 0.01 to 0.35 0.094

One-way Sand 0.005 to 0.26 0.076
Two-way Sand −0.14 to 0.06 0.002

(Briaud 1992)
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Figure 18.68 Obtaining the cyclic exponent from a cyclic PMT
test.
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obtained from the cyclic PMT. The cyclic exponent is given
by the following equations:

E(N)

E(1)
=

(
N

1

)a

or a =
log

(
E (N)

E(1)

)

log

(
N

1

) (18.213)

where E(N) and E(1) are the first load PMT moduli corre-
sponding to the nth cycle and the first cycle respectively. They
are obtained from the slopes as shown in Figure 18.68.

The cycles should be performed by matching the anticipated
cycles for the pile as closely as possible. In that respect, it is
important to realize that the cyclic loading in a PMT can only
be one-way cyclic loading. Indeed, in the pressuremeter test
the soil is always in radial compression. Therefore, a cyclic
pressuremeter test can be used for one-way and two-way
cyclic loading for piles in clay where there does not seem to
be any difference. However, it can only be used for one-way
cyclic loading of sands. If the PMT is used for predicting
the accumulation of movement as a function of the number
of cycles for two-way cyclic loading in sand, the amount of
movement will likely be overestimated. Figure 18.69 shows
the results of a one-way horizontal cyclic loading test on
a pile in sand. Figure 18.70 shows the results of a cyclic
pressuremeter test in the same sand.

18.8.9 P-y Curve Approach

The previous approaches assume that the soil is uniform and
that the pile has a constant cross section. In many cases, the
actual soil is stratified with layers of different strength and
stiffness. Also, sometimes the pile cross section varies as a
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function of depth. In this case, one of the solutions is the
P -y curve approach. In this approach, the soil resistance is
described at any given depth by a nonlinear curve linking
the line load P on the pile to the pile deflection into the
soil y. Much of the early work on P -y curves was done
by Matlock and Reese, who recommended a set of curves
based on large-scale load tests, analytical developments,
and software calibration. These curves are well documented
in the offshore recommended practice API-RP 2A (2000),
which includes the effect of cyclic loading. Briaud (1992)
recommended P-y curves based on the pressuremeter curve.
Frank (2013) and Norme Francaise AFNOR P94-262 (2012)
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Figure 18.71 Pressuremeter tests near a trench: (a) PMT tests near a trench in clay. (b) PMT tests
near a trench in sand.

also have recommendations as to how to construct p-y curves
on the basis of pressuremeter data. The general solution for
the P -y curve approach is the finite difference solution which
is described in detail in Section 11.5.1 with a complete
example in Section 11.5.2.

18.8.10 Horizontal Loading Next to a Trench

Sometimes there is a need to dig a trench in front of a laterally
loaded pile. In this situation one often needs to know how
far and how deep the trench can be dug and, if the trench is
constructed within the zone of influence of the loading, how
much the ultimate capacity will be reduced. If Hou(no trench) is
the ultimate capacity when there is no nearby trench, and if
Hou(trench) is the ultimate capacity when there is a trench, then
the reduction factor λ is:

Hou(trench) = λHou(no trench) (18.214)

Pressuremeter tests were conducted closer and closer to
a trench in sand and then to a trench in clay (Briaud and
Tucker 1987). The results, shown in Figure 18.71, indicate
the weakening of the PMT curve as the distance from the
PMT to the edge of the trench is decreased. These data
were used to generate the reduction factor λ chart shown in
Figure 18.72. Of course, before this chart can be used, one
should first check that the trench is stable.

18.9 HORIZONTAL LOAD AND MOMENT:
PILE GROUP

The resistance of pile groups to horizontal loading (Figure
18.73) includes several topics: resistance to overturning mo-
ments, ultimate loads, and movements at working loads.
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Figure 18.73 Horizontal loading of a pile group (cross section).

18.9.1 Overturning Moment

The resistance to overturning moment is usually taken through
an increase in axial compression for the piles on one side of
the group and a corresponding decrease in axial compression
or possibly tension for the piles on the other side of the group
(Figure 18.74).

Consider a rectangular group of piles with n piles in one
direction and m piles in the other. The horizontal distances
between the center of the group and individual piles in the
group are ai (Figure 18.74). The width of the group is B and
the length is L. In this case, the change in load �Qi in each
pile due to the moment M is given by:

�Qi = ai

B/2
�Qmax (18.215)

where �Qmax is the change in axial load in the pile located
at the largest distance away from the center of the group
(B/2). Then the resisting moment provided by the pile group
is given by:

�Qmax = MB

2m

n∑
i=1

a2
i

(18.216)

M

Q

DQmax

B3L

ai

DQi

Figure 18.74 Overturning of a pile group.

where �Qmax is the change in load in the piles at the edge
of the group, M is the global moment applied, B is the width
of the group, m is the number of piles in the length direction,
n is the number of piles in the width direction, and ai is the
distance between pile i and the center axis around which the
moment is applied. Once the value of �Qi is known for each
pile, the problem reverts to being a vertical load problem.

18.9.2 Ultimate Capacity

The ultimate horizontal load that can be applied to a pile
group can be estimated as:

Hou(group) = enHou(single) (18.217)

where Hou(group) and Hou(single) are the ultimate horizontal
load for the group and for the single pile respectively, n is
the number of piles in the group, and e is the efficiency of the
group.

The load resisted by each pile in the group is not the same
for all piles. The piles in the front of the group (leading
piles) will develop more resistance than the piles behind them
(trailing piles) (Figure 18.75).
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Figure 18.75 Horizontal load on a pile group (plan view).
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One reasonable assumption is that all leading piles carry
the same load and that all trailing piles carry the same load.
Then the following influence factors can be defined for a
leading pile and a trailing pile:

Hou(leading pile) = elpHou(single) (18.218)

Hou(trailing pile) = etpHou(single) (18.219)

where Hou(leading pile) and Hou(trailing pile) are the ultimate
horizontal capacity of the leading pile and trailing pile re-
spectively, and elp and etp are the efficiency factors for the
leading pile and trailing pile respectively. The group ultimate
capacity can then be assembled as:

Hou(group) = (nlpelp + ntpetp)Hou(single) (18.220)

where nlp and ntp are the number of leading piles and trailing
piles respectively.

Cox et al. (1983) measured the behavior of groups of in-
line piles. They loaded these lines of piles in the direction
of the line (in-line loading) and perpendicularly to that line
(side-by-side loading). Their measurements were used to
develop the global efficiency factors for line groups shown
in Figure 18.76. The global efficiency factor is the ratio of
the group ultimate capacity Hou(group) divided by n times the
ultimate capacity of a single pile Hou(single) where n is the
total number of piles in the group.

The measurements by Cox et al. (1983) also showed that
all the trailing piles carry approximately the same load and
that the leading pile carries more than the trailing piles. The
ratio of the ultimate load of the leading pile over the ultimate
load of the trailing pile depends on the spacing:

Hou(leading pile) = λHou(trailing pile) (18.221)

The values of λ are shown in Figure 18.77. Therefore,
another way to express the group capacity is:

Hou(group) =
(

nlpelp + ntp

elp

λ

)
Hou(single) (18.222)
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Figure 18.77 Ratio of load on leading pile over trailing pile.

As an example, consider the 3 by 4 pile group of
Figure 18.75. The center-to-center spacing is equal to two
times the pile diameter. The single-pile ultimate horizontal
load Hou(single) has been calculated to be 100 kN. We now
wish to obtain the group ultimate capacity if the horizontal
load is applied in the direction perpendicular to the three-pile
side as shown in Figure 18.75.

1. The leading-pile efficiency elp is obtained from
Figure 18.76 for a pile spacing of 2. The value is
0.86. Therefore, because there are 3 leading piles, the
contribution to the group capacity is 3 × 0.86 = 2.58.

2. The ratio λ between the capacity of the leading pile and
the trailing pile is given by Figure 18.77. The value is
1.43 for a spacing of 2; therefore, the efficiency of the
trailing piles is 0.86/1.43 = 0.60. Because there are 9
trailing piles, the contribution to the group capacity is
9 × 0.60 = 5.40.

3. The contribution of the leading piles plus the trailing
piles is then 2.58 + 5.40 = 7.98. If the group was 100%
efficient, it would carry 12 times the single-pile ca-
pacity, but in fact it carries 7.98 times the single-pile
capacity. Therefore, the global efficiency of the group
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Figure 18.76 Efficiency for side-by-side and in-line groups (After Cox et al. 1983).
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is 7.98/12 = 0.665. The ultimate horizontal capacity of
the group is 0.665 × 100 × 12 = 798 kN.

18.9.3 Movement

The movement of a pile group is difficult to estimate by
simple calculations. One way is to consider that the pile
cap prevents any rotation of the individual piles, so that the
displacement is the one associated with the case of fixed-head
piles (Figure 18.73). The results in this case are given here
and detailed in section 18.8.6. A moment Mo must develop
between the pile and the pile cap to prevent rotation of the pile
at the ground line. For flexible and rigid piles, this moment is
given by:

Fixed-head flexible pile Mo = −Holo

2
(18.223)

Fixed-head rigid pile Mo = −HoL

2
(18.224)

where Ho is the horizontal load, lo is the transfer length (Eq.
18.170), and L is the length of the pile.

These moments also happen to be the maximum bending
moments in the pile. The displacement yo at the ground
surface in this case will be:

Fixed-head flexible pile yo = Ho

loK
(18.225)

Fixed-head rigid pile yo = Ho

LK
(18.226)

where K is the soil stiffness. This stiffness is recommended
to be taken as 2.3 Eo for single piles, where Eo is the
pressuremeter first load modulus.

In the case of pile groups, and because of the overlapping
of soil stresses around the piles in the group, this number
must be decreased by a factor indicative of the interaction
between piles in the group.

A second approach for predicting the response of pile
groups is to use the P-y curve approach (section 18.8.9)
and soften the P-y curves to take into account the effect of
overlapping stresses among piles. Given the Ps-y curve for a
single pile, the Pg-y curve for the group is obtained simply
by writing that for a given value of y (Figure 18.78):

Pg = mPs (18.227)

where m is called the multiplier. Brown et al. (2010) gave rec-
ommendations for the values of m as shown in Figure 18.79.

The softened P-y curves are then used to simulate each
pile in the group as a single pile while using a finite differ-
ence program to predict the deflection and maximum bending
moment. Alternatively, programs such as FLPIER, which
simulate the entire group on the basis of P-y curves, can be
used. Ultimately, the finite element method in three dimen-
sions is the best tool to predict the behavior of horizontally
loaded pile groups, using programs such as ABAQUS or
PLAXIS, but the computing time required is much larger.
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L
in

e
 l
o

a
d

 o
n

 p
il
e
,

P
(k

N
/m

)

Pg = mPs

Ps
Pg

Figure 18.78 P-y curve for piles in groups.
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Figure 18.79 Multiplier to soften P-y curves. (After Brown et al.
2010)

18.10 COMBINED PILED RAFT FOUNDATION

A combined piled raft foundation (CPRF) is composed of a
mat foundation with a number of piles underneath the mat.
It is an intermediate between a mat foundation and a pile-
group foundation (Figure 18.80). Guidelines for CPRF have
been proposed by the ISSMGE technical Committee on Deep
Foundations (Katzenbach, 2012). The difference between a
CPRF and a pile-group foundation is twofold:

1. In the calculations of the pile-group foundation, the
contribution of the pile cap or mat is ignored, whereas it
is an integral part of the carrying capacity of the CPRF.

2. The CPRF has fewer piles and the piles are typically
longer under the center of the mat than at the edges. The
reason is that the mat foundation settles in the shape of
a dish; the settlement tends to be larger under the center

Mat
foundation

Combined pile
raft foundation

Pile -group
foundation

RU 5 RU Mat RU 5 RU Mat 1 SRU Piles RU 5 SRU Piles

(a) (b) (c)

Figure 18.80 Difference between mat foundation, pile-group foun-
dation, and combined piled raft foundation.
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Figure 18.81 CPRF for a very high building in Dubai. (Courtesy of Chris Haberfield, Golder and
Associates)

than under the edges. Thus, placing more piles under
the center and fewer around the edges counterbalances
the dishing tendency and reduces the bending moment
in the mat.

An example of a CPRF for a very high building in Dubai
is shown in Figure 18.81.

The CPRF offers a combined resistance to the building
loads that comes from the pile point resistance (Rpi), pile
friction resistance (Rfi), and raft or mat resistance (Rri). The
subscript i refers to pile i and to the raft resistance tributary
to pile i (Figure 18.82). The CPRF ratio α is defined as the
ratio of the load carried by the n piles divided by the total
load Rt carried by the CPRF (Katzenbach 2012):

α =

n∑
i=1

(Rpi(s) + Rfi(s))

Rt (s)
(18.228)

where s is the settlement of the CPRF. Values of the CPRF
ratio around 0.5 are common.

At the ultimate limit state, the ultimate pile capacity can
be estimated according to the guidelines presented in section
18.4 for single piles and section 18.5 for pile groups. The
resistance Rri contributed by the raft around pile i is given
by:

Rri =
∫∫

A

σ(s, x, y)dxdy (18.229)

Resistances

Loads

X

Z

Raft or
mat

Rrj

Rfj

Rpj

Pile j

Figure 18.82 Free-body diagram of a CPRF. (After Katzenbach
2012)

where σ(s, x, y) is the vertical and upward normal stress on
the bottom of the raft around pile i, s is settlement, x and y

are the coordinates in the horizontal plane, and A is the area
domain of integration corresponding to the portion of the raft
tributary to pile i.

It is very difficult to estimate the values of Rpj, Rfj, and Rrj

by simple means because they all depend on the movement
that takes place around the piles and under the mat. For this
reason, the best way to predict the behavior of a CPRF is
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Figure 18.84 Complete soil-foundation-structure simulation: (a) Tower and foundation. (b)
Tower, foundation, and mass. (Courtesy of Lisyuk and Ulitsky 2012)
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through the finite element method. A typical approach for
very large structures consists of the following steps:

1. Carry out load tests with group effect if possible.
2. Calibrate the FEM model to match the load test results.
3. Use the calibrated model to predict the behavior of the

complete CPRF.
4. Monitor the construction of the structure to verify pre-

dictions and if needed make adjustments.

The result of such an approach appears in Figure 18.83,
which shows the load settlement curve of the structure for
three different foundation alternatives: mat, pile group, and
CPRF. A parallel economic study can be used along with
tolerable movements to decide which solution is both eco-
nomical and safe.

The future of foundation engineering is in the use of the
FEM with the goal of modeling the soil, the foundation, and
the structure all in one model. An example of such approach is
shown in Figure 18.84. Note that the unit weight of a building
typically ranges between 2.5 and 5 kN/m3 and is therefore
a small fraction of the soil unit weight. As such, buildings
are much lighter than soil for a given volume. This is why
it is very advantageous to place basements in a building,
as the weight of soil excavated for one story is equal to 5
to 10 stories of building. For example, a 20-story building
with 3 levels of underground parking garages could well
be as heavy as the soil removed to create the underground
parking garages. In this case the settlement is limited to the
recompression of the soil that expanded upon excavation.

PROBLEMS

18.1 .In cross hole logging of a bored pile, the speed v of the compression wave is measured.
a. If v = 4000 m/s how good is the concrete?
b. If v = 3500 m/s how good is the concrete?
c. If v = 3000 m/s how good is the concrete?

18.2 Draw a typical and clean record of velocity signal in a sonic echo test on a bored pile with a necking defect. Repeat the
question for a bored pile with a bulb defect.

18.3 Use the pile driving equation to obtain the rated energy of a diesel hammer necessary to drive a pile with an ultimate
resistance at the time of driving of 1000 kN to a penetration rate of 4 mm/blow. Assume that the diesel hammer has an
efficiency of 0.5.

18.4 Calculate in km/h how fast the compression wave generated by the hammer blow from problem 18.3 propagates in a steel
pile, in a concrete pile, and in a timber pile. If the pile is 20 m long, how much time does it take for the wave to go down
to the bottom of the pile and back up to the top?

18.5 A hammer impacts a concrete pile with a 0.25 m2 cross section and generates a particle velocity at the top of the pile
equal to 3 m/s. Calculate the force and then the compressive stress in the concrete at the pile head.

18.6 The ultimate static soil resistance of a short, relatively rigid pile in silt is 800 kN with 500 kN of friction and 300 kN of
point resistance. Calculate the ultimate dynamic soil resistance if the pile velocity is 4 m/s.

18.7 Show all calculations leading to the wave equation numbers populating Table 18.5.
18.8 Develop the theoretical expression of the residual load in a driven pile for the following conditions. The initial condition

is the stress and load distribution in the pile at failure. The ultimate skin friction is fu and the ultimate point pressure is
pu. The ultimate load at the top of the pile is Ru and the ultimate load at the point is Rpu. The unloading of the friction
and point transfer curve is assumed to obey the linear elastic model shown in Figure 18.1s.

Stresses Loads

fu

Df

Dp

Dw
Dw

w w

f

pu

fu

p

Kf

Kp

Rpu

pu

Rtu

Figure 18.1s Initial conditions and models for residual loads.
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18.9 Explain Figures 18.21 and 18.22 in your own words.
18.10 A pile is driven and the force (F ) and particle velocity time impedance (v × EA/c) at the top of the pile are measured as

shown in Figure 18.2s. Calculate the dynamic resistance of the pile using the observations at times t1 and t2 separated by
the down and up travel time of the wave (2L/c) and the Case method.

F
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 (
k

N
)

2000

1000

0

1846 kN

1557 kN

311 kN

Time

Force
Velocity x (EA)/c

t1

2L/c

t2 5 t1 1 2L/c

Figure 18.2s Force and velocity signal.

18.11 Calculate the static resistance of the pile in problem 18.10 by the Case method.
18.12 Is it possible to break a concrete pile in tension by driving it in the ground? If yes, explain how.
18.13 A suction caisson is 20 m long and 2 m by 2 m in cross section with a wall thickness of 20 mm. It is made of steel and is

to be installed in a soft clay with an undrained shear strength of 20 kPa. Calculate the ultimate capacity of the caisson and
the underpressure required to install it to full penetration. Check that this underpressure does not create inverse bearing
capacity failure.
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Figure 18.3s Statnamic test results.

18.14 Calculate the strain, the stress, and the friction on each segment of the pile shown in Figure 18.29 for the maximum load
applied. How would you measure such values? The pile is a bored pile 1 m in diameter and made of concrete.
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18.15 Calculate the slope of the load transfer curves for the axially loaded pile discussed in section 18.4.3 and verify the
value of the movement necessary to reach the maximum friction and point resistance shown in Figure 18.43. Generate a
spreadsheet to develop the complete load settlement curve of this axially loaded pile.

18.16 Calculate the ultimate static capacity of the pile subjected to the Statnamic test. The pile is a 1 m diameter, 20 m long
bored concrete pile. The test results are summarized in Figure 18.3s.

18.17 Calculate the ultimate capacity of the two piles shown in Figure 18.4s by all possible methods. The pile in clay is a
circular bored pile and the pile in sand is a square driven pile. At what depth along the pile would you place the Osterberg
load cell to balance the load on both sides of the pile at ultimate load?

pL = 400 kPa

qc = 4000 kPa

N = 8 bpf

gt = 18 kN/m3

0.7 m 2 m

4 m

14 m

5 m

10 m

2 m

Medium clay

Loose sand

pL = 2000 kPa

qc = 20,000 kPa

N = 40 bpf

gt = 20 kN/m3

Sand & gravel

Stiff clay

su = 100 kPa pL = 800 kPa

qc = 4000 kPa gt = 20 kN/m3

su = 50 kPa

qc = 2000 kPa

pL = 400 kPa

gt = 19 kN/m3

Figure 18.4s Ultimate capacity of two piles.

18.18 For the pile of Figure 18.43, find the top movement and the load distribution in the pile for a point movement of 5 mm.
18.19 .A 16-story hospital weighs 1500 MN, and its imprint is 75 m by 75 m. The building rests on 10,000 timber piles, each

15 m long, 0.3 m in average diameter, and driven with a spacing of 0.75 m center to center. The soil is made of a clay
layer down to 14.5 m (su = 20 kN/m2, eo = 0.8, and Cc = 0.1), then a sand layer down to 16.5 m (N = 30 bpf), and then
clay again down to a depth of 100 m (su = 30 kN/m2, eo = 0.7, and Cc = 0.06). The water table is at the ground surface
and the total unit weight of all soils is 20 kN/m3. Calculate:

a. The capacity of one timber pile
b. The capacity of the pile group
c. The settlement of the hospital
d. Comment on this design.

18.20 Calculate the group efficiency for settlement using Poulos interaction factors for the case of a flexible pile cap (all piles
carry the same load). The group is 4 by 4 with a 3-pile diameter center-to-center spacing.

18.21 .If the uncoated pile subjected to downdrag in Figure 18.54 was pushed into the ground 100 mm at the pile top, what
would be:

a. The new position of the neutral point?
b. The load at the top of the pile?
c. The load distribution in the pile?

18.22 A bored pile foundation is used for a house on a shrink-swell soil. The piles are 0.5 m in diameter, the load per pile is
50 kN, and the zone of active movement from one season to the next extends from the ground surface to a depth of
3 m. The soil is a very stiff clay with an undrained shear strength of 120 kPa and a total unit weight of 20 kN/m3. The
groundwater level is at a depth of 10 m. How deep should each bored pile be to minimize the potential uneven movement
of the house?
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18.23 .For the long flexible pile shown in Figure 18.5s, calculate:

0

M0 = 10.9 kN∙m

E0 (MPa)H0 = 89.1 kN

3

6

9

12

15

16

20

10 42 23 1.2

0.6

0.8

2.3

2.3

1.8

1.1

11.5

16.1

23

46

34.5

48.3

20
21

35

42

60

70

10

15

33.5 m

Sand
21 m

Clay

21

Depth (m)

0.61 m pipe unplugged, wall thickness 9.5 mm

20

5

7

40 0
Er (MPa)
40 80 0 0

PL (MPa)
1 2 3

K (MPa)
40 80

Figure 18.5s Long flexible pile loaded horizontally.

a. The ultimate load Hou
b. The deflection and slope at the ground surface under the working load
c. The maximum bending moment under the working load
d. The factor of safety against yielding of the soil near the ground surface under the working load

18.24 .For the short rigid pile shown in Figure 18.6s, calculate:
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Figure 18.6s Short rigid pile loaded horizontally.
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a. The ultimate load Hou
b. The deflection and slope at the ground surface under the working load
c. The maximum bending moment under the working load
d. The factor of safety against yielding of the soil near the ground surface under the working load

18.25 Calculate zmax for a flexible pile and a rigid pile if the pile is subjected to a horizontal load only (Ho different from 0 but
Mo equal to 0).

18.26 Calculate the ratio between the ground surface displacement for a free-head condition and for a fixed-head condition. Do
the calculation first for a flexible pile and then for a rigid pile.

18.27 For the pile group shown in Figure 18.75, calculate the efficiency of the group if it is loaded horizontally in a direction
perpendicular to the four-pile line.

18.28 The pile group of Figure 18.75 is subjected to an overturning moment of 10 MN.m in the direction of largest resistance
to overturning of the group. The piles are 0.4 by 0.4 square concrete driven piles embedded 25 m in a loose sand with a
blow count of 6 bpf. What will be the ratio between the applied tension load and the ultimate tension capacity of the most
loaded pile in the group?

18.29 A steel pipe pile has a diameter D equal to 0.61 m and a wall thickness t equal to 9.5 mm. The pile is 33.5 m long and the
steel has a modulus E equal to 200 GPa. The pile is loaded horizontally with a load Ho of 89 kN in fixed-head condition.
The soil is characterized by stiffness coefficient K from pressuremeter tests equal to 25,000 kPa. Plot the profiles versus
depth of the deflection, slope, shear, bending moment, and line load in the pile.

Problems and Solutions

Problem 18.1

In cross hole logging of a bored pile, the speed v of the compression wave is measured.

a. If v = 4000 m/s, how good is the concrete?
b. If v = 3500 m/s, how good is the concrete?
c. If v = 3000 m/s, how good is the concrete?

Solution 18.1

a. If v = 4000 m/s, the concrete is good.
b. If v = 3500 m/s, the concrete is questionable.
c. If v = 3000 m/s, the concrete is poor or there is a defect in the pile.

Problem 18.2

Draw a typical and clean record of velocity signal in a sonic echo test on a bored pile with a necking defect. Repeat the
question for a bored pile with a bulb defect.

Solution 18.2

a. Necking defect

L
TensComp

A

V

F

at A

at A

time

2L
ct = 

time

2L
ct = 

Figure 18.7s Necking defect.
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b. Bulb defect

L
Comp

(a) (b)

Comp

A

V

F
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time

2L
ct 5 

time

2L
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Figure 18.8s Bulb defect.

Problem 18.3

Use the pile driving equation to obtain the rated energy of a diesel hammer necessary to drive a pile with an ultimate resistance
at the time of driving of 1000 kN to a penetration rate of 4 mm/blow. Assume that the diesel hammer has an efficiency of 0.5.

Solution 18.3

Rud = eWh

s + c

2

= eWh

s + 2.5

Wh = Rud × (s + 2.5)

e

Wh = 1000 × (4 + 2.5)

0.5

Wh = 1000 × (4 + 2.5)

0.5

Wh = 13000 kN.m = 13000 kJ

Problem 18.4

Calculate in km/h how fast the compression wave generated by a hammer blow propagates in a steel pile, in a concrete pile,
and in a timber pile. If the pile is 20 m long, how much time does it take for the wave to go down to the bottom of the pile
and back up to the top?

Solution 18.4

The wave speed for a given material can be calculated using the following formula:

c =
√

E

ρ
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For steel : E = 2 × 108 kPa and ρ = 7850 kg/m3

For concrete : E = 2 x 107 kPa and ρ = 2400 kg/m3

For wood : E = 1 x 107 kPa and ρ = 800 kg/m3

csteel =
√

2 × 1011

7850
= 5047.5 m/sec. ∴ 18171.2 km/hr.

cconcrete =
√

2 × 1010

2400
= 2886.8 m/sec. ∴ 10392.3 km/hr.

ctimber =
√

1 × 1010

800
= 3535.5 m/sec. ∴ 12727.9 km/hr.

The time it takes for the wave to go down to the bottom of the pile and back up to the top can be calculated as:

t = 2L

c

tsteel = 2 × 20

5047.5
= 0.00792 sec.

tconcrete = 2 × 20

2886.8
= 0.01386 sec.

ttimber = 2 × 20

3535.5
= 0.01131 sec.

Problem 18.5

A hammer impacts a concrete pile with a 0.25 m2 cross section and generates a particle velocity at the top of the pile equal
to 3 m/s. Calculate the force and then the compressive stress in the concrete at the pile head.

Solution 18.5

Using the results of c = 2886 m/ sec . computed in problem 18.4 for a concrete pile, the force can be estimated using the
following formula:

F = EA

c
v

F = 2 × 107 kPa × 0.25 m2

2886 m/sec.
× 3 m/sec. = 5198 kN

The compressive stress in the pile head is:

σ = F

A
= 5198 kN

0.25 m2
= 20792 kPa

Problem 18.6

The ultimate static soil resistance of a short, relatively rigid pile in silt is 800 kN with 500 kN of friction and 300 kN of point
resistance. Calculate the ultimate dynamic soil resistance if the pile velocity is 4 m/s.

Solution 18.6

The dynamic soil resistance of the soil is obtained using Eq. 18.30 and assuming rigid body motion of the pile:

RDYN = RSTAp(1 + Jpv) + RSTAf (1 + Jf v)
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where RSTA is 800 kN, v is 4 m/s, J is 0.65 m/s for fine-grained soils and side damping, and J is 0.50 m/s for fine-grained
soils and point damping (from Table 18.2). The ultimate dynamic soil resistance is:

RDYN = 500(1 + 0.65 × 4) + 300(1 + 0.50 × 4) = 2700 kN

Problem 18.7

Show all calculations leading to the wave equation numbers populating Table 18.5.

Solution 18.7

Figure 18.18 gives the pile details. The calculations for all the numbers in Table 18.1s (Table 18.5 earlier in the chapter) are
shown in this solution. Some conditions that must be satisfied for all calculations are:

• F(1, t) is always ≥ 0, because no tension can be developed between the hammer and the pile head
• F(3, t)s is always ≤ 500, because of the maximum point resistance

Table 18.1s Wave Equation Calculations

1 2 3 4 5 6 7

A Time s 0.0000 0.0005 0.0010 0.0015 0.0020
B D(1, t) mm 0.000 1.500 2.834 3.897 4.672
C D(2, t) mm 0.000 0.000 0.368 1.296 2.708
D D(3, t) mm 0.000 0.000 0.000 0.045 0.241
E C(1, t) mm 0.000 1.500 2.467 2.601 1.964
F C(2, t) mm 0.000 0.000 0.368 1.250 2.467
G F(1, t) kN 0.000 1350.000 2219.923 2341.013 1767.614
H F(2, t) kN 0.000 0.000 165.544 562.706 1110.058
I R(3, t)s kN 0.000 0.000 0.000 9.022 48.211
J R(3, t)d kN 0.000 0.000 0.000 9.185 51.990
K V(1, t) mm/s 3000.000 2668.913 2124.476 1550.343 1116.836
L V(2, t) mm/s 0.000 735.750 1855.387 2824.564 3182.932
M V(3, t) mm/s 0.000 0.000 90.221 391.890 968.537

At t = 0 s:
V (1, 0) = 3000 mm/s

At t = 0.0005 s:

D(1, 0.0005) = D(1, 0) + V(1, 0)�t = 0 + 3000 × 0.0005 = 1.50 mm

D(2, 0.0005) = D(2, 0) + V(2, 0)�t = 0 mm

D(3, 0.0005) = D(3, 0) + V(3, 0)�t = 0 mm

C(1, 0.0005) = D(1, 0.0005) − D(2, 0.0005) = 1.50 mm

C(2, 0.0005) = D(2, 0.0005) − D(3, 0.0005) = 0.00 mm

F(1, 0.0005) = K1 × C(1, 0.0005) = 900 (1.50) = 1350 kN

F(2, 0.0005) = K2 × C(2, 0.0005) = 450 (0) = 0 kN

F(3, 0.0005)s = K′ × D(3, 0.0005) = 200 (0) = 0 kN

F(3, 0.0005)d = F(3, 0.0005)s × (1 + Js × V(3, 0)) = 0 × (1 + 0.0002 (0)) = 0 kN
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V(1, 0.0005) = V(1, 0) + (0 − F(1, 0.0005))
g�t

WH

= 3000 +
(

(0 − 1350) × 9.81 × 0.0005

20
× 1000

)
= 2668.913 mm/s

V(2, 0.0005) = V(2, 0) + (F(1, 0.0005) − F(2, 0.0005))
g�t

W1

= 0 +
(

(1350 − 0) × 9.81 × 0.0005

9
× 1000

)
= 735.750 mm/s

= 0 +
(

(0 − 0) × 9.81 × 0.0005

9
× 1000

)
= 0 mm/s

At t = 0.0010 s:

D(1, 0.0010) = D(1, 0.0005) + V(1, 0.0005)�t = 1.50 + 2668.9 × 0.0005 = 2.834 mm

D(2, 0.0010) = D(2, 0.0005) + V(2, 0.0005)�t = 0 + 735.75 × 0.0005 = 0.368 mm

D(3, 0.0010) = D(3, 0.0005) + V(3, 0.0005)�t = 0 mm

C(1, 0.0010) = D(1, 0.0010) − D(2, 0.0010) = 2.83 − 0.37 = 2.467 mm

C(2, 0.0010) = D(2, 0.0010) − D(3, 0.0010) = 0.368 mm

F(1, 0.0010) = K1 × C(1, 0.0010) = 900 (2.467) = 2219.923 kN

F(2, 0.0010) = K2 × C(2, 0.0010) = 450 (0.368) = 165.544 kN

F(3, 0.0010)s = K′ × D(3, 0.0010) = 200 (0) = 0 kN

F(3, 0.0010)d = F(3, 0.0010)s × (1 + Js × V(3, 0.0005)) = 0 × (1 + 0.0002 (0)) = 0 kN

V(1, 0.0010) = V(1, 0.0005) + (0 − F(1, 0.0010))
g�t

WH

= 2668.913 +
(

(0 − 2219.923) × 9.81 × 0.0005

20
× 1000

)
= 2124.476 mm/s

V(2, 0.0010) = V(2, 0.0005) + (F(1, 0.0010) − F(2, 0.0010))
g�t

W1

= 735.750 +
(

(2219.923 − 165.544) × 9.81 × 0.0005

9
× 1000

)
= 1855.387 mm/s

V(3, 0.0010) = V(3, 0.0005) + (F(2, 0.0010) − F(3, 0.0010))
g�t

W2

= 0 +
(

(165.544 − 0) × 9.81 × 0.0005

9
× 1000

)
= 90.221 mm/s

At t = 0.0015 s:

D(1, 0.0015) = D(1, 0.0010) + V(1, 0.0010)�t = 2.834 + 2124.476 × 0.0005 = 3.897 mm

D(2, 0.0015) = D(2, 0.0010) + V(2, 0.0010)�t = 0.368 + 1855.387 × 0.0005 = 1.296 mm

D(3, 0.0015) = D(3, 0.0010) + V(3, 0.0010)�t = 0 + 90.221 × 0.0005 = 0.045 mm

C(1, 0.0015) = D(1, 0.0015) − D(2, 0.0015) = 3.896 − 1.296 = 2.601 mm

C(2, 0.0015) = D(2, 0.0015) − D(3, 0.0015) = 1.296 − 0.045 = 1.250 mm

F(1, 0.0015) = K1 × C(1, 0.0015) = 900 (2.601) = 2341.013 kN
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F(2, 0.0015) = K2 × C(2, 0.0015) = 450 (1.251) = 562.706 kN

F(3, 0.0015)s = K′ × D(3, 0.0015) = 200 (0.045) = 9.022 kN

F(3, 0.0015)d = F(3, 0.0015)s × (1 + Js × V(3, 0.0010))

= 9.022 × (1 + 0.0002 (90.221)) = 9.185 kN

V(1, 0.0015) = V(1, 0.0010) + (0 − F(1, 0.0015))
g�t

WH

= 2124.476 +
(

(0 − 2341.013) × 9.81 × 0.0005

20
× 1000

)
= 1550.343 mm/s

V(2, 0.0015) = V(2, 0.0010) + (F(1, 0.0015) − F(2, 0.0015))
g�t

W1

= 1855.387 +
(

(2341.013 − 562.706) × 9.81 × 0.0005

9
× 1000

)
= 2824.564 mm/s

V(3, 0.0015) = V(3, 0.0010) + (F(2, 0.0015) − F(3, 0.0015))
g�t

W2

= 90.221 +
(

(562.706 − 9.185) × 9.81 × 0.0005

9
× 1000

)
= 391.890 mm/s

At t = 0.0020 s:

D(1, 0.0020) = D(1, 0.0015) + V(1, 0.0015)�t = 3.897 + 1550.343 × 0.0005 = 4.672 mm

D(2, 0.0020) = D(2, 0.0015) + V(2, 0.0015)�t = 1.296 + 2824.564 × 0.0005 = 2.708 mm

D(3, 0.0020) = D(3, 0.0015) + V(3, 0.0015)�t = 0.045 + 391.890 × 0.0005 = 0.241 mm

C(1, 0.0020) = D(1, 0.0020) − D(2, 0.0020) = 4.672 − 2.708 = 1.964 mm

C(2, 0.0020) = D(2, 0.0020) − D(3, 0.0020) = 2.708 − 0.241 = 2.467 mm

F(1, 0.0020) = K1 × C(1, 0.0020) = 900 (1.964) = 1767.614 kN

F(2, 0.0020) = K2 × C(2, 0.0020) = 450 (2.467) = 1110.058 kN

F(3, 0.0020)s = K′ × D(3, 0.0020) = 200 (0.241) = 48.211 kN

F(3, 0.0020)d = F(3, 0.0020)s × (1 + Js × V(3, 0.0015))

= 48.211 × (1 + 0.0002 (391.890)) = 51.990 kN

V(1, 0.0020) = V(1, 0.0015) + (0 − F(1, 0.0020))
g�t

WH

= 1550.343 +
(

(0 − 1767.614) × 9.81 × 0.0005

20
× 1000

)
= 1116.836 mm/s

V(2, 0.0020) = V(2, 0.0015) + (F(1, 0.0020) − F(2, 0.0020))
g�t

W1

= 2824.564 +
(

(1767.614 − 1110.058) × 9.81 × 0.0005

9
× 1000

)
= 3182.932 mm/s

V(3, 0.0020) = V(3, 0.0015) + (F(2, 0.0020) − F(3, 0.0020))
g�t

W2

= 391.890 +
(

(1110.058 − 51.990) × 9.81 × 0.0005

9
× 1000

)
= 968.537 mm/s
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Problem 18.8

Develop the theoretical expression of the residual load in a driven pile for the following conditions. The initial condition is
the stress and load distribution in the pile at failure. The ultimate skin friction is fu and the ultimate point pressure is pu. The
ultimate load at the top of the pile is Ru and the ultimate load at the point is Rpu. The unloading of the friction and point
transfer curve is assumed to obey the linear elastic model shown in Figure 18.1s.

Stresses Loads

fu

Df

Dp

Dw
Dw

w w

f

pu

fu

p

Kf

Kp

Rpu

pu

Rtu

Figure 18.1s Initial conditions and models for residual loads.

Solution 18.8

Residual loads are loads that are locked in upon unloading after the pile has been brought to the ultimate soil resistance during
driving or load testing. Therefore, the theoretical analysis takes, as an initial condition, the stress and load distribution in the
pile at failure. The ultimate skin friction is fu and the ultimate point resistance is pu. The ultimate load at the pile head is Rtu
and the ultimate load at the pile point is Rpu. The load anywhere in the pile is Ru. The unloading of the friction is assumed to
obey the linear elastic model, which gives the following equation:

�f = Kf �w

in which �f = decrease in pile-soil friction stress at depth z; Kf
′ = unloading stiffness in friction; and �w = upward

movement of the pile upon unloading at depth z. Similarly, the unloading of the point follows the equation:

�p = K ′
p�wp

in which �p = decrease in point resistance; Kp
′ = unloading stiffness for the point; and �wp = upward movement of the

pile at the point upon unloading. The equilibrium equation of the elementary pile element can be written as follows:

−∂�σ

∂z
− P

A
�τ = 0

in which �σ = normal stress decrease in the pile at depth z; A = cross-sectional area of the pile; and P = perimeter of the
pile. The constitutive equation for the pile is:

�σ = Ep�ε = −Ep

∂�w

∂z

in which Ep = pile modulus of elasticity and �ε = change in normal strain at depth z due to stress change. The solution to
the previous equation gives the residual load, Rr, in the pile at a depth z:

Rr = Ru − Rtu

[(
Ep� + K ′

p

)
e�(L−z) − (Ep� − K ′

p)e−�(L−z)

(Ep� + K ′
p)e�L − (Ep� − K ′

p)e−�L

]

in which L = length of the pile, z = depth at which Rr exists, and � =
√

K ′
f P/EpA.
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The residual point load, Rpr, is:

Rpr = Rpu − 2Rtu(
1 + Ep�

K ′
p

)
e�L +

(
1 − Ep�

K ′
p

)
e−�L

Problem 18.9

Explain Figures 18.21 and 18.22 in your own words.

Solution 18.9

Imagine a pile suspended horizontally from the ceiling and hit at one end (Figure 18.21). There is no soil surrounding it and
the end of the pile is free. In this case the compression force in the pile will be proportional to the particle velocity (F =
Iv, from Eq. 18.23). Now the wave is racing along the pile at the wave speed c. When it gets to the end of the pile, the
compression force F finds no resistance and reflects as a tension force, but the magnitude of the particle velocity doubles
while the wave speed is unchanged (see Eqs. 18.24 to 18.26). This is similar to a case of easy driving with very little point
resistance.

Now let’s say that the pile is still suspended from the ceiling, but the other end is against a strong wall (Figure 18.22) and
the pile is hit at one end. When the compression wave gets to the wall, it cannot displace it. As a result, the compression
force doubles, the velocity vanishes, and the F and Iv signals are as shown in Figure 18.22. Equations 18.24 to 18.26 give
the mathematical reason. This approximates hard driving into a strong bearing layer.

Problem 18.10

A pile is driven and the force (F) and particle velocity time impedance (v × EA/c) at the top of the pile are measured as
shown in Figure 18.2s. Calculate the dynamic resistance of the pile using the observations at times t1 and t2 separated by the
down and up travel time of the wave (2L/c) and the Case method.

F
o

rc
e

 (
k

N
)

2000

1000

0

1846 kN

1557 kN

311 kN

Time

Force
Velocity x (EA)/c

t1

2L/c

t2 5 t1 1 2L/c

Figure 18.2s Force and velocity signal.

Solution 18.10

From the plot shown in Figure 18.2s:
t1 = t1

t2 = t1 + 2L/c

F(t1) = 1846 kN

F(t1+2L/c) = 311 kN

V(t1) × EA

c
= 1846 kN

V(t1+2L/c) × EA

c
= 1557 kN

The dynamic resistance of the pile can be computed as:

RD = 1

2
(F(t1) + F(t1+2L/c)) + I (v(t1) − v(t1+2L/c))

RD = 1

2
(F(t1) + F(t1+2L/c)) + EA

c
(v(t1) − v(t1+2L/c))
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RD = 1

2

(
F(t1) + F(t1+2L/c) + EA

c
v(t1) − EA

c
v(t1+2L/c)

)

RD = 1

2
(1846 + 311 + 1846 − 1557) = 1223 kN

Problem 18.11

Calculate the static resistance of the pile in problem 18.10 by the Case method.

Solution 18.11

The static capacity of the pile can be computed as:

RS = RD − JcIv

RS = RD − JcI

(
F(t1) + Iv(t1) − RD

I

)
RS = RD − Jc(F(t1) + Iv(t1) − RD)

RS = RD − Jc

(
F(t1) + EA

c
v(t1) − RD

)
RS = 1223 − 0.3(1846 + 1846 − 1223) = 482 kN

Problem 18.12

Is it possible to break a concrete pile in tension by driving it in the ground? If yes, explain how.

Solution 18.12

Yes, it is possible to break a concrete pile in tension if it is not reinforced properly. Driving through a hard layer into a soft
layer will generate tension in the pile when the pile point has very little resistance. The compression wave coming down the
pile will turn back into a tension wave. The tension stresses created by the tension wave can be large enough to break the pile
in tension. This condition should be considered during the design of the pile.

Problem 18.13

A suction caisson is 20 m long and 2 m by 2 m in cross section with a wall thickness of 20 mm. It is made of steel and is to
be installed in a soft clay with an undrained shear strength of 20 kPa and an effective unit weight of 10 kN/m3. Calculate the
ultimate capacity of the caisson and the underpressure required to install it to full penetration. Check that this underpressure
does not create inverse bearing capacity failure.

Solution 18.13

2 m

2 m

20 m 20 kPa

t = 0.02 m

Figure 18.9s Suction caisson.
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Ru = 4 × 2 × 20 × 20 × 2 + 4 × 2 × 0.02 × (9 × 20 + 10 × 20) = 6460.8 kN

W = 4 × 2 × 0.02 × 20 × 75 = 240 kN

W ′ = 240 − 4 × 2 × 0.02 × 20 × 10 = 208 kN

Ain = (2 − 0.04)2 = 3.84 m2

�urq = 6460.8 − 208

3.84
= 1628.33 kPa

�ucrit = Ncsu + αsuAwall

Ain
= 9 × 20 + 1 × 20 × 8 × 20

3.84
= 1013.3 kPa

Therefore it is unlikely that the suction caisson can be installed to the required depth of 20 m without some risk of inward
bearing capacity failure

Problem 18.14

Calculate the strain, the stress, and the friction on each segment of the pile shown in Figure 18.29 for the maximum load
applied. How would you measure such values? The pile is a bored pile 1 m in diameter and made of concrete.Solution 18.14
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Figure 18.10s Results of an instrumented load test on a bored pile: (a) Load settlement curve. (b)
Load versus depth profiles (Briaud et.al. 2000)

Area = π
D2

4
= 0.785 m2

• Top load = 4200 kN
• Depth = 0 to 2.8 m, Average load = 3700 kN

σ1 = F

A
= 3700

0.785
= 4713

(
kN

m2

)

ε1 = σ

Econc
= 4713

2.5 × 107 = 0.189 × 10−3

fu1 = Ftop − Fbot

P × �L
= 4200 − 3200

3.14 × 1 × 2.8
= 114

(
kN

m2

)
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• Depth = 2.8 to 5.8 m, Average load = 2400 kN

σ2 = F

A
= 2400

0.785
= 3057

(
kN

m2

)

ε2 = σ

Econc
= 3057

2.5 × 107 = 0.122 × 10−3

fu1 = Ftop − Ftop

P × �L
= 3200 − 1600

3.14 × 1 × 3
= 167

(
kN

m2

)

• Depth = 5.8 to 9.2 m, Average load = 1175 kN

σ3 = F

A
= 1175

0.785
= 1497

(
kN

m2

)

ε3 = σ

Econc
= 1497

2.5 × 107 = 0.060 × 10−3

fu1 = Ftop − Ftop

P × �L
= 1600 − 750

3.14 × 1 × 3
= 79.6

(
kN

m2

)

• Point load = 750 kN. Point pressure:

pu = Fpoint

πD2/4
= 750

3.14 × 12/4
= 955

(
kN

m2

)

Problem 18.15

Calculate the slope of the load transfer curves for the axially loaded pile discussed in section 18.4.3 and verify the value of
the movement necessary to reach the maximum friction and point resistance shown in Figure 18.43. Generate a spreadsheet
to develop the complete load settlement curve of this axially loaded pile.

Solution 18.15

The slope of the point load transfer curve is:

ppoint = 4Es

πD(1 − ν2)
spoint

For the pile of Figure 18.43, D = 0.3 m, Es = 100,000 kPa, and ν = 0.35, so the equation becomes:

ppoint = 4 × 100,000

π × 0.3(1 − 0.352)
spoint = 483910 × spoint

Because the ultimate point load is 706 kN, the ultimate pressure pu is:

pu = 706

π × 0.32/4
= 9993 kPa

Then the displacement necessary to mobilize pu will be:

spoint = pu

483910
= 21 mm

The slope of the friction load transfer curve is:

f = Es

(1 + ν)(1 + Ln(L/D))D
sfriction
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For the pile of Figure 18.43, D = 0.3 m, L = 10 m, Es = 100,000 kPa for the dense sand layer, and ν = 0.35, so the equation
becomes:

f = 100, 000

(1 + 0.35)(1 + Ln(10/0.3))0.3
sfriction = 54790 × sfriction

Because the ultimate friction load over the 1 m of pile in the dense sand layer is 75.4 kN, the ultimate friction fu is:

fu = 75.4

π × 0.3 × 1
= 80 kPa

Then the displacement necessary to mobilize fu will be:

sfriction = 80

54790
= 1.5 mm

The same calculations apply to the two locations in the soft clay:

f = 5000

(1 + 0.35)(1 + Ln(10/0.3))0.3
sfriction = 2739 × sfriction

fu = 84.8

π × 0.3 × 4.5
= 20 kPa

sfriction = 20

2739
= 7.3 mm

The results from an Excel spreadsheet for the load settlement curve are shown in Table 18.2s.

Table 18.2s Load Settlement Curve Results

Bottom
Settlement
(mm)

Top
Settlement

(mm)
Qtop
(kN)

0.000 0.000 0.000
1.000 2.013 115.647
2.000 3.696 196.891
3.000 5.179 257.389
4.000 6.662 317.888
5.000 8.145 378.387
8.000 12.594 559.883

10.000 15.560 680.880
12.000 18.526 801.877
15.000 22.976 983.373
18.000 27.425 1164.869
20.000 30.391 1285.867
21.000 31.744 1333.455
25.000 36.191 1427.693
28.000 39.461 1471.174
30.000 41.628 1494.412
35.000 46.642 1496.362
38.000 49.642 1496.362
40.000 51.642 1496.362
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The load settlement curve is shown in Figure 18.11s. You can note a slight bend in the load settlement curve when the
friction is completely mobilized, at around 270 kN. This is often observed on the load settlement curve in load tests.
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Figure 18.11s Load settlement curve.

Problem 18.16

Calculate the ultimate static capacity of the pile subjected to the Statnamic test. The pile is a 1 m diameter, 20 m long bored
concrete pile. The test results are summarized in Figure 18.3s.
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Figure 18.3s Statnamic test results.
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Solution 18.16

Fsu(t) = Fstn(t) − Ma(t)

From Figure 18.3s, the largest displacement during the Statnamic test is 35 mm occurring at time t equal to 0.16 s. At that
point the velocity is zero, the acceleration is 33 m/s2, and the force is:

Fstn(t) = 20 MN

a(t) = 33 m/s2

M = ρconcV = 2450 × 20 × π × (0.5)2 = 38465 kg

Fsu(t) = 20000000 − 38465 × 33 = 18.73 MN

Problem 18.17

Calculate the ultimate capacity of the two piles shown in Figure 18.4s by all possible methods. The pile in clay is a circular
bored pile and the pile in sand is a square driven pile. At what depth along the pile would you place the Osterberg load cell
to balance the load on both sides of the pile at ultimate load?

pL = 400 kPa

qc = 4000 kPa

N = 8 bpf

gt = 18 kN/m3

0.7 m 2 m

4 m

14 m

5 m

10 m

2 m

Medium clay

Loose sand

pL = 2000 kPa

qc = 20,000 kPa

N = 40 bpf

gt = 20 kN/m3

Sand & gravel

Stiff clay

su = 100 kPa pL = 800 kPa

qc = 4000 kPa gt = 20 kN/m3

su = 50 kPa

qc = 2000 kPa

pL = 400 kPa

gt = 19 kN/m3

Figure 18.4s Ultimate capacity of two piles.

Solution 18.17

Case #1. Driven square concrete pile in sandy soil

Pile tip area: 0.7 m × 0.7 m
Layer 1: Loose sand / Layer 2: Sand & gravel

1. Briaud-Tucker SPT method:
a. Calculate fu:

fu1 = fu2 = 5(N)0.7 = 5(8)0.7 = 21.44 kPa

fu3 = 5(N)0.7 = 5(40)0.7 = 66.1 kPa
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b. Calculate pu :
pu = 1000(N)0.5 = 1000(40)0.5 = 6324.6 kPa

c. Ultimate bearing capacity calculation:

Qu = fu1As1 + fu2As2 + fu3As3 + pu2Ap

= (21.44)(4 × 0.7 × 4) + (21.44)(4 × 0.7 × 14) + (66.1)(4 × 0.7 × 2) + (6324.6)(0.72)

= 4548 ( kN)

2. LPC-PMT method:
a. Classify the soil (Table 18.8):

Layer 1, 2: Sand: loose
Layer 3: Sand and gravel: dense to very dense

b. Pile type being used (Table 18.9): Driven concrete pile, Curve Q2, α = 1.4 and flim = 130 kPa for layers 1, 2, and 3.
c. Calculations of fu :

Layer 1, 2 (Q2, pL = 400 kPa): fu = αfsoil = 1.4 × 25 = 35 kPa
Layer 3 (Q2, pL = 2000 kPa): fu = αfsoil = 1.4 × 74 = 103.6 kPa

d. The value of pu:
kp value (Table 18.10): 3.1

pu = kppL = 3.1 × 2000 = 6200 kPa

e. Ultimate bearing capacity calculation:

Qu = fu1As1 + fu2As2 + fu3As3 + pu2Ap

= (35)(4 × 0.7 × 4) + (35)(4 × 0.7 × 14) + (103.6)(4 × 0.7 × 2) + (6200)(0.72)

= 5384 (kN)

3. LPC-CPT method:
a. Classify the soil (Table 18.8):

Layer 1, 2: Sand loose
Layer 3: Sand and gravel dense to very dense

b. Pile type being used (Table 18.11): Driven concrete, Curve Q2, α = 1.0, and flim = 130 kPa for layers 1, 2, and 3.
c. Calculations of fu:

Layer 1, 2 (Q3, qc = 4000 kPa): fu = αfsoil = 1.0 × 47 = 47 kPa Layer 3 (Q3, qc = 20000 kPa): fu = αfsoil =
1.0 × 118 = 118 kPa

d. Calculate Pu:
kc value: 0.4 (Table 18.12)

pu = kcqc = 0.4 × 20000 = 8000 kPa

e. Ultimate bearing capacity calculation:

Qu = fu1As1 + fu2As2 + fu3As3 + pu2Ap

= (47)(4 × 0.7 × 4) + (47)(4 × 0.7 × 14) + (118)(4 × 0.7 × 2) + (8000)(0.72)

= 6950 (kN)
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4. API-RP2A method for driven piles in coarse-grained soils:

σ ′
0v (kPa) k δ Nq fmax (kPa) fu (kPa) Pu (kPa)

Layer 1 36.0 0.8 15 8 48 7.7
Layer 2 128.0 0.8 15 8 48 27.4
Layer 3 194.0 0.8 25 20 81 72.4

204.0 4080.0

Ultimate bearing capacity calculation:

Qu = fu1As1 + fu2As2 + fu3As3 + pu2Ap

= (7.7)(4 × 0.7 × 4) + (27.4)(4 × 0.7 × 14) + (72.4)(4 × 0.7 × 2) + (4080)(0.72)

= 3565.0 (kN)

Comparison of bearing capacity:

Estimation method
fu1

(kPa)
fu2

(kPa)
Qfu12
(kN)

fu3
(kPa)

Qfu3
(kN)

pu

(kPa)
Qpu
(kN)

Qu

(kN)

LPC-PMT 35 35 1764 104 582 6200 3038 5384
LPC-CPT 47 47 2369 118 661 8000 3920 6950
Briaud-Tucker 21.4 21.4 1079 66.1 370 6325 3099 4548
API-RP2A 7.7 27.4 1160 72.4 405 4080.0 1999 3564
Average 1593 505 3014 5112

The average ultimate capacity is 5112kN. Because the average friction capacity is 1593 + 505 = 2098 kN and the point
capacity is 3014 kN, we have to place the O-cell at the bottom of the pile and will be limited to pushing the point capacity to
the extent of the friction capacity. Nevertheless, we will be able to push the pile to 82% of its total capacity (2 × 2098/5112 =
0.82).

Case #2. Bored concrete pile in clayey soil

Pile diameter, d = 2 m
Bored by dry method
Layer 1: Stiff clay / Layer 2: Medium clay

1. LPC-PMT method:
a. Classify the soil (Table 18.8):

Layer 1: Clay firm
Layer 2: Clay soft to firm

b. Pile type being used (Table 18.9): Bored pile in the dry, Curve Q1, α = 1.1, flim = 90 kPa
c. Calculation of fu:

Layer 1 (Q1, pL = 800 kPa): fu = αfsoil = 1.1 × 40 = 44 kPa
Layer 2 (Q1, pL = 400 kPa): fu = αfsoil = 1.1 × 32 = 35.2 kPa

d. The value of Pu:
kp value (Table 18.10): 1.1

pu = kppL = 1.15 × 400 = 460 kPa
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e. Ultimate bearing capacity calculation:

Qu = fu1As1 + fu2As2 + pu2Ap = (44)(π × 2 × 5) + (35.2)(π × 2 × 10) + 460
(π

4
× 22

)
= 5036 (kN)

2. LPC-CPT method:
a. Classify the soil (Table 18.8):

Layer 1: Clay firm
Layer 2: Clay soft to firm

b. Pile type being used (Table 18.11): Bored pile in the dry, Curve Q1, α = 0.55, flim = 90 kPa.
c. Calculation of fu:

Layer 1 (Q1, qc = 4000 kPa): fu = αfsoil = 0.55 × 87 = 47.8 kPa
Layer 2 (Q1, qc = 2000 kPa): : fu = αfsoil = 0.55 × 55 = 30.2 kPa

d. Calculate Pu:
kc value: 0.4 (Table 18.12)

pu = kcqc = 0.4 × 2000 = 800 kPa

e. Ultimate bearing capacity calculation:

Qu = fu1As1 + fu2As2 + pu2Ap = (47.8)(π × 2 × 5) + (30.2)(π × 2 × 10) + 800
(π

4
× 22

)
= 5910 (kN)

3. FHWA method for bored piles in fine-grained soils:
a. Calculate fu and pu:

Layer 1: fu = 0.55su = 0.55 × 100 = 55 kPa
Layer 2: fu = 0.55su = 0.55 × 50 = 27.5 kPa

pu = Ncsu = 9 × 50 = 450 kPa

(According to bearing capacity factors for clays, after Skempton)
b. Ultimate bearing capacity calculation:

Qu = fu1As1 + fu2As2 + pu2Ap = (55)(π × 2 × 5) + (27.5)(π × 2 × 10) + 450
(π

4
× 22

)
= 4869.5 (kN)

c. Comparison of bearing capacity:

Estimation method
fu1

(kPa)
Qfu1
(kN)

fu2
(kPa)

Qfu2
(kN)

pu

(kPa)
Qpu
(kN)

Qu
(kN)

LPC-PMT 44 1381 35.2 2211 460 1444 5036
LPC-CPT 47.8 1501 30.2 1897 800 2512 5910
FHWA 55 1727 27.5 1727 450 1413 4867
Average 1536 30.9 1945 1789 5271
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The average ultimate capacity is 5271 kN. The average friction capacity is 1536 + 1945 = 3481 kN and the average point
capacity is 1789 kN. Therefore, because we have more friction capacity than point capacity, we can place the O-cell along
the pile shaft to balance the loads. The position should be such that the point capacity plus some friction is equal to one-half
of the total capacity:

1769 + 30.9 × π × 2 × Lo = 5271

2
or Lo = 4.52m

Thus, we should place the O-cell 4.52 meters above the pile point to optimize our chances of reaching failure above and
below the O-cell at the same time, thereby testing the pile to its full capacity.

Problem 18.18

For the pile of Figure 18.43, find the top movement and the load distribution in the pile for a point movement of 5 mm.

Solution 18.18

The point load for a point movement of 5 mm is is (Eq. 18.100):

Qpoint =
(

0.3 × 105

1 − 0.352

)
× 0.005 = 170.9 KN

The friction mobilized in element 1 (from Eq. 18.102) is:

f1 = 105

(1 + 0.35)(1 + ln(16.3/0.3)) × 0.3
× 0.005 = 247.2 KPa > 80 KPa

→ f1 = 80 KPa

The load carried in element 1 is:

Qf 1 = f1πD�L1 = 80 × π × 0.3 × 4 = 301.4 KN

The movement at the bottom of element 2 is:

s2 = sp +

(
Qp + Qf 1

2

)
�L1

AcsEp

= 0.005 +

(
170.9 + 301.4

2

)
4

π × 0.3 × 0.005 × 2 × 108 = 0.00637 m = 6.37 mm

The friction mobilized in element 2 is:

f2 = 5000

(1 + 0.35)(1 + ln(16.3/0.3)) × 0.3
× 0.00637 = 4.72 KPa < 20 KPa

The load carried in element 2 is:

Qf 2 = f2πD�L2 = 4.72 × π × 0.3 × 7.3 = 32.46 KN

The movement at the bottom of element 3 is:

s3 = s2 +

(
Qp + Qf 1 + Qf 2

2

)
�L2

AcsEp

= 0.00637 +

(
170.9 + 301.4 + 32.46

2

)
7.3

π × 0.3 × 0.005 × 2 × 108 = 0.01016 m = 10.16 mm

The friction mobilized in element 3 is:

f3 = 5000

(1 + 0.35)(1 + ln(16.3/0.3)) × 0.3
× 0.01016 = 7.53 KPa < 20 KPa
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The load carried in element 3 is:

Qf 3 = f3πD�L3 = 7.53 × π × 0.3 × 7 = 49.65 KN

The top movement is:

st = s3 +

(
Qp + Qf 1 + Qf 2 + Qf 3

2

)
�L3

AcsEp

= 0.01016 +

(
170.9 + 301.4 + 32.46 + 49.65

2

)
7

π × 0.3 × 0.005 × 2 × 108 = 0.0141 m = 14.1 mm

The load at the top of the pile is:

Qtop = Qp + Qf 1 + Qf 2 + Qf 3 = 170.9 + 301.4 + 32.46 + 49.65 = 554.41 KN

Problem 18.19

A16-story hospital weighs 1500 MN, and its imprint is 75 m by 75 m. The building rests on 10,000 timber piles, each 15 m
long, 0.3 m in average diameter, and driven with a spacing of 0.75 m center to center. The soil is made of a clay layer down
to 14.5 m (su = 20 kN/m2, eo = 0.8, and Cc = 0.1), then a sand layer down to 16.5 m (N = 30 bpf), and then clay again down
to a depth of 100 m (su = 30 kN/m2, eo = 0.7, and Cc = 0.06). The water table is at the ground surface and the total unit
weight of all soils is 20 kN/m3. Calculate:

a. The capacity of one timber pile
b. The capacity of the pile group
c. The settlement of the hospital
d. Comment on this design.

Solution 18.19

W = 1500 MN

2 m

15m

75 m 3 75 m

Clay

Sand

Clay 100 m

10,000 Timber
piles

su = 20 kN/m2

eo = 0.8
gt = 20 kN/m3

N = 30 bpf
cc = 0.1

su = 30 kN/m2

eo = 0.7
gt = 20 kN/m3

cc = 0.06

Figure 18.12s Building geometry and soil profile.

a. Bearing capacity of single pile
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Side resistance with API-RP2A method

ifσ ′
ov = su → z = 20

(18 − 9.8)
≈ 2.5 m

fu =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.5

(
su

σ ′
ov

)−0.5

su for z ≤ 2.5 m

0.5

(
su

σ ′
ov

)−0.25

su for 2.5m < z < 14.5 m

→ fu =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.5

(
20

(18 − 9.8) × 1.25

)−0.5

20 = 7.2 kPa z ≤ 2.5 m

0.5

(
20

(18 − 9.8) × 8.5

)−0.25

20 = 13.7 kPa 2.5m < z < 14.5 m

Ruf = (7.2 × 2.5 + 13.7 × 12) × 0.3π = 171.8 kN

Point bearing capacity with Briaud-Tucker method:

pu = 1000 × (30)0.5 = 5477 kPa

Rup = 5477 × 0.32π

4
= 387 kN

The capacity of one timber pile:
Ru = 171.8 + 387 = 558.8 kN

b. Bearing capacity considering group effect:
Bearing capacity of 10,000 single piles

Ru−group = 558.8 × 10000 = 5588 × 103 kN = 5588 MN

Bearing capacity considering block failure:

Ru−block = 2(75 + 75) × 14.5 × 20 + 75 × 75 × (Nc × 30)

The relative depth of embedment is D/B = 15/75 = 0.2

Skempton chart for D/B = 0.2 gives Nc = 6.6

Ru−block = 2(75 + 75) × 14.5 × 20 + 75 × 75 × (Nc × 30)

Rug = Min (5588, 1201) = 1201 MN

c. Settlement calculations (Figure 18.13s)
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37.5m

5m

37.5 m

37.5 m

37.5 m

B•

C•

D•

E•

A•

Figure 18.13s Settlement calculation points.

The average pressure under the building is:

p = F

A
= 1500000

75 × 75
= 267 kPa

For settlement calculations, the large pile group is considered to be equivalent to a large footing located at 2/3 of the pile
depth or 10 m below the ground surface. The depth of influence is considered to be 2 times the width of the foundation or
150 m. The thin sand layer is neglected; the layers involved are a 5 m layer of the upper clay and four layers of the lower clay
each 37.5 m thick. The pressure factors are obtained from the bulb of pressure for a square foundation (see Figure 17.31).
The settlement equation is:

�H =
∑ Hoi

1 + eo

Cc log

(
σ ′

ovi + �σvi

σ ′
ovi

)
= Cc

1 + eo

∑
Hoi log

(
σ ′

ovi + �σvi

σ ′
ovi

)

Point
Depth

(m)
Ho
(m) e0 Cc

σ ′
ov

(kPa)
Pressure

factor
�σ v
(kPa)

σ ′
v

(kPa)
�H
(m)

A 12.5 5 0.8 0.1 125 1 267 392 0.138
B 33.75 37.5 0.7 0.06 337.5 0.8 213.6 551.1 0.282
C 71.25 37.5 0.7 0.06 712.5 0.45 120.1 832.6 0.090
D 108.75 37.5 0.7 0.06 1087.5 0.23 61.4 1148.9 0.032
E 146.25 37.5 0.7 0.06 1462.5 0.14 37.4 1499.9 0.015

0.557

d. Comment

As can be seen, the ultimate load of the pile group is smaller than the weight of the building; therefore, the foundation is
insufficient to carry the building weight safely. The settlement is also a great concern, because more than half a meter of
settlement could lead to serious problems. This problem is actually close to the case of the New Orleans Charity Hospital
built in 1939.

Problem 18.20

Calculate the group efficiency for settlement using Poulos interaction factors for the case of a flexible pile cap (all piles carry
the same load). The group is 4 by 4 with a 3-pile diameter center-to-center spacing.
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Solution 18.20

Because we have symmetry in piles location, we calculate the interaction factor only for three piles (a, b, and c in
Figure 18.14s).

a b

c

21 3 4

1

2

3

4

Figure 18.14s Piles location.

ρk = ρ1

n∑
j = 1

j �= k

(Pjαkj) + ρ1Pk

Flexible pile cap →Pi = P

ρi = Pρ1

⎛
⎜⎜⎜⎜⎜⎝

n∑
j = 1

j �= k

(
αkj

) + 1

⎞
⎟⎟⎟⎟⎟⎠

αkj = f
( s

d

)
→ Fig. 18.50

21 3 4

1

2

3

4

0.28

0.25 0.21

0.22

0.19

0.2

0.220.4

0.32

Figure 18.15s α values for pile a.

ρa = Pρ1[2(0.4 + 0.28 + 0.22 + 0.25 + 0.21 + 0.2) + 0.32 + 0.22 + 0.19] = 3.85Pρ1
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21 3 4

1

2

3

4

0.4 0.280.4

0.32 0.40.4 0.32 0.25

0.25 0.28 0.25 0.23

0.2

0.210.220.21

Figure 18.16s α values for pile b.

ρb = Pρ1[3 × 0.4 + 2 × 0.32 + 2 × 0.28 + 3 × 0.25 + 0.23 + 2 × 0.21 + 0.22 + 0.2] = 4.2Pρ1

21 3 4

1

2

3

4

0.4

0.32 0.25

0.23

0.250.28

0.4

0.32 0.4

0.4 0.28

0.32 0.25

0.32

0.25

Figure 18.17s α values for pile c.

ρc = Pρ1[4 × 0.4 + 4 × 0.32 + 2 × 0.28 + 4 × 0.25 + 0.23] = 4.67Pρ1

3.85 4.2 4.2 3.85

4.2 4.67 4.67 4.2

4.2 4.67 4.67 4.2

3.85 4.2 4.2 3.85

Figure 18.18s α values settlement factor for each pile in the group.

This gives an average of a group settlement equal to 4.23 times the settlement of one pile. The rule of thumb
√

BG/B

would give
√

10/1 = 3.16.
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Problem 18.21

If the uncoated pile subjected to downdrag in Figure 18.54 was pushed into the ground 100 mm at the pile top, what would
be:

a. The new position of the neutral point?
b. The load at the top of the pile?
c. The load distribution in the pile?

Solution 18.21

Initial assumption: wp > 5 mm ⇒ Qp = 1000 kN

wNP(soil) = wNP(pile) = wNP

wt = wNP + (QNP + Qt)

2

zNP

EA
= 100 mm = 0.1 m

wNP(soil) = 0.2

30
(30 − zNP)

QNP = Qp + (L − zNP) × f × Ap = 1000 + (30 − zNP) × 25 × 1.2 = 1900 − 30zNP

Qt = QNP − zNP × f × Ap = 1900 − 30zNP − 25 × 1.2 × zNP = 1900 − 60zNP

wt = 0.2

30
(30 − zNP) + (1900 − 30zNP + 1900 − 60zNP)

2

zNP

0.3 × 0.3 × 2 × 107 = 0.1 m

zNP = 16.6 m

Check the initial assumption:

wp = wNP − (QNP + Qp)

2

30 − zNP

EA

= 0.2

30
(30 − 16.6) − (1900 − 30 × 16.6 + 1000)

2

30 − 16.6

0.3 × 0.3 × 2 × 107 = 0.08 > 0.005

Qt = 1900 − 60zNP = 904 kN

zNP = 16.6 m

QNP = 1402 kN

Qt = 904 kN

QP = 1000 kN

Figure 18.19s Load profile on pile.

Problem 18.22

A bored pile foundation is used for a house on a shrink-swell soil. The piles are 0.5 m in diameter, the load per pile is 50 kN,
and the zone of active movement from one season to the next extends from the ground surface to a depth of 3 m. The soil is a
very stiff clay with an undrained shear strength of 120 kPa and a total unit weight of 20 kN/m3. The groundwater level is at a
depth of 10 m. How deep should each bored pile be to minimize the uneven movement of the house?
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Solution 18.22

L

Q Q

QQ

Soil swells Soil shrinks

Figure 18.20s Load profile due to soil swelling and shrinking.

Swelling

Swelling and uplift load:
Fsw = αsuπDLsw = 0.5 × 120 × π × 0.5 × 3 = 282.6 kN

Maximum resisting load:
Fr = αsuπDLr + Q = 0.5 × 120 × π × 0.5 × Lr + 50 = 94.2Lr + 50 kN

Fr

Fsw
= SF = 2 ⇒ L = 5.47 m

Shrinking

Shrinkage and downward load:

: Fsh = αsuπDLsh + Q = 0.5 × 120 × π × 0.5 × 3 + 50 = 332.6 kN

Maximum resisting load:

Fr = αsuπDLr + 9suAp = 0.5 × 120 × π × 0.5 × Lr + 9 × 120 × 0.52π

4
= 94.2Lr + 212 kN

Fr

Fsh
= SF = 2 ⇒ L = 4.81 m

Lr = Max (5.47, 4.81) = 5.47 m
Total length of the pile = 8.47 m

Problem 18.23

For the long flexible pile shown in Figure 18.5s, calculate:

a. The ultimate load Hou
b. The deflection and slope at the ground surface under the working load
c. The maximum bending moment under the working load
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d. The factor of safety against yielding of the soil near the ground surface under the working load

0

M0 = 10.9 kN∙m

E0 (MPa)H0 = 89.1 kN

3

6

9

12

15

16

20

10 42 23 1.2

0.6

0.8

2.3

2.3

1.8

1.1

11.5

16.1

23

46

34.5

48.3

20
21

35

42

60

70

10

15

33.5 m

Sand
21 m

Clay

21

Depth (m)

0.61 m pipe unplugged, wall thickness 9.5 mm

20

5

7

40 0
Er (MPa)
40 80 0 0

PL (MPa)
1 2 3

K (MPa)
40 80

Figure 18.5s Long flexible pile loaded horizontally.

Solution 18.23

a. Select horizontal spring constant K:
a. A value of K = 15,000 kPa is selected from the soil profile.

b. Calculate the transfer length lo:

l0 = 4

√
4EI

K

I = π

64
(D4

0 − D4
i ) = π

64
(0.614 − 0.5914) = 8.08 × 10−4 m4

E = 2 × 108 kPa

l0 = 4

√
4 × 2 × 108 × 8.08 × 10−4

15000
= 2.56 m

c. Check if pile is long and flexible or short and rigid:

L

l0
= 33.5

2.56
> 3, flexible pile

d. Deflection at the ground surface under the working load:

y0 = 2H0

l0K
+ 2M0

l2
0K

= 2 × 89.1

2.56 × 15000
+ 2 × 10.9

2.562 × 15000
= 0.00464 + 0.00022 = 4.86 mm
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e. Slope at the ground surface under the working load:

y ′
0 = 2H0

l0
2K

+ 4M0

l3
0K

= − 2 × 89.1

2.562 × 15000
− 4 × 10.9

2.563 × 15000

= −1.81 × 10−3 − 0.17 × 10−3 = −1.98 radians

f. Depth zmax to maximum bending moment Mmax:

tan
zmax

l0
= 1

1 + 2M0

l0H0

= 1

1 + 2 × 10.9

2.56 × 89.1

= 0.913 and
zmax

l0
= 0.739

zmax = 1.89 m

g. Maximum bending moment under the working load:

Mmax = H0l0e
−

zmax

l0 sin

(
zmax

l0

)
+ M0e

−
zmax

l0

(
cos

(
zmax

l0

)
+ sin

(
zmax

l0

))

Mmax = 89.1 × 2.56 e
−

1.89

2.56 sin

(
1.89

2.56

)
+ 10.9 e

−
1.89

2.56
(

cos

(
1.89

2.56

)
+ sin

(
1.89

2.56

))
= 73.4 + 7.4 = 80.8 kN.m

h. Factor of safety against yielding of the soil near the ground surface under the working load:

P = Ky = 15000 × 0.00486 = 72.9 kN/m

pa = P

B
= 72.9

0.61
= 119.5 kPa

pL within the loaded depth is at least 0.6 MPa = 600 kPa
Safety factor:

F = pl

pa

= 600

119.5
= 5.02

i. Ultimate horizontal load:

Hou = 3

4
pLBzmax = 0.75 × 600 × 0.61 × 1.89 = 518.8 kN

So the applied load of 89.1 kN is a safe load.

Problem 18.24

For the short rigid pile shown in Figure 18.6s, calculate:

a. The ultimate load Hou
b. The deflection and slope at the ground surface under the working load
c. The maximum bending moment under the working load
d. The factor of safety against yielding of the soil near the ground surface under the working load



18.10 COMBINED PILED RAFT FOUNDATION 643

60

60

60

60

45

45

80

80

80

80

60

60

1.5

3.0

20

20 6010 300 0 0 0 1 250 100

1.2

1.2

1.4

1.5

2.0

1.015

15

20

20

20

4.5

6.0

7.5

9.0

267 kN

15 m

6 m

2.5 m

Drilled
shaft

Very stiff clay

Depth (M)

E0
(Mpa)

Er
(Mpa)

K
(Mpa)

pL
(Mpa)

Figure 18.6s Short rigid pile loaded horizontally.

Solution 18.24

a. Select horizontal spring constant K:
a. A value of K = 60,000 kPa is selected from the soil profile.

b. Calculate the transfer length lo:

l0 = 4

√
4EI

K

I = πD4

64
= π2.54

64
= 1.92 m4

E = 2 × 107 kPa

l0 = 4

√
4 × 2 × 107 × 1.92

60000
= 7.1 m

c. Check if the pile is long and flexible or short and rigid:
a. L = 6m < l0 = 7.1 m; therefore, the pile is rigid and short.

d. Deflection at the ground surface under the working load:

Ho = 267 kN

Mo = 267 × 15 = 4005 kN

yo = −2(2H0L + 3M0)

KL2

= −2(2 × 267 × 6 + 3 × 4005)

60000 × 62

= −0.014 m
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e. Slope at the ground surface under the working load:

y ′
o = 6(H0L + 2M0)

KL3
= 6(267 × 6 + 2 × 267 × 15)

60000 × 63 = +0.0045 radians = +0.26 degrees

f. Depth zmax to maximum bending moment Mmax:

Zmax = −2y0

y ′
0

− L = 0.22 m

g. Maximum bending moment under the working load:

Mmax = M0 + H0Zmax − Ky ′
o

Zmax

6
− Kyo

Zmax
2

6
= 4071.6 kN.m

h. Factor of safety against yielding of the soil
The load in the soil near the ground surface is:

P = Ky = 60000 × 0.14 = 840 kN/m

pa = P

B
= 840

2.5
= 336 kPa

pL at the top soil is ∼1 MPa = 1000 kPa

Safety factor is F = pL

pa

= 1000

336
= 2.98 ≈ 3

i. Ultimate horizontal load:

Hou = 3

4
pLBzmax = 0.75 × 1000 × 2.5 × 0.22 = 412.5 kN

So, the applied load of 267 kN is safe, and the factor of safety is 412.5/267 = 1.54. Note that the large overturning moment
affects the horizontal capacity by inducing horizontal movement of its own. If no moment was applied at the top, the zmax
value would be L/3 and the ultimate horizontal load would be equal to 0.75 × 1000 × 2.5 × 2 = 3750 kN.

Problem 18.25

Calculate zmax for a flexible pile and a rigid pile if the pile is subjected to a horizontal load only (Ho different from 0 but Mo
equal to 0).

Solution 18.25

Case 1: A flexible pile

The depth zmax to maximum bending moment is the value of z that gives zero shear. Therefore:

V (z) = Hoe
− z

lo

(
cos

z

lo
− sin

z

lo

)
− 2Mo

lo
e
− z

lo sin
z

lo
= 0

For Mo = 0, the equation simplifies to:

Hoe
− z

lo

(
cos

z

lo
− sin

z

lo

)
= 0 or cos

z

lo
= sin

z

lo

This gives:

zmax

lo
= π

4
or zmax = π

4
4

√
4EI

K
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Case 2: A rigid pile

The depth zmax to maximum bending moment is the value of z that gives zero shear. Therefore:

V = Ho + K
6(HoL + 2Mo)

KL3

z2

2
− K

2(2HoL + 3Mo)

KL2
z = 0

For Mo = 0, this equation simplifies to:
3z2 − 4Lz + L2 = 0

for which the positive root is L/3. Therefore:
zmax = L

3

Problem 18.26

Calculate the ratio between the ground surface displacement for a free-head condition and for a fixed-head condition. Do the
calculation first for a flexible pile and then for a rigid pile.

Solution 18.26

Case 1: A long flexible pile

Free-head condition
The displacement at the ground surface is calculated as:

yo(free head) = 2Ho

loK

Fixed-head condition
The displacement at the ground surface is calculated as:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

yo

(
fixed head

) = 2Ho

loK
+ 2Mo

lo
2K

y ′
o(fixed head) = − 2Ho

lo
2K

− 4Mo

lo
3K

= 0 ⇒ Mo = −Holo

2

Therefore,

yo(fixed head) = 2Ho

loK
+ 2Mo

lo
2K

= 2Ho

loK
− Ho

loK
= Ho

loK

Hence, for a long flexible pile, the ratio between the ground surface displacement for a free-head condition and for a
fixed-head condition is:

yo(free head)

yo(fixed head)
=

2Ho

loK

Ho

loK

= 2

Case 2: A short rigid pile

Free-head condition
The displacement at the ground surface is calculated as:

yo(free head) = −2(2HoL)

KL2
= −4Ho

KL

Fixed-head condition
The displacement at the ground surface is calculated as:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
yo

(
fixed head

) = −2(2HoL + 3Mo)

KL2

y ′
o(fixed head) = 6(HoL + 2Mo)

KL3
= 0 ⇒ Mo = −HoL

2



646 18 DEEP FOUNDATIONS

Therefore,

yo(fixed head) = −2(2HoL + 3Mo)

KL2
=

−2

(
2HoL + 3

−HoL

2

)
KL2

= −Ho

KL

Hence, for a short rigid pile, the ratio between the ground surface displacement for a free-head condition and for a
fixed-head condition is:

yo(free head)

yo(fixed head)
=

−4Ho

KL
−Ho

KL

= 4

Problem 18.27

For the pile group shown in Figure 18.75, calculate the efficiency of the group if it is loaded horizontally in a direction
perpendicular to the four-pile line.

Solution 18.27

Figure 18.21s shows an illustration of the horizontal loading on the pile group. The center-to-center spacing S of the piles is
two times the pile diameter B.

H

Leading
piles

Trailing
piles

Figure 18.21s Horizontal loading of a pile group.

The leading pile efficiency elp is obtained from Figure 18.22s for a pile relative spacing of 2. The value is 0.86. Because
there are 4 leading piles, the contribution to the group capacity is 4 × 0.86 = 3.44.
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Figure 18.22s Efficiency for side-by-side and in-line groups.

The ratio λ between the capacity of the leading pile and the trailing pile is given by Figure 18.23s. The value is 1.43 for
a relative spacing of 2. Therefore, the efficiency of each trailing pile is etp = 0.86/1.43 = 0.60. Because there are 8 trailing
piles, the contribution to the group capacity is 8 × 0.6 = 4.8.
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Figure 18.23s Ratio of load on leading pile over trailing pile.

The efficiency of the pile group is calculated as.

e = Hou(group)

nHou(single)
= nlpelp + ntpetp

n
= 4 × 0.86 + 8 × 0.6

12
= 0.69

Problem 18.28

The pile group of Figure 18.75 is subjected to an overturning moment of 10 MN.m in the direction of largest resistance to
overturning of the group. The piles are 0.4 by 0.4 square concrete driven piles embedded 25 m in a loose sand with a blow
count of 6 bpf. What will be the ratio between the applied tension load and the ultimate tension capacity of the most loaded
pile in the group?

Solution 18.28

The ultimate capacity of the piles in tension can be estimated by the Briaud-Tucker method:

Qu = fuPL = 5 × 60.7 × 4 × 0.4 × 25 = 701 kN

The maximum tension load on the outside of the group, in the absence of any compression load, is:

�Qmax = MB

2 m
n∑

i=1

a2
i

= 10000 × 2.8

2 × 3((3 × 0.4)2 + (1 × 0.4)2 + (1 × 0.4)2 + (3 × 0.4)2)
= 1458 kN

So, unless there is a significant compression load (coming from the structure deadweight, for example), the outside pile
will fail.

Problem 18.29

A steel pipe pile has a diameter D equal to 0.61 m and a wall thickness t equal to 9.5 mm. The pile is 33.5 m long and the
steel has a modulus E equal to 200 GPa. The pile is loaded horizontally with a load Ho of 89 kN in fixed-head condition. The
soil is characterized by stiffness coefficient K from pressuremeter tests equal to 25 000 kPa. Plot the profiles versus depth of
the deflection, slope, shear, bending moment, and line load in the pile.

Solution 18.29

Step 1: Define the type of pile

I = π(D4 − d4)

64
= π(0.614 − (0.61 − 2 × 9.5 × 10−3)4)

64
= 8.08 × 10−4 m4

Transfer length lo is calculated as:

lo = 4

√
4EI

K
= 4

√
4 × 2 × 1011 × 8.08 × 10−4

25 × 106
= 2.25 m
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Because L > 3lo, the pile is defined as a long, flexible pile.
Step 2: Calculate the deflection, slope, shear, bending moment, and line load in the pile

The fixed-head flexible pile has a slope of zero at the top of the pile. Therefore,

y ′
o(fixed head) = − 2Ho

lo
2K

− 4Mo

lo
3K

= 0

Hence, the bending moment at the ground surface can be calculated as:

Mo = −Holo

2
= −89 × 2.25

2
= −100 kN · m

With z as the depth along the pile, the deflection, slope, bending moment, shear, and line load in the pile can be calculated
as:

Deflection y(z) = 2Ho

loK
e
− z

lo cos
z

lo
+ 2Mo

lo
2K

e
− z

lo

(
cos

z

lo
− sin

z

lo

)

Slope y ′(z) = − 2Ho

lo
2K

e
− z

lo

(
cos

z

lo
+ sin

z

lo

)
− 4Mo

lo
3K

e
− z

lo cos
z

lo

Bending moment M(z) = Holoe
− z

lo sin
z

lo
+ Moe

− z
lo

(
cos

z

lo
+ sin

z

lo

)

Shear V (z) = Hoe
− z

lo

(
cos

z

lo
− sin

z

lo

)
− 2Mo

lo
e
− z

lo sin
z

lo

Line load p(z) = −Ky(z)

A Matlab program was written to plot these functions, as shown in Figure 18.24s.
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Figure 18.24s Deflection, slope, bending moment, shear, and line load in the fixed-head pile
under a horizontal load Ho at the ground surface.


