The Mole

Section 10.1 Measuring Matter

page 320-324

Practice Problems

pages 323-324

1. $\mathrm{Zinc}(\mathrm{Zn})$ is used to form a corrosion-inhibiting surface on galvanized steel. Determine the number of Zn atoms in 2.50 mol of Zn .
$2.50 \mathrm{~mol} \mathrm{Zn} \times \frac{6.02 \times 10^{23} \mathrm{atoms} \mathrm{Zn}}{1 \mathrm{motzn}}$
$=1.51 \times 10^{24}$ atoms of Zn
2. Calculate the number of molecules in 11.5 mol of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$.
$11.5 \mathrm{mOH} \mathrm{H}_{2} \mathrm{O} \times \frac{6.02 \times 10^{23} \text { molecules } \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{moH}_{2} \mathrm{O}}$
$=6.92 \times 10^{24}$ molecules of $\mathrm{H}_{2} \mathrm{O}$
3. Silver nitrate $\left(\mathrm{AgNO}_{3}\right)$ is used to make se veral different silver halides used in photographic films. How many formula units of AgNO_{3} are there in $3.25 \mathrm{~mol}_{\mathrm{AgNO}_{3} \text { ? }}$?
b. 2.50×10^{20} atoms Fe

$$
\begin{aligned}
& 2.50 \times 10^{20} \text { atomsFe } \times \frac{1 \mathrm{~mol} \mathrm{Fe}}{6.02 \times 10^{23} \text { atoms } \mathrm{Fe}} \\
& =4.15 \times 10^{-4} \mathrm{~mol} \mathrm{Fe}
\end{aligned}
$$

6. Challenge Identify the representative particle for each formula and convert the given number of representative particles to moles.
a. $3.75+10^{24} \mathrm{CO}_{2}$

The representative particle is a molecule.

$$
\begin{aligned}
& 3.75 \times 10^{24} \text { molecutes } \mathrm{CO}_{2} \\
& \times \frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{6.02 \times 10^{23} \text { molecules } \mathrm{CO}_{2}}=6.23 \mathrm{~mol} \mathrm{CO}_{2}
\end{aligned}
$$

b. $3.58 \times 10^{23} \mathrm{ZnCl}_{2}$

The representative particle is a formula unit.

$$
\begin{aligned}
& 3.58 \times 10^{23} \text { formula-units } \mathrm{ZnCl}_{2} \\
& \times \frac{1 \mathrm{~mol} \mathrm{ZnCl}}{2} \\
& =0.02 \times 10^{23} \text { formula-units } \mathrm{ZnCl}_{2} \\
& =0.595 \mathrm{~mol} \mathrm{ZnCl}
\end{aligned}
$$

Section 10.1 Assessment

page 324
7. Explain why chemists use the mole.

Chemists use the mole because it is a convenient way of knowing how many representative particles are in a sample.
8. State the mathematical relationship between Avogadro's number and 1 mol .
One mole contains 6.02×10^{23} representative particles.
9. List the conversion factors used to convert between particles and moles.
$\frac{6.02 \times 10^{23} \text { representative particles }}{1 \mathrm{~mol}}$,
$\frac{1 \mathrm{~mol}}{6.02 \times 10^{23} \text { representative particles }}$,
10. Explain how a mole is similar to a dozen.

The mole is a unit for counting 6.02×10^{23} representative particles. The dozen is used to count 12 items.
11. Apply How does a chemist count the number of particles in a given number of moles of a substance?

They multiply the number moles by Avogadro's number.
12. Calculate the mass in atomic mass units of 0.25 mol of carbon-12 atoms.
0.25 mol carbon- $12 \times \frac{6.02 \times 10^{23} \text { carbon-12 atoms }}{1 \mathrm{~mol} \text { carbon- } 12}$
$\times \frac{12 \mathrm{amu}}{1 \text { carbon- } 12 \text { atom }}=1.8 \times 10^{24} \mathrm{amu}$
13. Calculate the number or representative particles of each substance.
a. 11.5 mol Ag
$11.5 \mathrm{mot} \mathrm{Ag} \times \frac{6.02 \times 10^{23} \mathrm{atorns} \mathrm{Ag}}{1 \mathrm{~mol} \mathrm{Ag}}$
$=6.92 \times 10^{24}$ atoms Ag
b. $18.0 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
$18.0 \mathrm{moH} \mathrm{H}_{2} \mathrm{O} \times \frac{6.02 \times 10^{23} \text { molecules } \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{molH}_{2} \mathrm{O}}$
$=1.08 \times 10^{25}$ molecules $\mathrm{H}_{2} \mathrm{O}$
c. 0.150 mol NaCl
$0.150 \mathrm{~mol} \mathrm{AaCt} \times \frac{6.02 \times 10^{23} \text { formuta units } \mathrm{NaCl}}{1 \text { mol NaCt }}$

$$
=9.03 \times 10^{22} \text { formula units } \mathrm{NaCl}
$$

d. $1.35 \times 10^{-2} \mathrm{~mol} \mathrm{CCH}_{4}$

$$
\begin{aligned}
& 1.35 \times 10^{-2}{\mathrm{~mol} \mathrm{CEH}_{4}}_{23} \\
& \times \frac{6.02 \times 10^{23} \mathrm{molecules}_{4} \mathrm{CCH}_{4}}{1 \mathrm{molCCH}_{4}} \\
& =8.13 \times 10^{21}{\mathrm{molecules} \mathrm{CCH}_{4}}^{2}
\end{aligned}
$$

14. Arrange these three samples from smallest to largest in terms of number of representative particles: 1.25×10^{25} atoms of zinc (Zn), 3.56 mol of iron (Fe), and 6.78×10^{22} molecules of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$.
$3.56 \mathrm{motFe} \times \frac{6.02 \times 10^{23} \text { atoms } \mathrm{Fe}}{1 \mathrm{melFe}}$
$=2.14 \times 10^{24}$ atoms Fe
From smallest to largest: 6.78×10^{22} molecules glucose, 2.14×10^{24} atoms $\mathrm{Fe}, 1.25 \times 10^{25}$ atoms Zn .

Section 10.2 Mass and the Mole

page 325-332

Problem-Solving Lab
 page 326

1. Apply What is the mass in grams of one helium atom? (The mass of a neutron is approximately the same as the mass of a proton.)

Because neutrons and protons have about the same mass, treat the two neutrons and two protons in the He atom as four protons.

$$
\begin{aligned}
& \frac{1.672 \times 10^{-24} \mathrm{~g}}{1 \text { protont }} \times \frac{4 \text { protons }}{\mathrm{He} \text { atom }} \\
& =6.69 \times 10^{-24} \mathrm{~g} / \mathrm{He} \text { atom }
\end{aligned}
$$

2. Draw Carbon- 12 contains six protons and six neutrons. Draw the carbon- 12 nucleus and calculate the mass of one atom in amu and g .
A correctly drawn model of the nucleus will have six protons and six neutrons packed in a tight spherical shape. Because neutrons and protons have about the same mass, treat the six neutrons and six protons in the $\mathrm{C}-12$ atom as 12 protons.

$$
\begin{aligned}
& \frac{1.672 \times 10^{-24} \mathrm{~g}}{1 \text { proton }} \times \frac{12 \text { protons }}{\mathrm{C}-12 \text { atom }} \\
& =2.01 \times 10^{-23} \mathrm{~g} / \mathrm{C}-12 \text { atom }
\end{aligned}
$$

3. Apply How many atoms of hydrogen- 1 are in a $1.007-\mathrm{g}$ sample? Recall that 1.007 amu is the mass of one atom of hydrogen- 1 . Round your answer to two significant digits.
$1.007 \mathrm{~g} \times \frac{1 \mathrm{H}-1 \text { atom }}{1.672 \times 10^{-24} \mathrm{~g}}$
$=6.023 \times 10^{23} \mathrm{H}-1$ atoms
4. Apply If you had samples of helium and carbon that contained the same number of atoms as you calculated in Question 1, what would be the mass in grams of each sample?
He: 6.023×10^{23} Heatoms $\times \frac{6.69 \times 10^{-24} \mathrm{~g}}{\text { Heatom }}$ $=4.03 \mathrm{~g}$

$=12.1 \mathrm{~g}$
5. Conclude What can you conclude about the relationship between the number of atoms and the mass of each sample? W.al 100
The mass of one mole of any atom is the same value in grams as the mass of one atom in amu.

Practice Problems

pages 328-331
15. Determine the mass in grams of each of the following.
a. 3.57 mol Al

$$
3.57 \mathrm{mot} \mathrm{At} \times \frac{26.98 \mathrm{~g} \mathrm{Al}}{1 \mathrm{mot} \text { At }}=96.3 \mathrm{~g} \mathrm{Al}
$$

b. 42.6 mol Si

$$
42.6 \mathrm{mot} \mathrm{Si} \times \frac{28.09 \mathrm{~g} \mathrm{Si}}{1 \mathrm{mot} \mathrm{Si}}=1.20 \times 10^{3} \mathrm{~g} \mathrm{Si}
$$

16. Challenge Convert each given quantity in scientific notation to mass in grams expressed in scientific notation.
a. $3.45 \times 10^{2} \mathrm{~mol} \mathrm{Co}$

$$
\begin{aligned}
& 3.45 \times 10^{2} \text { moteo } \times \frac{58.93 \mathrm{~g} \mathrm{Co}}{1 \mathrm{motfo}} \\
& =2.03 \times 10^{4} \mathrm{~g} \mathrm{Co}
\end{aligned}
$$

b. $2.45 \times 10^{-2} \mathrm{~mol} \mathrm{Zn}$

$$
2.45 \times 10^{-2} \mathrm{~mol} Z \pi \times \frac{65.38 \mathrm{~g} \mathrm{Zn}}{1 \mathrm{molZn}}=1.60 \mathrm{~g} \mathrm{Zn}
$$

17. Determine the number of moles in each of the following.
a. 25.5 g Ag
$25.5 \mathrm{~g} \mathrm{Ag} \times \frac{1 \mathrm{~mol} \mathrm{Ag}}{107.9 \mathrm{~g}-\mathrm{Ag}}=0.236 \mathrm{~mol} \mathrm{Ag}$
b. 300.0 g S

$$
300.0-\mathrm{g} 5 \times \frac{1 \mathrm{~mol} \mathrm{~S}}{32.07-\mathrm{g}-5}=9.355 \mathrm{~mol} \mathrm{~s}
$$

18. Challenge Convert each mass to moles. Express the answer in scientific notation.
a. $1.25 \times 10^{3} \mathrm{~g} \mathrm{Zn}$
$1.25 \times 10^{3} \mathrm{gZn} \times \frac{1 \mathrm{~mol} \mathrm{Zn}}{65.38-\mathrm{g} \mathrm{Zn}}=19.1 \mathrm{~mol} \mathrm{Zn}$
$=1.91 \times 10^{1} \mathrm{~mol} \mathrm{Zn}$
b. 1.00 kg Fe
$1.00 \mathrm{kgFe} \times \frac{1000 \mathrm{gFe}}{1 \mathrm{kgFe}} \times \frac{1 \mathrm{~mol} \mathrm{Fe}}{55.85 \mathrm{~g} \mathrm{Fe}}$
$=17.9 \mathrm{~mol} \mathrm{Fe}=1.79 \times 10^{1} \mathrm{~mol} \mathrm{Fe}$
19. How many atoms are in each of the following samples?
a. 55.2 g Li
$55.2 \mathrm{gti} \times \frac{1 \mathrm{motti}}{6.94 \mathrm{gti}} \times \frac{6.02 \times 10^{23} \text { atoms Li }}{1 \mathrm{motti}}$ $=4.79 \times 10^{24}$ atoms Li
b. 0.230 g Pb
$0.230 \mathrm{~g} \mathrm{~Pb} \times \frac{1 \mathrm{~mol} \mathrm{~Pb}}{207.2 \mathrm{~g} \mathrm{~Pb}} \times \frac{6.02 \times \frac{10^{23} \text { atoms } \mathrm{Pb}}{1 \mathrm{molPb}}}{1-20} \times 10^{20}$
$=6.68 \times 10^{20}$ atoms Pb
c. 11.5 g Hg
$11.5 \mathrm{~g} \mathrm{Hg} \times \frac{1 \mathrm{moHHg}}{200.6 \mathrm{~g} \mathrm{Hg}} \times \frac{6.02 \times 10^{23} \text { atoms } \mathrm{Hg}}{1 \mathrm{moH}}$
$=3.45 \times 10^{22}$ atoms Hg
20. What is the mass in grams of each of the following?
a. 6.02×10^{24} atoms Bi
6.02×10^{24} atoms $\mathrm{Bi} \times \frac{1 \mathrm{mot} \text { Bi }}{6.02 \times 10^{23} \text { atoms } \mathrm{Bi}}$
$\times \frac{209.0 \mathrm{~g} \mathrm{Bi}}{1 \mathrm{~mol}-\mathrm{Bi}}=2.09 \times 10^{3} \mathrm{~g} \mathrm{Bi}$
b. 1.00×10^{24} atoms Mn
1.00×10^{24} atoms $\mathrm{Mn} \times \frac{1 \mathrm{mot} \mathrm{Mn}}{6.02 \times 10^{23} \text {-atoms }}$
$\times \frac{54.94 \mathrm{~g} \mathrm{Mn}}{1 \mathrm{mot} \mathrm{Mn}}=91.3 \mathrm{~g} \mathrm{Mn}$
c. 3.40×10^{22} atoms He
3.40×10^{22} _ $\mathrm{He} \times \frac{1 \text { mot He }}{6.02 \times 10^{23} \text { atoms }}$
$\times \frac{4.003 \mathrm{~g} \mathrm{He}}{1 \mathrm{mot} \mathrm{He}}=0.226 \mathrm{~g} \mathrm{He}$
d. 1.50×10^{15} atoms N

$\times \frac{14.01 \mathrm{~g} \mathrm{~N}}{1 \mathrm{mot} \mathrm{N}}=3.49 \times 10^{-8} \mathrm{~g} \mathrm{~N}$
e. 1.50×10^{15} atoms U
1.50×10^{15} atoms $\mathrm{U} \times \frac{1 \mathrm{mot} \mathrm{U}}{6.02 \times 10^{23} \text { atems }}$
$\times \frac{238.0 \mathrm{~g} \mathrm{U}}{1 \mathrm{motU}}=5.93 \times 10^{-7} \mathrm{~g} \mathrm{U}$
21. Challenge Convert each given mass to number of representative particles. Identify the type of representative particle, and express the number in scientific notation.
a. $4.56 \times 10^{3} \mathrm{~g} \mathrm{Si}$
$4.56 \times 10^{3}-g-\mathrm{si} \times \frac{1 \mathrm{mot} \mathrm{Si}}{28.09-g \mathrm{Si}}$
$\times \frac{6.02 \times 10^{23} \text { atoms }}{1 \text { mot }}=9.77 \times 10^{25}$ atoms Si
b. 0.120 kg Ti
$0.120 \mathrm{~kg} \mathrm{fi} \times \frac{1000 \mathrm{~g} \mathrm{Ti}}{1 \mathrm{~kg} \mathrm{Fi}} \times \frac{1 \mathrm{mot} \mathrm{Ti}}{47.87 \mathrm{~g} \mathrm{Ti}}$
$\times \frac{6.02 \times 10^{23} \text { atoms }}{1 \mathrm{mot}}=1.51 \times 10^{24}$ atoms Ti

Section 10.2 Assessment

page 332
22. Summarize in terms of particles and mass, one-mole quantities of two different monatomic elements.

Each one-mole quantity has 6.02×10^{23} particles (atoms), but they will have different masses.
23. State the conversion factors needed to convert between mass and moles of the element fluorine.
Mass-to-mole conversions use the conversion factor $1 \mathrm{~mol} / 18.998 \mathrm{~g}$. Moles-to-mass conversions use the conversion factor $18.998 \mathrm{~g} / 1 \mathrm{~mol}$.
24. Explain how molar mass relates the mass of an atom to the mass of a mole of atoms.

Molar mass is the mass in grams of one mole of any pure substance.
25. Describe the steps used to convert the mass of an element to the number of atoms of the element.
Multiply the mass by the inverse of molar mass, and then multiply by Avogadro's number.
26. Arrange these quantities from smallest to largest in terms of mass: 1.0 mol of $\mathrm{Ar}, 3.0 \times$ 10^{24} atoms of Ne , and 20 g of Kr .
$1.0 \mathrm{mot} \mathrm{Ar} \times \frac{39.95 \mathrm{~g} \mathrm{Ar}}{1 \mathrm{mot} \mathrm{Ar}}=39.95 \mathrm{~g} \mathrm{Ar}$
3.0×10^{24} atams $\mathrm{Ne} \times \frac{1 \text { mot } \mathrm{Ne}}{6.02 \times 10^{23} \text { atams }}$
$\times \frac{20.18 \mathrm{~g} \mathrm{Ne}}{1 \mathrm{mot} \mathrm{Ne}}=101 \mathrm{~g} \mathrm{Ne}$
$20 \mathrm{~g} \mathrm{Kr}, 1.0 \mathrm{~mol}$ Ar, 3.0×10^{24} atoms Ne
27. Identify the quantity calculated by dividing the molar mass of an element by Avogadro's number.

Because the molar mass is a ratio of grams per mole and Avogadro's number is a ratio of particles per mole, dividing the molar mass of an element by Avogadro's number yields the mass of a single representative particle of that element.
28. Design a concept map that shows the conversion factors needed to convert among mass, moles, and number of particles.

Student concept maps will vary, but should show the correct sets of conversion factors needed to convert among mass, moles, and number of particles.

Section 10.3 Moles of Compounds

pages 333-340

Practice Problems

pages 335-339
29. Zinc chloride $\left(\mathrm{ZnCl}_{2}\right)$ is used in soldering flux, an alloy used to join two metals together. Determine the moles of Cl^{-}ions in 2.50 mol ZnCl_{2}.
$2.50 \mathrm{~mol}_{\mathrm{mnCt}}^{2} \times 2 \mathrm{~mol} \mathrm{Cl}^{-}-\frac{2 \mathrm{~mol} \mathrm{Cl}^{-}}{1 \mathrm{~mol}_{2}}=5.00$
30. Plants and animals depend on glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ as an energy source. Calculate the number of moles of each element in 1.25 mol $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$.
$1.25 \mathrm{~mol}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \times \frac{6 \mathrm{~mol} \mathrm{C}}{1 \mathrm{~mol}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}=7.50 \mathrm{~mol} \mathrm{C}$
$1.25 \mathrm{~mol}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \times \frac{12 \mathrm{~mol} \mathrm{H}}{1 \mathrm{molC}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}=15.0 \mathrm{~mol} \mathrm{H}$
$1.25 \mathrm{~mol}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \times \frac{6 \mathrm{~mol} \mathrm{O}}{1 \mathrm{~mol}_{6} \mathrm{H}_{12} \mathrm{O}_{6}^{-}}=7.50 \mathrm{~mol} \mathrm{O}$
31. Iron(III) sulfate $\left[\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}\right]$ is sometimes used in the water purification process. Determine the number of moles of sulfate ions present in 3.00 mol of $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$.
$3.00 \mathrm{~mol}^{\mathrm{Fe}} \mathrm{C}_{2}\left(\mathrm{SO}_{4}\right)_{3} \times \frac{3 \mathrm{~mol} \mathrm{SO}_{4}{ }^{2-}}{1 \mathrm{molFe}_{2}\left(\mathrm{SO}_{4}\right)_{3}}$ $=9.00 \mathrm{~mol} \mathrm{SO}_{4}{ }^{2-}$
32. How many moles of oxygen atoms are present in 5.00 mol diphosphorus pentoxide $\left(\mathrm{P}_{2} \mathrm{O}_{5}\right)$?
$5.00 \mathrm{~mol}_{2} \mathrm{O}_{5} \times \frac{5 \mathrm{~mol} \mathrm{O}}{1 \mathrm{~mol}_{2} \mathrm{O}_{5}}=25.0 \mathrm{~mol} \mathrm{O}$
33. Challenge Calculate the number of moles of hydrogen atoms in $1.15 \times 10^{1} \mathrm{~mol}$ of water. Express the answer in scientific notation.
$1.15 \times 10^{1} \mathrm{moH}_{2} \mathrm{O} \times \frac{2 \mathrm{~mol} \mathrm{H}}{1 \mathrm{molH}_{2} \mathrm{O}}=23.0 \mathrm{~mol} \mathrm{H}$
$=2.30 \times 10^{1} \mathrm{~mol} \mathrm{H}$
34. Determine the molar mass of each ionic compound.
a. NaOH
$1 \mathrm{~mol} \mathrm{Na} \times \frac{22.99 \mathrm{~g} \mathrm{Na}}{1 \mathrm{~mol} \mathrm{Na}}=22.99 \mathrm{~g} \mathrm{Na}$
$1 \mathrm{mot} \theta \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{mot} \theta}=16.00 \mathrm{~g} \mathrm{o}$
$1 \mathrm{moHt} \times \frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}}=1.008 \mathrm{~g} \mathrm{H}$
molar mass $\mathrm{NaOH}=40.00 \mathrm{~g} / \mathrm{mol}$
b. CaCl_{2}
$1 \mathrm{motea} \times \frac{40.08 \mathrm{~g} \mathrm{Ca}}{1 \mathrm{mot} \mathrm{Ca}}=40.08 \mathrm{~g} \mathrm{Ca}$
2 motet $\times \frac{35.45 \mathrm{~g} \mathrm{Cl}}{1 \mathrm{mot}}=70.90 \mathrm{~g} \mathrm{Cl}$
molar mass $\mathrm{CaCl}_{2}=110.98 \mathrm{~g} / \mathrm{mol}$
c. $\mathrm{KC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$

1 motk $\times \frac{39.10 \mathrm{~g} \mathrm{~K}}{1 \mathrm{motK}}=39.10 \mathrm{~g} \mathrm{~K}$
$2 \mathrm{mote} \times \frac{12.01 \mathrm{~g} \mathrm{C}}{1 \mathrm{mot}}=24.02 \mathrm{~g} \mathrm{C}$
$3 \mathrm{motH} \times \frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{moH}}=3.024 \mathrm{~g} \mathrm{H}$
$2 \mathrm{mot} \sigma \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{mot} \sigma}=\underline{32.00 \mathrm{~g} \mathrm{O}}$
molar mass $\mathrm{KC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}=98.14 \mathrm{~g} / \mathrm{mol}$
35. Calculate the molar mass of each molecular compound.
a. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
$2 \mathrm{mote} \times \frac{12.01 \mathrm{~g} \mathrm{C}}{1 \mathrm{mot}}=24.02 \mathrm{~g} \mathrm{C}$
$6 \mathrm{motH} \times \frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{molH}}=6.048 \mathrm{~g} \mathrm{H}$
$1 \mathrm{mot} \sigma \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{motO}}=\underline{16.00 \mathrm{~g} \mathrm{O}}$
molar mass $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}=46.07 \mathrm{~g} / \mathrm{mol}$
b. HCN
$1 \mathrm{motH} \times \frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{melth}}=1.008 \mathrm{~g} \mathrm{H}$
1 mote $\times \frac{12.01 \mathrm{~g} \mathrm{C}}{1 \mathrm{molf}}=12.01 \mathrm{~g} \mathrm{C}$
$1 \mathrm{mot} \mathrm{N} \times \frac{14.01 \mathrm{~g} \mathrm{~N}}{1 \mathrm{molN}}=\underline{14.01 \mathrm{~g} \mathrm{~N}}$
molar mass $\mathrm{HCN}=27.03 \mathrm{~g} / \mathrm{mol}$
c. CCl_{4}

1 mote $\times \frac{12.01 \mathrm{~g} \mathrm{C}}{1 \mathrm{molf}}=12.01 \mathrm{~g} \mathrm{C}$
4 moter $\times \frac{35.45 \mathrm{~g} \mathrm{Cl}}{1 \mathrm{~mol}-\mathrm{l}}=141.80 \mathrm{~g} \mathrm{Cl}$
molar mass $\mathrm{CCl}_{4}=153.81 \mathrm{~g} / \mathrm{mol}$
36. Challenge Identify each substance as a molecular compound or an ionic compound, and then calculate its molar mass.
a. $\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}$
ionic compound;
$1 \mathrm{motsr} \times \frac{87.62 \mathrm{~g} \mathrm{Sr}}{1 \mathrm{molsf}}=87.62 \mathrm{~g} \mathrm{Sr}$
$2 \mathrm{motN} \times \frac{14.01 \mathrm{~g} \mathrm{~N}}{1 \mathrm{molN}}=28.02 \mathrm{~g} \mathrm{~N}$
$6 \mathrm{mot} \sigma \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{mot} \theta}=96.00 \mathrm{~g} \mathrm{O}$
molar mass $\operatorname{Sr}\left(\mathrm{NO}_{3}\right)_{2}=211.64 \mathrm{~g} / \mathrm{mol}$
b. $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$
ionic compound;
$3 \mathrm{motN} \times \frac{14.01 \mathrm{~g} \mathrm{~N}}{1 \mathrm{motN}}=42.03 \mathrm{~g} \mathrm{~N}$
$12 \mathrm{motH} \times \frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{motH}}=12.096 \mathrm{~g} \mathrm{H}$
$1 \mathrm{motP} \times \frac{30.97 \mathrm{~g} \mathrm{P}}{1 \mathrm{motP}}=30.97 \mathrm{~g} \mathrm{P}$
$4 \mathrm{mot} \sigma \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{moto}}=\underline{64.00 \mathrm{~g} \mathrm{O}}$
molar mass $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}=149.10 \mathrm{~g} / \mathrm{mol}$
c. $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$
molecular compound;
$12 \mathrm{mote} \times \frac{12.01 \mathrm{~g} \mathrm{C}}{1 \mathrm{mot} \epsilon}=144.12 \mathrm{~g} \mathrm{C}$
$22 \mathrm{moth} \times \frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{motH}}=22.176 \mathrm{~g} \mathrm{H}$
$11 \mathrm{mot} \sigma \times \frac{16.00 \mathrm{~g} \mathrm{o}}{1 \mathrm{moto}}=176.00 \mathrm{~g} \mathrm{O}$
molar mass $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}=342.30 \mathrm{~g} / \mathrm{mol}$
37. The United States chemical industry produces more sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ in terms of mass, than any other chemical. What is the mass of 3.25 mol of $\mathrm{H}_{2} \mathrm{SO}_{4}$?

Step 1: Find the molar mass of $\mathrm{H}_{2} \mathrm{SO}_{4}$.
$2 \mathrm{motH} \times \frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{molH}}=2.016 \mathrm{~g} \mathrm{H}$
$1 \mathrm{mot} 5 \times \frac{32.07 \mathrm{~g} \mathrm{~S}}{1 \mathrm{mots}}=32.07 \mathrm{~g} \mathrm{~S}$
$4 \mathrm{met} \sigma \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{moto}}=64.00 \mathrm{~g} \mathrm{O}$
molar mass $\mathrm{H}_{2} \mathrm{SO}_{4}=98.09 \mathrm{~g} / \mathrm{mol}$
Step 2: Make mole \rightarrow mass conversion.
$3.25{\mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}} \times \frac{98.09 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}}{1 \mathrm{~mol}_{2} \mathrm{SO}_{4}}=319 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}$
38. What is the mass of 4.35×10^{-2} moles of zinc chloride $\left(\mathrm{ZnCl}_{2}\right)$?
Step 1: Find the molar mass of ZnCl_{2}.
$1 \mathrm{motZn} \times \frac{65.38 \mathrm{~g} \mathrm{Zn}}{1 \mathrm{motZn}}=65.38 \mathrm{~g} \mathrm{Zn}$
2 motet $\times \frac{35.45 \mathrm{~g} \mathrm{Cl}}{1 \mathrm{motet}}=\underline{70.90 \mathrm{~g} \mathrm{Cl}}$
molar mass $\mathrm{ZnCl}_{2}=136.28 \mathrm{~g} / \mathrm{mol}$
Step 2: Make mole \rightarrow mass conversion.
$4.35 \times 10^{-2} \mathrm{~mol}^{2 n E l} 2 \times \frac{136.28 \mathrm{~g} \mathrm{ZnCl}_{2}}{1 \mathrm{~mol}^{2 n C l}}$
$=5.93 \mathrm{~g} \mathrm{ZnCl}_{2}$
39. Challenge Write the chemical formula for potassium permanganate, and then calculate the mass in grams of 2.55 mol of the compound.

Potassium permanganate has a formula of KMnO_{4}.
Step 1: Find the molar mass of KMnO_{4}.
1 motK $\times \frac{39.10 \mathrm{~g} \mathrm{~K}}{1 \mathrm{molK}}=39.10 \mathrm{~g} \mathrm{~K}$
$1 \mathrm{~mol} \mathrm{Ann} \times \frac{54.94 \mathrm{~g} \mathrm{Mn}}{1 \mathrm{motAAn}}=54.94 \mathrm{~g} \mathrm{Mn}$
$4 \mathrm{mote} \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{mot} \theta}=64.00 \mathrm{~g} \mathrm{o}$
molar mass $\mathrm{KMnO}_{4}=158.04 \mathrm{~g} / \mathrm{mol}$
Step 2: Make mole \rightarrow mass conversion.
$2.55 \mathrm{moHAAnO}_{4} \times \frac{158.04 \mathrm{~g} \mathrm{KmnO}_{4}}{1{\mathrm{~mol} \mathrm{KmmO}_{4}}^{\mathrm{mm}^{2}}}$
$=403 \mathrm{~g} \mathrm{KMnO}_{4}$
40. Determine the number of moles present in each compound.
a. $22.6 \mathrm{~g} \mathrm{AgNO}_{3}$

Step 1: Find the molar mass of AgNO_{3}. $1 \mathrm{mot} A g \times \frac{107.9 \mathrm{~g} \mathrm{Ag}}{1 \mathrm{mot} A g}=107.9 \mathrm{~g} \mathrm{Ag}$ $1 \mathrm{motN} \times \frac{14.01 \mathrm{~g} \mathrm{~N}}{1 \mathrm{motN}}=14.01 \mathrm{~g} \mathrm{~N}$
$3 \mathrm{mot} 0 \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{mot} \mathrm{O}}=48.00 \mathrm{~g} \mathrm{O}$
molar mass $\mathrm{AgNO}_{3}=169.9 \mathrm{~g} / \mathrm{mol}$
Step 2: Make mass \rightarrow mole conversion.
$22.6 \mathrm{~g}_{2} \mathrm{AgNO}_{3} \times \frac{1 \mathrm{~mol} \mathrm{AgNO}_{3}}{169.9-\mathrm{ggAO}_{3}}$
$=0.133 \mathrm{~mol} \mathrm{AgNO}_{3}$
b. $6.50 \mathrm{~g} \mathrm{ZnSO}_{4}$

Step 1: Find the molar mass of ZnSO_{4}.
$1 \mathrm{mot} \mathrm{Zn} \times \frac{65.38 \mathrm{~g} \mathrm{Zn}}{1 \mathrm{mot} \mathrm{Zn}}=65.39 \mathrm{~g} \mathrm{Zn}$
1 mots $\times \frac{32.07 \mathrm{~g} \mathrm{~S}}{1 \text { mots }}=32.07 \mathrm{~g} \mathrm{~S}$
4 mote $\times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{mot} \theta}=\underline{64.00 \mathrm{~g} \mathrm{O}}$
molar mass $\mathrm{ZnSO}_{4}=161.46 \mathrm{~g} / \mathrm{mol}$
Step 2: Make mass \rightarrow mole conversion.
$6.50 \mathrm{~g} \mathrm{ZnSO}_{4} \times \frac{1 \mathrm{~mol} \mathrm{ZnSO}_{4}}{161.46 \mathrm{~g} \mathrm{ZnSO}_{4}}$
$=0.0403 \mathrm{~mol} \mathrm{ZnSO} 4$
c. 35.0 g HCl

Step 1: Find the molar mass of HCl .
$1 \mathrm{mot}+\times \frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{mot}}=1.008 \mathrm{~g} \mathrm{H}$
$1 \mathrm{~mol} \mathrm{ft} \times \frac{35.45 \mathrm{~g} \mathrm{Cl}}{1 \text { mot Ct }}=35.45 \mathrm{~g} \mathrm{Cl}$
molar mass $\mathrm{HCl}=36.46 \mathrm{~g} / \mathrm{mol}$
Step 2: Make mass \rightarrow mole conversion.
35.0 g Het $\times \frac{1 \mathrm{~mol} \mathrm{HCl}}{36.46 \mathrm{gHCt}}=0.960 \mathrm{~mol} \mathrm{HCl}$
41. Challenge Identify each as an ionic or molecular compound and convert the given mass to moles. Express your answers in scientific notation.
a. $2.50 \mathrm{~kg} \mathrm{Fe} \mathrm{O}_{2} \mathrm{O}_{3}$
ionic compound; Step 1: Find the molar mass of $\mathrm{Fe}_{2} \mathrm{O}_{3}$.

2 motFe $\times \frac{55.85 \mathrm{~g} \mathrm{Fe}}{1 \mathrm{motFe}}=111.70 \mathrm{~g} \mathrm{Fe}$
$3 \mathrm{mot} \sigma \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{mot} \theta}=\underline{48.00 \mathrm{~g} \mathrm{O}}$
molar mass $\mathrm{Fe}_{2} \mathrm{O}_{3}=159.70 \mathrm{~g} / \mathrm{mol}$
Step 2: Make mass \rightarrow mole conversion.
$2.50 \mathrm{~kg}-\mathrm{Fe}_{2} \mathrm{O}_{3} \times \frac{1000 \mathrm{~g}}{1 \mathrm{~kg}} \times \frac{1 \mathrm{~mol} \mathrm{Fe}}{2} \mathrm{O}_{3} 1_{159.70-\mathrm{gEe}_{2} \mathrm{O}_{3}}$
$=15.7 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}=1.57 \times 10^{1} \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}$
b. $25.4 \mathrm{mg} \mathrm{PbCl}_{4}$
ionic compound; Step 1: Find the molar mass of PbCl_{4}.
$1 \mathrm{motPb} \times \frac{207.2 \mathrm{~g} \mathrm{~Pb}}{1 \mathrm{molPb}}=207.2 \mathrm{~g} \mathrm{~Pb}$
4 motet $\times \frac{35.45 \mathrm{~g} \mathrm{Cl}}{1 \mathrm{mot}}=141.80 \mathrm{~g} \mathrm{Cl}$
molar mass $\mathrm{PbCl}_{4}=349.0 \mathrm{~g} / \mathrm{mol}$
Step 2: Make mass \rightarrow mole conversion.
$25.4 \mathrm{mg}_{\mathrm{gbCt}}^{4} \times \frac{1 \mathrm{~g}}{1000 \mathrm{mg}} \times \frac{1 \mathrm{~mol} \mathrm{PbCl}_{4}}{349.0 \mathrm{~g} \mathrm{PbCt}_{4}}$
$=7.28 \times 10^{-5} \mathrm{~mol} \mathrm{PbCl}_{4}$
42. Ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$, a domestically produced fuel source, is often blended with gasoline. A sample of ethanol has a mass of 45.6 g .
a. How many carbon atoms does the sample contain?

Step 1: Find the molar mass of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$.
2 mote $\times \frac{12.01 \mathrm{~g} \mathrm{C}}{1 \mathrm{mote}}=24.02 \mathrm{~g}$
$6 \mathrm{motH} \times \frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{motH}}=6.048 \mathrm{~g}$
$1 \mathrm{moto} \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{mot} \theta}=16.00 \mathrm{~g}$
molar mass $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}=46.07 \mathrm{~g} / \mathrm{mol}$
Step 2: Make mass \rightarrow mole conversion.
$45.6 \mathrm{gR}_{2} \mathrm{H}_{5} \mathrm{OH} \times \frac{1 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}}{46.07 \mathrm{gl}_{2} \mathrm{H}_{5} \mathrm{OH}}$
$=0.990 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
Step 3: Make mole \rightarrow molecule conversion.
0.990 mot $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \times \frac{6.02 \times 10^{23} \text { molecules }}{1 \mathrm{mot}}$
$=5.96 \times 10^{23}$ molecules $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
Step 4: Determine the number of carbon atoms.
5.96×10^{23} molectles $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
$\times \frac{2 \mathrm{C} \text { atoms }}{1 \text { molecule } \ell_{2} \mathrm{H}_{5} \mathrm{OH}}=1.19 \times 10^{24} \mathrm{C}$ atoms
b. How many hydrogen atoms are present?
5.96×10^{23} molectles $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
$\times \frac{6 \mathrm{H} \text { atoms }}{1 \text { molectle } \ell_{2} \mathrm{H}_{5} \mathrm{OH}}=3.58 \times 10^{24} \mathrm{H}$ atoms
c. How many oxygen atoms are present?
5.96×10^{23} molecutes $\ell_{2} H_{5} \mathrm{OH}$
$\times \frac{1 \mathrm{O} \text { atoms }}{1 \text { molecter } \ell_{2} \mathrm{H}_{5} \mathrm{OH}}=5.96 \times 10^{23} \mathrm{O}$ atoms
43. A sample of sodium sulfite $\left(\mathrm{Na}_{2} \mathrm{SO}_{3}\right)$ has a mass of 2.25 g .
a. How many Na^{+}ions are present?

Step 1: Find the molar mass of $\mathrm{Na}_{2} \mathrm{SO}_{3}$
$2 \mathrm{motNa} \times \frac{22.99 \mathrm{~g} \mathrm{Na}}{1 \mathrm{molNa}}=45.98 \mathrm{~g}$
1 mots $\times \frac{32.07 \mathrm{~g} \mathrm{~S}}{1 \mathrm{mots}}=32.07 \mathrm{~g}$
3 moto $\times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{mot} \theta}=48.00 \mathrm{~g}$
molar mass $\mathrm{Na}_{2} \mathrm{SO}_{3}=126.05 \mathrm{~g} / \mathrm{mol}$
Step 2: Make mass \rightarrow mole conversion
$2.25 \not \mathrm{ONa}_{2} \mathrm{SO}_{3} \times \frac{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{3}}{126.05 \not \mathrm{Nra}_{2} \mathrm{SO}_{3}}$
$=0.0179 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{3}$
Step 3: Make mole \rightarrow formula unit conversion
0.0179 mot $\mathrm{Na}_{2} \mathrm{SO}_{3} \times \frac{6.02 \times 10^{23} \text { formula units }}{1 \mathrm{mot}}$
$=1.08 \times 10^{22}$ formula units $\mathrm{Na}_{2} \mathrm{SO}_{3}$
Step 4: Determine the number of Na^{+}ions.
1.08×10^{22} formula units $\mathrm{NG}_{2} \mathrm{SO}_{3} \times$
$\frac{2 \mathrm{Na}^{+} \text {ions }}{1 \text { formula unit } \mathrm{Na}_{2} \mathrm{SO}_{3}}=2.16 \times 10^{22} \mathrm{Na}^{+}$ions
b. How many $\mathrm{SO}_{3}{ }^{2-}$ ions are present?
1.08×10^{22} formula units $\mathrm{Ha}_{2} \mathrm{SO}_{3} \times$
$\frac{2 \mathrm{SO}_{3}{ }^{2-} \text { ions }}{1 \text { formula unit } \mathrm{Na}_{2} \mathrm{SO}_{3}}=1.08 \times 10^{22} \mathrm{SO}_{3}{ }^{2-}$ ions
c. What is the mass in grams of one formula unit of $\mathrm{Na}_{2} \mathrm{SO}_{3}$?

$$
\begin{aligned}
& \frac{126.08 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{3}}{1 \mathrm{~mol}+\mathrm{Na}_{2} \mathrm{SO}_{3}} \times \frac{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{3}}{6.02 \times 10^{23} \text { formula units }} \\
& =2.09 \times 10^{-22} \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{3} / \text { formula unit }
\end{aligned}
$$

44. A sample of carbon dioxide $\left(\mathrm{CO}_{2}\right)$ has a mass of 52.0 g .
a. How many carbon atoms are present?

Step 1: Find the molar mass of CO_{2}.
1 mote $\times \frac{12.01 \mathrm{~g} \mathrm{C}}{1 \mathrm{mote}}=12.01 \mathrm{~g}$
$2 \mathrm{mot} \theta \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{mot} \theta}=32.00 \mathrm{~g}$
molar mass $\mathrm{CO}_{2}=44.01 \mathrm{~g} / \mathrm{mol}$
Step 2: Make mass \rightarrow mole conversion.
$52.0 \mathrm{gCO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{44.01 \mathrm{gCO}_{2}}=1.18 \mathrm{~mol} \mathrm{CO} 2$
Step 3: Make mole \rightarrow molecule conversion.
1.18 mot $\mathrm{CO}_{2} \times \frac{6.02 \times 10^{23} \text { molecules }}{1 \mathrm{mot}}$
$=7.11 \times 10^{23}$ molecules CO_{2}
Step 4: Determine the number of carbon atoms.
7.11×10^{23} molecules $\mathrm{CO}_{2} \times \frac{1 \mathrm{C} \text { atom }}{1 \text { molecute } \mathrm{CO}_{2}}$
$=7.11 \times 10^{23} \mathrm{C}$ atoms
b. How many oxygen atoms are present?
7.11×10^{23} molecules $\mathrm{CO}_{2} \times \frac{2 \mathrm{O} \text { atoms }}{1 \text { molectite } \mathrm{CO}_{2}}$ $=1.42 \times 10^{24} \mathrm{O}$ atoms
c. What is the mass in grams of one molecule of CO_{2} ?
$\frac{44.01 \mathrm{~g} \mathrm{CO}_{2}}{1 \mathrm{mot} \mathrm{CO}_{2}} \times \frac{1 \text { mot }}{6.02 \times 10^{23} \text { molecules }}$
$=7.31 \times 10^{-23} \mathrm{~g} \mathrm{CO}_{2} /$ molecule
45. What mass of sodium chloride (NaCl) contains 4.59×10^{24} formula units?

Step 1: Find the number of moles of NaCl .
4.59×10^{24} formula units NaCl
$\times \frac{1 \mathrm{~mol} \mathrm{NaCl}}{6.02 \times 10^{23} \text { formula units }}=7.62 \mathrm{~mol} \mathrm{NaCl}$
Step 2: Find the molar mass of NaCl .
$1 \mathrm{~mol} \mathrm{Na} \times \frac{22.99 \mathrm{~g} \mathrm{Na}}{1 \mathrm{motNa}}=22.99 \mathrm{~g}$
$1 \mathrm{mot} \times \frac{35.45 \mathrm{~g} \mathrm{Cl}}{1 \mathrm{mot}}=35.45 \mathrm{~g}$
molar mass $\mathrm{NaCl}=58.44 \mathrm{~g} / \mathrm{mol}$
Step 3: Make mole \rightarrow mass conversion.
7.62 mot $\mathrm{NaCl} \times \frac{58.44 \mathrm{~g} \mathrm{NaCl}}{1 \mathrm{~mol} \mathrm{NaCt}}=445 \mathrm{~g} \mathrm{NaCl}$
46. Challenge A sample of silver chromate has a mass of 25.8 g .
a. Write the formula for silver chromate.

The formula for silver chromate is $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$.
b. How many cations are present in the sample?
Step 1: Find the molar mass of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$.
$2 \mathrm{mot} \mathrm{Ag} \times \frac{107.9 \mathrm{~g} \mathrm{Ag}}{1 \mathrm{~mol} \mathrm{Ag}}=215.8 \mathrm{~g}$
1 moter $\times \frac{52.00 \mathrm{~g} \mathrm{Cr}}{1 \mathrm{mot}}=52.00 \mathrm{~g}$
$4 \operatorname{mot} \sigma \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{mot} \sigma}=\underline{64.00 \mathrm{~g}}$
molar mass $\mathrm{Ag}_{2} \mathrm{CrO}_{4}=331.8 \mathrm{~g} / \mathrm{mol}$

Step 2: Make mass \rightarrow mole conversion.
$25.8 \mathrm{~g}_{\mathrm{Ag}}^{2}$ $\mathrm{CrO}_{4} \times \frac{1 \mathrm{~mol} \mathrm{Ag}_{2} \mathrm{CrO}_{4}}{331.8 \mathrm{~g}_{\mathrm{Ag}}^{2} \mathrm{CrO}}{ }_{4}$
$=0.0778 \mathrm{~mol} \mathrm{Ag}_{2} \mathrm{CrO}_{4}$
Step 3: Make mole \rightarrow formula unit conversion.
0.0778 mot $\mathrm{Ag}_{2} \mathrm{CrO}_{4} \times \frac{6.02 \times 10^{23} \text { formula units }}{1 \text { mot }}$
$=4.68 \times 10^{22}$ formula units $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$
Step 4: Determine the number of cations
(Ag^{+}ions):
4.68×10^{22} formula units $\mathrm{Ag}_{2} \mathrm{CrO}_{4} \times$
$\frac{2 \mathrm{Ag}^{+} \text {ions }}{1 \text { formula unit } \mathrm{Ag}_{2} \mathrm{CrO}_{4}}=9.36 \times 10^{22} \mathrm{Ag}^{+}$ions
c. How many anions are present in the sample?

The anions are $\mathrm{CrO}_{4}{ }^{2-}$ ions:
4.68×10^{22} formulaunits $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$
$\begin{array}{ll}4.68 \times 10^{22} \text { formula units } \mathrm{Ag}_{2} \mathrm{CrO}_{4} & 1000 \mathrm{mgCa}^{2+} \times \frac{1 \mathrm{gCa}}{}{ }^{2+} \\ \times \frac{1 \mathrm{CrO}_{4}{ }^{2+} \text { ions }}{1 \text { formula unit } \mathrm{Ag}_{2} \mathrm{CrO}_{4}} \times \frac{1 \mathrm{~mol} \mathrm{Ca}}{}{ }^{2+} \\ 40.08-\mathrm{gag}^{2+}\end{array}$

$$
=4.68 \times 10^{22} \mathrm{CrO}_{4}{ }^{2-} \text { ions }
$$

d. What is the mass in grams of one formula unit of silver chromate?

$$
\begin{aligned}
& \frac{331.8 \mathrm{~g} \mathrm{Ag}_{2} \mathrm{CrO}_{4}}{1 . \mathrm{mol} \mathrm{Ag}_{2} \mathrm{CrO}_{4}} \times \frac{1{\mathrm{~mol} \mathrm{Ag}_{2} \mathrm{CrO}_{4}^{-}}_{6.02 \times 10^{23} \text { formula units }}}{=5.51 \times 10^{-22} \mathrm{~g} \mathrm{Ag}_{2} \mathrm{CrO}_{4} / \text { formula unit }}
\end{aligned}
$$

Section 10.3 Assessment

page 340
47. Describe how to determine the molar mass of a compound.

Multiply the mass of one mole of each element by the ratio of that element to one mole of the compound. Add the resulting masses.
48. Identify the conversion factors needed to convert between the number of moles and the mass of a compound.

$$
\frac{\text { Number of grams }}{1 \mathrm{~mol}}, \frac{1 \mathrm{~mol}}{\text { number of grams }}
$$

49. Explain how you can determine the number of atoms or ions in a given mass of a compound.

Convert the mass to moles, multiply the number of moles by the ratio of the number of atoms or ions to one mole, multiply by Avogadro's number.
50. Apply How many moles of K, C, and O atoms are there in 1 mol of $\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$?
$2 \mathrm{~mol} \mathrm{~K}, 2 \mathrm{~mol} \mathrm{C}, 4 \mathrm{~mol} 0$
51. Calculate the molar mass of MgBr_{2}.
molar mass $\mathrm{MgBr}_{2}=24.305 \mathrm{~g} / \mathrm{mol} \times 2(79.904 \mathrm{~g} /$ $\mathrm{mol})=184.113 \mathrm{~g} / \mathrm{mol}$
52. Calculate Calcium carbonate is the calcium source for many vitamin tablets. The recommended daily allowance of calcium is 1000 mg of Ca^{2+} ions. How many moles of Ca^{2+} does 1000 mg represent?
53. Design a bar graph that will show the number of moles of each element present in 500 g of a particular form of dioxin $\left(\mathrm{C}_{12} \mathrm{H}_{4} \mathrm{C}_{14} \mathrm{O}_{2}\right)$, a powerful poison.

$12 \mathrm{~mol} \mathrm{C} \times \frac{12.01 \mathrm{~g} \mathrm{C}}{1 \mathrm{~mol} \mathrm{C}}=144.12 \mathrm{~g} \mathrm{C}$
$4 \mathrm{~mol} \mathrm{H} \times \frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}}=4.032 \mathrm{~g} \mathrm{H}$
$4 \mathrm{~mol} \mathrm{Cl} \times \frac{35.45 \mathrm{~g} \mathrm{Cl}}{1 \mathrm{~mol} \mathrm{Cl}}=141.80 \mathrm{~g} \mathrm{Cl}$
$2 \mathrm{~mol} \mathrm{O} \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}}=\underline{32.00 \mathrm{~g} \mathrm{O}}$
molar mass $=321.96 \mathrm{~g} / \mathrm{mol}$
$500 \mathrm{~g} \mathrm{C}_{12} \mathrm{H}_{4} \mathrm{Cl}_{4} \mathrm{O}_{2} \times \frac{1 \mathrm{~mol} \mathrm{C}_{12} \mathrm{H}_{4} \mathrm{Cl}_{4} \mathrm{O}_{2}}{321.96 \mathrm{~g} \mathrm{C}_{12} \mathrm{H}_{4} \mathrm{CH}_{4} \mathrm{O}_{2}}$
$=2 \mathrm{~mol} \mathrm{C}_{12} \mathrm{H}_{4} \mathrm{Cl}_{4} \mathrm{O}_{2}$
Student bar graphs should show the following molar quantities:

2 mot $\mathrm{C}_{12} \mathrm{H}_{4} \mathrm{Cl}_{4} \mathrm{O}_{2} \times \frac{12 \mathrm{~mol} \mathrm{C}}{1 \operatorname{mot~C}} \mathrm{H}_{2} \mathrm{H}_{4} \mathrm{Cl}_{4} \mathrm{O}_{2} \quad=24 \mathrm{~mol} \mathrm{C}$
2 mot $\mathrm{C}_{12} \mathrm{H}_{4} \mathrm{Cl}_{4} \mathrm{O}_{2} \times \frac{4 \mathrm{~mol} \mathrm{H}}{1 \operatorname{mot~} \mathrm{C}_{12} \mathrm{H}_{4} \mathrm{Cl}_{4} \mathrm{O}_{2}}=8 \mathrm{~mol} \mathrm{H}$
$2 \operatorname{mot} \mathrm{C}_{12} \mathrm{H}_{4} \mathrm{Cl}_{4} \mathrm{O}_{2} \times \frac{4 \mathrm{~mol} \mathrm{Cl}}{1 \operatorname{mot~Cl} \mathrm{H}_{2} \mathrm{H}_{4} \mathrm{O}_{2}}=8 \mathrm{~mol} \mathrm{Cl}$
2 mot $\mathrm{C}_{12} \mathrm{H}_{4} \mathrm{Cl}_{4} \mathrm{O}_{2} \times \frac{2 \mathrm{~mol} \mathrm{O}}{1 \operatorname{mot~C}} \mathrm{H}_{2} \mathrm{H}_{4} \mathrm{Cl}_{4} \mathrm{O}_{2} \quad=4 \mathrm{~mol} \mathrm{O}$

Section 10.4 Emperical and Molecular Formulas

pages 341-350

Practice Problems

pages 344-350
54. What is the percent composition of phosphoric acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$?
Steps 1 and 2: Assume 1 mole; calculate molar mass of $\mathrm{H}_{3} \mathrm{PO}_{4}$.

3 mot H $\times \frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{mot} \mathrm{H}}=3.024 \mathrm{~g} \mathrm{H}$
1 mot $P \times \frac{30.97 \mathrm{~g} \mathrm{P}}{1 \mathrm{mot} P}=30.97 \mathrm{~g} \mathrm{P}$
$4 \mathrm{mot} \mathrm{O} \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{mot} \mathrm{O}}=\underline{64.00 \mathrm{~g} \mathrm{O}}$
molar mass $\mathrm{H}_{3} \mathrm{PO}_{4}=97.99 \mathrm{~g} / \mathrm{mol}$
Step 3: Determine percent by mass of each element.
percent $\mathrm{H}=\frac{3.024 \mathrm{gH}}{97.99 \mathrm{gH}_{3} \mathrm{PO}_{4}} \times 100=3.08 \% \mathrm{H}$
percent $\mathrm{P}=\frac{30.97 \mathrm{~g} \mathrm{P}}{97.99 \mathrm{gH}_{3} \mathrm{PO}_{4}} \times 100=31.61 \% \mathrm{P}$
percent $\mathrm{O}=\frac{64.00 \mathrm{~g} \theta}{97.99 \mathrm{gH}_{3} \mathrm{PO}_{4}} \times 100=65.31 \% \mathrm{O}$
55. Which has the larger percent by mass of sulfur, $\mathrm{H}_{2} \mathrm{SO}_{3}$ or $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$?
Steps 1 and 2: Assume 1 mole; calculate molar mass of $\mathrm{H}_{2} \mathrm{SO}_{3}$.
$2 \mathrm{moth} \times \frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{mot} \mathrm{H}}=2.016 \mathrm{~g} \mathrm{H}$
$1 \mathrm{mots} \times \frac{32.06 \mathrm{~g} \mathrm{~S}}{1 \mathrm{mots}}=32.06 \mathrm{~g} \mathrm{~S}$
$3 \mathrm{~mol} \mathrm{O} \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{mot} \mathrm{O}}=\underline{48.00 \mathrm{~g} \mathrm{O}}$
molar mass $\mathrm{H}_{2} \mathrm{SO}_{3}=82.08 \mathrm{~g} / \mathrm{mol}$
Step 3: Determine percent by mass of S.
percent $S=\frac{32.06 \mathrm{~g} \mathrm{~S}}{82.08 \mathrm{~g}_{2} \mathrm{H}_{2} \mathrm{SO}_{3}} \times 100=39.06 \% \mathrm{~S}$
Repeat steps 1 and 2 for $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$. Assume 1 mole; calculate molar mass of $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$.
$2 \mathrm{mot} \mathrm{H} \times \frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{mot} \mathrm{H}}=2.016 \mathrm{~g}$
$2 \mathrm{mots} \times \frac{32.06 \mathrm{~g} \mathrm{~S}}{1 \mathrm{mots}}=64.12 \mathrm{~g}$
$8 \mathrm{mot} \mathrm{O} \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{mot} \mathrm{O}}=128.00 \mathrm{~g}$
molar mass $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}=194.14 \mathrm{~g} / \mathrm{mol}$
Step 3: Determine percent by mass of S.
percent $S=\frac{64.12 \mathrm{gS}}{194.14 \mathrm{~g}_{2} \mathrm{H}_{2} \mathrm{SO}_{3}} \times 100$
$=33.03 \%$ S
$\mathrm{H}_{2} \mathrm{SO}_{3}$ has a larger percent by mass of S .
56. Calcium chloride $\left(\mathrm{CaCl}_{2}\right)$ is sometimes used as a de-icer. Calculate the percent by mass of each element in CaCl_{2}.

Steps 1 and 2: Assume 1 mole; calculate molar mass of CaCl_{2}.

1 mot Ca $\times \frac{40.08 \mathrm{~g} \mathrm{Ca}}{1 \text { mot Ca }}=40.08 \mathrm{~g} \mathrm{Ca}$
$2 \mathrm{mot} \mathrm{Cl} \times \frac{35.45 \mathrm{~g} \mathrm{Cl}}{1 \mathrm{mot} \mathrm{Cl}}=\underline{70.90 \mathrm{~g} \mathrm{Cl}}$
molar mass $\mathrm{CaCl}_{2}=110.98 \mathrm{~g} / \mathrm{mol}$

Step 3: Determine percent by mass of each element.
percent $\mathrm{Ca}=\frac{40.08 \mathrm{~g}-\mathrm{Ca}}{110.98-\mathrm{g-att}_{2}} \times 100$
$=36.11 \% \mathrm{Ca}$
percent $\mathrm{Cl}=\frac{70.90 \text { g-Ct }}{110.98 \text { g- } \text { Get }_{2}} \times 100$
$=63.89 \% \mathrm{Cl}$
57. Challenge Sodium sulfate is used in the manufacture of detergents.
a. Identify each of the component elements of sodium sulfate, and write the compound's chemical formula.
sodium, sulfur, and oxygen; $\mathrm{Na}_{2} \mathrm{SO}_{4}$
b. Identify the compound as ionic or covalent. ionic
c. Calculate the percent by mass of each element in sodium sulfate.

Steps 1 and 2: Assume 1 mole; calculate molar mass of $\mathrm{Na}_{2} \mathrm{SO}_{4}$.

2 mot $\mathrm{Na} 3 \times \frac{22.99 \mathrm{~g} \mathrm{Na}}{1 \mathrm{mot} \mathrm{Na}}=45.98 \mathrm{~g} \mathrm{Na}$
$1 \mathrm{mot} \mathrm{S} \times \frac{32.07 \mathrm{~g} \mathrm{~S}}{1 \mathrm{mot} \mathrm{S}}=32.07 \mathrm{~g} \mathrm{~S}$
$4 \mathrm{motO} \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{mot} \mathrm{O}}=\underline{64.00 \mathrm{~g} \mathrm{O}}$
molar mass $\mathrm{Na}_{2} \mathrm{SO}_{4} \quad=142.05 \mathrm{~g} / \mathrm{mol}$
Step 3: Determine percent by mass of each element.
percent $\mathrm{Na}=\frac{45.98 \mathrm{~g} \mathrm{Na}}{142.05 \mathrm{~g}-\mathrm{NaSO}_{4}} \times 100$
$=32.37 \% \mathrm{Na}$
percent $S=\frac{32.07 \mathrm{gS}}{142.05-\mathrm{g}_{\mathrm{NaSO}}^{4}} \mathrm{C} .100$
$=22.58 \%$ S
percent $O=\frac{64.00 \mathrm{~g} \theta}{142.05 \mathrm{~g}-\mathrm{NaSO}_{4}} \times 100$
$=45.05 \% 0$
58. The circle graph at the right gives the percent composition for a blue solid. What is the empirical formula for this solid?

Step 1: Assume 100 g sample; calculate moles of each element.
$36.84-g \mathrm{~N} \times \frac{1 \mathrm{~mol} \mathrm{~N}}{14.01-\mathrm{g} \mathrm{N}}=2.630 \mathrm{~mol} \mathrm{~N}$
$63.16-\mathrm{g} \theta \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00-\mathrm{g} \theta}=3.948 \mathrm{~mol} \mathrm{O}$
Step 2: Calculate mole ratios.
$\frac{2.630 \mathrm{~mol} \mathrm{~N}}{2.630 \mathrm{~mol} \mathrm{~N}}=\frac{1.000 \mathrm{~mol} \mathrm{~N}}{1.000 \mathrm{~mol} \mathrm{~N}}=\frac{1 \mathrm{~mol} \mathrm{~N}}{1 \mathrm{~mol} \mathrm{~N}}$
$\frac{3.948 \mathrm{~mol} \mathrm{O}}{2.630 \mathrm{~mol} \mathrm{O}}=\frac{1.500 \mathrm{~mol} \mathrm{O}}{1.000 \mathrm{~mol} \mathrm{~N}}=\frac{1.5 \mathrm{~mol} \mathrm{O}}{1 \mathrm{~mol} \mathrm{~N}}$
The simplest ratio is $1 \mathbf{m o l ~ N}: 1.5 \mathrm{~mol} 0$.
Step 3: Convert decimal fraction to whole number.

In this case, multiply by 2 because $1.5 \times 2=3$.
Therefore, the empirical formula is $\mathrm{N}_{2} \mathrm{O}_{3}$.
59. Determine the empirical formula for a compound that contains 35.98% aluminum and 64.02% sulfur.

Step 1: Assume 100 g sample; calculate moles of each element.
$35.98 \mathrm{~g} \mathrm{At} \times \frac{1 \mathrm{~mol} \mathrm{Al}}{26.98 \mathrm{~g} \mathrm{At}}=1.334 \mathrm{~mol} \mathrm{Al}$
$64.02 \mathrm{gs} \times \frac{1 \mathrm{~mol} \mathrm{~S}}{32.06 \mathrm{gs}}=1.996 \mathrm{~mol} \mathrm{~S}$
Step 2: Calculate mole ratios.
$\frac{1.334 \mathrm{~mol} \mathrm{Al}}{1.334 \mathrm{~mol} \mathrm{Al}}=\frac{1.000 \mathrm{~mol} \mathrm{Al}}{1.000 \mathrm{~mol} \mathrm{Al}}=\frac{1 \mathrm{~mol} \mathrm{Al}}{1 \mathrm{~mol} \mathrm{Al}}$
$\frac{1.996 \mathrm{~mol} \mathrm{~S}}{1.334 \mathrm{~mol} \mathrm{Al}}=\frac{1.500 \mathrm{~mol} \mathrm{~S}}{1.000 \mathrm{~mol} \mathrm{Al}}=\frac{1.5 \mathrm{~mol} \mathrm{~S}}{1 \mathrm{~mol} \mathrm{Al}}$

The simplest ratio is $1 \mathbf{m o l ~ A l}: 1.5 \mathrm{~mol} \mathrm{~S}$.
Step 3: Convert decimal fraction to whole number.

In this case, multiply by 2 because $1.5 \times 2=3$.
Therefore, the empirical formula is $\mathrm{Al}_{2} \mathrm{~S}_{3}$.
60. Propane is a hydrocarbon, a compound composed only of carbon and hydrogen. It is 81.82% carbon and 18.18% hydrogen. What is the empirical formula?

Step 1: Assume 100 g sample; calculate moles of each element.
$81.82 \mathrm{~g} \in \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.01 \mathrm{~g} \epsilon}=6.813 \mathrm{~mol} \mathrm{C}$
$18.18 \mathrm{gH} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{gH}}=18.04 \mathrm{~mol} \mathrm{H}$
Step 2: Calculate mole ratios.
$\frac{6.183 \mathrm{~mol} \mathrm{C}}{6.183 \mathrm{~mol} \mathrm{C}}=\frac{1.000 \mathrm{~mol} \mathrm{C}}{1.000 \mathrm{~mol} \mathrm{C}}=\frac{1 \mathrm{~mol} \mathrm{C}}{1 \mathrm{~mol} \mathrm{C}}$
$\frac{18.04 \mathrm{~mol} \mathrm{H}}{6.183 \mathrm{~mol} \mathrm{C}}=\frac{2.649 \mathrm{~mol} \mathrm{H}}{1.000 \mathrm{~mol} \mathrm{C}}=\frac{2.65 \mathrm{~mol} \mathrm{H}}{1 \mathrm{~mol} \mathrm{C}}$
The simplest ratio is $1 \mathbf{m o l}: 2.65 \mathrm{~mol} \mathrm{H}$.
Step 3: Convert decimal fraction to whole number.

In this case, multiply by 3 because $2.65 \times 3=$ $7.95 \approx 8$. Therefore, the empirical formula is $\mathrm{C}_{3} \mathrm{H}_{8}$.
61. Challenge Aspirin is the world's most-often used medication. The chemical analysis of aspirin indicates that the molecule is 60.00% carbon, 4.44% hydrogen, and 35.56% oxygen. Determine the empirical formula for aspirin.

Step 1: Assume 100 g sample; calculate moles of each element.
$60.00 \mathrm{~g} \in \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.01-g \epsilon}=5.00 \mathrm{~mol} \mathrm{C}$
$4.44 \mathrm{gH} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{gH}}=4.40 \mathrm{~mol} \mathrm{H}$
$35.56 \mathrm{gO} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{gO}}=2.22 \mathrm{~mol} \mathrm{O}$
Step 2: Calculate mole ratios.
$\frac{5.00 \mathrm{~mol} \mathrm{C}}{2.22 \mathrm{~mol} \mathrm{O}}=\frac{2.25 \mathrm{~mol} \mathrm{C}}{1.00 \mathrm{~mol} \mathrm{O}}=\frac{2.25 \mathrm{~mol} \mathrm{C}}{1 \mathrm{~mol} \mathrm{O}}$
$\frac{4.40 \mathrm{~mol} \mathrm{C}}{2.22 \mathrm{~mol} \mathrm{O}}=\frac{1.98 \mathrm{~mol} \mathrm{H}}{1.00 \mathrm{~mol} \mathrm{O}}=\frac{2 \mathrm{~mol} \mathrm{H}}{1 \mathrm{~mol} \mathrm{O}}$
$\frac{2.22 \mathrm{~mol} \mathrm{O}}{2.22 \mathrm{~mol} \mathrm{O}}=\frac{1.00 \mathrm{~mol} \mathrm{O}}{1.00 \mathrm{~mol} \mathrm{O}}=\frac{1 \mathrm{~mol} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}}$
The simplest ratio is $\mathbf{2 . 2 5 \mathrm { mol } \mathrm { C }} \mathbf{2} \mathbf{~ m o l ~ H : ~} \mathbf{1} \mathrm{mol} \mathrm{O}$.
Step 3: Convert decimal fraction to whole number.

In this case, multiply by 4 because $2.25 \times 4=9$.
Therefore, the empirical formula is $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$.
62. A compound was found to contain 49.98 g of carbon and 10.47 g of hydrogen. The molar mass of the compound is $58.12 \mathrm{~g} / \mathrm{mol}$. Determine the molecular formula.

Step 1: Assume 100 g sample; calculate moles of each element.
$49.98 \mathrm{ge} \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.01 \mathrm{ge}}=4.162 \mathrm{~mol} \mathrm{C}$
$10.47 \mathrm{gH} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{gH}}=10.39 \mathrm{~mol} \mathrm{H}$
Step 2: Calculate mole ratios.
$\frac{4.162 \mathrm{~mol} \mathrm{C}}{4.162 \mathrm{~mol} \mathrm{C}}=\frac{1.000 \mathrm{~mol} \mathrm{C}}{1.000 \mathrm{~mol} \mathrm{C}}=\frac{1 \mathrm{~mol} \mathrm{C}}{1 \mathrm{~mol} \mathrm{C}}$
$\frac{10.39 \mathrm{~mol} \mathrm{H}}{4.162 \mathrm{~mol} \mathrm{C}}=\frac{2.50 \mathrm{~mol} \mathrm{H}}{1.000 \mathrm{~mol} \mathrm{C}}=\frac{2.5 \mathrm{~mol} \mathrm{H}}{1 \mathrm{~mol} \mathrm{C}}$
The simplest ratio is $1 \mathbf{m o l ~ C : ~} 2.5 \mathrm{~mol} \mathrm{H}$.
Because $2.5 \times 2=5$, the empirical formula is $\mathrm{C}_{2} \mathrm{H}_{5}$.
Step 3: Calculate the molar mass of the empirical formula.

2 mote $\times \frac{12.01 \mathrm{~g} \mathrm{C}}{1 \mathrm{mote}}=24.02 \mathrm{~g}$
$5 \mathrm{motH} \times \frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{moHH}}=\underline{5.040 \mathrm{~g}}$
molar mass $\mathrm{C}_{2} \mathrm{H}_{5}=29.06 \mathrm{~g} / \mathrm{mol}$
Step 4: Determine whole number multiplier.
$\frac{58.12 \mathrm{~g} / \mathrm{mot}}{29.06 \mathrm{~g} / \mathrm{mot}}=2.000$
The molecular formula is $\mathrm{C}_{4} \mathrm{H}_{10}$.
63. A colorless liquid composed of 46.68% nitrogen and 53.32% oxygen has a molar mass of $60.01 \mathrm{~g} / \mathrm{mol}$. What is the molecular formula?

Step 1: Assume 100 g sample; calculate moles of each element.
$46.68 \mathrm{gN} \times \frac{1 \mathrm{~mol} \mathrm{~N}}{14.01 \mathrm{gN}}=3.332 \mathrm{~mol} \mathrm{~N}$
$53.32 \mathrm{~g} \theta \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{ge}}=3.333 \mathrm{~mol} \mathrm{O}$
Step 2: Calculate mole ratios.
$\frac{3.332 \mathrm{~mol} \mathrm{~N}}{3.332 \mathrm{~mol} \mathrm{~N}}=\frac{1.000 \mathrm{~mol} \mathrm{~N}}{1.000 \mathrm{~mol} \mathrm{~N}}=\frac{1 \mathrm{~mol} \mathrm{~N}}{1 \mathrm{~mol} \mathrm{~N}}$
$\frac{3.333 \mathrm{~mol} \mathrm{O}}{3.332 \mathrm{~mol} \mathrm{~N}}=\frac{1.000 \mathrm{~mol} \mathrm{O}}{1.000 \mathrm{~mol} \mathrm{~N}}=\frac{1 \mathrm{~mol} \mathrm{O}}{1 \mathrm{~mol} \mathrm{~N}}$
The simplest ratio is $\mathbf{1 ~ m o l ~} \mathrm{N}: 1 \mathrm{~mol} 0$.
The empirical formula is NO.
Step 3: Calculate the molar mass of the empirical formula.
$1 \mathrm{motN} \times \frac{14.01 \mathrm{~g} \mathrm{~N}}{1 \mathrm{molN}}=14.01 \mathrm{~g}$
$1 \mathrm{~mol}-\times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{~mol} \theta}=16.00 \mathrm{~g}$
molar mass NO $=30.01 \mathrm{~g} / \mathrm{mol}$
Step 4: Determine whole number multiplier.
$\frac{60.01 \mathrm{~g} / \mathrm{mot}}{30.01 \mathrm{~g} / \mathrm{mot}}=2.000$
The molecular formula is $\mathrm{N}_{2} \mathrm{O}_{2}$.
64. When an oxide of potassium is decomposed, 19.55 g K and 4.00 g O are obtained. What is the empirical formula for the compound?

Step 1: Calculate moles of each element.
$19.55 \mathrm{gK} \times \frac{1 \mathrm{~mol} \mathrm{~K}}{39.10 \mathrm{gK}}=0.5000 \mathrm{~mol} \mathrm{~K}$
$4.00 \mathrm{~g} \theta \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} \theta}=0.250 \mathrm{~mol} \mathrm{O}$
Step 2: Calculate mole ratios.
$\frac{0.5000 \mathrm{~mol} \mathrm{~K}}{0.250 \mathrm{~mol} \mathrm{O}}=\frac{2.00 \mathrm{~mol} \mathrm{~K}}{1.00 \mathrm{~mol} \mathrm{O}}=\frac{2 \mathrm{~mol} \mathrm{~K}}{1 \mathrm{~mol} \mathrm{O}}$
$\frac{0.250 \mathrm{~mol} \mathrm{O}}{0.250 \mathrm{~mol} \mathrm{O}}=\frac{1.00 \mathrm{~mol} \mathrm{O}}{1.00 \mathrm{~mol} \mathrm{O}}=\frac{1 \mathrm{~mol} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}}$
The simplest ratio is $2 \mathrm{~mol} \mathrm{~K}: 1 \mathrm{~mol} 0$. The empirical formula is $\mathrm{K}_{2} \mathrm{O}$.
65. Challenge Analysis of a chemical used in photographic developing fluid yielded the percent composition data shown in the circle graph to the right. If the chemical's molar mass is $110.0 \mathrm{~g} / \mathrm{mol}$, what is its molecular formula?

Step 1: Assume 100 g sample; calculate moles of each element.
$65.45 \mathrm{~g} \in \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.04 \mathrm{gt}}=5.450 \mathrm{~mol} \mathrm{C}$
$5.45 \mathrm{gH} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{gH}}=5.41 \mathrm{~mol} \mathrm{H}$
$29.09 \mathrm{~g} \theta \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} \theta}=1.818 \mathrm{~mol} \mathrm{o}$
Step 2: Calculate mole ratios.
$\frac{5.450 \mathrm{~mol} \mathrm{C}}{1.818 \mathrm{~mol} \mathrm{O}}=\frac{3.000 \mathrm{~mol} \mathrm{C}}{1.000 \mathrm{~mol} \mathrm{O}}=\frac{3 \mathrm{~mol} \mathrm{C}}{1 \mathrm{~mol} \mathrm{O}}$
$\frac{5.41 \mathrm{~mol} \mathrm{H}}{1.818 \mathrm{~mol} \mathrm{O}}=\frac{2.97 \mathrm{~mol} \mathrm{H}}{1.00 \mathrm{~mol} \mathrm{O}}=\frac{3 \mathrm{~mol} \mathrm{H}}{1 \mathrm{~mol} \mathrm{O}}$
$\frac{1.818 \mathrm{~mol} \mathrm{O}}{1.818 \mathrm{~mol} \mathrm{O}}=\frac{1.000 \mathrm{~mol} \mathrm{O}}{1.000 \mathrm{~mol} \mathrm{O}}=\frac{1 \mathrm{~mol} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}}$
The empirical formula is $\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{O}$.
Step 3: Calculate the molar mass of the empirical formula.
$3 \mathrm{mote} \times \frac{12.01 \mathrm{~g} \mathrm{C}}{1 \mathrm{motc}}=36.03 \mathrm{~g} \mathrm{C}$
$3 \mathrm{motH} \times \frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{melH}}=3.024 \mathrm{~g} \mathrm{H}$
$1 \mathrm{mot} \theta \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{met} \theta}=16.00 \mathrm{~g} \mathrm{O}$
molar mass $\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{O}=55.05 \mathrm{~g} / \mathrm{mol}$
Step 4: Determine whole number multiplier.
$\frac{110.0 \mathrm{~g} / \mathrm{mol}}{55.05 \mathrm{~g} . \mathrm{nik}}=1.998$, or 2
The molecular formula is $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{2}$.
66. Challenge Analysis of the pain reliever morphine yielded the data shown in the table. Determine the empirical formula of morphine.

Element	Mass (g)
carbon	17.900
hydrogen	1.680
oxygen	4.225
nitrogen	1.228

Step 1: Calculate moles of each element.
$17.900-\mathrm{g}-\times \frac{1 \mathrm{~mol} \mathrm{C}}{12.01 \mathrm{gC}}=1.490 \mathrm{~mol} \mathrm{C}$
$1.680 \mathrm{gH} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{gH}}=1.667 \mathrm{~mol} \mathrm{H}$
$4.225 \mathrm{~g}-\times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g}-}=0.2641 \mathrm{~mol} \mathrm{O}$
$1.228 \mathrm{gN} \times \frac{1 \mathrm{~mol} \mathrm{~N}}{14.01 \mathrm{gN}}=0.08765 \mathrm{~mol} \mathrm{~N}$
Step 2: Calculate mole ratios.
$\frac{0.08765 \mathrm{~mol} \mathrm{~N}}{0.08765 \mathrm{~mol} \mathrm{~N}}=\frac{1.000 \mathrm{~mol} \mathrm{~N}}{1.000 \mathrm{~mol} \mathrm{~N}}=\frac{1 \mathrm{~mol} \mathrm{~N}}{1 \mathrm{~mol} \mathrm{~N}}$
$\frac{1.490 \mathrm{~mol} \mathrm{C}}{0.08765 \mathrm{~mol} \mathrm{~N}}=\frac{17.00 \mathrm{~mol} \mathrm{C}}{1.000 \mathrm{~mol} \mathrm{~N}}=\frac{17 \mathrm{~mol} \mathrm{C}}{1 \mathrm{~mol} \mathrm{~N}}$
$\frac{1.667 \mathrm{~mol} \mathrm{H}}{0.08765 \mathrm{~mol} \mathrm{~N}}=\frac{19.02 \mathrm{~mol} \mathrm{H}}{1.000 \mathrm{~mol} \mathrm{~N}}=\frac{19 \mathrm{~mol} \mathrm{H}}{1 \mathrm{~mol} \mathrm{~N}}$
$\frac{0.2641 \mathrm{~mol} \mathrm{O}}{0.08765 \mathrm{~mol} \mathrm{~N}}=\frac{3.013 \mathrm{~mol} \mathrm{O}}{1.000 \mathrm{~mol} \mathrm{~N}}=\frac{3 \mathrm{~mol} \mathrm{O}}{1 \mathrm{~mol} \mathrm{~N}}$
The simplest ratio is $\mathbf{1 7} \mathbf{~ m o l ~ C : ~} 19 \mathrm{~mol} \mathrm{H}: \mathbf{3 ~ m o l ~ O}$: 1 mol .

The empirical formula is $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{~N}$.

Section 10.4 Assessment

page 350
67. Assess A classmate tells you that experimental data shows a compound's molecular formula to be 2.5 times its empirical formula. Is he correct? Explain.
No, he is in error because the molecular formula must be a whole-number multiple of the empirical formula.
68. Calculate Analysis of a compound composed of iron and oxygen yields 174.86 g of Fe and 75.14 g of O . What is the empirical formula for this compound?

Step 1: Calculate moles of each element
$174.86 \mathrm{gFe} \times \frac{1 \mathrm{~mol} \mathrm{Fe}}{55.85 \mathrm{~g} \mathrm{Fe}}=3.131 \mathrm{~mol} \mathrm{Fe}$
$75.14 \mathrm{~g}-\times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00-\mathrm{g} \mathrm{\theta}}=4.696 \mathrm{~mol} \mathrm{O}$
Step 2: Calculate mole ratios.
$\frac{3.131 \mathrm{~mol} \mathrm{Fe}}{3.131 \mathrm{~mol} \mathrm{Fe}}=\frac{1.000 \mathrm{~mol} \mathrm{Fe}}{1.000 \mathrm{~mol} \mathrm{Fe}}=\frac{1 \mathrm{~mol} \mathrm{Fe}}{1 \mathrm{~mol} \mathrm{Fe}}$
$\frac{4.696 \mathrm{~mol} \mathrm{O}}{3.131 \mathrm{~mol} \mathrm{Fe}}=\frac{1.500 \mathrm{~mol} \mathrm{O}}{1.000 \mathrm{~mol} \mathrm{Fe}}=\frac{1.5 \mathrm{~mol} \mathrm{O}}{1 \mathrm{~mol} \mathrm{Fe}}$
The simplest ratio is $1 \mathrm{~mol} \mathrm{Fe}: 1.5 \mathrm{~mol} 0$.
Because $1.5 \times 2=3$, the empirical formula is $\mathrm{Fe}_{2} \mathrm{O}_{3}$.
69. Calculate An oxide of aluminum contains 0.545 g of Al and 0.485 g of O . Find the empirical formula for the oxide.
Step 1: Calculate moles of each element.
$0.545 \mathrm{gAt} \times \frac{1 \mathrm{~mol} \mathrm{Al}}{26.98 \mathrm{~g} \mathrm{At}}=0.0202 \mathrm{~mol} \mathrm{Al}$
$0.485 \mathrm{~g} \theta-\frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} \theta}=0.0303 \mathrm{~mol} \mathrm{O}$
Step 2: Calculate mole ratios.
$\frac{0.0202 \mathrm{~mol} \mathrm{Al}}{0.0202 \mathrm{~mol} \mathrm{Al}}=\frac{1.00 \mathrm{~mol} \mathrm{Al}}{1.00 \mathrm{~mol} \mathrm{Al}}=\frac{1 \mathrm{~mol} \mathrm{Al}}{1 \mathrm{~mol} \mathrm{Al}}$
$\frac{0.0303 \mathrm{~mol} \mathrm{O}}{0.0202 \mathrm{~mol} \mathrm{Al}}=\frac{1.50 \mathrm{~mol} \mathrm{O}}{1.00 \mathrm{~mol} \mathrm{Al}}=\frac{1.5 \mathrm{~mol} \mathrm{O}}{1 \mathrm{~mol} \mathrm{Al}}$
The simplest ratio is $1 \mathbf{~ m o l ~ A l : ~} 1.5 \mathrm{~mol} 0$.
Because $1.5 \times 2=3$, the empirical formula is $\mathrm{Al}_{2} \mathrm{O}_{3}$.
70. Explain how percent composition data for a compound are related to the masses of the elements in the compound.

Percent composition is numerically equal to the mass in grams of each element in a 100.0-g sample.
71. Explain how you can find the mole ratio in a chemical compound.

The mole ratio is determined by calculating the moles of each element in the compound and dividing each number of moles by the smallest number of moles. It is sometimes necessary to multiply the ratio by an integer to obtain whole numbers.
72. Apply The molar mass of a compound is twice that of its empirical formula. How are the compound's molecular and empirical formulas related?

The molecular formula is equal to twice the empirical formula.
73. Analyze Hematite $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$ and magnetite $\left(\mathrm{Fe}_{3} \mathrm{O}_{4}\right)$ are two ores used as sources of iron. Which ore provides the greater percent of iron per kilogram?
2 motFe $\times \frac{55.85 \mathrm{~g} \mathrm{Fe}}{1 \text { motFe }}=111.70 \mathrm{~g} \mathrm{Fe}$
3 moto $\times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{mot} \sigma}=48.00 \mathrm{~g} \mathrm{O}$
molar mass $\mathrm{Fe}_{2} \mathrm{O}_{3}=159.70 \mathrm{~g} / \mathrm{mol}$
3 molfe $\times \frac{55.85 \mathrm{~g} \mathrm{Fe}}{1 \mathrm{motFe}}=167.55 \mathrm{~g} \mathrm{Fe}$
4 moto $\times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{mot} \sigma}=\underline{64.00 \mathrm{~g} \mathrm{O}}$
molar mass $\mathrm{Fe}_{3} \mathrm{O}_{4}=231.55 \mathrm{~g} / \mathrm{mol}$
percent by mass $=\frac{111.70 \mathrm{~g} \mathrm{Fe}^{159.70 \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3}} \times 100}{1}$
$=69.94 \% \mathrm{Fe}$ in $\mathrm{Fe}_{2} \mathrm{O}_{3}$
percent by mass $=\frac{167.55 \mathrm{~g} \mathrm{Fe}}{231.55 \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{4}} \times 100$
$=72.36 \% \mathrm{Fe}$ in $\mathrm{Fe}_{3} \mathrm{O}_{4}$
Hematite is $69.94 \% \mathrm{Fe}$, magnetite is $\mathbf{7 2 . 3 6 \%} \mathrm{Fe}$. Magnetite contains a greater percentage of iron per kilogram than hematite.

Section 10.5 Formulas of Hydrates

pages 351-354

Practice Problems
 pages 353

74. The composition of a hydrate is given in the pie chart shown at the right. What is the formula and name for this hydrate?

Step 1: Assume 100 g sample; calculate moles of each component.
$48.8 \mathrm{~g} \mathrm{AgSO}_{4} \times \frac{1 \mathrm{~mol} \mathrm{Mg} \mathrm{SO}}{4} 10.38 \mathrm{~g} \mathrm{MgSO}_{4}$
$=0.405 \mathrm{~mol} \mathrm{MgSO}_{4}$
$51.2 \mathrm{~g}_{\mathrm{H}_{2} \mathrm{O}} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.02 \mathrm{~g}_{2} \mathrm{O}}=2.84 \mathrm{~mol} \mathrm{H} \mathrm{O}$
Step 2: Calculate mole ratios.
$\frac{0.405 \mathrm{~mol} \mathrm{MgSO}_{4}}{0.405 \mathrm{~mol} \mathrm{MgSO}_{4}}=\frac{1.00 \mathrm{~mol} \mathrm{MgSO}_{4}}{1.00 \mathrm{~mol} \mathrm{MgSO}_{4}}$
$=\frac{1 \mathrm{~mol} \mathrm{MgSO}}{4}$
$\frac{2.84 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{0.405 \mathrm{~mol} \mathrm{MgSO}_{4}}=\frac{7.01 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1.00 \mathrm{~mol} \mathrm{MgSO}_{4}}$
$=\frac{7 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{MgSO}} 4$
The formula of the hydrate is $\mathrm{MgSO}_{4} \cdot \mathbf{7 \mathrm { H } _ { 2 } \mathrm { O } \text { . Its }}$ name is magnesium sulfate heptahydrate.
75. Challenge An 11.75-g sample of a common hydrate of cobalt(II) chloride is heated. After heating, 0.0712 mol of anhydrous cobalt chloride remains. What is the formula and the name for this hydrate?

Step 1: Calculate the mass of CoCl_{2} remaining.
$0.0712 \mathrm{~mol} \mathrm{CoCl}_{2} \times \frac{129.83 \mathrm{~g} \mathrm{CoCl}_{2}}{1 \mathrm{~mol} \mathrm{CoCl}_{2}}=9.24 \mathrm{~g} \mathrm{CoCl}_{2}$

Step 2: Calculate the mass of water driven off mass of hydrated compound - mass of anhydrous compound remaining
$=11.75 \mathrm{~g} \mathrm{CoCl}_{2} \cdot x_{2} \mathrm{O}-9.24 \mathrm{~g} \mathrm{CoCl}_{2}=2.51 \mathrm{~g}$
$\mathrm{H}_{2} \mathrm{O}$
Step 3: Calculate moles of each component.
$9.24 \mathrm{gCoCl}_{2} \times \frac{1 \mathrm{~mol} \mathrm{CoCl}_{2}}{129.83 \mathrm{gCotl}_{2}}$
$=0.0712 \mathrm{~mol} \mathrm{CoCl} 2$
$2.50 \mathrm{gH}_{2} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.02 \mathrm{gH}_{2} \mathrm{O}}=0.139 \mathrm{~mol} \mathrm{H} \mathrm{O}$
Step 4: Calculate mole ratios.
$\frac{0.0712 \mathrm{~mol} \mathrm{CoCl}_{2}}{0.0712 \mathrm{~mol} \mathrm{CoCl}_{2}}=\frac{1.00 \mathrm{~mol} \mathrm{CoCl}_{2}}{1.00 \mathrm{~mol} \mathrm{CoCl}_{2}}=\frac{1 \mathrm{~mol} \mathrm{CoCl}_{2}}{1 \mathrm{~mol} \mathrm{CoCl}_{2}}$
$\frac{0.139 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{0.0712 \mathrm{~mol} \mathrm{CoCl}_{2}}=\frac{1.95 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1.00 \mathrm{~mol} \mathrm{CoCl}_{2}}=\frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{CoCl}_{2}}$
The formula of the hydrate is $\mathrm{CoCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$. Its name is cobalt(II) chloride dihydrate.

Section 10.5 Assessment page 354

76. Summarize the composition of a hydrate.

A hydrate is a solid ionic compound in which water molecules are trapped.
77. Name the compound that has the formula $\mathrm{SrCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$.
strontium chloride hexahydrate
78. Describe the experimental procedure for determining the formula for a hydrate. Explain the reason for each step.

Mass an empty crucible. Add some hydrate and remass. Heat the crucible to drive out the water. Cool and remass. Determine the moles of the anhydrous com pound. Subtract the mass of the crucible after heating from the mass of the crucible with the hydrate. The difference is the mass of the water lost. Determine the moles of water. Determine the simplest whole-number ratio of moles of water to moles of anhydrous compound, which will yield the formula of the hydrate.
79. Apply A hydrate contains 0.050 mol of $\mathrm{H}_{2} \mathrm{O}$ to every 0.00998 mol of ionic compound. Write a generalized formula for the hydrate.
$X Y \cdot 5 \mathrm{H}_{2} \mathrm{O}$, where XY represents the ionic compound
80. Calculate the mass of the water of hydration if a hydrate loses 0.025 mol of $\mathrm{H}_{2} \mathrm{O}$ when heated.
water of hydration $=0.025 \mathrm{moH}_{2} \mathrm{O} \times$
$\frac{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{moH}_{2} \mathrm{O}}=0.45 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
81. Arrange these hydrates in order of increasing percent water content: $\mathrm{MgSO}_{4} \bullet 7 \mathrm{H}_{2} \mathrm{O}$, $\mathrm{Ba}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}$, and $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$.
$1 \mathrm{mothg} \times \frac{24.31 \mathrm{~g} \mathrm{Mg}}{1 \mathrm{~mol} \mathrm{Mg}}=24.31 \mathrm{~g} \mathrm{Mg}$
$1 \mathrm{mots} \times \frac{32.07 \mathrm{~g} \mathrm{~S}}{1 \mathrm{mots}}=32.07 \mathrm{~g} \mathrm{~S}$
$11 \mathrm{mot} \theta \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{~mol} \mathrm{\theta}}=176.00 \mathrm{~g} \mathrm{O}$
$14 \mathrm{moHH} \times \frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{moHH}}=14.112 \mathrm{~g} \mathrm{H}$
molar mass $\mathrm{MgSO}_{4} \bullet 7 \mathrm{H}_{2} \mathrm{O}=\mathbf{2 4 6 . 4 9} \mathrm{g}$
$1 \mathrm{motBa} \times \frac{137.33 \mathrm{Ba}}{1 \mathrm{mot} \mathrm{Ba}}=137.33 \mathrm{~g} \mathrm{Ba}$
$10 \mathrm{mot} \sigma \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{mot} \sigma}=160.00 \mathrm{~g} \mathrm{o}$
$18 \mathrm{motH} \times \frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{motH}}=18.144 \mathrm{~g} \mathrm{H}$
molar mass $\mathrm{Ba}(\mathrm{OH})_{2} \bullet 8 \mathrm{H}_{2} \mathrm{O}=315.47 \mathrm{~g}$
1 moteo $\times \frac{58.93 \mathrm{~g} \mathrm{Co}}{1 \mathrm{motCo}}=58.93 \mathrm{~g} \mathrm{Co}$
2 motet $\times \frac{35.45 \mathrm{~g} \mathrm{Cl}}{1 \mathrm{motCl}}=70.90 \mathrm{~g} \mathrm{Cl}$
$6 \operatorname{mot} \sigma \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{mot} \sigma}=96.00 \mathrm{~g} \mathrm{O}$
$12 \mathrm{moth} \times \frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{motH}}=12.096 \mathrm{~g} \mathrm{H}$
molar mass $\mathrm{CoCl}_{2} \bullet 6 \mathrm{H}_{2} \mathrm{O}=237.93 \mathrm{~g}$
$1 \mathrm{mot} \sigma \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{mot} \theta}=16.00 \mathrm{~g} \mathrm{O}$

$$
\begin{aligned}
& 2 \mathrm{motH} \times \frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{motH}}=\underline{2.016 \mathrm{~g} \mathrm{H}} \\
& \text { molar mass } \mathrm{H}_{2} \mathrm{O}=18.02 \mathrm{~g} \\
& \frac{7\left(18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}\right)}{246.49 \mathrm{~g} \mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}} \times 100 \\
& =51.17 \% \mathrm{H}_{2} \mathrm{O} \text { in } \mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O} \\
& \frac{8\left(18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}\right)}{315.47 \mathrm{~g} \mathrm{Ba}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}} \times 100 \\
& =45.70 \% \mathrm{H}_{2} \mathrm{O} \text { in } \mathrm{Ba}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O} \\
& \frac{6\left(18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}\right)}{237.93 \mathrm{~g} \mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}} \times 100 \\
& =45.44 \% \mathrm{H}_{2} \mathrm{O} \text { in } \mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O} ; \mathrm{Ba}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O} ; \mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

82. Apply Explain how the hydrate in Figure 10.17 might be used as a means of roughly determining the probability of rain.

The hydrate is pink in moist air.

Everyday Chemistry

 page 355
Writing in Chemistry

Estimating The estimating process used in this article is sometimes called a "back-of-the-envelope" calculation. Use this method to estimate the total mass of all of the students in your school.

Suppose a school has a student body of 500 and that the average mass of each student is about 60 kilograms. The total mass of the students is calculated as follows.

500 students $\times 60$ kilograms $/$ student $=30,000 \mathrm{~kg}$

Chapter 10 Assessment

pages 358-363

Section 10.1

Mastering Concepts

83. What is the numerical value of Avogadro's number?
6.02×10^{23}
84. How many atoms of potassium does 1 mol of potassium contain?
6.02×10^{23} potassium atoms
85. Compare a mole of Ag-108 and a mole of Pt-195 using atoms, protons, electrons, and neutrons.

Since they both contain one mole, you have 6.02×10^{23} particles of silver and 6.02×10^{23} particles of platinum. The difference would be in the number of protons, neutrons, and electrons present because silver contains 47 protons per atom, 47 electrons per atom and 61 neutrons per atom, while platinum contains 78 protons per atom, 78 electrons per atom and 117 neutrons per atom. A mole of platinum would contain more protons, electrons and neutrons but the same number of atoms.
86. Why is the mole an important unit to chemists?

A mole allows a chemist to accurately measure the number of atoms, molecules, or formula units in a substance.
87. Currency Examine the information in Table 10.2 and explain how rolls used to count pennies and dimes are similar to moles.

Rolled-Coin Values	
Coin	Value of a Roll of Coins
Penny	$\$ 0.50$
Dime	$\$ 5.00$

One roll of pennies always contains 50 pennies and one roll of dimes always contains 50 dimes. Each roll contains a specific number of coins. A mole also contains a specific number of particles, 6.02×10^{23} particles.
88. Explain how Avogadro's number is used as a conversion factor.

Avogadro's number is the number of particles in one mole of a substance. It can be used to convert particles to moles or moles to particles.
89. Conversion Design a flowchart that could be used to help convert particles to moles or moles to particles.
Flowcharts will vary but should clearly show the use of proper conversion factors.

Mastering Problems

90. Determine the number of representative particles in each substance.
a. 0.250 mol of silver
$0.250 \mathrm{mot} \mathrm{Ag} \times \frac{6.02 \times 10^{23} \text { atoms Ag }}{1 \mathrm{~mol} \mathrm{Ag}}$
$=1.51 \times 10^{23}$ atoms Ag
b. $8.56 \times 10^{-3} \mathrm{~mol}$ of sodium chloride
8.56×10^{-3} mot NaCl
$\times \frac{6.02 \times 10^{23} \text { formula units } \mathrm{NaCl}}{1 \text { mol } \mathrm{NaCt}}$
$=5.15 \times 10^{21}$ formula units NaCl
c. 35.3 mol of carbon dioxide
$35.3 \mathrm{mot} \mathrm{CO}_{2} \times \frac{6.02 \times 10^{23} \text { molecules } \mathrm{CO}_{2}}{1 \mathrm{mot} \mathrm{CO}_{2}}$

$$
=2.13 \times 10^{25} \text { molecules } \mathrm{CO}_{2}
$$

d. 0.425 mol of nitrogen $\left(\mathrm{N}_{2}\right)$
0.425 mol $_{2} \times \frac{6.02 \times 10^{23} \text { molecules } \mathrm{N}_{2}}{1 \mathrm{~mol}_{2}}$
$=2.56 \times 10^{23}$ molecules N_{2} $=2.56 \times 10^{23}$ molecules N_{2}
91. Determine the number of representative particles in each substance.
a. 4.45 mol of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
$4.45 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \times \frac{6.02 \times 10^{23} \text { molecules }}{1 \mathrm{~mol}}$
$=2.68 \times 10^{24}$ molecules $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
b. 0.250 mol of KNO_{3}
$0.250 \mathrm{~mol} \mathrm{KNO}_{3} \times \frac{6.02 \times 10^{23} \text { formula units }}{1 \mathrm{~mol}}$ $=1.51 \times 10^{23}$ formula units KNO_{3}
c. 2.24 mol of H_{2}
$2.24 \mathrm{~mol} \mathrm{H}_{2} \times \frac{6.02 \times 10^{23} \text { molecules }}{1 \mathrm{~mol}}$
$=1.35 \times 10^{24}$ molecules of H_{2}
d. 9.56 mol of Zn
$9.56 \mathrm{~mol} \mathrm{Zn} \frac{6.02 \times 10^{23} \text { atoms }}{1 \mathrm{~mol}}=5.76 \times 10^{24}$ atoms of Zn
92. How many molecules are contained in each compound?
a. 1.35 mol of carbon disulfide $\left(\mathrm{CS}_{2}\right)$
1.35 motes $5_{2} \times \frac{6.02 \times 10^{23} \text { molecules } \mathrm{CS}_{2}}{1 \mathrm{~mol}_{2}}$
$=8.13 \times 10^{23}$ molecules CS_{2}
b. 0.254 mol of diarsenic trioxide $\left(\mathrm{As}_{2} \mathrm{O}_{3}\right)$
0.254 mot $\mathrm{As}_{2} \mathrm{O}_{3} \times \frac{6.02 \times 10^{23} \text { molecules } \mathrm{As}_{2} \mathrm{O}_{3}}{1 \mathrm{~mol} \mathrm{As}_{2} \mathrm{O}_{3}}$
$=1.53 \times 10^{23}$ molecules $\mathrm{As}_{2} \mathrm{O}_{3}$
c. 1.25 mol of water
$1.25 \mathrm{mOH}_{2} \mathrm{O} \times \frac{6.02 \times 10^{23} \text { molecules } \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{moH} \mathrm{H}_{2} \mathrm{O}}$
d. 150.0 mol of HCl
150.0 mot Het $\times \frac{6.02 \times 10^{23} \text { molecules } \mathrm{HCl}}{1 \mathrm{molHCl}}$ $=9.030 \times 10^{25}$ molecules HCl
93. Determine the number of moles in each substance.
a. 3.25×10^{20} atoms of lead
3.25×10^{20} atoms $\mathrm{Pb} \times \frac{1 \mathrm{~mol} \mathrm{~Pb}}{6.02 \times 10^{23} \text { atems } \mathrm{Pb}}$
$=5.39 \times 10^{-4} \mathrm{~mol} \mathrm{~Pb}$
b. 4.96×10^{24} molecules of glucose
4.96×10^{24} molecules glucose
$\times \frac{1 \mathrm{~mol} \text { glucose }}{6.02 \times 10^{23} \text { molecules glucose }}$
$=8.24 \mathrm{~mol}$ of glucose
c. 1.56×10^{23} formula units of sodium hydroxide
1.56×10^{23} formula units NaOH
$\times \frac{1 \mathrm{~mol} \mathrm{NaOH}}{6.02 \times 10^{23} \text { formula units } \mathrm{NaOH}}$
$=2.59 \times 10^{-1} \mathrm{~mol} \mathrm{NaOH}$
d. 1.25×10^{25} copper(II) ions
$1.25 \times 10^{25} \mathrm{Cu}^{2+}$ ions $\times \frac{1 \mathrm{~mol} \mathrm{Cu}}{}{ }^{2+} \frac{102}{6.02 \times 10^{23}-\mathrm{Cu}^{2+} \text {-ons }}$ $=2.08 \times 10^{1} \mathrm{~mol} \mathrm{Cu}^{2+}$ ions
94. Perform the following conversions.
a. 1.51×10^{15} atoms of Si to mol of Si
1.51×10^{15} atoms $\mathrm{Si} \times \frac{1 \mathrm{~mol} \mathrm{Si}}{6.02 \times 10^{23} \text { atems St }}$
$=2.51 \times 10^{-9} \mathrm{~mol} \mathrm{Si}$
b. $4.25 \times 10^{-2} \mathrm{~mol}$ of $\mathrm{H}_{2} \mathrm{SO}_{4}$ to molecules of $\mathrm{H}_{2} \mathrm{SO}_{4}$
$4.25 \times 10^{-2} \mathrm{moHH}_{2} \mathrm{SO}_{4} \times$
$\frac{6.02 \times 10^{23} \text { molecules } \mathrm{H}_{2} \mathrm{SO}_{4}}{1 \mathrm{moH}_{2} \mathrm{SO}_{4}} 2.56 \times 10^{22}$
molecules $\mathrm{H}_{2} \mathrm{SO}_{4}$
c. 8.95×10^{25} molecules of CCl_{4} to mol of CCl_{4}
8.95×10^{25} melecules CCl_{4}
$\times \frac{1 \mathrm{~mol} \mathrm{Cl}_{4}}{6.02 \times 10^{23} \text { molecules } \mathrm{CCI}_{4}}$
$=1.49 \times 10^{2} \mathrm{~mol} \mathrm{CCl}_{4}$
d. 5.90 mol of Ca to atoms of Ca
5.90 motca $\times \frac{6.02 \times 10^{23} \text { atoms } \mathrm{Ca}}{1 \mathrm{motCa}}$
$=3.55 \times 10^{24}$ atoms Ca
95. How many moles contain the given quantity?
a. 1.25×10^{15} molecules of carbon dioxide
1.25×10^{15} molectles CO_{2}
$\times \frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{6.02 \times 10^{23} \text { molecules } \mathrm{CO}_{2}}$
$=2.08 \times 10^{-9} \mathrm{~mol} \mathrm{CO}_{2}$
b. 3.59×10^{21} formula units of sodium nitrate
3.59×10^{21} formula units NaNO_{3}
$\times \frac{1 \mathrm{~mol} \mathrm{NaNO}_{3}}{6.02 \times 10^{23} \text { formula units } \mathrm{NaNO}_{3}}$
$=5.96 \times 10^{-3} \mathrm{~mol} \mathrm{NaNO}_{3}$
c. 2.89×10^{27} formula units of calcium carbonate

$$
\begin{aligned}
& 2.89 \times 10^{27} \text { formula units } \mathrm{CaCO}_{3} \\
& \times \frac{1 \text { mol CaCO }}{3} \\
& =4.02 \times 10^{23} \text { formula units } \mathrm{CaCO}_{3}
\end{aligned}
$$

96. RDA of Selenium The recommended daily allowance (RDA) of selenium in your diet is $8.87 \times 10^{-4} \mathrm{~mol}$. How many atoms of selenium is this?
$8.87 \times 10^{-4} \mathrm{~mol} \mathrm{Se} \times \frac{6.02 \times 10^{23} \text { atoms }}{1 \mathrm{mot} \mathrm{Se}}$
$=5.34 \times 10^{20}$ atoms Se

Solution A
0.250 mol Cu^{2+} ions

Solution B
0.130 mol Ca^{2+} ions
97. The two solutions shown in Figure 10.19 are mixed. What is the total number of metal ions in the mixture?
$0.250 \mathrm{~mol} \mathrm{Ca}^{2+}$ ions $+0.130 \mathrm{~mol} \mathrm{Ca}^{2+}$ ion $=0.380$ mol metal ions
0.380 molmetations $\times \frac{6.02 \times 10^{23} \mathrm{~mol} \text { metal ions }}{1 \mathrm{~mol} \text { metations }}$ $=2.29 \times 10^{23} \mathrm{Cu}^{2+}$ and Ca^{2+} ions
98. Jewelry A bracelet containing 0.200 mol metal atoms is 75% gold. How many particles of gold atoms are in the bracelet?
0.200 mol metal atoms $\times 0.75=0.150 \mathrm{~mol} \mathrm{Au}$
$0.150 \mathrm{motAur} \times \frac{6.02 \times 10^{23} \text { atoms } \mathrm{Au}}{1 \mathrm{mot} \mathrm{Au}}$
$=9.03 \times 10^{22}$ atoms Au
99. Snowflakes A snowflake contains $1.9 \times$ 10^{18} molecules of water. How many moles of water does it contain?
1.9×10^{18} molecules $\mathrm{H}_{2} \mathrm{O}^{\mathrm{O}}$
100. If you could count two atoms every second, how long would it take you to count a mole of atoms? Assume that you counted continually for 24 hours every day. How does the time you calculated compare with the age of Earth, which is estimated to be 4.5×10^{9} years old?
6.02×10^{23} particles $\times \frac{1 \mathrm{~s}}{2 \text { particles }}=3.01 \times 10^{23} \mathrm{~s}$
$3.01 \times 10^{23} \mathrm{~s} \times \frac{1 \mathrm{~h}}{3600 \mathrm{~s}} \times \frac{1 \text { day }}{24 \mathrm{~h}} \times \frac{1 \mathrm{y}}{365 \text { day }}$
$=2.1 \times 10^{6}$
$=9.5 \times 10^{15} \mathrm{yr}$; about 2 million times longer
101. Chlorophyll The green color of leaves is due to the presence of chlorophyll, $\mathrm{C}_{55} \mathrm{H}_{72} \mathrm{O}_{5} \mathrm{~N}_{4} \mathrm{Mg}$. A fresh leaf was found to have $1.5 \times 10^{-5} \mathrm{~mol}$ of chlorophyll per cm^{2}. How many chlorophyll molecules can be found in $1 \mathrm{~cm}^{2}$?
$\frac{1.5 \times 10^{-5} \mathrm{~mol} \text { chlorophyll }}{1 \mathrm{~cm}^{2}}$
$\times \frac{6.02 \times 10^{23} \text { molecules }}{1 \mathrm{~mol} \mathrm{chlorophyll}} \mathrm{V}, \mathrm{c}^{2}$
$=9.03 \times 10^{18}$ chlorophyll molecules $/ \mathrm{cm}^{2}$

Section 10.2

Mastering Concepts

102. Explain the difference between atomic mass (amu) and molar mass (g).

Atomic mass (amu) is the mass of an individual particle (atom, molecule). Molar mass (g) is the mass of a mole of particles.
103. Which contains more atoms, a mole of silver atoms or a mole of gold atoms? Explain your answer.

They both contain the same number of atoms because a mole of anything contains 6.02×10^{23} representative particles.
104. Which has more mass, a mole of potassium or a mole of sodium? Explain your answer

The molar mass of K is $39.098 \mathrm{~g} / \mathrm{mol}$; the molar mass of Na is $22.990 \mathrm{~g} / \mathrm{mol}$. Thus, a mole of K has a greater mass.
105. Explain how you would convert from number of atoms of a specific element to its mass.

Convert the number of atoms to moles, then multiply moles by the molar mass of the element.
106. Discuss the relationships that exist between the mole, molar mass, and Avogadro's number.

Molar mass is the mass in grams of one mole of any pure substance. Avogadro's number is the number of representative particles in one mole. The mass of 6.02×10^{23} representative particles of a substance is the molar mass of the substance.
107. Barbed Wire Barbed wire is often made of steel, which is primarily iron, and coated with zinc. Compare the number of particles and the mass of 1 mol of each.

The mole of iron and the mole of zinc both contain 6.02×10^{23} particles but a mole of iron has a mass of $55.85 \mathrm{~g} / \mathrm{mol}$ and a mole of zinc has a mass of $65.39 \mathrm{~g} / \mathrm{mol}$.

Mastering Problems

108. Calculate the mass of each element.
a. 5.22 mol of He
$5.22 \mathrm{~mol} \mathrm{He} \times \frac{4.00 \mathrm{~g} \mathrm{He}}{1 \mathrm{~mol} \mathrm{He}}=20.9 \mathrm{~g} \mathrm{He}$
b. 0.0455 mol of Ni

$$
0.0455 \mathrm{~mol} \mathrm{Ni} \times \frac{58.69 \mathrm{~g} \mathrm{Ni}}{1 \mathrm{~mol} \mathrm{Ni}}=2.67 \mathrm{~g} \mathrm{Ni}
$$

c. 2.22 mol of Ti

$$
2.22 \mathrm{~mol} \mathrm{Ti} \times \frac{47.87 \mathrm{~g} \mathrm{Ti}}{1 \mathrm{~mol} \mathrm{Ti}}=106 \mathrm{~g} \mathrm{Ti}
$$

d. 0.00566 mol of Ge

$$
0.00566 \mathrm{~mol} \mathrm{Ge} \times \frac{72.61 \mathrm{~g} \mathrm{Ge}}{1 \mathrm{~mol} \mathrm{Ge}}=0.411 \mathrm{~g} \mathrm{Ge}
$$

109. Perform the following conversions.
a. 3.50 mol of Li to g of Li

$$
3.50 \mathrm{~mol} \mathrm{Li} \times \frac{6.94 \mathrm{~g} \mathrm{Li}}{1 \mathrm{~mol} \mathrm{Li}}=24.3 \mathrm{~g} \mathrm{Li}
$$

b. 7.65 g of Co to mol of Co
$7.65 \mathrm{~g} \mathrm{Co} \times \frac{1 \mathrm{~mol} \mathrm{Co}}{58.93 \mathrm{~g} \mathrm{Co}}=0.130 \mathrm{~mol} \mathrm{Co}$
c. 5.62 g of Kr to mol of Kr

$$
5.62 \mathrm{~g} \mathrm{Kr} \times \frac{1 \mathrm{~mol} \mathrm{Kr}}{83.80 \mathrm{~g} \mathrm{Kr}}=0.0671 \mathrm{~mol} \mathrm{Kr}
$$

d. 0.0550 mol of As to g of As
0.0550 mol As $\times \frac{74.92 \mathrm{~g} \mathrm{As}}{1 \mathrm{~mol} \mathrm{As}}=4.12 \mathrm{~g} \mathrm{As}$
110. Determine the mass in grams of each element.
a. $1.33 \times 10^{22} \mathrm{~mol}$ of Sb
$1.33 \times 10^{22} \mathrm{~mol} \mathrm{Sb} \times \frac{121.76 \mathrm{~g} \mathrm{Sb}}{1 \mathrm{~mol} \mathrm{Sb}}$
$=1.62 \times 10^{24} \mathrm{~g} \mathrm{Sb}$
b. $4.75 \times 10^{14} \mathrm{~mol}$ of Pt
$4.75 \times 10^{14} \mathrm{~mol} \mathrm{Pt} \times \frac{195.08 \mathrm{~g} \mathrm{Pt}}{1 \mathrm{~mol} \mathrm{Pt}}$

$$
=9.27 \times 10^{16} \mathrm{~g} \mathrm{Pt}
$$

c. $1.22 \times 10^{23} \mathrm{~mol}$ of Ag
$1.22 \times 10^{23} \mathrm{~mol} \mathrm{Ag} \times \frac{107.87 \mathrm{~g} \mathrm{Ag}}{1 \mathrm{~mol} \mathrm{Ag}}$
$=1.32 \times 10^{25} \mathrm{~g} \mathrm{Ag}$
d. $9.85 \times 10^{24} \mathrm{~mol}$ of Cr
$9.85 \times 10^{24} \mathrm{~mol} \mathrm{Cr} \times \frac{52.00 \mathrm{~g} \mathrm{Cr}}{1 \mathrm{~mol} \mathrm{Cr}}$
$=5.12 \times 10^{26} \mathrm{~g} \mathrm{Cr}$
111. Complete Table 10.3.

Mass, Mole, and Particle Data

Mass	Moles	Particles
88.7 g Mg	3.65 mol Mg	2.20×1024 atoms Mg
29.54 g Cr	0.5681 mol Cr	3.420×1023 atoms Cr
1820 g P	58.8 mol P	3.54×10^{25} atoms P
42.6 g As	0.568 mol As	3.42×1023 atoms As

Solutions:

$3.65 \mathrm{~mol} \mathrm{Mg} \times(24.31 \mathrm{~g} / 1 \mathrm{~mol})=88.7 \mathrm{~g} \mathrm{mg}$
$3.65 \mathrm{~mol} \mathrm{mg} \times\left(6.02 \times 10^{23}\right.$ atoms $\left./ 1 \mathrm{~mol}\right)$
$=2.20 \times 10^{24}$ atoms Mg
$29.54 \mathrm{~g} \mathrm{Cr} \times(1 \mathrm{~mol} / 52.00 \mathrm{~g})=0.5681 \mathrm{~mol} \mathrm{Cr}$
$0.5681 \mathrm{~mol} \mathrm{Cr} \times\left(6.02 \times 10^{23}\right.$ atoms $\left./ 1 \mathrm{~mol}\right)$
$=3.420 \times 10^{23}$ atoms Cr
3.54×10^{25} atoms $P \times\left(1 \mathrm{~mol} / 6.02 \times 10^{23}\right.$
atoms) $=58.8 \mathrm{~mol} \mathrm{P}$
$58.8 \mathrm{~mol} P \times(30.97 \mathrm{~g} / 1 \mathrm{~mol})=1820 \mathrm{~g} \mathrm{P}$
0.568 mol As $\times(74.92 \mathrm{~g} / 1 \mathrm{~mol})=42.6 \mathrm{~g}$ As
0.568 mol As $\times\left(6.02 \times 10^{23}\right.$ atoms $\left./ 1 \mathrm{~mol}\right)=3.42$ $\times 10^{23}$ atom As
112. Convert each to mass in grams.
a. 4.22×10^{15} atoms U
4.22×10^{15} atoms $U \times \frac{1 \mathrm{~mol} \mathrm{U}}{6.02 \times 10^{23} \text { atoms U }}$
$\times \frac{283.03 \mathrm{~g} \mathrm{U}}{1 \mathrm{~mol} \mathrm{U}}=1.67 \times 10^{-6} \mathrm{~g} \mathrm{U}$
b. 8.65×10^{25} atoms H
8.65×10^{25} atoms $\mathrm{H} \times \frac{1 \mathrm{~mol} \mathrm{H}}{6.02 \times 10^{23} \text { atoms } \mathrm{H}}$
$\times \frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}}=145 \mathrm{~g} \mathrm{H}$
c. 1.25×10^{22} atoms O
1.25×10^{22} atoms $\mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{O}}{6.02 \times 10^{23} \text { atoms } \mathrm{O}}$
$\times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}}=0.332 \mathrm{~g} \mathrm{o}$
d. 4.44×10^{23} atoms Pb

$$
\begin{aligned}
& 4.44 \times 10^{23} \text { atoms } \mathrm{Pb} \times \frac{1 \mathrm{~mol} \mathrm{~Pb}}{6.02 \times 10^{23} \text { atoms } \mathrm{Pb}} \\
& \times \frac{207.2 \mathrm{~g} \mathrm{~Pb}}{1 \mathrm{~mol} \mathrm{~Pb}}=153 \mathrm{~g} \mathrm{~Pb}
\end{aligned}
$$

113. Calculate the number of atoms of each element.
a. 25.8 g of Hg

$$
\begin{aligned}
& 25.8 \mathrm{~g} \mathrm{Hg} \times \frac{1 \mathrm{~mol} \mathrm{Hg}}{200.59 \mathrm{~g} \mathrm{Hg}} \\
& \times \frac{6.02 \times 10^{23} \text { atoms Hg }}{1 \mathrm{~mol} \mathrm{Hg}}=7.74 \\
& \times 10^{22} \text { atoms Hg }
\end{aligned}
$$

b. 0.0340 g of Zn

$$
\begin{aligned}
& 0.0340 \mathrm{~g} \mathrm{Zn} \times \frac{1 \mathrm{~mol} \mathrm{Zn}}{63.59 \mathrm{~g} \mathrm{Zn}} \\
& \times \frac{6.02 \times 10^{23} \text { atoms } \mathrm{Zn}}{1 \mathrm{~mol} \mathrm{Zn}} \\
& =3.13 \times 10^{20} \text { atoms } \mathrm{Zn}
\end{aligned}
$$

c. 150 g of Ar

$$
\begin{aligned}
& 150 \mathrm{~g} \mathrm{Ar} \times \frac{1 \mathrm{~mol} \mathrm{Ar}}{39.95 \mathrm{~g} \mathrm{Ar}} \times \frac{6.02 \times 10^{23} \text { atoms } \mathrm{Ar}}{1 \mathrm{~mol} \mathrm{Ar}} \\
& =2.3 \times 10^{24} \text { atoms Ar }
\end{aligned}
$$

d. 0.124 g of Mg

$$
\begin{aligned}
& 0.124 \mathrm{~g} \mathrm{Mg} \times \frac{1 \mathrm{~mol} \mathrm{Mg}}{24.31 \mathrm{~g} \mathrm{Mg}} \\
& \times \frac{6.02 \times 10^{23} \text { atoms Mg }}{1 \mathrm{~mol} \mathrm{Mg}} \\
& =3.07 \times 10^{21} \text { atoms } \mathrm{Mg}
\end{aligned}
$$

114. Arrange from least to most in moles: $3.00 \times$ 10^{24} atoms $\mathrm{Ne}, 4.25$ mole $\mathrm{Ar}, 2.69 \times 10^{24}$ atoms Xe, 65.96 g Kr .
Convert atoms Ne , atoms Xe and g Kr to moles:
Ne : 3.00×10^{24} atoms
$\mathrm{Ne} \times \frac{1 \mathrm{~mol} \mathrm{Ne}}{6.02 \times 10^{23} \text { atoms } \mathrm{Ne}}=4.98 \mathrm{~mol} \mathrm{Ne}$
Xe: 2.69×10^{24} atoms Xe
$\times \frac{1 \mathrm{~mol} \mathrm{Xe}}{6.02 \times 10^{23} \text { atoms Xe }}=4.47 \mathrm{mo} \mathrm{Xe}$
$\mathrm{Kr}: 65.96 \mathrm{~g} \mathrm{Kr} \times \frac{1 \mathrm{~mol} \mathrm{Kr}}{83.80 \mathrm{~g} \mathrm{Kr}}=0.7871 \mathrm{~mol} \mathrm{Kr}$
$0.7871 \mathrm{~mol} \mathrm{Kr}<4.25 \mathrm{~mol} \mathrm{Ar}<4.47 \mathrm{~mol} \mathrm{Xe}<4.98$ mol Ne
115. Balance Precision A sensitive electronic balance can detect masses of $1 \times 10^{-8} \mathrm{~g}$. How many atoms of silver would be in a sample having this mass?
$1 \times 10^{-8} \mathrm{~g} \mathrm{Ag} \times \frac{1 \mathrm{~mol} \mathrm{Ag}}{107.87 \mathrm{~g} \mathrm{Ag}}$
$\times \frac{6.02 \times 10^{23} \text { atoms Ag }}{1 \mathrm{~mol} \mathrm{Ag}}$
$=5 \times 10^{13}$ atoms Ag
116. A sample of a compound contains 3.86 g of sulfur and 4.08 g of vanadium. How many atoms of sulfur and vanadium does the compound contain?
$3.86 \mathrm{~g} \mathrm{~S} \times \frac{1 \mathrm{~mol}}{32.07 \mathrm{~g} \mathrm{~S}} \times \frac{6.02 \times 10^{23} \text { atoms S}}{1 \mathrm{~mol} \mathrm{~S}}$
$=7.25 \times 10^{22}$ atoms S
$4.08 \mathrm{~g} \mathrm{~V} \times \frac{1 \mathrm{~mol}}{50.94 \mathrm{~g} \mathrm{~V}} \times \frac{6.02 \times 10^{23} \text { atoms } \mathrm{V}}{1 \mathrm{~mol} \mathrm{~V}}$
$=4.82 \times 10^{22}$ atoms V
117. Which has more atoms, 10.0 g of C or 10.0 g of Ca ? How many atoms does each have?
$10.0 \mathrm{~g} \mathrm{C} \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.01 \mathrm{~g} \mathrm{C}} \times \frac{6.02 \times 10^{23} \text { atoms C }}{1 \mathrm{~mol} \mathrm{C}}$ $=5.01 \times 10^{23}$ atoms C
$10.0 \mathrm{~g} \mathrm{Ca} \times \frac{1 \mathrm{~mol} \mathrm{Ca}}{40.08 \mathrm{~g} \mathrm{Ca}} \times \frac{6.02 \times 10^{23} \text { atoms Ca }}{1 \mathrm{~mol} \mathrm{Ca}}$
$=1.50 \times 10^{23}$ atoms Ca
10.0 g C contains more atoms.
118. Which has more atoms, 10.0 mol of C or 10.0 mol of Ca ? How many atoms does each have?

One mole of any substance contains 6.02×10^{23} representative particles. Thus, 10.0 moles of carbon and 10.0 moles of calcium contain the same number or atoms.
$10.0 \mathrm{~mol} \times \frac{6.02 \times 10^{23} \text { atoms }}{1 \mathrm{~mol}}$
$=6.02 \times 10^{24}$ atoms
119. A mixture contains 0.250 mol of Fe and 1.20 g of C . What is the total number of atoms in the mixture?
$0.250 \mathrm{~mol} \mathrm{Fe} \times \frac{6.02 \times 10^{23} \text { atoms } \mathrm{Fe}}{1 \mathrm{~mol} \mathrm{Fe}}$
$=1.51 \times 10^{23}$ atoms Fe
$1.20 \mathrm{~g} \mathrm{C} \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.01 \mathrm{~g} \mathrm{C}} \times \frac{6.02 \times 10^{23} \text { atoms C }}{1 \mathrm{~mol} \mathrm{C}}$
$=0.601 \times 10^{23}$ atoms C
1.51×10^{23} atoms $\mathrm{Fe}+0.601 \times 10^{23}$ atoms C
$=2.11 \times 10^{23}$ total atoms
120. Respiration Air contains several gases.

When resting, every breath you take contains approximately 0.600 g of air. If argon makes up 0.934% of the air, calculate the number of argon atoms inhaled with each breath.
$\frac{0.600 \mathrm{~g} \text { air }}{1 \text { breath }} \times \frac{0.934 \mathrm{~g} \mathrm{Ar}}{100 \mathrm{~g} \mathrm{air}} \times \frac{1 \mathrm{~mol}}{39.95 \mathrm{~g}}$
$\times \frac{6.02 \times 10^{23} \text { atoms }}{1 \mathrm{~mol}}=\frac{8.44 \times 10^{19} \text { atoms Ar }}{1 \text { breath }}$

Section 10.3

Mastering Concepts

121. What information is provided by the formula for potassium chromate $\left(\mathrm{K}_{2} \mathrm{CrO}_{4}\right)$?
One mole of $\mathrm{K}_{2} \mathrm{CrO}_{4}$ contains two moles of K^{+} ions and one mole of $\mathrm{CrO}_{4}{ }^{2-}$ ions.
122. In the formula for sodium phosphate $\left(\mathrm{Na}_{3} \mathrm{PO}_{4}\right)$, how many moles of sodium are represented? How many moles of phosphorus? How many moles of oxygen?
$3 \mathrm{~mol} \mathrm{Na}, 1 \mathrm{~mol} P, 4 \mathrm{~mol} 0$
123. Explain how you determine the molar mass of a compound.

Molar mass is determined by multiplying the molar mass of each element present in the compound by its subscript and then adding these values.
124. Insect Repellent Many insect repellents use DEET as the active ingredient. DEET was patented in 1946 and is effective against many biting insects. What must you know to determine the molar mass of DEET?
You must know the chemical formula of the substance to determine the molar mass.
125. Why can molar mass be used as a conversion factor?

Molar mass is the mass of one mole of a compound. It can be used to convert moles of the compound to mass or mass of the compound to moles.
126. List three conversion factors used in molar conversions.
$\frac{1 \mathrm{~mol}}{\text { number of grams }}$,
6.02×10^{23} representative particles

$$
1 \mathrm{~mol}
$$

1 mol
$\overline{6.02 \times 10^{23} \text { representative particles }}{ }^{\prime}$ number of grams

1 mol
127. Which of these contains the most moles of carbon atoms per mole of the compound: ascorbic acid $\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}\right)$, glycerin $\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}\right)$, or vanillin $\left(\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3}\right)$? Explain.
The formula for vanillin $\left(\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3}\right)$ shows there are eight carbon atoms per molecule, more than ascorbic acid or glycerin.

Mastering Problems

128. How many moles of oxygen atoms are contained in each compound?
a. 2.50 mol of KMnO_{4}
$2.50 \mathrm{~mol} \mathrm{KMnO}_{4} \times \frac{4 \mathrm{~mol} \mathrm{O}}{1 \mathrm{~mol} \mathrm{KMnO}_{4}}$
$=10.0 \mathrm{~mol} \mathrm{O}^{2}$
b. 45.9 mol of CO_{2}
$45.9 \mathrm{~mol} \mathrm{CO}_{2} \times \frac{2 \mathrm{~mol} \mathrm{O}}{1 \mathrm{~mol} \mathrm{CO}_{2}}=91.8 \mathrm{~mol} \mathrm{o}$
c. $1.25 \times 10^{-2} \mathrm{~mol}$ of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
$1.25 \times 10^{-2} \mathrm{~mol} \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
$\times \frac{9 \mathrm{~mol} \mathrm{O}^{-2}}{1 \mathrm{~mol} \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}}=0.113 \mathrm{~mol} \mathrm{O}$
129. How many carbon tetrachloride $\left(\mathrm{CCl}_{4}\right)$ molecules are in 3.00 mol of CCl_{4} ? How many carbon atoms? How many chlorine atoms? How many total atoms?
$3.00 \mathrm{~mol} \mathrm{CCl}_{4} \times \frac{6.02 \times 10^{23} \text { molecules CCl }_{4}}{1 \mathrm{~mol} \mathrm{CCl}_{4}}$
$=1.81 \times 10^{24}$ molecules CCI_{4}
1.81×10^{24} molecules $\mathrm{CCl}_{4} \times \frac{1 \mathrm{~mol} \text { atoms C }}{1 \text { molecule } \mathrm{CCl}_{4}}$
$=1.81 \times 10^{24}$ atoms C
1.81×10^{24} molecules $\mathrm{CCl}_{4} \times \frac{4 \mathrm{~mol} \text { atoms Cl }}{1 \mathrm{molecule} \mathrm{CCl}} 4$
$=7.24 \times 10^{24}$ atoms Cl
1.81×10^{24} atoms $\mathrm{C}+7.24 \times 10^{24}$ atoms $\mathrm{Cl}=9.05$ $\times 10^{24}$ total atoms

130. The graph in Figure 10.20 shows the numbers of atoms of each element in a compound. What is the compound's formula? What is its molar mass?
$\mathrm{CaC}_{4} \mathrm{H}_{6} \mathrm{O}_{4}: \mathrm{Ca}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}$ (calcium acetate)
$1 \mathrm{~mol} \mathrm{Ca} \times \frac{40.08 / \mathrm{g} \mathrm{Ca}}{1 \mathrm{~mol} \mathrm{Ca}}=40.08 \mathrm{~g} \mathrm{Ca}$
$4 \mathrm{~mol} \mathrm{C} \times \frac{12.01 \mathrm{~g} \mathrm{C}}{1 \mathrm{~mol} \mathrm{C}}=48.04 \mathrm{~g} \mathrm{C}$
$6 \mathrm{~mol} \mathrm{H} \times \frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}}=6.048 \mathrm{~g} \mathrm{H}$
$4 \mathrm{~mol} \mathrm{O} \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}}=\underline{64.00 \mathrm{~g} \mathrm{O}}$
molar mass $=158.18 \mathrm{~g} / \mathrm{mol}$
131. Determine the molar mass of each compound.
a. nitric acid $\left(\mathrm{HNO}_{3}\right)$
$1 \mathrm{~mol} \mathrm{H} \times \frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}}=1.008 \mathrm{~g} \mathrm{H}$
$1 \mathrm{~mol} \mathrm{~N} \times \frac{14.01 \mathrm{~g} \mathrm{~N}}{1 \mathrm{~mol} \mathrm{~N}}=14.01 \mathrm{~g} \mathrm{~N}$
$3 \mathrm{~mol} \mathrm{O} \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}}=48.00 \mathrm{~g} \mathrm{O}$
molar mass $=63.02 \mathrm{~g} / \mathrm{mol} \mathrm{HNO}_{3}$
b. ammonium nitrate $\left(\mathrm{NH}_{4} \mathrm{NO}_{3}\right)$
$2 \mathrm{~mol} \mathrm{~N} \times \frac{14.01 \mathrm{~g} \mathrm{~N}}{1 \mathrm{~mol} \mathrm{~N}}=28.02 \mathrm{~g} \mathrm{~N}$
$4 \mathrm{~mol} \mathrm{H} \times \frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}}=4.032 \mathrm{~g} \mathrm{H}$
$3 \mathrm{~mol} \mathrm{O} \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}}=48.00 \mathrm{~g} \mathrm{O}$
molar mass $=80.05 \mathrm{~g} / \mathrm{mol} \mathrm{NH}_{4} \mathrm{NO}_{3}$
c. zinc oxide (ZnO)
$1 \mathrm{~mol} \mathrm{Zn} \times \frac{65.39 \mathrm{~g} \mathrm{Zn}}{1 \mathrm{~mol} \mathrm{Zn}}=65.39 \mathrm{~g} \mathrm{Zn}$
$1 \mathrm{~mol} \mathrm{O} \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}}=16.00 \mathrm{~g} \mathrm{O}$
molar mass $=81.39 \mathrm{~g} / \mathrm{mol} \mathrm{ZnO}$
d. cobalt (II) chloride $\left(\mathrm{CoCl}_{2}\right)$
$1 \mathrm{~mol} \mathrm{Co} \times \frac{58.93 \mathrm{~g} \mathrm{Co}}{1 \mathrm{~mol} \mathrm{Co}}=58.93 \mathrm{~g} \mathrm{Co}$
$2 \mathrm{~mol} \mathrm{Cl} \times \frac{35.45 \mathrm{~g} \mathrm{Cl}}{1 \mathrm{~mol} \mathrm{Cl}}=70.90 \mathrm{~g} \mathrm{Cl}$
molar mass $=129.83 \mathrm{~g} / \mathrm{mol} \mathrm{CoCl}_{2}$
132. Garlic Determine the molar mass of allyl sulfide, the compound responsible for the smell of garlic. The chemical formula of allyl sulfide is $\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)_{2} \mathrm{~S}$.
$6 \mathrm{~mol} \mathrm{C} \times \frac{12.01 \mathrm{~g} \mathrm{C}}{1 \mathrm{~mol} \mathrm{C}}=72.06 \mathrm{~g} \mathrm{C}$
$10 \mathrm{~mol} \mathrm{H} \times \frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}}=10.080 \mathrm{~g} \mathrm{H}$
$1 \mathrm{~mol} \mathrm{~S} \times \frac{32.07 \mathrm{~g} \mathrm{~S}}{1 \mathrm{~mol} \mathrm{~S}}=32.07 \mathrm{~g} \mathrm{~S}$
molar mass $=114.21 \mathrm{~g} / \mathrm{mol}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)_{2} \mathrm{~S}$
133. How many moles are in 100.0 g of each compound?
a. dinitrogen oxide $\left(\mathrm{N}_{2} \mathrm{O}\right)$
$2 \mathrm{~mol} \mathrm{~N} \times \frac{14.01 \mathrm{~g} \mathrm{~N}}{1 \mathrm{~mol} \mathrm{~N}}=28.02 \mathrm{~g} \mathrm{~N}$
$1 \mathrm{~mol} \mathrm{O} \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}}=16.00 \mathrm{~g} \mathrm{O}$
molar mass $=44.02 \mathrm{~g} / \mathrm{mol}$
$100.0 \mathrm{~g} \mathrm{~N}_{2} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O}}{44.02 \mathrm{~g} \mathrm{~N}_{2} \mathrm{O}}=2.27 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O}$
b. methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$
$1 \mathrm{~mol} \mathrm{C} \times \frac{12.01 \mathrm{~g} \mathrm{C}}{1 \mathrm{~mol} \mathrm{C}}=12.01 \mathrm{~g} \mathrm{C}$
$4 \mathrm{~mol} \mathrm{H} \times \frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}}=4.032 \mathrm{~g} \mathrm{H}$
$1 \mathrm{~mol} \mathrm{O} \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}}=16.00 \mathrm{~g} \mathrm{O}$
molar mass $=32.04 \mathrm{~g} / \mathrm{mol}$
$100.0 \mathrm{~g} \mathrm{CH}_{3} \mathrm{OH} \times \frac{1 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{OH}}{32.04 \mathrm{~g} \mathrm{CH}_{3} \mathrm{OH}}$
$=3.12 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{OH}$
134. What is the mass of each compound?
a. $4.50 \times 10^{-2} \mathrm{~mol}$ of CuCl_{2}
$1 \mathrm{~mol} \mathrm{Cu} \times \frac{63.55 \mathrm{~g} \mathrm{Cu}}{1 \mathrm{~mol} \mathrm{Cu}}=63.55 \mathrm{~g} \mathrm{Cu}$
$2 \mathrm{~mol} \mathrm{Cl} \times \frac{35.45 \mathrm{~g} \mathrm{Cl}}{1 \mathrm{~mol} \mathrm{Cl}}=\underline{70.90 \mathrm{~g} \mathrm{Cl}}$
molar mass $=134.45 \mathrm{~g} / \mathrm{mol}$
$4.50 \times 10^{-2} \mathrm{~mol} \mathrm{CuCl}_{2} \times \frac{134.35 \mathrm{~g} \mathrm{CuCl}_{2}}{1 \mathrm{~mol} \mathrm{CuCl}_{2}}$
$=6.05 \mathrm{~g} \mathrm{CuCl}_{2}$
b. $1.25 \times 10^{2} \mathrm{~mol}$ of $\mathrm{Ca}(\mathrm{OH})_{2}$
$1 \mathrm{~mol} \mathrm{Ca} \times \frac{40.08 \mathrm{~g} \mathrm{Ca}}{1 \mathrm{~mol} \mathrm{Ca}}=40.08 \mathrm{~g} \mathrm{Ca}$
$2 \mathrm{~mol} \mathrm{H} \times \frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}}=2.016 \mathrm{~g} \mathrm{H}$
$2 \mathrm{~mol} \mathrm{O} \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}}=32.00 \mathrm{~g} \mathrm{O}$
molar mass $=74.10 \mathrm{~g} / \mathrm{mol}$
$1.25 \times 10^{2} \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2} \times \frac{74.10 \mathrm{~g} \mathrm{Ca}(\mathrm{OH})_{2}}{1 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}}$
$=9.26 \times 10^{2} \mathrm{~g} \mathrm{Ca}(\mathrm{OH})_{2}$
135. Acne Benzoyl peroxide $\left(\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{4}\right)$ is a substance used as an acne medicine. What is the mass in grams of $3.50 \times 10^{-2} \mathrm{~mol}$ $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{4}$?
$14 \mathrm{~mol} \mathrm{C} \times \frac{12.01 \mathrm{~g} \mathrm{C}}{1 \mathrm{~mol} \mathrm{C}}=168.14 \mathrm{~g} \mathrm{C}$
$10 \mathrm{~mol} \mathrm{H} \times \frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}}=10.080 \mathrm{~g} \mathrm{H}$
$4 \mathrm{~mol} \mathrm{O} \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}}=64.00 \mathrm{~g} \mathrm{O}$
molar mass $=168.14+10.080+64.00$
$=242.22 \mathrm{~g} / \mathrm{mol}$
$3.50 \times 10^{-2} \mathrm{~mol} \times \frac{242.22 \mathrm{~g}}{1 \mathrm{~mol}}=8.48 \mathrm{~g}$ benzoyl
peroxide
136. Glass Etching Hydrofluoric acid is a substance used to etch glass. Determine the mass of $4.95 \times 10^{25} \mathrm{HF}$ molecules.
$1 \mathrm{~mol} \mathrm{H} \times \frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}}=1.008 \mathrm{~g} \mathrm{H}$
$1 \mathrm{~mol} \mathrm{~F} \times \frac{19.00 \mathrm{~g} \mathrm{~F}}{1 \mathrm{~mol} \mathrm{~F}}=19.00 \mathrm{~g} \mathrm{~F}$
molar mass $=1.008+19.00=20.01 \mathrm{~g} / \mathrm{mol}$
4.95×10^{25} molecules HF
$\times \frac{1 \mathrm{~mol} \mathrm{HF}}{6.02 \times 10^{23} \text { molecules } \mathrm{HF}} \times \frac{20.01 \mathrm{~g} \mathrm{HF}}{1 \mathrm{~mol} \mathrm{HF}}$
$=1650 \mathrm{~g} \mathrm{HF}$
137. What is the mass of a mole of electrons if one electron has a mass of $9.11 \times 10^{-28} \mathrm{~g}$?
6.02×10^{23} electrons $\times \frac{9.11 \times 10^{-28} \mathrm{~g}}{1 \text { electron }}$
$=5.48 \times 10^{-4} \mathrm{~g}$
138. How many moles of ions are in each compound?
a. 0.0200 g of AgNO_{3}

$$
1 \mathrm{~mol} \mathrm{Ag} \times \frac{107.87 \mathrm{~g} \mathrm{Ag}}{1 \mathrm{~mol} \mathrm{Ag}}=107.87 \mathrm{~g} \mathrm{Ag}
$$

$1 \mathrm{~mol} \mathrm{~N} \times \frac{14.01 \mathrm{~g} \mathrm{~N}}{1 \mathrm{~mol} \mathrm{~N}}=14.01 \mathrm{~g} \mathrm{~N}$
$3 \mathrm{~mol} \mathrm{O} \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}}=48.00 \mathrm{~g} \mathrm{O}$
molar mass $=107.87+14.01+48.00$
$=169.88 \mathrm{~g} / \mathrm{mol}$
$0.0200 \mathrm{~g} \mathrm{AgNO}_{3} \times \frac{1 \mathrm{~mol} \mathrm{AgNO}}{3} 1$
$\times \frac{2 \mathrm{~mol} \text { ions }}{1 \mathrm{~mol} \mathrm{AgNO}_{3}}=2.35 \times 10^{-4} \mathrm{~mol}$ ions
b. 0.100 mol of $\mathrm{K}_{2} \mathrm{CrO}_{4}$
$\begin{aligned} & 0.100 \mathrm{~mol} \mathrm{~K} \\ & \text { mol ions }\end{aligned} \mathrm{CrO}_{4} \times \frac{3 \mathrm{~mol} \text { ions }}{1 \mathrm{~mol} \mathrm{~K}_{2} \mathrm{CrO}_{4}}=0.300$
c. 0.500 g of $\mathrm{Ba}(\mathrm{OH})_{2}$

$$
\begin{aligned}
& 1 \mathrm{~mol} \mathrm{Ba} \times \frac{137.33 \mathrm{~g} \mathrm{Ba}}{1 \mathrm{~mol} \mathrm{Ba}}=137.33 \mathrm{~g} \mathrm{Ba} \\
& 2 \mathrm{~mol} \mathrm{O} \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}}=32.00 \mathrm{~g} \mathrm{O} \\
& 2 \mathrm{~mol} \mathrm{H} \times \frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}}=2.016 \mathrm{~g} \mathrm{H} \\
& \text { molar mass }=137.33+32.00+2.016 \\
& =171.35 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

$$
0.500 \mathrm{~g} \mathrm{Ba}(\mathrm{OH})_{2} \times \frac{1 \mathrm{~mol} \mathrm{Ba}(\mathrm{OH})_{2}}{171.35 \mathrm{~g} \mathrm{Ba}(\mathrm{OH})_{2}}
$$

$$
\times \frac{3 \mathrm{~mol} \text { ions }}{1 \mathrm{~mol} \mathrm{Ba}(\mathrm{OH})_{2}}=8.75 \times 10^{-3} \mathrm{~mol} \text { ions }
$$

d. $1.00 \times 10^{-9} \mathrm{~mol}$ of $\mathrm{Na}_{2} \mathrm{CO}_{3}$

$$
\begin{aligned}
& 1.00+10^{-9} \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}+\frac{3 \mathrm{~mol} \text { ions }}{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}} \\
& =3.00 \times 10^{-9} \mathrm{~mol} \text { ions }
\end{aligned}
$$

139. How many formula units are present in 500.0 g of lead(II) chloride?
$1 \mathrm{~mol} \mathrm{~Pb} \times \frac{207.2 \mathrm{~g} \mathrm{~Pb}}{1 \mathrm{~mol} \mathrm{~Pb}}=207.2 \mathrm{~g} \mathrm{~Pb}$
$2 \mathrm{~mol} \mathrm{Cl} \times \frac{35.45 \mathrm{~g} \mathrm{Cl}}{1 \mathrm{~mol} \mathrm{Cl}}=70.90 \mathrm{~g} \mathrm{Cl}$
molar mass $=207.2+70.90=278.1 \mathrm{~g} / \mathrm{mol}$
$500.0 \mathrm{~g} \mathrm{PbCl}_{2} \times \frac{1 \mathrm{~mol} \mathrm{PbCl}_{2}}{278.1 \mathrm{~g} \mathrm{PbCl}_{2}}=1.798 \mathrm{~mol} \mathrm{PbCl}_{2}$
$1.798 \mathrm{~mol} \mathrm{PbCl}_{2} \times \frac{6.02+10^{23} \text { formula units }}{1 \mathrm{~mol} \mathrm{PbCl}_{2}}$
$=1.082 \times 10^{24}$ formula units PbCl_{2}
140. Determine the number of atoms in 3.50 g of gold.
$3.50 \mathrm{~g} \mathrm{Au} \times \frac{1 \mathrm{~mol} \mathrm{Au}}{196.97 \mathrm{~g} \mathrm{Au}} \times \frac{6.02+10^{23} \text { atoms Au}}{1 \mathrm{~mol} \mathrm{Au}}$ $=1.07 \times 10^{22}$ atoms Au
141. Calculate the mass of 3.62×10^{24} molecules of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$.
From a previous solution, the molar mass of glucose equals $180.16 \mathrm{~g} / \mathrm{mol}$.
3.62×10^{24} molecules glucose
$\times \frac{1 \mathrm{~mol} \text { glucose }}{6.02 \times 10^{23} \text { molecules glucose }}$
$\times \frac{180.16 \mathrm{~g} \text { glucose }}{1 \mathrm{~mol} \text { glucose }}=1080 \mathrm{~g}$ glucose
142. Determine the number of molecules of ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ in 47.0 g .
$2 \mathrm{~mol} \mathrm{C} \times \frac{12.01 \mathrm{~g} \mathrm{C}}{1 \mathrm{~mol} \mathrm{C}}=24.02 \mathrm{~g} \mathrm{C}$
$6 \mathrm{~mol} \mathrm{H} \times \frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}}=6.048 \mathrm{~g} \mathrm{H}$
$1 \mathrm{~mol} \mathrm{O} \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}}=16.00 \mathrm{~g} \mathrm{o}$
molar mass $=24.02+6.048+16.00=46.07 \mathrm{~g} / \mathrm{mol}$
47.0 g ethanol $\times \frac{1 \mathrm{~mol} \text { ethanol }}{46.07 \mathrm{~g} \text { ethanol }}$
$\times \frac{6.02 \times 10^{23} \text { molecules ethanol }}{1 \text { mol ethanol }}$
$=6.14 \times 10^{23}$ molecules ethanol
143. What mass of iron(III) chloride contains 2.35 $\times 10^{23}$ chloride ions?
$1 \mathrm{~mol} \mathrm{Fe} \times \frac{55.85 \mathrm{~g} \mathrm{Fe}}{1 \mathrm{~mol} \mathrm{Fe}}=55.85 \mathrm{~g} \mathrm{Fe}$
$3 \mathrm{~mol} \mathrm{Cl} \times \frac{35.45 \mathrm{~g} \mathrm{Cl}}{1 \mathrm{~mol} \mathrm{Cl}}=106.35 \mathrm{~g} \mathrm{Cl}$
molar mass $=55.85+106.35=162.20 \mathrm{~g} / \mathrm{mol}$
2.35×10^{23} chloride ions
$\times \frac{1 \mathrm{~mol} \text { chloride ions }}{6.02 \times 10^{23} \text { chloride ions }}$
$\times \frac{1 \mathrm{~mol} \mathrm{FeCl}_{3}}{3 \text { mol chloride ions }} \times \frac{162.20 \mathrm{~g} \mathrm{FeCl}_{3}}{1 \mathrm{~mol} \mathrm{FeCl}_{3}}$
$=21.1 \mathrm{~g} \mathrm{FeCl}_{3}$
144. How many moles of iron can be recovered from 100.0 kg of $\mathrm{Fe}_{3} \mathrm{O}_{4}$?
$3 \mathrm{~mol} \mathrm{Fe} \times \frac{55.85 \mathrm{~g} \mathrm{Fe}}{1 \mathrm{~mol} \mathrm{Fe}}=167.55 \mathrm{~g} \mathrm{Fe}$
$4 \mathrm{~mol} \mathrm{O} \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}}=64.00 \mathrm{~g} \mathrm{o}$
molar mass $=167.55+64.00=231.55 \mathrm{~g} / \mathrm{mol}$
$100.0 \mathrm{~kg} \mathrm{Fe}_{3} \mathrm{O}_{4} \times \frac{10^{3} \mathrm{~g}}{1 \mathrm{~kg}} \times \frac{1 \mathrm{~mol} \mathrm{Fe}^{3} \mathrm{O}_{4}}{231.55 \mathrm{~g} \mathrm{Fe}_{3} \mathrm{O}_{4}} \times$
$\frac{3 \mathrm{~mol} \mathrm{Fe}}{1 \mathrm{~mol} \mathrm{Fe}_{3} \mathrm{O}_{4}}=1296 \mathrm{~mol} \mathrm{Fe}$
145. Cooking A common cooking vinegar is 5.0% acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$. How many molecules of acetic acid are present in 25.0 g vinegar?
$2 \mathrm{~mol} \mathrm{C} \times \frac{12.01 \mathrm{~g} \mathrm{C}}{1 \mathrm{~mol} \mathrm{C}}=24.02 \mathrm{~g} \mathrm{C}$
$4 \mathrm{~mol} \mathrm{H} \times \frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}}=4.032 \mathrm{~g} \mathrm{H}$
$2 \mathrm{~mol} \mathrm{O} \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}}=32.00 \mathrm{~g} \mathrm{o}$
molar mass $=24.02+4.032+32.00=60.05 \mathrm{~g} / \mathrm{mol}$
$0.050 \times 25.0 \mathrm{~g}$ vinegar $=1.25 \mathrm{~g} \mathrm{CH}_{3} \mathrm{COOH}$
$1.25 \mathrm{~g} \mathrm{CH}_{3} \mathrm{COOH} \times \frac{1 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{COOH}}{60.05 \mathrm{~g} \mathrm{CH}_{3} \mathrm{COOH}}$
$\times \frac{6.02 \times 10^{23} \mathrm{molecules} \mathrm{CH}_{3} \mathrm{COOH}}{1 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{COOH}}$
$=1.3 \times 10^{22}$ molecules $\mathrm{CH}_{3} \mathrm{COOH}$
146. Calculate the moles of aluminum ions present
in 250.0 g of aluminum oxide $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$.
$250.0 \mathrm{~g} \mathrm{Al}_{2} \mathrm{O}_{3} \times \frac{1 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3}}{101.96 \mathrm{~g} \mathrm{Al}_{2} \mathrm{O}_{3}} \times \frac{2 \mathrm{~mol} \mathrm{Al}}{1 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3}}$
$=4.90 \mathrm{~mol} \mathrm{Al}^{3+}$
147. Determine the number of chloride ions in 10.75 g of magnesium chloride.
$1 \mathrm{~mol} \mathrm{Mg} \times \frac{24.31 \mathrm{~g} \mathrm{Mg}}{1 \mathrm{~mol} \mathrm{Mg}}=24.31 \mathrm{~g} \mathrm{Mg}$
$2 \mathrm{~mol} \mathrm{Cl} \times \frac{35.45 \mathrm{~g} \mathrm{Cl}}{1 \mathrm{~mol} \mathrm{Cl}}=70.90 \mathrm{~g} \mathrm{Cl}$
molar mass $=24.31+70.90=94.31 \mathrm{~g} / \mathrm{mol}$
$10.75 \mathrm{~g} \mathrm{MgCl}_{2} \times \frac{1 \mathrm{~mol} \mathrm{MgCl}_{2}}{94.31 \mathrm{~g} \mathrm{MgCl}_{2}} \times \frac{2 \mathrm{~mol} \mathrm{Cl}}{1 \mathrm{~mol} \mathrm{MgCl}} 2$
$\times \frac{6.02 \times 10^{23} \text { ions }}{1 \mathrm{~mol} \mathrm{Cl}}=1.37 \times 10^{23}$ ions Cl-
148. Pain Relief Acetaminophen, a common aspirin substitute, has the formula $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2}$. Determine the number of molecules of acetaminophen in a $500-\mathrm{mg}$ tablet.
$8 \mathrm{~mol} \mathrm{C} \times \frac{12.01 \mathrm{~g} \mathrm{C}}{1 \mathrm{~mol} \mathrm{C}}=96.08 \mathrm{~g} \mathrm{C}$
$9 \mathrm{~mol} \mathrm{H} \times \frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}}=9.072 \mathrm{~g} \mathrm{H}$
$1 \mathrm{~mol} \mathrm{~N} \times \frac{14.01 \mathrm{~g} \mathrm{~N}}{1 \mathrm{~mol} \mathrm{~N}}=14.01 \mathrm{~g} \mathrm{~N}$
$2 \mathrm{~mol} \mathrm{O} \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}}=32.00 \mathrm{~g} \mathrm{O}$
molar mass $=96.08+9.072+14.01+32.00$
$=151.16 \mathrm{~g} / \mathrm{mol}$
$500 \mathrm{mg} \mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2} \times \frac{1 \mathrm{~g}}{10^{3} \mathrm{mg}} \times \frac{1 \mathrm{~mol} \mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2}}{151.16 \mathrm{~g} \mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2}}$
$=0.003 \mathrm{~mol} \mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2}$
$\times \frac{6.02 \times 10^{23} \text { molecules } \mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2}}{1 \mathrm{~mol} \mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2}}$
$=2 \times 10^{21}$ molecules $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2}$
149. Calculate the number of sodium ions present in 25.0 g of sodium chloride.
$25.0 \mathrm{~g} \mathrm{NaCl} \times(1 \mathrm{~mol} \mathrm{NaCl} / 58.44 \mathrm{~g} \mathrm{NaCl}) \times(1 \mathrm{~mol}$ $\left.\mathrm{Na}^{+} / 1 \mathrm{~mol} \mathrm{NaCl}\right) \times\left(6.02+10^{23}\right.$ ions $\left./ 1 \mathrm{~mol} \mathrm{Na}{ }^{+}\right)$ $=2.58 \times 10^{23} \mathrm{Na}^{+}$ions
150. Determine the number of oxygen atoms present in 25.0 g of carbon dioxide.
$1 \mathrm{~mol} \mathrm{C} \times \frac{12.01 \mathrm{~g} \mathrm{C}}{1 \mathrm{~mol} \mathrm{C}}=12.01 \mathrm{~g} \mathrm{C}$ $2 \mathrm{molo} \times \frac{16.00 \mathrm{~g} \mathrm{o}}{1 \mathrm{~mol} \mathrm{o}}=32.00 \mathrm{~g} \mathrm{o}$
molar mass $=12.01+32.00=44.01 \mathrm{~g} / \mathrm{mol}$
$25.0 \mathrm{~g} \mathrm{CO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{44.01 \mathrm{~g} \mathrm{CO}_{2}}$
$=0.568 \mathrm{~mol} \mathrm{CO}_{2} \times \frac{2 \mathrm{~mol} \mathrm{O}}{1 \mathrm{~mol} \mathrm{CO}_{2}}$
$\times \frac{6.02 \times 10^{23} \text { atoms } \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}}=6.84 \times 10^{23}$ atoms O
151. Espresso There is $1.00 \times 10^{2} \mathrm{mg}$ of caffeine in a shot of espresso. The chemical formula of caffeine is $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$. Determine the moles of each element present in one shot of espresso.
molar mass $=194.19 \mathrm{~g} / \mathrm{mol}$
0.100 g caffeine $\times \frac{1 \mathrm{~mol} \text { caffeine }}{194.19 \mathrm{~g} \text { caffeine }}$
$=5.15 \times 10^{-4} \mathrm{~mol}$ caffeine
$\mathrm{C}=8\left(5.15 \times 10^{-4} \mathrm{~mol}\right)=4.12 \times 10^{-3} \mathrm{~mol} \mathrm{C}$
$\mathrm{H}=10\left(5.15 \times 10^{-4} \mathrm{~mol}\right)=5.15 \times 10^{-3} \mathrm{~mol} \mathrm{H}$
$\mathrm{N}=4\left(5.15 \times 10^{-4} \mathrm{~mol}\right)=2.06 \times 10^{-3} \mathrm{~mol} \mathrm{~N}$
$\mathrm{O}=2\left(5.15 \times 10^{-4} \mathrm{~mol}\right)=1.03 \times 10^{-3} \mathrm{~mol} \mathrm{O}$
152. The density of lead (Pb) is $11.3 \mathrm{~g} / \mathrm{cm}^{3}$. Calculate the volume of 1 mol of Pb .

$$
1 \mathrm{~mol} \mathrm{~Pb} \times \frac{207.2 \mathrm{~g} \mathrm{~Pb}}{1 \mathrm{~mol} \mathrm{~Pb}} \times \frac{1 \mathrm{~cm}^{3}}{11.3 \mathrm{~g} \mathrm{~Pb}^{2}}=18.3 \mathrm{~cm}^{3}
$$

Section 10.4

Mastering Concepts

153. Explain what is meant by percent composition.

Percent composition is the percent by mass of each element in a compound.
154. What information must a chemist obtain in order to determine the empirical formula of an unknown compound?
the percent composition of the compound
155. What information must a chemist have to determine the molecular formula for a compound?
the percent composition of the compound and the molar mass
156. What is the difference between an empirical formula and a molecular formula? Provide an example.
An empirical formula is the smallest wholenumber ratio of elements that make up a compound (CH). A molecular formula specifies the actual number of atoms of each element in one molecule or formula unit of the substance $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$.
157. When can the empirical formula be the same as the molecular formula?

They are the same when the subscripts for each element present are the same. $\mathrm{Na}_{2} \mathrm{O}$ is both the empirical and molecular formula for sodium oxide.
158. Antibacterial Soap Triclosan is an antibacterial agent included in detergents, dish soaps, laundry soaps, deodorants, cosmetics, lotions, creams, toothpastes, and mouthwashes. The chemical formula for triclosan is $\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{Cl}_{3} \mathrm{O}_{2}$. What information did the chemist need to determine this formula?

The chemist must have either an analysis of the elements that compose the molecule or the percent composition of the compound to determine the chemical formula.
159. Which of the following formulas-NO, $\mathrm{N}_{2} \mathrm{O}, \mathrm{NO}_{2}, \mathrm{~N}_{2} \mathrm{O}_{4}$, and $\mathrm{N}_{2} \mathrm{O}_{5}$-represent the empirical and molecular formulas of the same compound? Explain your answer.
NO_{2} is the empirical formula and $\mathrm{N}_{2} \mathrm{O}_{4}$ is the molecular formula of the same compound. $\left(\mathrm{NO}_{2}\right)_{2}=\mathrm{N}_{2} \mathrm{O}_{4}$
160. Do all pure samples of a given compound have the same percent composition? Explain.

Yes, for every pure substance, the percent by mass of each element is the same regardless of the size of the sample.

Mastering Problems

161. The circle graph in Figure 10.21 shows the percent composition of a compound containing barium, carbon, and oxygen. What is the empirical formula of this compound?
$\frac{69.78 \mathrm{~g} \mathrm{Ba}}{137.3 \mathrm{~g} / \mathrm{mol}}=\frac{0.5068 \mathrm{~mol} \mathrm{Ba}}{0.5068}=1 \mathrm{~mol} \mathrm{Ba}$
$\frac{6.09 \mathrm{~g} \mathrm{C}}{12.01 \mathrm{~g} / \mathrm{mol}}=\frac{0.507 \mathrm{~mol} \mathrm{C}}{0.5068}=1 \mathrm{~mol} \mathrm{C}$
$\frac{24.34 \mathrm{~g} \mathrm{O}}{16.00 \mathrm{~g} / \mathrm{mol}}=\frac{1.52 \mathrm{~mol} \mathrm{O}}{0.5068}=3 \mathrm{~mol} \mathrm{O}$
$1 \mathrm{~mol} \mathrm{Ba:} 1 \mathrm{~mol} \mathrm{C:3} \mathrm{~mol} \mathrm{O;} \mathrm{empirical} \mathrm{formula}$ $=\mathrm{BaCO}_{3}$
162. Iron Three naturally occurring iron compounds are pyrite $\left(\mathrm{FeS}_{2}\right)$, hematite $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$, and siderite $\left(\mathrm{FeCO}_{3}\right)$. Which contains the greatest percentage of iron?
$1 \mathrm{~mol} \mathrm{Fe} \times \frac{55.85 \mathrm{~g} \mathrm{Fe}}{1 \mathrm{~mol} \mathrm{Fe}}=55.85 \mathrm{~g} \mathrm{Fe}$
$2 \mathrm{~mol} \mathrm{~S} \times \frac{32.07 \mathrm{~g} \mathrm{~S}}{1 \mathrm{~mol} \mathrm{~S}}=64.14 \mathrm{~g} \mathrm{~S}$
molar mass $\mathrm{FeS}_{2}=55.85+64.14=119.99 \mathrm{~g} / \mathrm{mol}$
$1 \mathrm{~mol} \mathrm{Fe} \times \frac{55.85 \mathrm{~g} \mathrm{Fe}}{1 \mathrm{~mol} \mathrm{Fe}}=111.70 \mathrm{~g} \mathrm{Fe}$
$3 \mathrm{~mol} \mathrm{O} \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}}=48.00 \mathrm{~g} \mathrm{O}$
molar mass $\mathrm{Fe}_{2} \mathrm{O}_{3}=111.70+48.00=159.70 \mathrm{~g} / \mathrm{mol}$
$1 \mathrm{~mol} \mathrm{Fe} \times \frac{55.85 \mathrm{~g} \mathrm{Fe}}{1 \mathrm{~mol} \mathrm{Fe}}=55.85 \mathrm{~g} \mathrm{Fe}$
$1 \mathrm{~mol} \mathrm{C} \times \frac{12.01 \mathrm{~g} \mathrm{C}}{1 \mathrm{~mol} \mathrm{C}}=12.01 \mathrm{~g} \mathrm{C}$
$3 \mathrm{~mol} \mathrm{O} \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}}=96.00 \mathrm{~g} \mathrm{O}$
molar mass $\mathrm{FeCO}_{3}=55.85+12.01+96.00$
$=152.95 \mathrm{~g} / \mathrm{mol}$
percent mass $=\frac{55.85 \mathrm{~g}}{119.99 \mathrm{~g}} \times 100=46.55 \%$ in FeS_{2}
percent mass $=\frac{111.70 \mathrm{~g}}{159.70 \mathrm{~g}} \times 100=69.944 \%$ in
$\mathrm{Fe}_{2} \mathrm{O}_{3}$
percent mass $=\frac{55.85 \mathrm{~g}}{152.95 \mathrm{~g}} \times 100=36.51 \%$ in
FeCO_{3} ${ }^{2}$
Hematite, with 69.944\% Fe, has the greatest percentage of iron.
163. Express the composition of each compound as the mass percent of its elements (percent composition).
a. sucrose $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$
$12 \mathrm{~mol} \mathrm{C} \times \frac{12.01 \mathrm{~g} \mathrm{C}}{1 \mathrm{~mol} \mathrm{C}}=144.12 \mathrm{~g} \mathrm{C}$
$22 \mathrm{~mol} \mathrm{H} \times \frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}}=22.18 \mathrm{~g} \mathrm{H}$
$11 \mathrm{~mol} \mathrm{O} \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}}=176.00 \mathrm{~g} \mathrm{O}$
molar mass $=144.12+22.18+176.00=$ $342.30 \mathrm{~g} / \mathrm{mol}$
percent by mass $=\frac{144.12 \mathrm{~g}}{342.30 \mathrm{~g}} \times 100=42.10 \% \mathrm{C}$
percent by mass $=\frac{22.18 \mathrm{~g}}{342.30 \mathrm{~g}} \times 100=6.480 \% \mathrm{H}$
percent by mass $=\frac{176.00 \mathrm{~g}}{342.30 \mathrm{~g}} \times 100=51.42 \% \mathrm{O}$
b. aluminum sulfate $\left(\mathrm{A}_{12}\left(\mathrm{SO}_{4}\right)_{3}\right)$
$2 \mathrm{~mol} \mathrm{Al} \times \frac{26.98 \mathrm{~g} \mathrm{Al}}{1 \mathrm{~mol} \mathrm{Al}}=53.96 \mathrm{~g} \mathrm{Al}$
$3 \mathrm{~mol} \mathrm{~S} \times \frac{32.07 \mathrm{~g} \mathrm{~S}}{1 \mathrm{~mol} \mathrm{~S}}=96.21 \mathrm{~g} \mathrm{~S}$
$12 \mathrm{~mol} \mathrm{O} \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}}=192.00 \mathrm{~g} \mathrm{O}$
molar mass $=53.96+96.21+192.00=$ $342.17 \mathrm{~g} / \mathrm{mol}$
percent by mass $=\frac{53.96 \mathrm{~g}}{342.17 \mathrm{~g}} \times 100=15.77 \% \mathrm{Al}$ percent by mass $=\frac{96.21 \mathrm{~g}}{342.17 \mathrm{~g}} \times 100=28.12 \% \mathrm{~S}$
percent by mass $=\frac{192.00 \mathrm{~g}}{342.17 \mathrm{~g}} \times 100=56.11 \% \mathrm{O}$
c. magnetite $\left(\mathrm{Fe}_{3} \mathrm{O}_{4}\right)$
$3 \mathrm{~mol} \mathrm{Fe}+\frac{55.85 \mathrm{~g} \mathrm{Fe}}{1 \mathrm{~mol} \mathrm{Fe}}=167.55 \mathrm{~g} \mathrm{Fe}$
$4 \mathrm{~mol} \mathrm{O}+\frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}}=64.00 \mathrm{~g} \mathrm{O}$
molar mass $=167.55+64.00=231.55 \mathrm{~g} / \mathrm{mol}$
percent by mass $=\frac{167.55 \mathrm{~g}}{231.55 \mathrm{~g}} \times 100$
$=72.360 \% \mathrm{Fe}$
percent by mass $=\frac{64.00 \mathrm{~g}}{231.55 \mathrm{~g}} \times 100=27.64 \% \mathrm{O}$

Molar mass $=\mathbf{3 8 4} \mathbf{~ g} / \mathbf{m o l}$
164. Vitamin $D_{\mathbf{3}}$ Your body's ability to absorb calcium is aided by vitamin D_{3}. Chemical analysis of vitamin D_{3} yields the data shown in Figure 10.22. What are the empirical and molecular formulas for vitamin D_{3} ?
$\frac{84.31 \mathrm{~g} \mathrm{C}}{12.011 \mathrm{~g} / \mathrm{mol}}=\frac{7.019 \mathrm{~mol} \mathrm{C}}{0.260}=27 \mathrm{~mol} \mathrm{C}$
$\frac{11.53 \mathrm{~g} \mathrm{H}}{1.008 \mathrm{~g} / \mathrm{mol}}=\frac{11.44 \mathrm{~mol} \mathrm{H}}{0.260}=44 \mathrm{~mol} \mathrm{H}$
$\frac{4.16 \mathrm{~g} \mathrm{O}}{16.00 \mathrm{~g} / \mathrm{mol}}=\frac{0.260 \mathrm{~mol} \mathrm{O}}{0.260}=1 \mathrm{~mol} \mathrm{o}$
$27 \mathrm{~mol} \mathrm{C}: 44 \mathrm{mot} \mathrm{H}: 1 \mathrm{~mol}$ O; empirical formula $=\mathrm{C}_{27} \mathrm{H}_{44} \mathrm{O}$; molar mass is equal to $384 \mathrm{~g} / \mathrm{mol}$; 384/384 = 1 ; the empirical formula is equal to the molecular formula, $\mathrm{C}_{27} \mathrm{H}_{44} \mathrm{O}$
165. When a $30.98-\mathrm{g}$ sample of phosphorus reacts with oxygen, a $71.00-\mathrm{g}$ sample of phosphorus oxide is formed. What is the percent composition of the compound? What is the empirical formula for this compound?
30.98 g P/71.0 g = 43.64 \% Phosphorus
$40.02 \mathrm{~g} \mathrm{O} 71.0 \mathrm{~g}=56.36$ \% Oxygen
$\frac{30.98 \mathrm{~g} \mathrm{P}}{30.97 \mathrm{~g} / \mathrm{mol}}=\frac{1 \mathrm{~mol} \mathrm{P}}{1.000}=1 \mathrm{~mol} \mathrm{P}$
$\frac{40.02 \mathrm{~g} \mathrm{O}}{16.00 \mathrm{~g} / \mathrm{mol}}=\frac{2.501 \mathrm{~mol} \mathrm{O}}{1.000}=2.5 \mathrm{~mol} \mathrm{O}$
$2(1 \mathrm{~mol} \mathrm{P}: 2.5 \mathrm{~mol} \mathrm{O})=2 \mathrm{~mol} \mathrm{P}: 5 \mathrm{~mol} \mathrm{O}=\mathrm{P}_{2} \mathrm{O}_{5}$
166. Cholesterol Heart disease is linked to high blood cholesterol levels. What is the percent composition of the elements in a molecule of cholesterol $\left(\mathrm{C}_{27} \mathrm{H}_{45} \mathrm{OH}\right)$?
$(27 \mathrm{~mol} \mathrm{C})(12.01 \mathrm{~g} / \mathrm{mol})=324.3 \mathrm{~g} \mathrm{C}$
$(46 \mathrm{~mol} \mathrm{H})(1.008 \mathrm{~g} / \mathrm{mol})=46.37 \mathrm{~g} \mathrm{H}$
$(1 \mathrm{~mol} \mathrm{O})(16.00 \mathrm{~g} / \mathrm{mol})=16.00 \mathrm{~g} \mathrm{O}$
total mass $=$
386.67 g
$324.3 \mathrm{~g} \mathrm{C} / 386.67 \mathrm{~g} / \mathrm{mol}=83.9 \% \mathrm{C}$
$46.37 \mathrm{~g} \mathrm{H} / 386.67 \mathrm{~g} / \mathrm{mol}=12.0 \% \mathrm{H}$
$16.00 \mathrm{~g} \mathrm{O} / 386.67 \mathrm{~g} / \mathrm{mol}=4.1 \% \mathrm{O}$
167. Determine the empirical formula for each compound.
a. ethylene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$

Both subscripts can be divided by two. The empirical formula is CH_{2}.
b. ascorbic acid $\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}\right)$

All subscripts can be divided by two. The empirical formula is $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{3}$.
c. naphthalene $\left(\mathrm{C}_{10} \mathrm{H}_{8}\right)$

Both subscripts can be divided by two. The empirical formula is $\mathrm{C}_{5} \mathrm{H}_{4}$.
168. Caffeine The stimulant effect of coffee is due to caffeine, $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$. Calculate the molar máss of caffeine. Determine its percent composition.

$$
\begin{aligned}
& 8 \mathrm{~mol} \mathrm{C} \times \frac{12.01 \mathrm{~g} \mathrm{C}}{1 \mathrm{~mol} \mathrm{C}}=96.08 \mathrm{~g} \mathrm{C} \\
& 10 \mathrm{~mol} \mathrm{H} \times \frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}}=10.080 \mathrm{~g} \mathrm{H} \\
& 4 \mathrm{~mol} \mathrm{~N} \times \frac{14.01 \mathrm{~g} \mathrm{~N}}{1 \mathrm{~mol} \mathrm{~N}}=56.04 \mathrm{~g} \mathrm{~N} \\
& 2 \mathrm{~mol} \mathrm{O} \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}}=32.00 \mathrm{~g} \mathrm{O} \\
& \text { molar mass }=96.08+10.080+56.04+32.00 \\
& =194.20 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

$$
\text { percent by mass }=\frac{96.08 \mathrm{~g}}{194.20 \mathrm{~g}} \times 100=49.47 \% \mathrm{C}
$$

$$
\text { percent by mass }=\frac{10.08 \mathrm{~g}}{194.20 \mathrm{~g}} \times 100=5.191 \% \mathrm{H}
$$

$$
\text { percent by mass }=\frac{56.04 \mathrm{~g}}{194.20 \mathrm{~g}} \times 100=28.86 \% \mathrm{~N}
$$

$$
\text { percent by mass }=\frac{32.00 \mathrm{~g}}{194.20 \mathrm{~g}} \times 100=16.48 \% \mathrm{O}
$$

169. Which of the titanium-containing minerals, rutile $\left(\mathrm{TiO}_{2}\right)$ or ilmenite $\left(\mathrm{FeTiO}_{3}\right)$, has the larger percentage of titanium?
$1 \mathrm{~mol} \mathrm{Ti} \times \frac{47.87 \mathrm{~g} \mathrm{Ti}}{1 \mathrm{~mol} \mathrm{Ti}}=47.87 \mathrm{~g} \mathrm{Ti}$
$2 \mathrm{~mol} \mathrm{O} \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}}=32.00 \mathrm{~g} \mathrm{O}$
molar mass $\mathrm{TiO}_{2}=47.87+32.00=79.87 \mathrm{~g} / \mathrm{mol}$
$1 \mathrm{~mol} \mathrm{Fe} \times \frac{55.85 \mathrm{~g} \mathrm{Fe}}{1 \mathrm{~mol} \mathrm{Fe}}=55.85 \mathrm{~g} \mathrm{Fe}$
$1 \mathrm{~mol} \mathrm{Ti} \times \frac{47.87 \mathrm{~g} \mathrm{Ti}}{1 \mathrm{~mol} \mathrm{Ti}}=47.87 \mathrm{~g} \mathrm{Ti}$
$3 \mathrm{~mol} \mathrm{O} \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}}=48.00 \mathrm{~g} \mathrm{O}$
molar mass $\mathrm{FeTiO}_{3}=55.85+47.87+48.00$
$=151.72 \mathrm{~g} / \mathrm{mol}$
percent by mass $=\frac{47.87 \mathrm{~g}}{79.87 \mathrm{~g}} \times 100$
$=59.93 \% \mathrm{Ti}$ in TiO_{2}
percent by mass $=\frac{47.87 \mathrm{~g}}{151.72 \mathrm{~g}} \times 100$
$=31.55 \% \mathrm{Ti}$ in FeTiO_{3}
TiO_{2} has the greater percent by mass of titanium.
170. Vitamin E Many plants contain vitamin E
$\left(\mathrm{C}_{29} \mathrm{H}_{50} \mathrm{O}_{2}\right)$, a substance that some think slows the aging process in humans. What is the percent composition of vitamin E?
$29 \mathrm{~mol} \mathrm{C} \times \frac{12.01 \mathrm{~g} \mathrm{C}}{1 \mathrm{~mol} \mathrm{C}}=348.29 \mathrm{~g} \mathrm{C}$
$50 \mathrm{~mol} \mathrm{H} \times \frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}}=50.400 \mathrm{~g} \mathrm{H}$
$2 \mathrm{~mol} \mathrm{O} \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}}=32.00 \mathrm{~g} \mathrm{O}$
molar mass $=348.29+50.400+32.00=430.69$ $\mathrm{g} / \mathrm{mol}$
percent by mass $=\frac{348.29 \mathrm{~g}}{430.69 \mathrm{~g}} \times 100=80.87 \% \mathrm{C}$
percent by mass $=\frac{50.400 \mathrm{~g}}{430.69 \mathrm{~g}} \times 100=11.70 \% \mathrm{H}$
percent by mass $=\frac{32.00 \mathrm{~g}}{430.69 \mathrm{~g}} \times 100=7.430 \% \mathrm{O}$
171. Artificial Sweetener Determine the percent composition of aspartame $\left(\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}\right)$, an artificial sweetener.
$14 \mathrm{~mol} \mathrm{C} \times \frac{12.01 \mathrm{~g} \mathrm{C}}{1 \mathrm{~mol} \mathrm{C}}=168.14 \mathrm{~g} \mathrm{C}$
$18 \mathrm{~mol} \mathrm{H} \times \frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}}=18.144 \mathrm{~g} \mathrm{H}$
$2 \mathrm{~mol} \mathrm{~N} \times \frac{14.01 \mathrm{~g} \mathrm{~N}}{1 \mathrm{~mol} \mathrm{~N}}=28.02 \mathrm{~g} \mathrm{~N}$
$5 \mathrm{~mol} \mathrm{O} \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}}=80.00 \mathrm{~g} \mathrm{O}$
molar mass $=168.14+18.144+28.02+80.00$ $=294.30 \mathrm{~g} / \mathrm{mol}$
percent by mass $=\frac{168.14 \mathrm{~g}}{294.30 \mathrm{~g}} \times 100=57.13 \% \mathrm{C}$
percent by mass $=\frac{18.144 \mathrm{~g}}{294.30 \mathrm{~g}} \times 100=6.165 \% \mathrm{H}$
percent by mass $=\frac{28.02 \mathrm{~g}}{294.30 \mathrm{~g}} \times 100=9.521 \% \mathrm{~N}$
percent by mass $=\frac{80.00 \mathrm{~g}}{294.30 \mathrm{~g}} \times 100=27.18 \% \mathrm{O}$
172. MSG Monosodium glutamate, known as

MSG, is sometimes added to food to enhance flavor. Analysis determined this compound to be $35.5 \% \mathrm{C}, 4.77 \% \mathrm{H}, 8.29 \% \mathrm{~N}, 13.6 \% \mathrm{Na}$, and $37.9 \% \mathrm{O}$. What is its empirical formula?
$35.5 \mathrm{~g} \mathrm{C} \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.01 \mathrm{~g} \mathrm{C}}=2.96 \mathrm{~mol} \mathrm{C}$
$4.77 \mathrm{~g} \mathrm{H} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{~g} \mathrm{H}}=4.73 \mathrm{~mol} \mathrm{H}$
$8.29 \mathrm{~g} \mathrm{~N} \times \frac{1 \mathrm{~mol} \mathrm{~N}}{14.01 \mathrm{~g} \mathrm{~N}}=0.592 \mathrm{~mol} \mathrm{~N}$
$13.6 \mathrm{~g} \mathrm{Na} \times \frac{1 \mathrm{~mol} \mathrm{Na}}{22.99 \mathrm{~g} \mathrm{Na}}=0.592 \mathrm{~mol} \mathrm{Na}$
$37.9 \mathrm{~g} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} \mathrm{O}}=2.37 \mathrm{~mol} \mathrm{O}$
$\frac{2.96 \mathrm{~mol} \mathrm{C}}{0.0592}=5.00 \mathrm{~mol} \mathrm{C}$
$\frac{4.73 \mathrm{~mol} \mathrm{H}}{0.0592}=8.00 \mathrm{~mol} \mathrm{H}$
$\frac{.0592 \mathrm{~mol} \mathrm{~N}}{0.0592}=1.00 \mathrm{~mol} \mathrm{~N}$
$\frac{0.0592 \mathrm{~mol} \mathrm{Na}}{0.0592}=1.00 \mathrm{~mol} \mathrm{Na}$
$\frac{2.37 \mathrm{~mol} \mathrm{O}}{0.0592}=4.00 \mathrm{~mol} \mathrm{O}$
The simplest whole-number ratio is 5.00 mol C : $8.00 \mathrm{~mol} \mathrm{H}: 1.00 \mathrm{~mol} \mathrm{~N}: 1.00 \mathrm{~mol} \mathrm{Na}: 4.00 \mathrm{~mol} 0$. The empirical formula is $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{NO}_{4} \mathrm{Na}$.
173. What is the empirical formula of a compound that contains $10.52 \mathrm{~g} \mathrm{Ni}, 4.38 \mathrm{~g} \mathrm{C}$, and 5.10 g N ?
$10.52 \mathrm{~g} \mathrm{Ni} \times \frac{1 \mathrm{~mol} \mathrm{Ni}}{58.69 \mathrm{~g} \mathrm{Ni}}=0.1792 \mathrm{~mol} \mathrm{Ni}$
$4.38 \mathrm{~g} \mathrm{C} \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.01 \mathrm{~g} \mathrm{C}}=0.3470 \mathrm{~mol} \mathrm{C}$
$5.10 \mathrm{~g} \mathrm{~N} \times \frac{1 \mathrm{~mol} \mathrm{~N}}{14.01 \mathrm{~g} \mathrm{~N}}=0.3640 \mathrm{~mol} \mathrm{~N}$
$\frac{0.1792 \mathrm{~mol} \mathrm{Ni}}{0.1792}=1.000 \mathrm{~mol} \mathrm{Ni}$
$\frac{0.3470 \mathrm{~mol} \mathrm{C}}{0.1792}=1.936 \mathrm{~mol} \mathrm{C}$
$\left.\frac{0.3640 \mathrm{~mol} \mathrm{~N}}{0.1792}=2.031 \mathrm{~mol} \mathrm{~N} / \mathrm{m}^{2}\right]$?
The simplest ratio is $1.00 \mathrm{~mol} \mathrm{Ni}: 1.936 \mathrm{~mol} \mathrm{C}$: 2.031 mol N . The empirical formula is $\mathrm{Ni}(\mathrm{CN})_{2}$.
174. Patina The Statue of Liberty has turned green because of the formation of a patina. Two copper compounds, $\mathrm{Cu}_{3}(\mathrm{OH})_{4} \mathrm{SO}_{4}$ and $\mathrm{Cu}_{4}(\mathrm{OH})_{6} \mathrm{SO}_{4}$, form this patina. Find the mass percentage of copper in each compound.
$\mathrm{Cu}_{3}(\mathrm{OH})_{4} \mathrm{SO}_{4}$
$3 \mathrm{~mol} \mathrm{Cu} \times \frac{63.55 \mathrm{~g} \mathrm{Cu}}{1 \mathrm{~mol} \mathrm{Cu}}=190.65 \mathrm{~g} \mathrm{Cu}$
$8 \mathrm{~mol} \mathrm{O} \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}}=128.00 \mathrm{~g} \mathrm{O}$
$4 \mathrm{~mol} \mathrm{H} \times \frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}}=4.032 \mathrm{~g} \mathrm{H}$
$1 \mathrm{~mol} \mathrm{~S} \times \frac{32.07 \mathrm{~g} \mathrm{~S}}{1 \mathrm{~mol} \mathrm{~S}}=32.07 \mathrm{~g} \mathrm{~S}$
molar mass $\mathrm{Cu}_{3}(\mathrm{OH})_{4} \mathrm{SO}_{4}=190.65+128.00+$ $4.032+32.07=354.75 \mathrm{~g} / \mathrm{mol}$
percent by mass $=\frac{190.65 \mathrm{~g}}{354.75}+100=53.74 \%$
$\mathrm{Cu}_{4}(\mathrm{OH})_{6} \mathrm{SO}_{4}$
$4 \mathrm{~mol} \mathrm{Cu} \times \frac{63.55 \mathrm{~g} \mathrm{Cu}}{1 \mathrm{~mol} \mathrm{Cu}}=254.20 \mathrm{~g} \mathrm{Cu}$
$10 \mathrm{~mol} \mathrm{O} \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}}=160.00 \mathrm{~g} \mathrm{O}$
$6 \mathrm{~mol} \mathrm{H} \times \frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}}=6.048 \mathrm{~g} \mathrm{H}$
$1 \mathrm{~mol} \mathrm{~S} \times \frac{32.07 \mathrm{~g} \mathrm{~S}}{1 \mathrm{~mol} \mathrm{~S}}=32.07 \mathrm{~g} \mathrm{~S}$
molar mass $\mathrm{Cu}_{4}(\mathrm{OH})_{6} \mathrm{SO}_{4}=254.20+160.00$
$+6.048+32.07=452.32 \mathrm{~g} / \mathrm{mol}$
percent by mass $=\frac{254.20 \mathrm{~g}}{452.32 \mathrm{~g}} \times 100=56.20 \%$

Section 10.5

Mastering Concepts

175. What is a hydrated compound? Use an example to illustrate your answer.

A hydrated compound is a compound that has a specific number of water molecules associated with its atoms, for example, $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathbf{1 0 H}_{2} \mathrm{O}$ and $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$.
176. Explain how hydrates are named.

First, name the compound. Then, add a prefix (mono- di- tri-) that indicates how many water molecules are associated with one mole of compound.
177. Desiccants Why are certain electronic devices transported with desiccants?

Desiccants are anhydrous forms of a hydrate that absorbs water from the air and keep it off of electronic devices.
178. In a laboratory setting, how would you determine if a compound was a hydrate?
Mass a sample of the compound before heating. Heat the compound, allow it to cool, and remass the sample. A change in mass might indicate that the compound is a hydrate.
179. Write the formula for the following hydrates.
a. nickel(II) chloride hexahydrate

$$
\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}
$$

b. cobalt(II) chloride hexahydrate

$$
\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}
$$

c. magnesium carbonate pentahydrate

$$
\mathrm{MgCO}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}
$$

d. sodium sulfate decahydrate
$\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot \mathbf{1 0 H}_{2} \mathrm{O}$

Mastering Problems

180. Determine the mass percent of anhydrous sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ and water in sodium carbonate decahydrate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}\right)$.
$2 \mathrm{~mol} \mathrm{Na} \times \frac{22.99 \mathrm{~g} \mathrm{Na}}{1 \mathrm{~mol} \mathrm{Na}}=45.98 \mathrm{~g} \mathrm{Na}$
$1 \mathrm{~mol} \mathrm{C} \times \frac{12.01 \mathrm{~g} \mathrm{C}}{1 \mathrm{~mol} \mathrm{C}}=12.01 \mathrm{~g} \mathrm{C}$
$13 \mathrm{~mol} \mathrm{O} \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}}=208.00 \mathrm{~g}$
$20 \mathrm{~mol} \mathrm{H} \times \frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}}=20.16 \mathrm{~g} \mathrm{H}$
molar mass $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}=45.98+12.01+$ $208.00+20.16=286.15 \mathrm{~g} / \mathrm{mol}$
$2 \mathrm{~mol} \mathrm{Na} \times \frac{22.99 \mathrm{~g} \mathrm{Na}}{1 \mathrm{molNa}}=45.98 \mathrm{~g} \mathrm{Na}$
$1 \mathrm{~mol} \mathrm{C} \times \frac{12.01 \mathrm{~g} \mathrm{C}}{1-\mathrm{molC}}=12.01 \mathrm{~g} \mathrm{C}$
$3 \mathrm{~mol} \mathrm{O} \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{molo}}=48.00 \mathrm{~g} \mathrm{o}$
molar mass $\mathrm{Na}_{2} \mathrm{CO}_{3}=45.98+12.01+48.00=$ $105.99 \mathrm{~g} / \mathrm{mol}$
$1 \mathrm{~mol} \mathrm{O} \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}}=16.00 \mathrm{~g} \mathrm{o}$
$2 \mathrm{~mol} \mathrm{H} \times \frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}}=2.016 \mathrm{~g} \mathrm{H}$
molar mass $\mathrm{H}_{2} \mathrm{O}=16.00+2.016=18.02 \mathrm{~g} / \mathrm{mol}$
$\frac{105.99 \mathrm{~g}}{286.15 \mathrm{~g}} \times 100=37.03 \% \mathrm{Na}_{2} \mathrm{CO}_{3}$
$\frac{10(18.02 \mathrm{~g})}{286.15 \mathrm{~g}} \times 100=62.97 \% \mathrm{H}_{2} \mathrm{O}$
181. Table 10.4 shows data from an experiment to determine the formulas of hydrated barium chloride. Determine the formula for the hydrate and its name.

Data for $\mathrm{BaCl}_{2} \cdot{ }^{\|c\|} \mathrm{H}_{2} \mathrm{O}$	
Mass of empty crucible	21.30 g
Mass of hydrate + crucible	31.35 mL
Initial mass of hydrate	
Mass after heating 5 min	29.87 g
Mass of anhydrous solid	

initial mass of hydrate $=$ (mass of hydrate + crucible) - (mass of empty crucible) $=31.35 \mathrm{~g}-$ $21.30 \mathrm{~g}=10.05 \mathrm{~g}$
mass of anhydrous solid = (mass after heating $5 \mathrm{~min})$ - (mass of empty crucible) $=29.87 \mathrm{~g}-$ $21.30 \mathrm{~g}=8.57 \mathrm{~g}$
mass of water $=$ (initial mass of hydrate) (mass of anhydrous solid) $=10.05 \mathrm{~g}-8.57 \mathrm{~g}=$ 1.48 g
$1 \mathrm{~mol} \mathrm{Ba} \times \frac{137.33 \mathrm{~g} \mathrm{Ba}}{1 \mathrm{~mol} \mathrm{Ba}}=137.33 \mathrm{~g} \mathrm{Ba}$
$2 \mathrm{~mol} \mathrm{Cl} \times \frac{35.45 \mathrm{~g} \mathrm{Cl}}{1 \mathrm{~mol} \mathrm{Cl}}=70.90 \mathrm{~g} \mathrm{Cl}$
molar mass $\mathrm{BaCl}_{2}=137.33+70.90=208.23$ $\mathrm{g} / \mathrm{mol}$
$1 \mathrm{~mol} \mathrm{O} \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}}=16.00 \mathrm{~g} \mathrm{O}$
$2 \mathrm{~mol} \mathrm{H} \times \frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}}=2.016 \mathrm{~g} \mathrm{H}$
molar mass $\mathrm{H}_{2} \mathrm{O}=16.00+2.016=18.02 \mathrm{~g} / \mathrm{mol}$
$8.57 \mathrm{~g} \mathrm{BaCl}_{2} \times \frac{1 \mathrm{~mol} \mathrm{BaCl}_{2}}{208.23 \mathrm{~g} \mathrm{BaCl}_{2}}=0.0412 \mathrm{~mol}$
BaCl_{2}
$1.48 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}=0.0821 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
$n=\frac{0.0821 \mathrm{~mol}}{0.0412 \mathrm{~mol}}=2.00$
$\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, barium chloride dihydrate
182. Chromium(III) nitrate forms a hydrate that is 40.50% water by mass. What is its chemical formula?
$100.0 \%-40.5 \%=59.5 \% \mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3}$
$\frac{59.5 \mathrm{~g} \mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3}}{238 \mathrm{~g} / \mathrm{mol}}=\frac{0.250 \mathrm{~mol} \mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3}}{0.250 \mathrm{~mol}}$
$=1 \mathrm{~mol} \mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3}$
$\frac{40.80 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{18.02 \mathrm{~g} / \mathrm{mol}}=\frac{2.26 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{0.250 \mathrm{~mol}}=9 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
formula $=\mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}$
183. Determine the percent composition of $\mathrm{MgCO}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ and draw a pie graph to represent the hydrate.

Circle graph should show the following percentages (if addition of molar mass takes place to one-hundredths spot): $13.93 \% \mathrm{Mg}$, $6.89 \% \mathrm{C}, 27.52 \% \mathrm{O}, 51.66 \% \mathrm{H}_{2} \mathrm{O}$

Molar mass $=174.41 \mathrm{~g} / \mathrm{mol}$
$1 \mathrm{~mol} \mathrm{Mg} \times \frac{24.30 \mathrm{~g} / \mathrm{mol}}{174.41 \mathrm{~g} / \mathrm{mol}} \times 100=13.93 \% \mathrm{Mg}$
$1 \mathrm{~mol} \mathrm{C} \times \frac{12.01 \mathrm{~g} / \mathrm{mol}}{174.41 \mathrm{~g} / \mathrm{mol}} \times 100=6.89 \% \mathrm{C}$
$3 \mathrm{~mol} \mathrm{O} \times \frac{16.00 \mathrm{~g} / \mathrm{mol}}{174.41 \mathrm{~g} / \mathrm{mol}} \times 100=27.52 \% \mathrm{O}$
$5 \mathrm{~mol} \mathrm{H} \mathbf{2} \times \frac{18.02 \mathrm{~g}}{\mathrm{~mol} / 174.41 \mathrm{~g} / \mathrm{mol}} \times 100$
$=51.66 \% \mathrm{H}_{2} \mathrm{O}$
184. What is the formula and name of a hydrate that is 85.3% barium chloride and 14.7% water?
$1 \mathrm{~mol} \mathrm{Ba} \times \frac{137.33 \mathrm{~g} \mathrm{Ba}}{1 \mathrm{~mol} \text { Bas }}=137.33 \mathrm{~g} \mathrm{Ba}$
$2 \mathrm{~mol} \mathrm{Cl} \times \frac{35.45 \mathrm{~g} \mathrm{Cl}}{1 \mathrm{~mol} \mathrm{Cl}}=70.90 \mathrm{~g} \mathrm{Cl}$
molar mass $\mathrm{BaCl}_{2}=137.33+70.90=208.23$ $\mathrm{g} / \mathrm{mol}$
$1 \mathrm{~mol} \mathrm{O} \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}}=16.00 \mathrm{~g} \mathrm{o}$
$2 \mathrm{~mol} \mathrm{H} \times \frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}}=2.016 \mathrm{~g} \mathrm{H}$
molar mass $\mathrm{H}_{2} \mathrm{O}=16.00+2.016=18.02 \mathrm{~g} / \mathrm{mol}$
$85.3 \mathrm{~g} \mathrm{BaCl}_{2} \times \frac{1 \mathrm{~mol} \mathrm{BaCl}_{2}}{208.23 \mathrm{~g} \mathrm{BaCl}_{2}}=0.410 \mathrm{~mol} \mathrm{BaCl}_{2}$
$14.7 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}=0.816 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
$n=\frac{0.816 \mathrm{~mol}}{0.410 \mathrm{~mol}}=2.00$
$\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, barium chloride dihydrate
185. Gypsum is hydrated calcium sulfate. A $4.89-\mathrm{g}$ sample of this hydrate was heated. After the water was removed, 3.87 g anhydrous calcium sulfate remained. Determine the formula for this hydrate and name the compound.
mass of hydrated $\mathrm{CaSO}_{4}=$ mass of $\mathrm{CaSO}_{4}+$ mass of $\mathrm{H}_{2} \mathrm{O}$
mass of $\mathrm{H}_{2} \mathrm{O}=$ mass of hydrated CaSO_{4} - mass of $\mathrm{H}_{2} \mathrm{O}=4.89 \mathrm{~g}-3.87 \mathrm{~g}=1.02 \mathrm{~g}$
$1 \mathrm{~mol} \mathrm{Ca} \times \frac{40.08 \mathrm{~g} \mathrm{Ca}}{1 \mathrm{~mol} \mathrm{Ca}}=40.08 \mathrm{~g} \mathrm{Ca}$
$1 \mathrm{~mol} \mathrm{~S} \times \frac{32.07 \mathrm{~g} \mathrm{~S}}{1 \mathrm{~mol} \mathrm{~S}}=32.07 \mathrm{~g} \mathrm{~S}$
$4 \mathrm{~mol} \mathrm{O} \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}}=64.00 \mathrm{~g} \mathrm{O}$
molar mass $\mathrm{CaSO}_{4}=40.08+32.07+64.00=$ $136.15 \mathrm{~g} / \mathrm{mol}$
$1 \mathrm{~mol} \mathrm{O} \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}}=16.00 \mathrm{~g} \mathrm{O}$
$2 \mathrm{~mol} \mathrm{H} \times \frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}}=2.016 \mathrm{~g} \mathrm{H}$
molar mass $\mathrm{H}_{2} \mathrm{O}=16.00+2.016=18.02 \mathrm{~g} / \mathrm{mol}$
$3.87 \mathrm{~g} \mathrm{CaSO}_{4} \times \frac{1 \mathrm{~mol} \mathrm{CaSO}_{4}}{134.15 \mathrm{~g} \mathrm{CaSO}_{4}}=0.0284 \mathrm{~mol}$ CaSO_{4}
$1.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}+\frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}=0.0566 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
$n=\frac{0.0566 \mathrm{~mol}}{0.0284 \mathrm{~mol}}=2.00$
$\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, calcium sulfate dihydrate
186. A $1.628-\mathrm{g}$ sample of a hydrate of magnesium iodide is heated until its mass is reduced to 1.072 g and all water has been removed. What is the formula of the hydrate?
mass of water $=$ mass of hydrate - mass of anhydrous solid $=1.628 \mathrm{~g}-1.072 \mathrm{~g}=0.556 \mathrm{~g}$
$1 \mathrm{~mol} \mathrm{Mg} \times \frac{24.31 \mathrm{~g} \mathrm{Mg}}{1 \mathrm{~mol} \mathrm{Mg}}=24.31 \mathrm{~g} \mathrm{Mg}$
$2 \mathrm{~mol} \mathrm{I} \times \frac{126.90 \mathrm{~g} \mathrm{I}}{1 \mathrm{~mol} \mathrm{I}}=253.80 \mathrm{~g} \mathrm{I}$
molar mass MgI $_{2}=24.31+253.80=278.11$ g/mol
$1 \mathrm{~mol} \mathrm{O} \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}}=16.00 \mathrm{~g} \mathrm{O}$
$2 \mathrm{~mol} \mathrm{H} \times \frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}}=2.016 \mathrm{~g} \mathrm{H}$
molar mass $\mathrm{H}_{2} \mathrm{O}=16.00+2.016=18.02 \mathrm{~g} / \mathrm{mol}$
$1.072 \mathrm{~g} \mathrm{MgI}_{2} \times \frac{1 \mathrm{~mol} \mathrm{MgI}_{2}}{278.11 \mathrm{~g} \mathrm{MgI}_{2}}$
$=0.003855 \mathrm{~mol} \mathrm{Mgl}{ }_{2}$
$0.556 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}=0.0309 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
$n=\frac{0.0309 \mathrm{~mol}}{0.003855 \mathrm{~mol}}=8.02$
$\mathbf{M g I}_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}$
187. Borax Hydrated sodium tetraborate $\left(\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot x \mathrm{H}_{2} \mathrm{O}\right)$ is commonly called borax. Chemical analysis indicates that this hydrate is 52.8% sodium tetraborate and 47.2% water. Determine the formula and name the hydrate.
$2 \mathrm{~mol} \mathrm{Na} \times \frac{22.99 \mathrm{~g} \mathrm{Na}}{1 \mathrm{~mol} \mathrm{Na}}=45.98 \mathrm{~g} \mathrm{Na}$
$4 \mathrm{~mol} \mathrm{~B} \times \frac{12.01 \mathrm{~g} \mathrm{~B}}{1 \mathrm{~mol} \mathrm{~B}}=48.04 \mathrm{~g} \mathrm{~B}$
$7 \mathrm{~mol} \mathrm{O} \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}}=112.00 \mathrm{~g} \mathrm{O}$
molar mass $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}=45.98+48.04+112.00=$ $206.02 \mathrm{~g} / \mathrm{mol}$
$1 \mathrm{~mol} \mathrm{O} \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}}=16.00 \mathrm{~g} \mathrm{O}$
$2 \mathrm{~mol} \mathrm{H} \times \frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}}=2.016 \mathrm{~g} \mathrm{H}$
molar mass $\mathrm{H}_{2} \mathrm{O}=16.00+2.016=18.02 \mathrm{~g} / \mathrm{mol}$
$52.8 \mathrm{~g} \mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \times \frac{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}}{206.02 \mathrm{~g} \mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}}$
$=0.256 \mathrm{~mol} \mathrm{Na} \mathbf{2}_{4} \mathrm{O}_{7}$
$47.2 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}=2.61 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
$n=\frac{2.61 \mathrm{~mol}}{0.256 \mathrm{~mol}}=10.2$
$\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 10 \mathrm{H}_{2} \mathrm{O}$, sodium tetraborate decahydrate

Mixed Review

188. Rank samples $\mathrm{A}-\mathrm{D}$ from least number of atoms to greatest number of atoms. A: 1.0 mol of H_{2}, B: 0.75 mol of $\mathrm{H}_{2} \mathrm{O}, \mathrm{C}: 1.5 \mathrm{~mol}$ of $\mathrm{NaCl}, \mathrm{D}: 0.50 \mathrm{~mol}$ of $\mathrm{Ag}_{2} \mathrm{~S}$
A: H2 has two atoms per mole, thus $2(1.0 \mathrm{~mol})$ $=2 \mathrm{~mol}$ atoms
$2.0 \mathrm{~mol} \times \frac{6.02+10^{23} \text { atoms }}{1 \mathrm{~mol} \mathrm{H}}=1.20+10^{24}$
atoms
B: $\mathrm{H}_{2} \mathrm{O}$ has three atoms per mole, thus 3
(0.75 mol) $=2.25 \mathrm{~mol}$ atoms

C: NaCl has two atoms per mole, thus (1.5 mol)
$=3.0 \mathrm{~mol}$ atoms
$3.0 \mathrm{~mol} \times \frac{6.02+10^{23} \text { atoms }}{1 \mathrm{~mol}}=1.81+10^{24}$ atoms

D: $\mathrm{Ag}_{2} \mathrm{~S}$ has three atoms per mole, thus 3(0.50 $\mathrm{mol})=1.5 \mathrm{~mol}$ atoms
$1.5 \mathrm{~mol} \times \frac{6.02+10^{23} \text { atoms }}{1 \mathrm{~mol}}=9.03+10^{23}$
atoms
D $<$ A $<$ B $<$ C

189. The graph in Figure 10.23 shows the percent composition of a compound containing carbon, hydrogen, oxygen, and nitrogen. How many grams of each element are present in 100 g of the compound?

Because the percentages are 100-based values, and the masses per $100-\mathrm{g}$ are desired, simply change each percent to grams.
$52.42 \mathrm{~g} \mathrm{O}, 22.95 \mathrm{~g} \mathrm{~N}, 19.68 \mathrm{~g} \mathrm{C}, 4.96 \mathrm{~g} \mathrm{H}$
190. How many grams of $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ must you measure out in a container to have exactly Avogadro's number of particles?
Avogadro's number is the number of particles in one mole. You must measure 237.8 g of $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ to have one mole of particles of this compound.
191. One atom of an unknown element has a mass of $6.66110^{-23} \mathrm{~g}$. What is the identity of this element?
$\frac{6.66+10^{-23} \mathrm{~g}}{1 \text { atom }} \times \frac{6.02+10^{23} \text { atoms }}{1 \mathrm{~mol}}$
$=40.09 \mathrm{~g} / \mathrm{mol}$
This is closest to the molar mass of calcium.
192. Skunks Analysis of skunk spray yields a molecule with $44.77 \% \mathrm{C}, 7.46 \% \mathrm{H}$ and 47.76% S. What is the chemical formula for this molecule found in the spray from skunks that scientists think is partly responsible for the foul odor?

$$
\frac{44.77 \mathrm{~g} \mathrm{C}}{12.01 \mathrm{~g} / \mathrm{mol}}=\frac{3.73 \mathrm{~mol} \mathrm{C}}{1.49 \mathrm{~mol}}=2.5 \mathrm{~mol} \mathrm{C}
$$

$\frac{7.46 \mathrm{~g} \mathrm{H}}{1.008 \mathrm{~g} / \mathrm{mol}}=\frac{7.40 \mathrm{~mol} \mathrm{H}}{1.49 \mathrm{~mol}}=5 \mathrm{~mol} \mathrm{H}$
$\frac{47.776 \mathrm{~g} \mathrm{~S}}{32.07 \mathrm{~g} / \mathrm{mol}}=\frac{1.49 \mathrm{~mol} \mathrm{~S}}{1.49 \mathrm{~mol}}=1 \mathrm{~mol} \mathrm{~S}$
$\frac{3.73 \mathrm{~mol} \mathrm{C}}{1.49 \mathrm{~mol}}: \frac{7.40 \mathrm{~mol} \mathrm{H}}{1.49 \mathrm{~mol}}: \frac{1.49 \mathrm{~mol} \mathrm{~S}}{1.49 \mathrm{~mol}}$
($2.5 \mathrm{~mol} \mathrm{C}: 5.0 \mathrm{~mol} \mathrm{H}: 1 \mathrm{~mol} \mathrm{~S}) 2=5.0 \mathrm{~mol} \mathrm{C}: 10.0$ $\mathrm{mol} \mathrm{H}: 2.0 \mathrm{~mol} \mathrm{~S}=\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~S}_{2}$
193. How many moles are present in 1.00 g of each compound?
a. L-tryptophan $\left(\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}\right)$, an essential amino acid
$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$: molar mass $=204 \mathrm{~g} / \mathrm{mol}$ $1.00 \mathrm{~g} / 204 \mathrm{~g} / \mathrm{mol}=0.00490 \mathrm{~mol} \mathrm{C} 11 \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$
b. magnesium sulfate heptahydrate, also known as Epsom salts
$\mathrm{MgSO}_{4} \cdot \mathbf{7} \mathrm{H}_{2} \mathrm{O}:$ molar mass $=\mathbf{2 4 6 . 4} \mathbf{g} / \mathrm{mol}$
$1.00 \mathrm{~g} / 246.4 \mathrm{~g} / \mathrm{mol}=$
$0.00406 \mathrm{~mol} \mathrm{MgSO} 4 \cdot 7 \mathrm{H}_{2} \mathrm{O}$
c. propane $\left(\mathrm{C}_{5} \mathrm{H}_{8}\right)$, a fuel
$\mathrm{C}_{5} \mathrm{H}_{8}:$ molar mass $=68.1 \mathrm{~g} / \mathrm{mol}$
$1.00 \mathrm{~g} / 68.1 \mathrm{~g} / \mathrm{mol}=0.0147 \mathrm{~mol} \mathrm{C}_{5} \mathrm{H}_{8}$
194. A compound contains 6.0 g of carbon and 1.0 g of hydrogen, and has a molar mass of $42.0 \mathrm{~g} / \mathrm{mol}$. What are the compound's percent composition, empirical formula, and molecular formula?
$6.0 \mathrm{~g} \mathrm{C} / 7.0 \mathrm{~g}=85.7 \% \mathrm{C}$
$1.0 \mathrm{~g} \mathrm{H} / 7.0 \mathrm{~g}=14.3 \% \mathrm{H}$
$(6.0 \mathrm{~g} \mathrm{C}) /(12.01 \mathrm{~g} / \mathrm{mol})=0.50 \mathrm{~mol} \mathrm{C}$
$(1.0 \mathrm{~g} \mathrm{H}) /(1.008 \mathrm{~g} / \mathrm{mol})=1.0 \mathrm{~mol} \mathrm{H}$
$0.50 \mathrm{~mol} \mathrm{C} / 0.50 \mathrm{~mol}=1 \mathrm{~mol} \mathrm{C}$
$1.0 \mathrm{~mol} \mathrm{H} / 0.50 \mathrm{~mol}=2 \mathrm{~mol} \mathrm{H}$
empirical formual: $1 \mathrm{~mol} \mathrm{C}: 2 \mathrm{~mol} \mathrm{H}=\mathrm{CH}_{2}$
empirical mass $=14.0 \mathrm{~g} / \mathrm{mol}$
empirical mass $/$ molar mass $=(42.0 \mathrm{~g} / \mathrm{mol}) /(14.0$ $\mathrm{g} / \mathrm{mol}$) $=3$
molecular formula $=3\left(\mathrm{CH}_{2}\right)=\mathrm{C}_{3} \mathrm{H}_{6}$
195. Which of these compounds has the greatest percent of oxygen by mass: $\mathrm{TiO}_{2}, \mathrm{Fe}_{2} \mathrm{O}_{3}$, or $\mathrm{Al}_{2} \mathrm{O}_{3}$?
$1 \mathrm{~mol} \mathrm{Ti}+\frac{47.87 \mathrm{~g} \mathrm{Ti}}{1 \mathrm{~mol} \mathrm{Ti}}=47.87 \mathrm{~g} \mathrm{Ti}$
$2 \mathrm{~mol} \mathrm{O}+\frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}}=32.00 \mathrm{~g} \mathrm{o}$
molar mass $\mathrm{TiO}_{2}=47.87+32.00=79.87 \mathrm{~g} / \mathrm{mol}$
$2 \mathrm{~mol} \mathrm{Fe}+\frac{55.85 \mathrm{~g} \mathrm{Fe}}{1 \mathrm{~mol} \mathrm{Fe}}=111.70 \mathrm{~g} \mathrm{Fe}$
$3 \mathrm{~mol} \mathrm{O}+\frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}}=48.00 \mathrm{~g} \mathrm{o}$
molar mass $\mathrm{Fe}_{2} \mathrm{O}_{3}=111.70+48.00=$ $159.70 \mathrm{~g} / \mathrm{mol}$
$2 \mathrm{~mol} \mathrm{Al}+\frac{26.98 \mathrm{~g} \mathrm{Al}}{1 \mathrm{~mol} \mathrm{Al}}=53.96 \mathrm{~g} \mathrm{Al}$
$3 \mathrm{~mol} \mathrm{O}+\frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}}=48.00 \mathrm{~g} \mathrm{o}$
molar mass $\mathrm{Al}_{2} \mathrm{O}_{3}=53.96+48.00$
$54.44 \mathrm{~g} / \mathrm{mol}$
percent by mass $=\frac{32.00 \mathrm{~g}}{79.87 \mathrm{~g}}+100=$
$40.07 \% \mathrm{O}$ in TiO_{2}
percent by mass $=\frac{48.00 \mathrm{~g}}{159.70 \mathrm{~g}}+100=$
$30.06 \% \mathrm{O}$ in $\mathrm{Fe}_{2} \mathrm{O}_{3}$
percent by mass $=\frac{48.00 \mathrm{~g}}{54.44 \mathrm{~g}}+100$
$=87.99 \% \mathrm{O}$ in $\mathrm{Al}_{2} \mathrm{O}_{3}$
$\mathrm{Al}_{2} \mathrm{O}_{3}$ has the greatest percent of oxygen by mass.
196. Mothballs Naphthalene, commonly found in mothballs, is composed of 93.7% carbon and 6.3% hydrogen. The molar mass of naphthalene is $128 \mathrm{~g} / \mathrm{mol}$. Determine the empirical and molecular formulas for naphthalene.
$93.7 \mathrm{~g} \mathrm{C}+\frac{1 \mathrm{~mol} \mathrm{C}}{12.01 \mathrm{~g} \mathrm{C}}=7.80 \mathrm{~mol} \mathrm{C}$
$6.3 \mathrm{~g} \mathrm{H}+\frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{~g} \mathrm{H}}=6.2 \mathrm{~mol} \mathrm{H}$
$\frac{7.80 \mathrm{~mol} \mathrm{C}}{6.2}=1.25 \mathrm{~mol} \mathrm{C}$
$\frac{6.2 \mathrm{~mol} \mathrm{H}}{6.2}=1.0 \mathrm{~mol} \mathrm{H}$

The simplest ratio is $1.25 \mathrm{~mol} \mathrm{C}: 1.0 \mathrm{~mol} \mathrm{H}$. Multiply both subscripts by four to obtain the simplest whole-number ratio. The empirical formula is $\mathrm{C}_{5} \mathrm{H}_{4}$.
$5 \mathrm{~mol} \mathrm{C}+\frac{12.01 \mathrm{~g} \mathrm{C}}{1 \mathrm{~mol} \mathrm{C}}=60.05 \mathrm{~g} \mathrm{C}$
$4 \mathrm{~mol} \mathrm{H}+\frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}}=4.032 \mathrm{~g} \mathrm{H}$
molar mass $=60.05+4.032=64.09 \mathrm{~g} / \mathrm{mol}$
$n=\frac{128 \mathrm{~g} / \mathrm{mol}}{64.09 \mathrm{~g} / \mathrm{mol}}=2.00$
Molecular formula is $\mathrm{C}_{10} \mathrm{H}_{8}$.
197. Which of these molecular formulas are also empirical formulas: ethyl ether $\left(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}\right)$, aspirin $\left(\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}\right)$, butyl dichloride $\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{Cl}_{2}\right)$, glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$?
$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$ and $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$; The subscripts in $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$ and $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$ represent simplest whole-number ratios.

Think Critically

198. Apply Concepts A mining company has two possible sources of copper: chalcopyrite $\left(\mathrm{CuFeS}_{2}\right)$ and chalcocite $\left(\mathrm{Cu}_{2} \mathrm{~S}\right)$. If the mining conditions and the extraction of copper from the ore were identical for each of the ores, which ore would yield the greater quantity of copper? Explain your answer.
CuFeS_{2}
$1 \mathrm{Cu}+63.55 \mathrm{~g} / \mathrm{mol}=63.55 \mathrm{~g}$
$1 \mathrm{Fe}+55.85 \mathrm{~g} / \mathrm{mol}=55.85$
$2 \mathrm{~S}+32.07 \mathrm{~g} / \mathrm{mol}=64.14 \mathrm{~g}$
molar mass $=183.54 \mathrm{~g} / \mathrm{mol}$
$\% \mathrm{Cu}=(63.55 \mathrm{~g} / 183.54 \mathrm{~g} / \mathrm{mol})+100=$
34.62 \% Cu
$\mathrm{Cu}_{2} \mathrm{~S}$
$2 \mathrm{Cu}+63.55 \mathrm{~g} / \mathrm{mol}=127.10 \mathrm{~g}$
$1 \mathrm{~S}+32.07 \mathrm{~g} / \mathrm{mol}=32.07 \mathrm{~g}$
molar mass $=159.17 \mathrm{~g} / \mathrm{mol}$
$\% \mathrm{Cu}=(127.10 \mathrm{~g} / 159.17 \mathrm{~g} / \mathrm{mol})+100=$ 79.9\% Cu

Chalcopyrite $\left(\mathrm{CuFeS}_{2}\right)$ is 34.6% copper by mass (determined from percent composition) and chalcocite $\left(\mathrm{Cu}_{2} \mathrm{~S}\right)$ is 79.9% copper by mass. Chalcocite would yield the greater quantity of copper because the ore has the greater percentage copper by mass.
199. Analyze and Conclude On a field trip, students collected rock samples. Analysis of the rocks revealed that two of the rock samples contained lead and sulfur. Table $\mathbf{1 0 . 5}$ shows the percent lead and sulfur in each of the rocks. Determine the molecular formula of each rock. What can the students conclude about the rock samples?

Lead and Sulfur Content

Rock Sample	\% Lead	\% Sulfur
1	86.6%	13.4%
2	76.4%	23.6%

Rock Sample 1
$86.6 \% \mathrm{~g} \mathrm{~Pb}=86.6 \mathrm{~g} \mathrm{~Pb} ; 86.6 \mathrm{~g} / 207.2 \mathrm{~g} / \mathrm{mol}=$ 0.418 mol Pb
$13.4 \% \mathrm{~g} \mathrm{~S}=13.4 \mathrm{~g} ; 13.4 \mathrm{~g} / 32.07 \mathrm{~g} / \mathrm{mol}=$ 0.418 mol S

Dividing each quantity by 0.418 mol yields:
$1 \mathrm{~mol} \mathrm{~Pb}+1 \mathrm{~mol} \mathrm{~S}=\mathrm{PbS}$
Rock Sample 2
76.4\% g Pb $=76.4$ g Pb; $76.4 \mathrm{~g} / 207.2 \mathrm{~g} / \mathrm{mol}=$ 0.369 mol Pb
23.6% g S $=23.6$ g S; $23.6 \mathrm{~g} / 32.07 \mathrm{~g} / \mathrm{mol}=$ 0.736 mol S

Dividing each quantity by 0.369 mol yields:
$1 \mathrm{~mol} \mathrm{~Pb}+2 \mathrm{~mol} \mathrm{~S}=\mathrm{PbS}_{2}$
The rocks contain two different compounds of lead and sulfur. Further analysis will show that Sample 1 has the formula PbS and that Sample 2 has the formula PbS_{2}.
200. Graph A YAG, or yttrium aluminum garnet $\left(\mathrm{Y}_{3} \mathrm{Al}_{5} \mathrm{O}_{12}\right)$, is a synthetic gemstone which has no counterpart in nature. Design a bar graph to indicate the moles of each element present in a 5.67 carat yttrium aluminum garnet. (1 carat 5 0.20 g)
(5.67 carat $\mathrm{Y}_{3} \mathrm{Al}_{5} \mathrm{O}_{12}$) $(0.20 \mathrm{~g} /$ carat $)=$ $1.13 \mathrm{~g} \mathrm{Y}_{3} \mathrm{Al}_{5} \mathrm{O}_{12}$
$\left(1.13 \mathrm{Y}_{3} \mathrm{Al}_{5} \mathrm{O}_{12}\right)(1 \mathrm{~mol} / 436.75 \mathrm{~g})=$ $0.00260 \mathrm{~mol} \mathrm{Y}_{3} \mathrm{Al}_{5} \mathrm{O}_{12}$
$\left(0.00260 \mathrm{~mol} \mathrm{Y}_{3} \mathrm{Al}_{5} \mathrm{O}_{12}\right)\left(3 \mathrm{~mol} \mathrm{Y/1} \mathrm{~mol} \mathrm{Y}_{3} \mathrm{Al}_{5} \mathrm{O}_{12}\right)$ $=0.00779 \mathrm{~mol} Y$
$\left(0.00260 \mathrm{~mol} \mathrm{Y}_{3} \mathrm{Al}_{5} \mathrm{O}_{12}\right)\left(5 \mathrm{~mol} \mathrm{Al} / 1 \mathrm{~mol} \mathrm{Y}_{3} \mathrm{Al}_{5} \mathrm{O}_{12}\right)$ $=0.0130 \mathrm{~mol} \mathrm{Al}$
$\left(0.00260 \mathrm{~mol} \mathrm{Y}_{3} \mathrm{Al}_{5} \mathrm{O}_{12}\right)\left(12 \mathrm{~mol} \mathrm{O} / 1 \mathrm{~mol} \mathrm{Y}_{3} \mathrm{Al}_{5} \mathrm{O}_{12}\right)$ $=0.0312 \mathrm{~mol} \mathrm{O}$

The bar graph should show $0.00779 \mathrm{~mol} Y$, 0.0130 mol Al , and 0.0312 mol 0 .

201. Assess The structure of the TNT molecule is shown in Figure 10.24. Critique the statement "Trinitrotoluene, TNT, contains 21 atoms per mole." What is correct about the statement and what is incorrect? Rewrite the statement.

A molecule of TNT contains 21 atoms but a mole of TNT contains 6.02×10^{23} molecules. The statement is false as stated. "Trinitrotoluene, TNT, has the formula $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{6}$ which contains 21 atoms but a mole of TNT contains 6.02×10^{23} molecules.
202. Design an Experiment Design an experiment that can be used to determine the amount of water in alum $\left(\mathrm{KAl}\left(\mathrm{SO}_{4}\right)_{2} \cdot x \mathrm{H}_{2} \mathrm{O}\right)$.
Determine and record the mass of an empty evaporating dish. Add about 2 g of the hydrate. Measure and record the mass. Heat the evaporating dish gently for 5 minutes, and strongly for another 5 minutes to evaporate all the water. Allow the dish to cool, and measure and record the mass. Determine the masses of the anhydrous solid and the water lost. Calculate the number of moles of anhydrous compound and water. Determine the ratio of moles of water to moles of anhydrous compound. Use the whole-number ratio of the moles as the coefficient of $\mathrm{H}_{2} \mathrm{O}$ in the formula.
203. Design a concept map that illustrates the mole concept. Include the terms moles, Avogadro's number, molar mass, number of particles, percent composition, empirical formula, and molecular formula.
Concept maps will vary but should show logical connection between Avogadro's number of particles, a mole, and molar mass, and also show how the molecular formula is a whole-number multiple of the empirical formula.

Challenge Problem

204. Two different compounds are composed of Elements X and Y. The formulas of the compounds are $\mathrm{X}_{2} \mathrm{Y}_{3}$ and XY. A 0.25 mol sample of XY has a mass of 17.96 g , and a 0.25 mol sample of $\mathrm{X}_{2} \mathrm{Y}_{3}$ has a mass of 39.92 g .
a. What are the atomic masses of elements X and Y ?
b. What are the formulas for the compounds?

$$
\begin{aligned}
& \text { Compound XY: } \frac{17.96 \mathrm{~g}}{0.25 \mathrm{~mol}}=71.84 \mathrm{~g} / \mathrm{mol} \\
& 71.84 \mathrm{~g} / \mathrm{mol}=\mathrm{X}+\mathrm{Y}, \mathrm{Y}=71.84 \mathrm{~g} / \mathrm{mol}=\mathrm{X} \\
& \text { Compound } X_{2} \mathrm{Y}_{3}: 39.92 \mathrm{~g} / 0.25 \mathrm{~mol}=159.68 \\
& \mathrm{~g} / \mathrm{mol} \\
& 159.68 \mathrm{~g} / \mathrm{mol}=2 \mathrm{X}+3 \mathrm{Y} \\
& 159.68 \mathrm{~g} / \mathrm{mol}=2 \mathrm{X}+3(71.84 \mathrm{~g} / \mathrm{mol}-\mathrm{X}) \\
& {[\text { substitute for } \mathrm{Y} \text { and solve for X] }} \\
& 159.68 \mathrm{~g} / \mathrm{mol}=2 \mathrm{X}+215.52 \mathrm{~g} / \mathrm{mol}-3 \mathrm{X}
\end{aligned}
$$

$-55.85 \mathrm{~g} / \mathrm{mol}=-X$
$\mathrm{X}=55.84 \mathrm{~g} / \mathrm{mol}$
$X+Y=71.84 \mathrm{~g} / \mathrm{mol}$
$55.84 \mathrm{~g} / \mathrm{mol}+\mathrm{Y}=71.84 \mathrm{~g} / \mathrm{mol}$
$\mathrm{Y}=16 \mathrm{~g} / \mathrm{mol}$
X is the element iron (Fe); Y is the element oxygen (0)
Formulas are FeO and $\mathrm{Fe}_{2} \mathrm{O}_{3}$.

Cumulative Review

205. Express each answer with the correct number of significant figures. (Chapter 2)
a. $18.23-456.7$
-438.5
b. $4.233 \div 0.0131$

323
c. $\frac{(82.44+4.92)}{406}+0.125$
206. Making Candy A recipe for pralines calls for the candy mixture to be heated until it reaches the "soft ball" stage, about $236^{\circ} \mathrm{F}$. Can a Celsius thermometer with a range of -10 to $110{ }^{\circ} \mathrm{C}$ be used to determine when the "soft ball" stage is reached? (Chapter 2)
${ }^{\circ} \mathrm{C}=\frac{{ }^{\circ} \mathrm{F}-32}{1.8}=\frac{204}{1.8}=113^{\circ} \mathrm{C}$.
No, the Celsius thermometer could not be used because $113^{\circ} \mathrm{C}$ is beyond the range of the thermometer.
207. Contrast atomic number and mass number. Compare these numbers for isotopes of an element. (Chapter 4)
Atomic number equals the number of protons. Mass number equals the number of protons plus the number of neutrons. Two isotopes of an element will have the same atomic number but different mass numbers.

208. Describe the phenomenon in Figure 10.25. Explain why the electrons are not bound to the nuclei. (Chapter 5)
The illustration shows the photoelectric effect; the emission of electrons from a metal surface when light of sufficient energy strikes the metal. The electrons in metals are not bound to nuclei; they are free to move.
209. Given the elements $\mathrm{Ar}, \mathrm{Cs}, \mathrm{Br}$, and Ra , identify those that form positive ions. Explain your answer. (Chāptē̈ 7) TVW, ©u Cs and Ra can form positive ions. The configuration of Cs is [Xe]6s ${ }^{1}$; Cs loses 1 valence electron to form a $1+$ ion. The configuration of Ra is [Rn]7s2; Ra loses 2 electrons to form a $2+$ ion. Argon is a noble gas and does not lose or gain electrons. Br gains one electron to form a 1-ion.
210. Write the formula and name the compound formed when each pair of elements combine. (Chapter 7)
a. barium and chlorine
BaCl_{2}; barium chloride
b. aluminum and selenium
$\mathrm{Al}_{2} \mathrm{Se}_{3}$; aluminum selenide
c. calcium and phosphorus
$\mathrm{Ca}_{3} \mathrm{P}_{2}$; calcium phosphide
211. Write balanced equations for each reaction. (Chapter 9)
a. Magnesium metal and water combine to form solid magnesium hydroxide and hydrogen gas.

$$
\mathrm{Mg}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})+\mathrm{H}_{2}(\mathrm{~g})
$$

b. Dinitrogen tetroxide gas decomposes into nitrogen dioxide gas.

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

c. Aqueous solutions of sulfuric acid and potassium hydroxide undergo a doublereplacement reaction.

$$
\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{KOH}(\mathrm{aq}) \rightarrow \mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Additional Assessment

Writing in Chemistry

212. Natural Gas Natural gas hydrates are chemical compounds known as clathrate hydrates. Research natural gas hydrates and prepare an educational pamphlet for consumers. The pamphlet should discuss the composition and structure of the compounds, the location of the hydrates, their importance to consumers, and the environmental impact of using the hydrates.
Natural gas hydrates are crystalline solids resembling snow that consist of a water-ice lattice within which light hydrocarbon molecules such as methane, ethane, and propane are trapped in the space between water molecules. They naturally form at moderately high pressures and temperatures near the freezing point of water. These conditions exist in the Arctic permafrost regions of North America and Eurasia and at depth along the world's continental slopes and rises on the sea floor. Natural gas hydrate can be thought of as a "methane concentrator". Gas hydrates may be a new clean energy source. Huge amounts of natural gas are tied up in natural gas hydrates globally. If exploited as a energy source, removal of gas hydrates may destabilize the sea floor, triggering submarine landslides and huge releases of methane. Methane is a very effective greenhouse gas, and large methane releases may explain sudden episodes of climatic warming in the geologic past.
213. Avogadro Research and report on the life of the Italian chemist Amedeo Avogadro (1776-1856) and how his work led scientists to determine the number of particles in a mole.

Students should mention Avogadro's hypothesis. Avogadro formulated his hypothesis as an explanation for earlier works by Gay-Lussac and Ritter. His ideas were rejected by chemists of his day but were revived later by the Italian chemist Stanislao Cannizzaro. Avogadro died before seeing his ideas accepted.
214. Luminol Crime-scene investigators use luminol to visualize blood residue. Research luminol and determine its chemical formula and percent composition.

Luminol $\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{2} \mathrm{~N}_{3}\right)$ reacts with compounds in blood and releases energy in the form of light. When crime scene investigators see the light, they know blood is at the scene. The percent composition of $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{2} \mathrm{~N}_{3}$ is $54.23 \% \mathrm{C}, 3.98 \% \mathrm{H}$, $18.06 \% \mathrm{O}$, and $23.72 \% \mathrm{~N}$.
$8 \mathrm{~mol} \mathrm{C} \times 12.01 \mathrm{~g} / \mathrm{mol}=96.08 \mathrm{~g} \mathrm{C}$
$7 \mathrm{~mol} \mathrm{H} \times 1.008 \mathrm{~g} . \mathrm{mol}=7.056 \mathrm{~g} \mathrm{H}$
$2 \mathrm{~mol} \mathrm{O} \times 16.00 \mathrm{~g} / \mathrm{mol}=32.00 \mathrm{~g} \mathrm{O}$
$3 \mathrm{~mol} \mathrm{~N} \times 14.01 \mathrm{~g} / \mathrm{mol}=42.03 \mathrm{~g} \mathrm{~N}$
molar mass $=177.17 \mathrm{~g} / \mathrm{mol}$
$\% \mathrm{C}=(96.08 \mathrm{~g} \mathrm{C} / 177.17 \mathrm{~g} / \mathrm{mol}) \times 100=54.23 \% \mathrm{C}$
$\% \mathrm{H}=(7.056 \mathrm{~g} \mathrm{H} / 177.17 \mathrm{~g} / \mathrm{mol}) \times 100=3.98 \% \mathrm{H}$
$\% \mathrm{O}=(32.00 \mathrm{~g} \mathrm{0} / 177.17 \mathrm{~g} / \mathrm{mol}) \times 100=18.06 \% \mathrm{O}$
$\% \mathrm{~N}=(42.03 \mathrm{~g} / 177.17 \mathrm{~g} / \mathrm{mol}) \times 100=23.72 \% \mathrm{~N}$

Document-Based Questions

Space Shuttle Propellants At liftoff, the orbiter and an external fuel tank carry $3,164,445 \mathrm{~L}$ of the liquid propellants hydrogen, oxygen, hydrazine, monomethylhydrazine and dinitrogen tetroxide. Their total mass is $727,233 \mathrm{~kg}$. Data for the propellants carried at liftoff are given in Table 10.6.

Data obtained from: "Space Shuttle Use of Propellants and Fluids." September 2001. NASA Fact Sheet

Space Shuttle Liquid Propellants				
Propellants	Molecular Formula	$\begin{aligned} & \text { Mass } \\ & \text { (kgs) } \end{aligned}$	Mole	Molecules
Hydrogen	H_{2}	$\begin{gathered} 1.04+ \\ 10^{5} \\ \hline \end{gathered}$	$\begin{gathered} 5.14+ \\ 10^{7} \\ \hline \end{gathered}$	$\begin{gathered} 3.09+ \\ 10^{31} \\ \hline \end{gathered}$
Oxygen	O_{2}	$\begin{gathered} 6.18+ \\ 10^{5} \end{gathered}$	$\begin{gathered} 1.93+ \\ 10^{7} \end{gathered}$	$\begin{gathered} 1.16+ \\ 10^{31} \end{gathered}$
Hydrazine	$\mathrm{N}_{2} \mathrm{H}_{4}$	493	$\begin{gathered} 1.54+ \\ 10^{4} \end{gathered}$	$\begin{gathered} 9.27+ \\ 10^{27} \end{gathered}$
Monomethylhydrazine	$\mathrm{CH}_{3} \mathrm{NHNH}_{2}$	4,909	$\begin{gathered} 1.07+ \\ 10^{5} \\ \hline \end{gathered}$	$\begin{gathered} 6.44+ \\ 10^{28} \\ \hline \end{gathered}$
Dinitrogen tetroxide	$\mathrm{N}_{2} \mathrm{O}_{4}$	7950	$\begin{array}{c\|} \hline 8.64+ \\ 10^{4} \\ \hline \end{array}$	$\begin{gathered} 5.20+ \\ 10^{28} \\ \hline \end{gathered}$

215. Hydrazine contains 87.45% nitrogen and 12.55% hydrogen, and has a molar mass of $32.04 \mathrm{~g} / \mathrm{mol}$. Determine hydrazine's molecular formula. Record the molecular formula in Table 10.6.
$87.45 \% \mathrm{~g} \mathrm{~N}=87.45 \mathrm{~g} ; 87.45 \mathrm{~g} / 14.01 \mathrm{~g} / \mathrm{mol}$ $=6.24 \mathrm{~mol} \mathrm{~N} 12.55 \% \mathrm{~g} \mathrm{H}=12.55 \mathrm{~g} \mathrm{H} ; 12.55$ $\mathrm{g} / 1.008 \mathrm{~g} / \mathrm{mol}=12.45 \mathrm{~mol} \mathrm{H}$
Dividing each quantity by 6.24 mol yields: 1 mol N: $\mathbf{2} \mathbf{~ m o l ~ H}$

$$
\begin{aligned}
& \text { Empirical formula }=\mathrm{NH}_{2} \\
& \text { Empirical mass }=14.007 \mathrm{~g}+2(1.008 \mathrm{~g})= \\
& 16.023 \mathrm{~g} / \mathrm{mol} \\
& (32.04 \mathrm{~g} / \mathrm{mol}) /(16.023 \mathrm{~g} / \mathrm{mol})=2 \\
& \text { molecular formula }=2\left(\mathrm{NH}_{2}\right)=\mathrm{N}_{2} \mathrm{H}_{4}
\end{aligned}
$$

216. Complete Table $\mathbf{1 0 . 6}$ by calculating the number of moles, mass in kilograms, or molecules for each propellant. Give all answers to three significant figures.

Space Shuttle Liquid Propellants				
Propellants	Molecular Formula	Mass (kgs)	Mole	Molecules
Hydrogen	H_{2}	$1.04+$ 10^{5}	$5.14+$ 10^{7}	$3.09+$ 10^{31}
Oxygen	O_{2}	$6.18+$ 10^{5}	$1.93+$ 10^{7}	$1.16+$ 10^{31}
Hydrazine	$\mathrm{N}_{2} \mathrm{H}_{4}$	493	$1.54+$ 10^{4}	$9.27+$ 10^{27}
Monomethyl- hydrazine	$\mathrm{CH}_{3} \mathrm{NHNH}_{2}$	4,909	$1.07+$ 10^{5}	$6.44+$ 10^{28}
Dinitrogen tetroxide	$\mathrm{N}_{2} \mathrm{O}_{4}$	7950	$8.64+$ 10^{4}	$5.20+$ 10^{28}

$5.14 \times 10^{7} \mathrm{~mol} \times 2.016 \mathrm{~g} / \mathrm{mol} \times 1 \mathrm{~kg} / 1000 \mathrm{~g}$ $=1.04 \times 10^{5} \mathrm{~kg}$
$5.14 \times 10^{7} \mathrm{~mol} \times 6.02 \times 10^{23}$ particles $/ \mathrm{mol}$ $=3.09 \times 10^{31}$
$1.93 \times 10^{7} \mathrm{~mol} \times 32.00 \mathrm{~g} / \mathrm{mol} \times 1 \mathrm{~kg} / 1000 \mathrm{~g}$ $=6.18 \times 10^{5}$
1.16×10^{31} particles $\times 1 \mathrm{~mol} / 6.02 \times 10^{23}$ particles $=1.93 \times 10^{7} \mathrm{~mol}$
$1.54 \times 10^{4} \mathrm{~mol} \times 6.02 \times 10^{23}$ particles $/ \mathrm{mol}$
$=9.27 \times 10^{27}$ particles
$4,909 \mathrm{~kg} \times 1000 \mathrm{~g} / \mathrm{kg} \times 1 \mathrm{~mol} / 46.08 \mathrm{~g}$
$=1.07 \times 10^{5}$
$1.07 \times 10^{5} \mathrm{~mol} \times 6.02 \times 10^{23}$ particles $/ \mathrm{mol}=6.41$
$\times 10^{28}$ particles
$8.64 \times 10^{4} \mathrm{~mol} \times 92.02 \mathrm{~g} / \mathrm{mol} \times 1 \mathrm{~kg} / 1000 \mathrm{~g}=$ 7950 kg
$8.64 \times 10^{4} \mathrm{~mol} \times 6.02 \times 10^{23}$ particles $/ \mathrm{mol}=$ 5.20×10^{28} particles

Standardized Test Practice

pages 364-365
Use the graph below to answer Questions 1 to 4.

1. Acetaldehyde and butanoic acid must have the same
a. molecular formula.
b. empirical formula
c. molar mass.
d. chemical properties.
b
2. If the molar mass of butanoic acid is
$88.1 \mathrm{~g} / \mathrm{mol}$, what is its molecular formula?
a. $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{3}$
b. $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$
c. $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}_{1}$
d. $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$
d

Solution:

Determine the empirical formula. Assume a 100.0 g sample.
$54.5 \mathrm{ge} \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.01 \mathrm{~g} \mathrm{\epsilon}}=4.54 \mathrm{~mol} \mathrm{C}$
$9.1 \mathrm{~g} \mathrm{H} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{gH}}=9.03 \mathrm{~mol} \mathrm{H}$
$36.4 \mathrm{~g} \theta \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} \theta}=2.28 \mathrm{~mol} \mathrm{O}$

Determine the mole rations.
$\frac{4.54 \mathrm{~mol} \mathrm{C}}{2.28}=1.99=2 \mathrm{~mol} \mathrm{C}$
$\frac{9.03 \mathrm{~mol} \mathrm{H}}{2.28}=3.96=4 \mathrm{~mol} \mathrm{H}$
$\frac{2.28 \mathrm{~mol} \mathrm{O}}{2.28}=1.00=1 \mathrm{~mol} \mathrm{O}$
The empirical formula for butanoic acid is C 2 H 4 O .
The mass of the empirical formula is $44.06 \mathrm{~g} / \mathrm{mol}$.
$\frac{88.1 \mathrm{~g} / \mathrm{mol}}{44.06 \mathrm{~g} / \mathrm{mol}}=2.00$
The molecular formula for butanoic acid $=$ $\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}\right) 2=\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$.
3. What is the empirical formula of ethanol?
a. $\mathrm{C}_{4} \mathrm{HO}_{3}$
b. $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$
c. $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$
d. $\mathrm{C}_{4} \mathrm{H}_{13} \mathrm{O}_{2}$

C

Solution:
$52.2 \mathrm{~g} \in \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.01 \mathrm{~g} \mathrm{\epsilon}}=4.35 \mathrm{~mol} \mathrm{C}$
$13.0 \mathrm{gH} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{gH}}=12.9 \mathrm{~mol} \mathrm{H}$
$34.8 \mathrm{~g} \theta \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} \mathrm{\theta}}=2.18 \mathrm{~mol} \mathrm{O}$
Determine the mole ratios.
$\frac{4.35 \mathrm{~mol} \mathrm{C}}{2.18}=2.00 \mathrm{~mol} \mathrm{C}=2 \mathrm{~mol} \mathrm{C}$
$\frac{12.9 \mathrm{~mol} \mathrm{H}}{2.18}=5.92 \mathrm{~mol} \mathrm{H}=6 \mathrm{~mol} \mathrm{H}$
$\frac{2.18 \mathrm{~mol} \mathrm{O}}{2.18}=1 \mathrm{~mol} \mathrm{O}=1 \mathrm{~mol} \mathrm{O}$
The empirical formula for ethanol is $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$.
4. The empirical formula of formaldehyde is the same as its molecular formula. How many grams are in 2.000 mol of formaldehyde?
a. 30.00 g
b. 60.06 g
c. 182.0 g
d. 200.0 g
b

Determine the empirical formula for formaldehyde.
$40.0 \mathrm{ge} \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.01 \mathrm{ge}}=3.33 \mathrm{~mol} \mathrm{C}$
$6.7 \mathrm{gH} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{gH}}=6.65 \mathrm{~mol} \mathrm{H}$
$53.3 \mathrm{~g} \theta \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} \theta}=3.33 \mathrm{~mol} \mathrm{O}$
$\frac{3.33 \mathrm{~mol} \mathrm{C}}{3.33}=1.00 \mathrm{~mol} \mathrm{C}=1 \mathrm{~mol} \mathrm{C}$
$\frac{6.65 \mathrm{~mol} \mathrm{H}}{3.33}=2.00 \mathrm{~mol} \mathrm{H}=2 \mathrm{~mol} \mathrm{H}$
$\frac{3.33 \mathrm{~mol} \mathrm{O}}{3.33}=1.00 \mathrm{~mol} \mathrm{O}=1 \mathrm{~mol} \mathrm{O}$
The empirical formula for formaldehyde is $\mathrm{CH}_{2} \mathrm{O}$.
Molar mass of $\mathrm{CH}_{2} \mathrm{O}=30.03 \mathrm{~g} / \mathrm{mol}$
$\frac{30.03 \mathrm{~g}}{1 \mathrm{~mol}} \times 2.00 \mathrm{mot}=60.06 \mathrm{~g}$ formaldehyde
5. Which does NOT describe a mole?
a. a unit used to count particles directly
b. Avogadro's number of molecules of a compound
c. the number of atoms in exactly 12 g of pure C-12
d. the SI unit for the amount of a substance
a

Use the graph below to answer Question 6.

6. What is the empirical formula for this compound?
a. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{6} \mathrm{O}_{3}$
b. $\mathrm{C}_{4} \mathrm{HN}_{5} \mathrm{O}_{10}$
c. $\mathrm{CH}_{3} \mathrm{NO}_{2}$
d. $\mathrm{CH}_{5} \mathrm{NO}_{3}$
c
Assume a 100.00 g sample.
$19.68 \mathrm{ge} \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.01 \mathrm{~g} \mathrm{\epsilon}}=1.639 \mathrm{molc}$
$4.96 \mathrm{gH} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{gH}}=4.921 \mathrm{~mol} \mathrm{H}$
$22.95 \mathrm{gA} \times \frac{1 \mathrm{~mol} \mathrm{~N}}{14.007 \mathrm{~g}}=1.638 \mathrm{~mol} \mathrm{~N}$
$52.42 \mathrm{~g} \theta \times \frac{1 \mathrm{~mol} \mathrm{O}}{15.999 \mathrm{~g} \theta}=3.276 \mathrm{~mol} \mathrm{O}$
Determine the mole ratios.
$\frac{1.639 \mathrm{~mol} \mathrm{C}}{1.638}=1.001 \mathrm{~mol} \mathrm{C}=1 \mathrm{~mol} \mathrm{C}$
$\frac{4.921 \mathrm{~mol} \mathrm{H}}{1.638 \mathrm{~mol}}=3.004 \mathrm{~mol} \mathrm{H}=3 \mathrm{~mol} \mathrm{H}$
$\frac{1.638 \mathrm{~mol} \mathrm{~N}}{1.638}=1 \mathrm{~mol} \mathrm{~N}=1 \mathrm{~mol} \mathrm{~N}$
$\frac{3.276 \mathrm{~mol} \mathrm{O}}{1.638}=2 \mathrm{~mol} \mathrm{O}=2 \mathrm{~mol} \mathrm{O}$
The empirical formula for this compound is $\mathrm{CH}_{3} \mathrm{NO}_{2}$.
7. Which is NOT true of molecular compounds?
a. Triple bonds are stronger than single bonds.
b. Electrons are shared in covalent bonds.
c. All atoms have eight valence electrons when they are chemically stable.
d. Lewis structures show the arrangement of electrons in covalent molecules.

c

8. Which type of reaction is shown below?

$$
2 \mathrm{HI}+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S} \rightarrow \mathrm{H}_{2} \mathrm{~S}+2 \mathrm{NH}_{4} \mathrm{I}
$$

a. synthesis
b. decomposition
c. single replacement
d. double replacement
d
9. How many atoms are in 0.625 moles of GE (atomic mass $=72.59 \mathrm{amu}$)?
a. 2.73×10^{25}
b. 6.99×10^{25}
c. 03.76×10^{23}
d. 9.63×10^{23}
$0.625 \mathrm{molGe} \times \frac{6.02 \times 10^{23}}{1 \mathrm{~mol} \mathrm{Ge}^{-}}$
$=3.76 \times 10^{23}$ atoms Ge
10. What is the mass of one molecule of barium hexafluorosilicate $\left(\mathrm{BaSiF}_{6}\right)$?
a. $1.68 \times 10^{26} \mathrm{~g}$
b. $2.16 \times 10^{21} \mathrm{~g}$
c. 4.64×10^{-22}
d. 6.02×10^{-23}
c
Determine the molar mass of BaSiF_{6}.
$1 \mathrm{molBa} \times \frac{137.33 \mathrm{~g} \mathrm{Ba}}{1 \mathrm{~mol} \mathrm{Ba}}=137.33 \mathrm{~g} \mathrm{Ba}$
$1 \mathrm{motsi} \times \frac{28.09 \mathrm{~g} \mathrm{Si}}{1 \mathrm{mol-si}}=28.09 \mathrm{~g} \mathrm{Si}$
$6 \mathrm{molF} \times \frac{19.00 \mathrm{~g} \mathrm{~F}}{1 \mathrm{molF}}=114.00 \mathrm{~g} \mathrm{~F}$
Molar mass $\quad=279.42 \mathrm{~g} / \mathrm{mol} \mathrm{BaSiF}_{6}$
$\frac{279.42 \mathrm{~g} \mathrm{BaSiF}_{6}}{1 \mathrm{mo}^{\mathrm{maSiF}}} \mathbf{6}$. $\times \frac{1 \mathrm{~mol}^{\mathrm{maSiF}_{6}}}{6.02 \times 1023 \mathrm{~g} / \mathrm{molecule} \mathrm{BaSiF}_{6}}$
$=4.64 \times 10^{-22} \mathrm{~g} /$ molecule BaSiF_{6}

Use the table below to answer question 11.

Charges of Some lons	
Ion	Formula
Sulfide	S^{-2}
Sulfite	SO_{3}^{-2}
Sulfate	SO_{4}^{-2}
Thiosulfate	$\mathrm{S}_{2} \mathrm{O}_{3}^{-2}$
Copper(I)	Cu^{+}
Copper(II)	Cu^{2+}

11. How many possible compounds can be made that contain copper, sulfur, and oxygen? Write their names and formulas.

Six compounds are possible.

Copper(I) thiosulfate	$\mathrm{Cu}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
Copper(II) thisulfate	$\mathrm{CuS}_{2} \mathrm{O}_{3}$
Copper(I) sulfate	$\mathrm{Cu}_{2} \mathrm{SO}_{4}$
Copper(II) sulfate	CuSO_{4}
Copper(I) sulfite	$\mathrm{Cu}_{2} \mathrm{SO}_{3}$
Copper(II) sulfite	CuSO_{3}

Extended Response

Use the figure below to answer Question 12.

12. You have been asked to identify a sample of a metal. It is known to be either zinc, lead, or lithium. You have aqueous solutions of KCl , $\mathrm{AlCl}_{3}, \mathrm{FeCl}_{3}$, and CuCl_{2} available. Explain how you would use these solutions to identify what metal your sample is made of.
You would need to test each sample of metal for a reaction with each of the solutions in turn. If the sample is lithium, it is more reactive than any of the four aqueous chloride solutions, and will display a reaction when placed into any of them. Lead is less reactive than any of the aqueous solutions except for the copper; therefore, if the metal reacts with the copper solution but none of the others, it is likely to be lead. Zinc is more reactive than iron and copper but less reactive than potassium and aluminum, so if the unidentified metal is zinc it will react with the iron and copper solutions but not with the potassium or aluminum solutions.
13. It takes 2 iron atoms and 6 chlorine atoms to make 2 iron (III) chloride particles. How many chlorine atomsare required to make 18 iron (III) chloride particles?
a. 9
b. 18
c. 27
d. 54
e. 72
d
14. What is the molar mass of fluorapatite
$\left(\mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{~F}\right)$?
a. $314 \mathrm{~g} / \mathrm{mol}$
b. $344 \mathrm{~g} / \mathrm{mol}$
c. $442 \mathrm{~g} / \mathrm{mol}$
d. $504 \mathrm{~g} / \mathrm{mol}$
e. $534 \mathrm{~g} / \mathrm{mol}$
d
$5 \mathrm{~mol} \mathrm{Ca} \times \frac{40.08 \mathrm{~g} \mathrm{Ca}}{1 \mathrm{~mol} \mathrm{Ca}}=200.40 \mathrm{~g} \mathrm{Ca}$
$3 \mathrm{~mol} P \times \frac{30.97 \mathrm{~g} \mathrm{P}}{1 \mathrm{~mol} \mathrm{P}}=92.91 \mathrm{~g} \mathrm{P}$
$12 \mathrm{~mol} \mathrm{O} \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{~mol} \mathrm{P}}=192.00 \mathrm{~g} \mathrm{o}$
$1 \mathrm{~mol} \mathrm{~F} \times \frac{19.00 \mathrm{~g} \mathrm{~F}}{1 \mathrm{~mol} \mathrm{~F}}=19.00 \mathrm{~g} \mathrm{~F}$
molar mass $=504.31 \mathrm{~g} / \mathrm{mol}=504 \mathrm{~g} / \mathrm{mol}$
15. Which is not a correct formula for an ionic compound?
a. CaC_{12}
b. $\mathrm{Na}_{2} \mathrm{SO}_{4}$
c. $\mathrm{Al}_{3} \mathrm{~S}_{2}$
d. NaCl
c
Use the table below to answer Question 16.

Percent composition of selected hydrocarbons			
Compound	\% C	\% H	\% 0
$\mathrm{C}_{2} \mathrm{H}_{10} \mathrm{O}$	64.81	13.60	21.59
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{4}$	48.64	8.108	43.24
$\mathrm{C}_{7} \mathrm{H}_{16} \mathrm{O}_{3}$	56.76	10.81	32.43
$\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{5}$	40.54	5.405	54.05

16. A $25.0-\mathrm{g}$ sample of an unknown hydrocarbon is composed of 12.16 g carbon, 2.027 g hydrogen, and 10.81 g oxygen. If its molecular weight is $148 \mathrm{~g} / \mathrm{mol}$, what is the molecular formula for this compound?
a. $\mathrm{C}_{2} \mathrm{H}_{10} \mathrm{O}$
b. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{4}$
c. $\mathrm{C}_{7} \mathrm{H}_{16} \mathrm{O}_{3}$
d. $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{5}$
e. $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{O}_{5}$
b
Determine the number of moles.
$12.16 \mathrm{~g} \epsilon \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.01 \mathrm{~g} \mathrm{\epsilon}}=1.012 \mathrm{~mol} \mathrm{C}$
$2.027 \mathrm{gH} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.01 \mathrm{gH}}=2.007 \mathrm{~mol} \mathrm{H}$
$10.81 \mathrm{~g} \theta \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} \theta}=0.6756 \mathrm{~mol} \mathrm{O}$
Determine the empirical formula.
$\frac{1.012 \mathrm{molc}}{0.6756}=1.498=1.5 \times 2=3$
$\frac{2.007 \mathrm{~mol} \mathrm{H}}{0.6756}=2.971=3 \times 2=6$
$\frac{6.756 \mathrm{~mol} \mathrm{O}}{0.6756}=1.000=1 \times 2=2$
Empirical formula is $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}$.
Determine the mass of the empirical formula.
$3 \times 12.01 \mathrm{~g} / \mathrm{mol}=36.03 \mathrm{~g} / \mathrm{mol}$
$6 \times 1.01 \mathrm{~g} / \mathrm{mol}=6.06 \mathrm{~g} / \mathrm{mol}$
$2 \times 16.00 \mathrm{~g} / \mathrm{mol}=32.00 \mathrm{~g} / \mathrm{mol}$
The mass of the empirical formula is $74.09 \mathrm{~g} / \mathrm{mol}$.
$\frac{148 \mathrm{~g} / \mathrm{mol}}{74.09 \mathrm{~g} / \mathrm{mol}}=2$
The molecular formula is $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{4}$.
